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ABSTRACT

Routine pavement maintenance increasingly relies on van-mounted sensor fleets
that inspect roads at highway speed, yet the crack masks delivered by proprietary
detection pipelines are often coarse, inconsistent, and empirically unreliable. At
TNO, the Dutch research organisation responsible for analyzing collected sensor
data on the national highway network, vendor-supplied laser-line heightmaps face
problems of inconsistent label quality which results in unreliable training data for
downstream tasks. This thesis therefore pursues two complementary goals: (i)
upgrade those masks at scale without manual pixel annotation, and (ii) leverage
strong pretrained vision features to segment thin, noisy cracks more robustly than
current practice.
First, we curate a reproducible dataset of ∼3.8k laser strips and refine their noisy
masks by prompting SegmentAnything2 (SAM2) with the low-resolution orig-
inals, producing sharper supervision fully automatically. Second, we embed a
self-supervised DINOv2 ViT-B/14 backbone in a lightweight TransUNet decoder
that retains CNN skip connections for sub-pixel detail while exploiting global
Transformer context.
A new expert benchmark, with an Unknown label to ignore ambiguous pixels
and distance-tolerant metrics, shows that SAM2 refinement lifts in-domain F1
from 0.732 to 0.765, and that the DINOv2 hybrid attains the best out-of-domain
score on the hand-labeled set (F1=0.376 vs. 0.342 baseline). The results demon-
strate that promptable foundation models can bootstrap label quality and that
self-supervised ViTs offer robustness when perfect ground truth is unavailable.
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1 Introduction

1.1 MOTIVATION AND CONTEXT

Roads form the backbone of modern transportation networks, serving as vital arteries for commerce,
commuting, and emergency services. Ensuring their structural integrity is therefore essential for
multiple reasons. First, public safety is directly impacted by the presence of cracks and other road
defects, which can lead to vehicular damage, accidents, and increased liability for the government.
Second, cost-efficiency in infrastructure management benefits significantly from early detection of
surface damage: timely interventions prevent small cracks from developing into extensive dam-
age, thereby reducing the need for more expensive repairs. Third, maintenance scheduling can be
optimized through accurate condition assessment, transport authorities can plan repairs or refurbish-
ments during off-peak hours or integrate them with other projects to minimize traffic disruptions and
public inconvenience.

Neglecting systematic road maintenance has substantial societal and economic consequences. De-
teriorated road networks may harm local economies by increasing travel times, accelerating vehicle
wear-and-tear, and dissuading commerce or tourism. At a broader scale, unreliable infrastructure
can undermine regional growth and strain public budgets with high repair costs. In this context,
reliable crack detection emerges as a crucial enabling factor: by pinpointing surface defects at
their earliest stages, it supports more efficient resource allocation, reduces safety hazards, and helps
maintain the essential mobility that underpins social and economic well-being.

1.2 PROBLEM STATEMENT AND RESEARCH QUESTIONS

The current method employed for road crack detection in our specific context relies on an opaque,
black-box algorithm provided by an external service. This algorithm lacks transparency regarding its
internal processes, feature extraction techniques, and whether it uses machine learning or traditional
image processing methods. As a result, the reliability of its crack detections is often questionable.
Apart from its close source nature, the segmentation mask generated using the LCMS system (see
Chapter 3) are subpar. Additionally, after experimentation, to the best of our knowledge, the current
asphalt crack detection field supplies unreliable models where the results are not reproducible.

To address these limitations, this thesis proposes the development of an automated, semantic seg-
mentation–based approach specifically designed to detect visible cracks on heightmap data captured
by a laser system.

Our objectives focus primarily on two key areas. First, we aim to integrate DINOv2 ViT-B/14,
a cutting-edge, self-supervised Vision Transformer (ViT), into an existing segmentation architec-
ture to leverage its powerful, attention-driven feature extraction capabilities. DINOv2 surpasses its
competitors, self-supervised or not in the fields of semantic/panoptic segmentation, classification
(ImageNet-1k) and even video classification even though it was not trained for it (Oquab et al.,
2023). A DINOv2 ViT shows strong generalization and performance which could translate very
well to the use-case of this study. Second, recognizing that ground-truth labels in our dataset are im-
perfect due to algorithm-generated annotations, we seek to develop training and evaluation strategies
robust enough to handle incomplete or noisy annotations effectively. In Kheradmandi & Mehranfar
(2022) the issue of valid data sources with noisy annotations is shown to be a ongoing issue in the
field. We intend to use SAM2 developed by Ravi et al. to refine current ground truth masks for finer
grained masks ultimately produced by SAM2. We use SAM2 because of its top-1 performance in
image segmentation and because of its strong promptable architecture.
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Specifically, this research addresses the following questions:

1. How can DINOv2 be effectively integrated into existing segmentation backbones to en-
hance semantic segmentation performance, specifically for detecting fine-grained structures
such as cracks?

2. What training and evaluation methodologies can be implemented to improve performance
when labels do not accurately represent all crack pixels?

This research represents a novel integration of DINOv2 into crack segmentation tasks, an approach
that, to our knowledge, has not been explored previously (Dosovitskiy et al., 2020; Zhu et al., 2024a;
Gong et al., 2024).. It builds upon DINOv2’s demonstrated state-of-the-art capabilities in semantic
segmentation (Oquab et al., 2023). Additionally, it directly addresses the prevalent challenge of
noisy annotations common in automated crack detection datasets, an issue that conventional super-
vised methods often struggle to overcome (Zheng et al., 2024; Benz & Rodehorst, 2024).

By explicitly focusing on visible crack detection, this thesis intentionally excludes subsurface struc-
tural analysis, detection of filled cracks or asphalt raveling, long-term pavement performance mod-
eling, and comprehensive assessments of environmental impacts. These aspects, while relevant to
broader pavement management, lie outside the defined scope of our study. Ultimately, our goal is
to improve immediate crack detection accuracy and reliability, thereby enhancing proactive road
maintenance strategies.

Contribution statement.

1. Backbone innovation: first empirical study to couple self-supervised DINOv2 features
with a UNet-style crack decoder in the pavemetn crack detection field to the best of our
knowledge.

2. Automatic mask cleaning: novel, fully automatic DOS→SAM2 prompting workflow that
potentially upgrades millions of noisy labels in a single, run once off-line step.

3. Benchmarking protocol: Introduction of an internal expert-annotated 127-image test set
and group-wise distance-based disk metric fusion code, enabling fair comparison under
real-world label imperfections.

Together these choices position the thesis at the intersection of scalable industrial inspection
and cutting-edge self-supervised vision, addressing the key limitations of both CNN-only and
Transformer-only predecessors.

1.3 THESIS STRUCTURAL OVERVIEW

This thesis is organized as follows. Chapter 2 reviews prior work in pavement condition assess-
ment, classical and deep crack-segmentation methods (CNN, Transformer, hybrid), and positions the
present study. Chapter 3 details the laser-line acquisition pipeline, DOS auto-labels, patch extrac-
tion, SAM2-refined label variant, and the expert hand-labelled benchmark. Chapter 4 describes the
proposed DINOv2-augmented TransUNet architecture, SAM2 prompting strategy, training regimes,
and the evaluation protocol for noisy / incomplete ground truth. Chapter 5 reports quantitative and
qualitative experiments across all datasets, including ablations and headline comparisons. Chapter 6
discusses findings with respect to the research questions, limitations, and avenues for future work.
Chapter 7 covers immediate operational changes that can be made to improve current methods and
goes over more fundamental, deeper research directions needed to be taken to improve the model
and data on a more fundamental level.
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2 Background & Related Work

This chapter situates the present thesis within the broader evolution of pavement–crack inspection,
highlighting both convolutional and Transformer based segmentation approaches and clarifying the
open problems our method addresses. Low-level tutorials on computer–vision fundamentals are
deliberately omitted; the focus is squarely on state-of-the-art crack-detection research.

2.1 FROM MANUAL INSPECTION TO VISION AUTOMATION

For much of the twentieth century pavement agencies relied on walking surveys: inspectors visually
graded ride quality and surface distress, often using the Pavement-Condition-Index (PCI) used by
Joint Departments of the Army and the Air Force, USA (1989) as part of large scale manual in-
spection methods. These clipboard audits are slow, labor-intensive, and, because they require lane
closures, expose crews to substantial traffic risk.

The advent of van-mounted laser-line profilers in the early 2010s radically changed this landscape.
Systems such as Pavemetrics’ LCMS capture sub-millimeter texture and depth while traveling at
highway speed, producing roughly 2 × 107 Greyscale–LIDAR pixels per 100m strip (Pavemetrics
Systems Inc., 2024a). Comprehensive reviews confirm that these optical rigs deliver centimeter-
scale crack-width accuracy and centimeter-level geolocation when combined with differential GPS
(Chu et al., 2022). A raveling1 detection algorithm was developed by Aalst et al. (2015) that uses 3-
D laser triangulation to detect asphalt type, raveling and determine remaining service life of porous
asphalt in The Netherlands. In addition van Aalst (2021) presented the current system in use for
road-surface inspection in The Netherlands developed at TNO.

Yet the “big-data” boon created a new bottleneck: annotating pixel-perfect ground truth for su-
pervised learning is prohibitively expensive, evident by various studies trying to automate dataset
generation (Zhang et al., 2021; Figueira & Vaz, 2022; Lu et al., 2023) . State-of-the-art crack de-
tectors therefore rely on convolutional or Transformer backbones trained on carefully curated, often
hand labeled datasets, e.g. DeepCrack by Zou et al. (2018) or CrackU-Net by Huyan et al. (2020)
leaving open questions about scalability and generalization (Gong et al., 2024). Our work addresses
precisely this gap: we combine the speed and coverage of laser imaging with a label-refinement
pipeline that reduces human effort while preserving metric-level fidelity, ultimately enabling safer,
data-driven maintenance scheduling of road inspections.

2.2 CONVOLUTIONAL ARCHITECTURES FOR CRACK SEGMENTATION

Over the past decade fully–convolutional networks (CNNs) have dominated the field of pave-
ment–distress mapping, steadily evolving from simple encoder-decoders to multi-branch generative
models.

2.2.1 EARLY FULLY–CONVOLUTIONAL BASELINES (2015–2018)

FCN (Long et al., 2015), SegNet (Badrinarayanan et al., 2017) and U-Net (Ronneberger et al., 2015)
were the first architectures to be re-trained on grayscale road imagery. Their symmetric encoder-
decoder design yields dense predictions at a fraction of the time required by hand-crafted operators,
yet the limited effective receptive field causes fragmented outputs once a crack exceeds a few hun-
dred pixels in length, a problem already reported in comparative studies of 2017–2018 (Ragnoli
et al., 2018).

1Raveling is the concept where in porous asphalt, over time, small stones start to wear off and detach from
the asphalt layer. This causes damage to the road surface and requires timely maintanence
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2.2.2 MULTI–SCALE AND BOUNDARY-AWARE CNNS

Subsequent work tackled the context deficit by fusing features at multiple resolutions. DeepCrack
introduces five side-outputs that are edge-supervised and later aggregated to obtain continuous crack
skeletons, improving Average Precision (AP) on Crack500 by 3-4% over plain U-Net (Zou et al.,
2018). MFPANet grafts a pyramid attention module on top of a ResNet encoder so that global
context guides the localization of fine cracks; the network outperforms DeepCrack by 8% F1 on
the DeepCrack dataset (Jiang et al., 2022). Most recently, CT-CrackSeg couples dilated convolu-
tions with a lightweight convolution-transformer head and an explicit boundary branch; on the CFD
benchmark it attains a 8% gain in F1 compared to DeepCrack (Tao et al., 2023).

2.2.3 GENERATIVE & DIFFUSION CNNS

Although discriminative CNNs excel at crack/background separation, they do not model the phys-
ical formation of cracks. CrackDiff reframes segmentation as a denoising-diffusion process: a
multi-task U-Net learns to predict both the crack mask and the noise that corrupted it while reverse-
sampling from random Gaussian input (Zhang et al., 2024). CrackDiff achieves state-of-the-art
scores on Crack500 but at the price of a much slower training and inference speed per image, sig-
nificantly slower than feed-forward CNNs, mirroring the sampling overhead seen in generic DDPM
models (Song et al., 2021).

2.2.4 LIGHTWEIGHT ENCODERS FOR EMBEDDED DEPLOYMENT

Industrial road scanners often demand on-board execution, motivating networks that trade parame-
ters for speed. RHA-CrackNet compresses the encoder with depthwise separable convolutions and
inserts hybrid channel-spatial attention blocks in the decoder; despite using only 3.4 M parameters
it reports state-of-the-art F1 scores on the CamCrack789 dataset (Zhu et al., 2024a). Attempts to re-
produce the claimed Crack500 numbers revealed a 10–20% gap, suggesting either missing training
tricks or metric mis-alignment. In this thesis we therefore discarded this model fairly quick.

Key Take-aways. CNNs remain the backbone of most pavement-crack detectors thanks to their
computational efficiency and mature tooling and their inductive bias towards imagery input data,
yet (i) long-range connectivity, (ii) label noise robustness, and (iii) reproducibility of reported gains
on more niche architectures are ongoing challenges (that we faced during the literature review) that
motivate hybrid and generative alternatives explored in later sections (or less niche architectures
which are more stable and have a solid foundation in the field).

2.3 VISION TRANSFORMERS AND HYBRID ARCHITECTURES

Motivation. Pure CNNs, despite progressive tricks such as dilated kernels and pyramid attention,
struggle to capture global context along meandering long-range cracks (§2.2). Vision Transformers
(ViTs), whose self-attention operates across the entire token sequence, offer an attractive remedy;
the challenge is to retain pixel-level precision for hair-line cracks while taming the memory foot-
print on megapixel road imagery.

2.3.1 CNN–VIT HYBRIDS

TransUnet Chen et al. fuse a ResNet stem with a ViT encoder and a UNet decoder, showing that
even a shallow Transformer (L=12) markedly improves organ boundary continuity in 2-D CT; the
skip-connections restore lost detail and keep parameters modest at 105 M (Chen et al., 2021).

SegFormer Xie et al. replace heavy UNet-style decoders with a three-layer MLP head fed by
multi-resolution Transformer features, yielding a 150 FPS stream on 512² images while matching
HRNet on ADE20K; the B5 variant is now a popular backbone in crack papers (Xie et al., 2021).
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2.3.2 PURE/LOCAL VITS FOR ASPHALT

CrackFormer Liu et al. introduce windowed self-attention and deformable tokens to balance
receptive field and efficiency on 544× 384 laser scans, outperforming DeepCrack by 2.0% Average
Precision on CrackTree260 dataset (Liu et al., 2021).

Swin U-Net By sliding Swin Transformer blocks inside a UNet ladder, Cao et al. achieve state-of-
the-art dice scores on Synapse with∼15× fewer FLOPs than TransUNet, evidence that hierarchical,
shifted-window attention scales gracefully to dense prediction (Cao et al., 2022).

2.3.3 EMERGING TREND

Recent literature converges on hybrid designs: a low-level CNN stem for crisp edges, a mid-level
Transformer for contextual reasoning, and a lightweight decoder ( e.g., MLP ) to fuse multi-scale
cues. Such architectures consistently report 3−8% gains in F1/IoU/AP on public asphalt sets while
halving parameter counts compared with plain UNets, underscoring the synergy between local tex-
ture and global attention.

Limitations in prior work. Despite their promise, published hybrids share several shortcomings:

1. Label assumptions. Most methods train and report on hand-curated datasets with compar-
atively clean, isotropic annotations; performance under noisy, over-dilated, or incomplete
masks is rarely studied. (Liu et al., 2021; Zhu et al., 2024b; Tao et al., 2023)

2. Modality gap. Nearly all benchmarks use perspective RGB (or shallow texture) imagery;
few address the anisotropic sampling and speckle/noise characteristics of laser-line profiles
typical of highway-speed survey vehicles. (Li et al., 2017)

3. Evaluation bias. Reported gains often reflect train-test overlap in acquisition conditions;
robustness across label qualities (original vs. refined) or across annotation protocols (auto
vs. expert) is seldom quantified.

4. Outdated ViT backbones. All previous works thusfar use architectures that are based off
the original Vision Transformer by Dosovitskiy et al. (2020). In recent years more modern
architectures with self-supervised training regimes have emerged like DINOv2 ViTs by
Oquab et al. (2023).

To this end we make use of a DINOv2 trained ViT to help in integrating a better backbone and
introducing various techniques like label refinement and more intelligent metric calculations to build
a more robust model that can deal with noisy data.

2.4 STATE-OF-THE-ART SEGMENTATION MODELS

Recent progress in large-scale pretraining and promptable vision architectures has reshaped seman-
tic segmentation well beyond the domain-specific crack literature reviewed in §2.2§-2.3. This sec-
tion briefly situates two families of models that directly inform our design choices in Chapter 4:
(i) foundation / promptable segmenters (SAM, SAM2) and (ii) large self-supervised ViT represen-
tations (DINOv2) that downstream decoders can adapt to dense prediction. We also note comple-
mentary universal decoders (Mask2Former, MaskDINO) that demonstrate how rich pretraining plus
lightweight task heads transfer to pixel labeling.

2.4.1 PROMPTABLE FOUNDATION SEGMENTERS

Segment Anything (SAM). Kirillov et al. introduced SAM as a class-agnostic model trained on
∼1B masks spanning 11M images (Kirillov et al., 2023). A powerful image encoder (ViT-H/L/B)
feeds a promptable mask decoder that accepts points, boxes, or low-resolution masks and returns one
or multiple high-quality segment hypotheses in ≲50 ms per prompt on a GPU. Zero-shot generaliza-
tion across domains (medical, satellite, document, materials) is a key strength; however, SAM pro-
cesses each frame independently and can under-segment thin, low-contrast structures unless prompt
placement is carefully curated (Kirillov et al., 2023; Cheng et al., 2023).
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Segment Anything 2 (SAM2). Ravi et al. extend SAM to images and videos with a streaming
memory mechanism that propagates mask information across frames, improves small-object recall,
and supports iterative refinement from mixed prompt types (Ravi et al.). Of particular interest here,
SAM2’s mask-prompt pathway accepts low-resolution binary masks that seed the decoder, exactly
the interface required to refine noisy, coarse crack masks produced by an upstream system (our DOS
labels; see Chapter 3). Ravi et al report stronger boundary fidelity than SAM on elongated/frag-
mented objects when mask prompts provide coarse structure.(Ravi et al.)

2.4.2 LARGE SELF-SUPERVISED VIT REPRESENTATIONS

DINO & DINOv2. Self-distillation with no labels (DINO) demonstrated that ViTs trained
self-supervised on unlabeled internet-scale images learn surprisingly semantically aligned patch em-
beddings. (Caron et al., 2021) Oquab et al. scaled this recipe to curated multi-billion-image corpora,
improved training stability, and released DINOv2 backbones (ViT-S/B/L/G) whose frozen features
transfer strongly to downstream dense tasks, including semantic, panoptic, and instance segmenta-
tion, often rivaling supervised pretraining (Oquab et al., 2023). DINOv2 tokens preserve fine texture
and mid-range context, traits desirable for hair-line crack detection where labeled data are scarce.

Masked Autoencoding (MAE) family. Mask-token reconstruction (MAE) and derivatives learn
spatially aware ViT features that benefit dense prediction when fine-tuned with lightweight decoders
(He et al., 2022; Peng et al., 2022). Although not used directly in this thesis, MAE results support the
broader claim that large unlabeled corpora can yield transferable pixel representations, motivating
our adoption of a self-supervised encoder.

2.4.3 UNIVERSAL DECODERS FOR DENSE PREDICTION

Mask2Former. A unified transformer decoder architecture for semantic, instance, and panop-
tic segmentation; queries attend to multi-scale pixel features and emit class-agnostic masks plus
class scores (Cheng et al., 2022). Mask2Former’s separation of representation (backbone) from
lightweight mask decoding illustrates how strong pretrained features (ViT/ConvNeXt) can be reused
across domains.

MaskDINO. Li et al. fuse DETR-style detection queries with dense mask prediction, achieving
competitive panoptic and semantic results when coupled with self-supervised backbones (Li et al.,
2023). The framework is tolerant to varying annotation granularity and can leverage weak masks,
relevant to our noisy DOS supervision scenario.

2.4.4 IMPLICATIONS FOR THIS THESIS (PREVIEW)

Three lessons emerge:

1. Promptable refinement scales noisy labels. SAM/SAM2 demonstrate that coarse masks
can bootstrap higher-quality segmentation without dense manual editing. We exploit this
by feeding our auto-generated DOS crack masks as low-resolution prompts to SAM2 to
produce refined training targets at scale (Chapter 4).

2. Frozen self-supervised ViTs transfer. DINOv2 encoders provide rich spatial embed-
dings even without task-specific supervision; we integrate a DINOv2 ViT-B/14 into a
TransUNet-style architecture to compensate for limited, noisy crack labels (§4.5).

3. Light decoders suffice with strong features. Inspired by Mask2Former/MaskDINO, we
retain a relatively lightweight decoder head; modeling effort is invested in robust feature
reuse and label cleaning rather than depth/width scaling of the head.

These observations directly motivate the design decisions detailed next in §2.5, where we explain
how SAM2-refined labels and a DINOv2-powered TransUNet variant are combined for crack seg-
mentation on laser-line road imagery.
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2.5 DESIGN CHOICES SPECIFIC TO THIS THESIS

We deliberately departed from the backbones and label–refinement strategies explored in prior
pavement-crack literature (§2.2 - §2.3) and instead combined two recent foundation models whose
capabilities had, at the time of writing, seen little or no evaluation on road-surface imagery. The
section below summarizes the motivation and empirical evidence that guided these decisions.

2.5.1 DINOV2 VIT-B/14 AS TRANSUNET ENCODER

From random to self-supervised weights. Early experiments with TransUNet (Chen et al., 2021)
showed that the original ImageNet-1k pre-training left the ViT encoder ill-adapted to the grey,
low-contrast textures of laser road imagery. Instead of fine-tuning from scratch we adopted DI-
NOv2 (Oquab et al., 2023), a self-supervised ViT that learns general-purpose dense features from
∼ 142 M images without any manual labels. DINOv2 exhibits state-of-the-art zero-shot transfer
on semantic and panoptic segmentation benchmarks such as ADE20k and Cityscapes (Oquab et al.,
2023) and therefore promised stronger inductive bias for thin crack patterns than purely supervised
alternatives.

2.5.2 LABEL REFINEMENT WITH SEGMENT ANYTHING 2

Why SAM2? The Segment Anything 2 (SAM2) model extends the original promptable SAM ar-
chitecture with stronger mask quality and markedly better generalization to out-of-distribution tex-
tures (Ravi et al.). Its low-resolution mask prompt is a perfect match for our setup: each 256× 256
auto-generated DOS mask can be fed directly as a seed without down-sampling artifacts. Early
benchmarks showed SAM2 improving mean IoU by 7-10% over none-SAM2 improved labels. sug-
gesting that the model could plausibly “repair” the omissions and over-dilation described in §3.4.

Prompt selection. Among the five prompting modes offered by SAM2: bounding box, points,
mask, box+points and text, we opted for mask prompting:

1. Single-point prompts require a heuristic to find a crack seed pixel midst heavy asphalt noise
and therefore do not scale to millions of patches.

2. Bounding boxes suffer the same localization dilemma which made it easy to discard this
notion as well.

3. Text prompts fit an application where distinct well recognized objects are being segmented,
which is far from the case for this study, immediately disqualifying this technique.

4. Mask prompts leverage the existing DOS raster as prior knowledge; SAM2 then refines
boundaries and hallucinates missing hair-line branches, producing markedly crisper ground
truth.

The fully automated pipeline (Fig. 4.3) therefore proceeds as

DOS mask2562
prompt−−−−−−−→

low-res mask
SAM2 −→ refined mask2562 ,

yielding supervision that is both denser and cleaner than the original black-box output yet incurs no
manual labor.
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2.6 POSITIONING OF THIS THESIS

Existing pavement–crack detectors fall into two partially complementary camps. Pure CNN
pipelines (e.g. DeepCrack, MFPANet, CT-CrackSeg) excel at tracing fine textures thanks to hier-
archical local filters, yet their limited receptive field causes fragmented predictions once a crack
traverses more than a few hundred pixels and they remain sensitive to illumination artifacts and
shadows that mimic edges. Vision-Transformer (ViT) variants such as TransUNet, CrackFormer and
SegFormer-B5 remedy the long-range issue with global self-attention, but at the price of consider-
able data hunger and a marked performance drop when the training masks are coarse or over-dilated.
Almost all recent benchmarks therefore rely on small, hand-curated datasets whose pixel labels are
painstakingly cleaned, an assumption that does not hold for industrial road-survey pipelines where
ground truth is produced by opaque black-box heuristics (in the case of TNO specifically, but the
Pavemtrics system is widely used according to them).

This thesis targets precisely that neglected corner case: large-scale but noisy training corpora. First,
we adopt a self-supervised DINOv2 ViT-B/14 encoder whose rich pre-training on 142 million im-
ages empowers it with strong zero-shot segmentation skills and robustness to label noise. The
ViT is embedded in a lightweight TransUNet-style decoder so that global context from attention
is fused with crisp boundary cues from the CNN stem. Second, we introduce a SAM2-based label-
refinement stage: each noisy DOS mask is fed to SAM2 as a low-resolution prompt, letting the
foundation model extrapolate cleaner crack contours without any human clicks, an approach made
possible by SAM2’s promptable design and its state-of-the-art zero-shot performance. Finally, a
custom evaluation pipeline aggregates sub-patch predictions back to their mother image and ignores
pixels the expert flagged as “unknown”, thus reporting metrics that are both tolerant to annotation
uncertainty and free from train-test leakage, the former being specifically relevant when we see
small curated benchmark datasets which do not represent the real world of road surveying.

2.6.1 SUMMARY OF ARCHITECTURE AND DATA PIPELINE

1. Backbone: TransUNets ViT encoder replaced by DINOv2 ViT-B/14 for its proven zero-
shot performance on dense prediction tasks and for reducing domain-gap between natural
and laser-scan imagery.

2. Label cleaning: SAM2 with mask prompting converts noisy DOS annotations into high-
quality pseudo-labels at virtually no additional cost.

3. Synergy: A self-supervised ViT backbone benefits from the richer supervision produced
by SAM2, while the latter, in turn, relies on the coarse yet readily available DOS masks;
no human in the loop.

Together these design choices form a training recipe that is, to our knowledge, the first to couple
DINOv2 features with SAM2-refined labels for pavement crack segmentation.
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3 Data

In this chapter the data used for this study is introduced. We go over how the data is acquired, how
we process it for downstream tasks and how we try to cope with noisy, inaccurate labeling done by a
black box algorithm. Furthermore we introduce a hand labeled test set we use as a proper validation
of our models to gauge true effectiveness. Lastly, for evaluation of this hand labeled test set a custom
evaluation process was needed compared to the auto-generated test sets. This method will also be
described in this chapter.

IMPORTANT: Create a Data acquisition/processing pipeline as asked for in 1

3.1 EXISTING DATASET DISCUSSION

Public research on pavement–distress detection has produced several camera–based
crack–segmentation corpora1. All of them were acquired with area RGB cameras a few
centimeters above the surface and therefore differ fundamentally from our laser-line profilometer
supplied by Pavemetrics, a Canadian company (§3.2).

Modality and geometry mismatch. Camera images exhibit perspective distortion and a
ground–sampling distance (GSD) between 0.2mm px−1 and 1.7mm px−1. Our Pavemetrics sensor,
in contrast, delivers an orthorectified strip at 5mm px−1 (drive direction) × 1mm px−1 (cross-lane)
with depth encoded in a separate channel. Attempting to train on perspective RGB and test on laser
data would induce a severe domain shift.

Pre-processing pipeline. Open sets contain only minimal photo corrections, whereas the Pave-
metrics chain applies various algorithms to clean up the images. Afterwards our one pipelines fur-
ther cleans up the images and generates the masks resulting in JPEG/PNG strips. These proprietary
transforms further alter the appearance statistics and invalidate naı̈ve transfer learning.

No open laser-strip benchmark. A literature and web search (keywords “laser-line pavement
dataset”, “3-D road profilometer”) revealed no pixel-annotated laser-strip repositories. The few 3-D
road–surface sets that exist are either from completely different domains (autonomous driving (Zhao
et al., 2024) ) or they are in proprietary commercial databases.

Consequence for this thesis. Because (i) no comparable laser-strip dataset exists, (ii) camera
benchmarks differ in viewpoint, resolution and pre-processing, and (iii) extensive training volume
is mandatory, we deliberately rely on the noisy but abundant DOS masks produced and refine
them with SAM2 (§4.4.2). Our expert hand-labeled benchmark (§3.6) then provides an unbiased
evaluation of both the refined labels and the proposed model.

3.2 DATA ACQUISITION

The imagery analyses in this thesis is captured by a van-mounted laser-line system operated by
Pavemetrics called LCMS (Pavemetrics Systems Inc., 2024a). For every 100 meter road segment
the on-board computer outputs one rectified strip image I∈R19995×4160 an additional dimension
is potentially available if you make use of the intensity, but this was not used in this study; the
physical pixel pitch therefore equals 1mm longitudinally and 5mm laterally. Raw sensor signals
(pose, roll/pitch, illumination) are stabilized by TNOs pipeline, discussed in §3.3; the resulting
JPEG (images), PNG (masks) strips are treated as the “raw” input for all experiments in this work
(after patchifying the segments, see §3.5).

1See, e.g., Crack500 (Yang et al., 2019), CrackTree (Zou et al., 2012), DeepCrack537 (Zou et al., 2018),
CamCrack789 (Zhu et al., 2024a).
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3.3 DOS SOFTWARE PIPELINE

The strip images used throughout this thesis are not raw sensor dumps; they are produced by the data
processing software from laser-line scans collected at highway speed (§3.2). The Pavemetrics-class
laser crack measurement system (LCMS) acquires dense transverse surface profiles (depth +
co-registered intensity/texture) which the software assembles into rectified lane-width strips suit-
able for downstream distress analytics.(Pavemetrics Systems Inc., 2024b; Li et al., 2017)

Before export, several conditioning steps are applied to stabilize the road surface and suppress ar-
tifacts induced by vehicle motion and pose drift. A low-frequency longitudinal trend (meter-scale
undulations) is removed to “flatten” the surface; depth outliers are clipped to a narrow elevation
band (on the order of ±1cm around the estimated pavement plane) to reduce spikes from debris and
specular returns. (Li et al., 2017)

After stabilization of the images, the conditioned depth/texture channels feed a proprietary dis-
tress classifier that outputs geometric crack descriptors (polyline centers with local width estimates).
These vectors are rasterized by the DOS pipeline into coarse binary masks, the DOS labels intro-
duced in §3.4, which serve as the starting point for all subsequent label-refinement and learning
experiments in this thesis. Following this some filtering operations are done with a custom build
CNN in-house to determine actual cracks based on this data.

3.4 ANNOTATION FORMAT

For each strip we receive a JSON file that stores crack center-lines as piece-wise poly-lines with a
local brush width:

1 [
2 {"x":[1466.26,1477.00, ...],
3 "y":[15207.70,15214.15, ...],
4 "width":[19.1,22.3, ...],
5 "crack_class":1}
6 ]

• (xi, yi) – sub-pixel coordinates in the (row, col) plane of the 100 meter image.

• width – local crack width in pixels (2–25 px observed).

• crack class=1 – longitudinal / transverse crack (other distress classes are ignored in
this study)

Rasterization. Successive vertices are connected by straight segments; each segment is drawn
where the width is defined by the ”width” in the JSON file, yielding a binary mask G∈{0, 1}H×W

, which from now will be referred to as a DOS mask, which were labeled algorithmically, since it
is the end of the DOS software pipeline. This DOS mask covers the physical crack. But in practice
it can be observed that the mask over-covers partial crack segments sometimes, but also does not
succeed in fully covering cracks in a lot of occurrences (Fig. 3.1a-b). Fig. 3.1c-d on the other hand
shows an example of the DOS masks covering the original crack representatively. These masks are
used as:

1. baseline supervision,

2. prompts for later label-refinement experiments (see Chapter 4), and

3. the DOS-orig evaluation split in §5.

Limitations. The DOS masks suffer from two systematic issues:

1. Over-segmentation: the brush radius inflates true crack width, penalizing thin, precise pre-
dictions; and

2. Omissions: hair-line cracks and complex junctions are often not annotated at all.
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(a) Raw (weak) (b) Mask (weak) (c) Raw (good) (d) Mask (good)

Figure 3.1: Two example image–mask pairs illustrating the varying quality of algorithmically gen-
erated DOS labels.

3. Since this data acquisition pipeline is a product there is no insight into its workings. How do
these labels get generated? We do not know, so we cannot spot shortcomings or strengths
of this method.

The cause of the over-segmentation is hard to determine since we do not have access to the pave-
metrics system. But most likely they make use of classical computer vision methods like; edge-
detection, thresholding etc. And apparently their system over-estimates mask size for some exam-
ples. Because of this classical approach, the finer details are probably less likely to be discovered
because they most likely perform some morphological opening operations to reduce noise. This in
turn will remove finer-grained detail.

Figure 3.1 shows two examples of a 512× 512 pixels crop from the larger 100 meter strip. This crop
is centered around a potential crack. These images showcase an example of where the proprietary
system potentially falls short of expectations and one that shows good crack coverage. The left pair
shows weak masks because usually in the DOS masks dark pixels represent road surface damage.
The dark pixels here are shaped in the form of a crack in the driving direction, which is common.
But a lot of the crack is not represented with the DOS mask. While the converse can be seen in the
right pair.

These shortcomings motivate the label-refinement strategy introduced later in Chapter 4; however,
the present chapter restricts itself to describing the original data delivered by the acquisition pipeline.

3.5 PATCH EXTRACTION & FILTERING

Rationale. Each 100 meter strip (§3.2) contains ≈ 2 × 107 pixels, far exceeding GPU memory
limits and the input resolution expected by the network and by SAM2. We therefore slice every
strip into non-overlapping square tiles while enforcing three additional constraints:

1. exactly one tile per annotated crack center-line,

2. no duplicate tiles (high IoU overlap) across a strip, and

3. deterministic train/val/test assignment to avoid spatial leakage.

Algorithm. Algorithm 1 sketches the Python/OpenCV implementation

Only tiles with at least 30% crack foreground survive; the remainder are discarded to keep the class
balance manageable during training.

Outcome. The procedure yields 3079 training tiles, 387 validation tiles, and 387 test tiles. Because
the de-duplication and split assignment happen before any sub-sampling or SAM2 refinement, no
pixel from a given physical location can appear in more than one split, ensuring strict evaluation
integrity.
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Algorithm 1 IoU–filtered patch extractor (sketch)

Require: RGB strip I , DOS mask M , JSON cracks C
0: P ← ∅ {accepted patch bboxes}
0: for all c ∈ C do
0: (xmid, ymid)← midpoint(c)
0: bbox← 512×512 window centred at (xmid, ymid)
0: bbox← bbox⊕ 50 px margin
0: if ∃ p ∈ P : IoU(bbox, p) ≥ 0.5 then
0: continue{skip duplicate}
0: P ← P ∪ {bbox}
0: Save (I,M) crop; down-sample according to Fig. ??
0: Hash base-filenames into {train,val,test} splits =0

3.6 EXPERT HAND-LABELED BENCHMARK

Motivation and Annotation Protocol The fully–automatic DOS masks inherit the same limita-
tions as the on-van detection pipeline that generated them. Relying on such labels for both training
and testing would therefore prevent any fair assessment of the proposed method’s true capacity to
surpass the baseline. To break this circular dependency we commissioned an expert-annotated test
set. Each pixel is assigned to one of three semantic classes

Table 3.1: Semantic classes defined in the hand-labelled benchmark.

Colour Definition

Green Unknown: visually ambiguous regions that are omitted from metric computation
Blue Crack: pixels that the expert confidently assigns to a pavement crack
Black Background: all remaining pixels (implicit class)

Pixels tagged Unknown are ignored during loss/metric computation via the ignore_index=255
mechanism discussed in §4.6. The annotator worked with a broad 10–20 px brush: fine-grained
tracing proved prohibitively time-consuming. While this introduces mild over-dilation, it is still
vastly cleaner than the legacy DOS masks and, crucially, human-verified.

3.6.1 FROM 100 METER STRIPS TO “MOTHER PATCHES”

For the expert study we re-sampled the original 100m laser strips into rectangular tiles of size
256× 1280 px (H ×W ). The width (1280 px) gives annotators five times more horizontal context
than the square patches used for training, which was necessary to properly judge road damage the
expert found.

The process outlined in this subsection was designed so that;

1. The expert labeler had more visual context for labeling in the lane-width dimension.
2. The model could handle multiple square patches (5 × 224 × 224) pixels, that belonged to

a bigger mother patch during test time, when the model would perform inference on the
hand labeled test set.

Sensor-aspect correction. The road-scanner records one pixel per 5mm in the drive direction and
1mm per pixel across the lane. To display an undistorted view during labeling the expert interface
first vertically repeats each row: every scan line was repeated five times, yielding a square with a
1mm× 1mm per pixel aspect ratio image that matches the real-world metric. After annotation the
duplicate rows were removed so that the raw data fed to our network (and all subsequent processing)
retained the native 1×5 mm/px geometry, consistent with the auto-generated DOS masks described
earlier.

The resulting 256× 1280 “mother patches” therefore
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• preserve full horizontal context for reliable manual segmentation;

• remain perfectly aligned with the underlying sensor grid after de-stretching; and

• are later subdivided into 224× 224 sub-patches (§3.6.2) without any further spatial warp.

3.6.2 SUB-PATCH LABEL MATCHING

Why split? The segmentation network ingests fixed 224× 224 inputs, whereas the expert bench-
mark consists of mother patches sized 256× 1280 px. Each mother patch is therefore tiled into
five contiguous 256 × 256 crops and subsequently rescaled to 2242 using Lanczos interpolation
(OPENCV INTER LANCZOS4), a kernel that best preserves the hair-line crack texture compared
with bilinear or bicubic (OpenCV Team (moukthika), 2025).

Dataset wrapper. To keep track of which sub-patches originate from the same mother patch we
package each crop into a .npz archive containing the RGB image, its label mask, and a string
group id. This way, during inference we can keep track of which sub-patch belongs to what
mother patch. We build up a stacked matrix of sub-patches belonging to each mother patch and
when all patches are ran through the model we calculate the metrics for every mother patch as
described in §4.6.

Group-wise metric fusion. During inference every tile produces a four-component confusion vec-
tor c = (TP,FP,TN,FN) using the distance-tolerant counting rules of §4.6. Vectors belonging to
the same group id are summed before computing precision, recall, F1 and IoU ensuring that eval-
uation reflects complete cracks rather than arbitrary tile borders:

Cmother =

5∑
i=1

ci.

Visual re-stitching. After inference each 256 × 1280 mother patch is split into five non-
overlapping 224 × 224 sub-patches for the network. For qualitative inspection the five predictions
are concatenated back into a single 224×1120 mosaic. The same re-stitching is applied to the expert
label so that all three share the exact pixel grid.

(a) RGB mosaic (b) Expert mask mosaic

Figure 3.2: Re-stitched mosaics for a single hand-labeled mother patch. The top row shows the RGB
context and the expert annotation (crack / unknown), Blue/Green respectively

This pipeline yields a compact yet rigorous benchmark: every prediction is scored against a human-
verified reference while maintaining compatibility with the square-patch training interface used
throughout the thesis.

3.7 SAM2–REFINED CRACK MASKS

Motivation. The legacy DOS masks introduced in §3.4 over–dilate true crack width and miss
hair-line cracks on a regular basis. Rather than resorting to labor-intensive manual clean-up, we
employ the Segment Anything 2 (SAM2) foundation model as an automatic label–refinement en-
gine (details in Chapter 4).

Generation pipeline. For every 512×512 patch produced by Algorithm 1 we feed the 256×256
DOS mask to SAM2 as a low-resolution mask prompt. SAM2 returns a crisper 2242 prediction
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whose thin boundaries more closely trace the visible crack skeleton. No extra human input is re-
quired; the entire corpus is processed offline. So, this is a one-time step that needs to be performed.

Resulting dataset. The images are identical to the DOS corpus, but each now has an additional
SAM2 label. Henceforth we refer to these two supervision variants as

Table 3.2: Datasets used in this thesis: the original noisy DOS masks (DOS-orig) and the refined
SAM2 masks (SAM2).

Image patches Label variant
same RGB crop DOS-orig (noisy, over-dilated)

SAM2 (refined, thinner)

Both label sets inherit the spatially consistent train/val/test assignment described next in §3.8; mod-
els can therefore be trained and evaluated under two noise regimes without risk of data leakage.

3.8 TRAIN/VAL/TEST SPLITS

3.8.1 AUTOMATIC DOS/SAM2 DATASET

The full DOS/SAM2 dataset comprises 3,853 crack patches after all filtering (§3.5). Patches are
assigned to splits with a deterministic MD5 hash of the parent strip ID (Algorithm 1):

The hash-based allocation guarantees zero strip overlap between splits, thereby preventing spatial
leakage of very similar cracks.

3.8.2 EXPERT HAND-LABELLED BENCHMARK

For the hand-labeled benchmark (§3.6) we keep the same 70 %/15 %/15 % partitioning of strip IDs
but manually review the 387 test patches. After removing blank or duplicate views the final test set
contains 127 expertly annotated “mother patches” (Table 3.3).

Table 3.3: Dataset sizes after cleaning.

Automatic DOS/SAM2 Hand-labelled
Split Patches % Mother patches %

Train 3,079 70 – –
Val. 387 15 – –
Test 387 15 127,(subset) 100

The hand-labeled test subset is used only for final reporting; no model selection or hyper-parameter
tuning touches this data, ensuring an unbiased assessment of generalization beyond auto-generated
masks.
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3.9 CHAPTER SUMMARY

This chapter detailed the full data pipeline that underpins the remainder of the thesis. We began
with the van–mounted line-laser acquisition system, describing the 1×5 mm native sensor pitch
and the resulting 19995 × 4160 pixel strip images. The DOS algorithm converts poly-line crack
descriptions into raster masks, but these suffer from systematic over-segmentation and omissions.
To create network-ready inputs we devised an IoU-filtered patch extractor that (i) yields exactly one
5122 tile per crack, (ii) removes near-duplicate crops, and (iii) assigns tiles to deterministic 70%
/ 15% / 15% train–val–test splits, ultimately producing 3 079 / 387 / 387 patches. Recognizing
the limitations of auto-labels, we commissioned an expert-annotated benchmark: 127 “mother
patches” (256× 1280 px) with three classes: crack, unknown, background. These are de-stretched,
tiled into 2242 crops, and evaluated with group-wise confusion-matrix fusion so that metrics reflect
whole cracks rather than arbitrary tile boundaries. Together, the automatic DOS/SAM2 dataset and
the hand-labeled benchmark provide a rigorous, non-overlapping foundation for the methodological
and experimental chapters that follow.
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4 Methodology

4.1 PROBLEM STATEMENT

Given a monocular RGB road patch1 x∈RH×W×3 (H =W =224), the task is to predict a binary
crack mask ŷ∈{0, 1}H×W such that

fθ : x 7−→ ŷ = argmax
c∈{0,1}

pθ(c | x),

where fθ is a deep network with parameters θ and pθ(1 | x) denotes the foreground (crack) proba-
bility at each pixel. Ground-truth masks y∈{0, 1}H×W are available only through noisy annotation
pipelines; therefore the loss is computed with respect to soft targets ỹ that are first denoised §4.4.2.
Training minimizes a hybrid Dice (see §4.5.2) + Cross-Entropy objective

L(θ) = 1
2 LCE

(
pθ, ỹ

)
+ 1

2 LDice

(
pθ, ỹ

)
.

Why is this hard? Road cracks are (i) fine-grained: one-two-pixel branches surrounded by strong
texture clutter; (ii) label-noisy: Expert labels, in this study, are painted with a broad brush, miss-
ing hairline fractures, whereas automatic DOS masks are coarse and fragmented; and (iii) class-
imbalanced: foreground pixels often represent a small minority in the dataset distribution.

4.2 DESIGN RATIONALE

To tackle the above challenges we combine three orthogonal ingredients:

1. DINOv2 backbone. Self-supervised Vision Transformers (ViTs) pre-trained with DI-
NOv2 (Oquab et al., 2023) capture long-range structural cues vital for filamentary objects.
Replacing the original ViT-B/16 in TransUNet with a stronger ViT-B/14 (DINOv2) injects
rich mid-level representations without requiring extra labels (§4.5).

2. Hybrid CNN+ViT encoder. A shallow ResNetV2 stem preserves high-frequency edge
details while the transformer encodes global context; skip connections fuse the two
(§4.5.3).

3. Offline label refinement with SAM2. Promptable SAM2 masks (Ravi et al.) replace the
coarse DOS masks, yielding a cleaner training set DSAM2 = {(xi, ỹi)} (§4.4.2).

4.3 HIGH-LEVEL PIPELINE

Figure 4.1 gives an overview of the full research pipeline:

1. Data acquisition: raw DOS frames + coarse masks.

2. Offline label improvement: SAM2 prompts⇒ refined ỹ.

3. Network modifications: integrate DINOv2, ResNetV2, positional-embedding tweaks,
skip-connection variants.

4. Training; hybrid Dice/CE loss, cosine LR decay, tolerant-metric monitoring (§4.5.4).

5. Evaluation: tolerant disk-kernel metrics (r = 10 px) (See. §4.6) evaluated on three test
splits + qualitative inspection (Chapter 5).

1Captured by a laser system mounted on the back of a van at 224×224 px after cropping and normalization.

23



Master’s Thesis Research Project, Master Computer Science - AI, Leiden University, 2025

Raw LCMS strips
(+ metadata)

Patchification & filtering
(IoU, 1 tile / crack)

DOS dataset
(JSON masks)

Expert-labeled subset
(test only)

SAM2 label refinement
(prompted masks)

Training set assembly
DOS + SAM2-refined

DINOv2-integrated
TransUNet

Training
Losses: Dice + CE

Evaluation
Tolerant disk-kernel metrics

Test sets: DOS / SAM2-refined / Expert

Data acquisition & labeling

Model Training & Evaluation

Figure 4.1: End-to-end pipeline. Blue blocks highlight novel contributions of this thesis: SAM2
label refinement and the DINOv2-augmented TransUNet.

Connecting back to the research questions. The methodological choices outlined above are not
ad-hoc; each one targets a specific research question stated in §1.2.

RQ1 How can DINOv2 be integrated to improve fine-grained segmentation? This is tackled
by (i) replacing the original ViT-B/16 backbone with a stronger self-supervised DINOv2
ViT-B/14, (ii) reinstating a shallow ResNetV2 stem to recover high-frequency edges, and
(iii) fusing the two representations via skip connections. These architectural modifications
(§§4.5–4.5.3) are therefore the concrete hypotheses tested under RQ1.

RQ2 How can we train and evaluate robustly under noisy or incomplete labels? We address
this through a two-pronged strategy: (a) offline label refinement with SAM2 to produce a
cleaner train/val split (DSAM2; §4.4.2), and (b) a tolerant disk-kernel metric (r = 10 px)
plus morphological opening during evaluation (§4.6) so that minor annotation misalign-
ment does not dominate the loss/metrics. Together, these steps constitute the experimental
answer to RQ2.

Hence, the architectural upgrades (RQ1) and the label-noise mitigation pipeline (RQ2) jointly form
the proposed solution to the overarching problem of accurate, reproducible crack segmentation under
imperfect supervision.

The next sections zoom into each numbered block: data curation (§4.4), architectural changes (§4.5),
training protocol (§4.5.4), and evaluation strategy (§4.6).

4.4 DATA PRE-PROCESSING AND PREPARATION

This section will discuss two topics:

1. Naive label generation: to try and generate better labels naively a thresholding technique
was devised to try and quickly generated mask to see if further development of more novel
measures was necessary.

2. SAM2 label refinement: A novel label refinement pipeline is introduced to generate better
masks using the already available DOS masks as prompting material for SAM2 to generate
higher quality labels.

These two topics outlined are explored and further elaborated upon in the following sub-sections.

4.4.1 LABEL GENERATION USING THRESHOLDING TECHNIQUES

As mentioned previously in this chapter and as described in Chapter 3, the current dataset uses auto-
generated labels. The decision was made to use these generated labels as a starting point to improve
the data using advanced methods, namely Segment Anything 2 (SAM2) by Ravi et al.. But this
brings up a valid question, is there a more naive method that could possibly generated solid results
with low effort?

To this end a more traditional method was employed to try and generate decent groundtruth labels
by thresholding the raw images on certain pixel values to see if this would produce a representable
mask. To get rid of small noise which is prevalent in the data, a morphological opening operation
was performed after the thresholding operation (OpenCV Team, 2025).

1. Thresholding was performed because the characteristics of the data suggested that darker
pixels were part of anomalies in the road, that includes cracks. The hypothesis was that
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thresholding on a certain pixel value can keep most crack pixels whilst removing most of
the unimportant background data.

2. A morphological opening operation was performed to remove noise that was left in the
data. This operation erodes the remaining pixels and dilates the remaining pixels back up
using the same structural erosion used before.

in §5.4 the results of this approach will briefly be discussed as a precursory approach to the deep
learning method that will be elaborated upon in the coming subsections.

4.4.2 LABEL REFINEMENT WITH SAM2

GROUNDTRUTH ISSUE AND SOLUTION PROPOSITION

As discussed in Chapter 3 the groundtruth segmentation masks currently used are algorithmically
generated using a black-boxed algorithm. They are somewhat representative of a crack as described
by experts, but they miss nuanced crack structures. Very obvious cracks are highlighted, but some
more nuanced cracks are being ignored or not fully mapped by the current algorithm, see Fig 4.2. To
this end this research proposes a groundtruth refinement methodology using the vision foundation
model (VFM) Segment anything 2 (SAM2). Using its promptable architecture the proposed system
can feed in the image patches of areas with their respective raw segmentation masks as a prompt to
generate a potentially better mask that can be used in the training process to make a better general-
izing model. This section will go over this approach to tackle sub-question 2 highlighted in §1.2 of
this thesis and show preliminary results.

(a) Image (b) Mask (c) Image (d) Mask

Figure 4.2: Visual illustration of two crack-patch excerpts and their associated algorithmically gen-
erated ground-truth masks. Notice that some crack structures (e.g. fine branching or thin cracks) are
often absent or only partially captured in the existing labels and usually with over dialated masks,
motivating the SAM2-based refinement proposed in §4.4.2.

SEGMENT ANYTHING 2 AS AN OFFLINE GROUNDTRUTH REFINEMENT TOOL-SET

Preliminary trials showed that SAM2 could substantially densify our legacy ground-truth masks: a
domain expert at TNO confirmed that the additional pixels corresponded to genuine crack structure
in a random sample of patches. Independently, Ravi et al. report that SAM2 attains top-1 seg-
mentation accuracy on most benchmarks evaluated in their study, demonstrating strong zero-shot
generalization and a flexible promptable interface.

SAM2 includes multiple prompting strategies, one of these methods being low resolution mask
prompting. Since we have noisy masks already we opted to use the mask prompting strategy avail-
able in SAM2 as a first stage refinement step we can potentially build up later on in the research.

These factors motivated our choice to run SAM2 as an offline pre-processing step for ground-truth
refinement.

INTEGRATION PIPELINE

In Figure 4.3 the pipeline is shown that describes how the entire process is setup of inserting patch
images into the system, SAM2 being prompted with the auto-generated groundtruth and the output
being processed to get ready for the training stage.
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(1) Patch datastore
256×256 img & mask

(2) Init SAM2 & prompt
img + 256×256 mask

(3) Save logits
+ 3 preds

(4) Global pick of 1 pred
(naive first step) (5) Downsample to 224×224 Refined masks

ready for training

Offline pre-processing: SAM2 ground-truth refinement

Figure 4.3: Integration pipeline for SAM2 refinement. Pairs of 256×256 images and noisy masks
are fetched, SAM2 is prompted with the mask, outputs (logits and three predictions) are stored, a
naive global selection is made, and the chosen mask is downsampled to 224×224 for training.

Figure 4.3 contains a few key steps in the pipeline, namely:

1. The data-store of the 256 x 256 image and original mask pair which are fetched from
storage.

2. SAM2 being initialized, the images are fed into SAM2 with the original auto-generated
mask provided as a low-resolution mask prompt. The mask needs to be exactly 256 x 256
pixels.

3. The output from SAM2, raw logits and three predictions, are saved to storage.
4. In a naive first step a simple selection is made out of the three predictions globally. This

will be elaborated on in §4.4.2.
5. Final SAM2 masks re downsampled to 224 x 224 pixels, this resolution is required by our

network

These steps together largely form the steps to tackle the second research question of trying to im-
prove the training and evaluation when working with noisy labels in a supervised learning setting. In
§4.6 the additional feature will be discussed to also help aid in improving the training and evaluation
steps specifically targeting the specific training and evaluation challenges in this research.

CONSTRUCTING STRONGER TRAINING DATA FROM NOISY LABELS USING SAM2

Segment Anything 2 (SAM2) is used in conjunction with its low-resolution mask prompting ability
to try and create richer segmentation masks for more representable training data. As mentioned
previously in Figure 4.4.2 the system saves the raw logits and three predictions SAM2 makes. This
data can be used to create richer segmentation masks that better represent cracks in their partner
image, but how can this be done? A first naive method was developed after examining the results of
generating richer segmentation masks over the dataset.

IoU Filtering of SAM2 predictions SAM2 produces three predictions based on the input given.
These predictions are given an intersection over Union (IoU) score by SAM2 itself. The predictions
are named their IoU score

IoU =
A ∩B

A ∪B
In Eq. 4.4.2 the IoU formula is shown where A,B are the groundtruth and the prediction respec-
tively.

In Figure 4.4 an example is shown how SAM2 can improve label quality. Five images are shown,
Figs. 4.4a, 4.4b are the original image and mask patch. The rest are the SAM2 predictions made
thresholded at different IoU values. This example shows that to even none experts it might seems
like Fig. 4.4d best represents the crack that is shown in the original image. As mentioned previously,
during experimentation with SAM2 it was clear that taking the second highest IoU value mask that
SAM2 predicted continuously represented the cracked pixels in the image patches the best. The
naive method developed for improving training data was thusly straightforward. The system fed
the 256 x 256 patches extracted through SAM2, the system filtered out the masks with the second
highest IoU values and these new image and patch pairs are the new training/validation set.

4.5 MODEL ARCHITECTURE

This section describes the design decisions behind the segmentation network architecture used in
this research, starting from baseline selection, continuing with architectural modifications, and con-
cluding with variant designs used for ablation studies.
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(a) Original patch (b) Original mask

(c) SAM2 mask IoU of
0.14

(d) SAM2 mask IoU of
0.40

(e) SAM2 mask IoU of
0.56

Figure 4.4: Example of SAM2 improving a patch example with three returned predictions, the
original patch and mask

4.5.1 BASELINE SELECTION

Initial experimentation with domain-specific crack detection networks such as CrackDiff (Zhang
et al., 2024) and RHACrackNet (Zhu et al., 2024b) revealed limited reproducibility and suboptimal
generalization. These models, during the literature study, showed strong performance against the
competitor networks. When implementing these networks the codebase was lacking key code to
reproduce their claimed results for CrackDiff. RHACrackNet’s code was fully available but we
were not able to reproduce their results they claimed in their paper with metric deltas in the 20%
range. Consequently, the search was expanded to the medical image segmentation field, where
architectures exhibit strong performance on fine-grained, irregular structures, characteristics shared
with asphalt cracks.

TransUNet emerged as a compelling candidate due to its hybrid architecture that combines convo-
lutional feature extraction with Transformer-based global context modeling (Chen et al., 2021). Its
encoder-decoder structure, enriched by skip connections, enables effective segmentation of elon-
gated, fine details, properties highly relevant for crack detection.

TU’s design aligns well with our task requirements and research question, particularly in evaluating
architectural generalization under noisy supervision. Its proven performance across medical bench-
marks, wide adoption, and publicly available implementation further motivated its selection as the
baseline architecture (Xiao et al., 2023)

4.5.2 LOSS DEFINITION

To alleviate the extreme foreground–background imbalance (≈ 1% crack pixels) while preserving
thin-structure continuity, we adopt unchanged the hybrid loss from the reference implementation of
the original method by Chen et al. (2021), (GitHub2). No novel loss engineering was performed in
this work; the contribution here is limited to applying the authors’ publicly released code within our
training pipeline.

2Public repository of the original authors, https://github.com/Beckschen/TransUNet; code
reused verbatim.
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L(θ) = 1
2 LCE

(
pθ, ỹ

)
+ 1

2 LDice

(
pθ, ỹ

)
, (4.1)

where pθ denotes the softmax output of the network and ỹ the one-hot ground truth.

Cross-Entropy. The pixel-wise term is the standard torch.nn.CrossEntropyLossmodule
provided by PyTorch.

Soft Dice. To maximize the spatial overlap between prediction and ground truth the authors mini-
mized the complement of the differentiable Sørensen–Dice coefficient:

LDice =
1

K

K∑
c=1

wc

(
1−

2
∑
x∈Ω

pc(x) ỹc(x) + ε∑
x∈Ω

pc(x)
2 +

∑
x∈Ω

ỹc(x)
2 + ε

)
, (4.2)

where pc(x) ∈ [0, 1] is the model’s probability for pixel x to belong to class c, ỹc(x) ∈ {0, 1} the
corresponding one-hot ground truth, wc an optional class weight (default wc = 1), and ε = 10−5

guarantees numerical stability when a class is absent.

During each update step we compute the two losses and back-propagate their arithmetic mean,
mirroring the authors’ training script without modification. This reuse ensures comparability to the
baseline reported in the original paper; performance-related results presented later in §5.2 therefore
reflect model and data changes only, not alterations to the loss function.

4.5.3 WHY UPGRADE THE VIT BACKBONE? LIMITATIONS OF VIT-B/16 AND THE CASE
FOR DINOV2

Figure 4.5: TransUNet architecture as described in Chen et al. (2021)

Figure 4.5 reproduces the original TRANSUNET encoder–decoder. The shaded block marks the
Vision-Transformer encoder, implemented in TransUNet (Chen et al., 2021) as a ViT-B/16 pre-
trained on ImageNet under a supervised objective (Dosovitskiy et al., 2020). Since 2021, the ViT
landscape has advanced rapidly: DINOv2 (Oquab et al., 2023), a self-supervised ViT-B/14, now
sets the state-of-the-art on COCO panoptic, ADE20k, and a plethora of zero-shot transfer tasks. Our
work therefore replaces the legacy ViT-B/16 weights and network with the more recent DINOv2
backbone while leaving the CNN stem, skip connections, and decoder unchanged (with a minor
change to the decoder).

Why swap the backbone?

• Finer token grid. ViT-B/14 uses a 14 × 14 patch stride (vs. 16 × 16), preserving higher
spatial resolution in the tokens supplied to the decoder, crucial for delineating sub-pixel-
wide cracks.

• Self-supervised contour awareness. The DINOv2 momentum-teacher objective encour-
ages attention heads to lock onto object boundaries. Visualizing its intermediate maps
shows crack-like ridges even before fine-tuning, giving the network a “head-start” on
boundary localization.
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• Robustness to noisy labels. Because its representations are learned without class labels,
DINOv2 is less prone to over-fitting the artifacts that plague our auto-generated ground
truth.

• Cross-domain evidence. DINOv2 has demonstrated strong transfer on satellite, medical,
and documentary imagery, suggesting that its features generalize beyond the natural images
used for pre-training.

Implementation details. The upgrade is architectural only in patch stride; the Transformer block
structure remains the vanilla ViT. We initialize with the public dinov2 vitb14 weights, keep the
ResNetV2 stem for early local features, and funnel its activations to the UNet-style skip connections
exactly as in the original TransUNet. Choosing the Base (B) size keeps parameter count comparable
to ViT-B/16, ensuring that any performance gains can be attributed to richer representations rather
than sheer scale.

Hypothesis. Replacing TransUNet’s supervised ViT-B/16 with the contour-aware DINOv2 ViT-
B/14 will yield crisper crack masks, especially under noisy or incomplete supervision. §5.3 quanti-
fies this hypothesis through controlled ablations.

ARCHITECTURAL MODIFICATIONS

To replace ViT-B 16 with DINOv2 modifications of several key model layers was necessary.

1. ViT-B 16 has patch sizes of 16x16 and DINOv2 has patch sizes of 14x14.

2. DINOv2 expects RGB images as input, not high dimensional feature maps (ResNetV2
output).

3. Due to patch size mismatches between the original and new Transformer downsampling of
the final output from 256 x 256 to 224 x 224 pixels so that metrics can be computed.

Since the main architecture of TransUNet has not changed majorly there is no architecture overview
figure. We replaced the existing ViT-B/16 with a DINOv2 ViT-B/14 and made the necessary changes
to accommodate this new model as outlined in subsequent sections. Finally, we added a downsam-
pling layer before outputting the masks since the original network upsamples to 256 × 256 pixels.
To match the ground truth we down sample to 224 × 224.

Implementation Challenges and Solutions The integration of DINOv2 into the TransUNet
framework required addressing several architectural and dimensional mismatches between the orig-
inal ViT-B/16 backbone and DINOv2’s structure.

First, DINOv2 uses a patch size of 14×14 compared to the 16×16 patch size in ViT-B/16. Given input
images of size 224×224 (the patch size used in this study), DINOv2 outputs a grid of 16×16 tokens
(i.e., 224

14 = 16), while ViT-B/16 would yield 14 × 14 tokens. This affects the spatial resolution
of features forwarded into the decoder and required adaptations in the upsampling path to ensure
spatial alignment with skip connections and prediction heads.

Second, the original TransUNet architecture feeds high-dimensional CNN feature maps (e.g., 768 or
1024 channels) into the Transformer. In contrast, DINOv2 expects 3-channel RGB images as input.
To reconcile this, two strategies were used:

• In the ViT-only variant, the ResNetV2 encoder was removed entirely and raw 3-channel
224×224 images were directly passed into DINOv2.

• In the hybrid variant, a 1×1 convolutional projection layer was inserted to map the high-
dimensional output of ResNetV2 (shape: [B, 1024, 14, 14]) into a 3-channel representation
([B, 3, 224, 224]) suitable for DINOv2 input. Note that this also required spatial upsam-
pling from 14×14 to 224×224, which was performed using bilinear interpolation prior to
the projection.

Third, since SAM2-generated masks and the DINOv2 input images were both fixed at 224×224
resolution, the final prediction maps were also resized back to this resolution post-decoding. This
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Table 4.1: Detailed tensor shape overview when integrating DINOv2 ViT-B/14 into TransUNet

Stage Operation / Component Tensor Shape [B, ...]
Input Image Input patch image [B, 3, 224, 224]

Patch Embedding 14×14 non-overlapping patch em-
bedding + linear projection

[B, 256, 768]
(16 × 16 patches)

Transformer Encoder 12 transformer blocks (ViT-B) [B, 256, 768]
(positional encodings added internally)

Reshape for Decoder Reshape tokens back to spatial map [B, 768, 16, 16]

Upsampling Block 1 ConvTranspose2d (2× upsample) [B, C, 32, 32]
(C: decoder channels)

Skip Connection (Low-Level) ResNetV2 feature skip connection
(e.g., conv3x)

[B, C, 32, 32]

Decoder Block 2 Up-conv + fusion with skip features [B, C, 64, 64]

Decoder Block 3 Up-conv + fusion with skip features [B, C, 128, 128]

Decoder Block 4 Up-conv + fusion with skip features [B, C, 256, 256]

Final Conv Layer 1×1 conv to logits [B, 1, 256, 256]
(binary segmentation mask)

Reshape for Evaluation Resize to match groundtruth [B, 1, 224, 224]

Groundtruth Alignment GT mask shape [B, 1, 224, 224]

ensured that pixelwise comparisons for computing segmentation metrics (e.g., IoU, F1) remained
consistent.

The details of these changes made to the network are showcased in Table 4.1

Fair model selection. Early backbone ablations showed that replacing the ImageNet-initialised
ViT-B/16 with a self-supervised DINOv2ViT-B/14 boosts mean IoU by roughly +5% at similar
parameter count. Scaling up to larger DINOv2 variants (ViT-L/14, ViT-g/14) could have offered
possible performance gains. But to keep the comparison between models fair we chose to select the
DINOv2 ViT-B/14 model to try and match model size as closely as possible. Independent studies in
aerial and biomedical segmentation support our hypothesis and findings findings, reporting consis-
tent gains of DINOv2B/14 over CLIP, MAE, and supervised ViT backbones (Shah, 2024; Ayzenberg
et al., 2024), underscoring the fairness and domain-agnostic strength of our backbone choice.

Expectations and possible trade-offs After successful integration of DINOv2 into the backbone
of TransUNet it is expected to predict more accurate segmentation mask due to DINOv2’s better
alignment with segmentation tasks in conjunction with a smaller patch size of 14 x 14 giving more
fine-grained details in global context modeling which is of great importance in crack detection due
to the nature of asphalt cracks. The original ResNetV2 + ViT-B/16 architecture was pre-trained
together which allows a smooth learned CNN-feature to token representation. With DINOv2 inte-
gration this rich learned layer is lost and needs to be re-adapted which could cost the network in
performance. Also, since DINOv2 is such a strong global context modeler, being able to generalize
well to various applications such as segmentation or object detection, care must be taken to recom-
bine it with ResNetV2. The two together may be redundant, but later experiments will try to answer
this question.

Conclusion and Transition These targeted modifications allowed DINOv2 to be successfully em-
bedded within the TransUNet architecture, replacing the original ViT-B/16 while preserving com-
patibility with the original image patch sizes, decoder expectations, and evaluation metrics. These
steps were essential to fairly evaluate the effect of stronger backbone features in noisy supervised
segmentation, which directly ties into the first sub-question of this research. The next section out-
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lines ablation studies and model variants designed to isolate and evaluate the individual contributions
of each architectural component.

4.5.4 TRAINING PROCEDURE

This section will go over the training approach during this study. First a high-level training overview
is described on how the training process was implemented. Following this description, optimization
and fine-tuning will be discussed in more detail and what software and hardware that was used in
the course of this study.

TRAINING PIPELINE

1. Data ingestion
Each mini-batch is a stack of B = 18 Grayscale tiles (224×224); labels are down-sampled
on-the-fly before auto-putting the final segmentation mask to 224×224 to match the de-
coder output.

2. Forward pass
The image batch is fed through
(a) an optional ResNetV2 stem,
(b) the DINOv2 ViT-B/14 encoder (patch size 14),
(c) Decoder-CUP and segmentation head.

3. Loss computation
L=0.5LCE + 0.5LDice (binary cross-entropy and binary Dice; no class weighting). Just
like in the original paper.

4. Back-propagation & optimisation
AdamW, base LR = 1×10−5, Weight decay = 0.01.;
Learning rate follows cosine annealing (Tmax = 120epochs), min LR = 1× 10−7.

5. Validation loop
After each epoch we compute Dice, IoU and AUROC on the validation split; the best
checkpoint (lowest val-loss) is retained.

6. Early stopping & checkpointing
Training stops if val-loss fails to improve for ten consecutive epochs. Snapshots are also
written at 20% / 40% / 60% / 80% of the run.

These steps outline in big strokes what the training process looks like from data-loading to the end
of training.

OPTIMIZATION AND FINE-TUNING

Since ResNetV2 and DINOv2 are pre-trained models the training process was more fine-tuning
these two models in the backbone than training a model from scratch. The learning rate was mostly
adapted to these two models than for the decoder part of the UNet like network. In the original paper
(Chen et al., 2021) it is not mentioned whether they fine-tune or not, but it seems logical to adapt
the weights to the specific use case you intend to use, that is why we fine-tuned both these models
instead of freezing the weights in place but no experimentation was done on this front.

The learning rate for the entire network was kept the same, 1×10−5 across all network components,
as described above. According to the literature this is not the most optimal fine-tuning strategy when
utilizing large pre-trained encoders (Dong et al., 2022)., (Touvron et al., 2022). The better option is
to choose a lower learning rate for the pre-trained encoder to maintain its rich representation and to
suitably adapt to the new downstream task. Due to only using a set learning rate across the entire
network some performance is left on the table.

4.6 CUSTOMIZED EVALUATION AND METRICS

Motivation The original TransUNet work evaluates medical organ segmentation with Dice and
95 % Hausdorff distance. For pavement-crack maps these metrics are overly sensitive to (i) coarse
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or incomplete ground-truth masks and (ii) usually not used in pavement crack detection (specifically
the 95% Hausdorff-distance). Therefore a new metrics suite is adopted that tries to balance false
positives (FP) and false negatives (FN) while remaining interpretable by civil-engineering practice:
Intersection-over-Union (IoU), Precision, Recall, and F1. All are derived from a distance-tolerant
confusion matrix described below.

HANDLING INCOMPLETE GROUND-TRUTH

Traditional medical–image work on TransUNet reports Dice and Hausdorff scores computed under
the exact pixel match assumption (Chen et al., 2021). In asphalt-crack imagery this assumption is too
strict: In the case of this study masks are painted with a broad brush or our auto-generated, hair–line
cracks are frequently missed, and large swaths are deliberately marked 255 to denote “unknown”
pixels, see Chapter 3. We therefore adopt a relaxed, distance-aware evaluation protocol.

Morphological pre–cleaning of predictions Before the tolerant disk dilation is applied symmet-
rically to both ground–truth and prediction, we subject the predicted binary mask P̂ ∈ {0, 1}H×W

to a morphological opening

P̂ ⋆ = dilate
(
erode(P̂ , Kopen), Kopen

)︸ ︷︷ ︸
opening with structuring element Kopen

where Kopen is a disk structuring element of a small radius ropen = 1–2 px. The initial erosion re-
moves single or small pixel count artifacts and thin “salt-and-pepper” noise; the subsequent dilation
restores the support of legitimate crack regions larger than ropen. Empirically, this pre-cleaning
suppresses spurious false positives that would otherwise be counted after the subsequent tolerance
dilation, without harming genuine detections. This method is applied to the prediction specifically
because the groundtruth labels are noisy and a robust method of evaluation is necessary.

After obtaining P̂ ⋆ we proceed with the symmetric tolerance dilation:

P̃ = dilate(P̂ ⋆,Ktol), G̃ = dilate(G,Ktol),

using an Euclidean disk kernel Ktol of radius rtol (default rtol = 2 px). This grants a localization
tolerance of ±rtol pixels when computing the confusion-matrix entries TP,FP,FN,TN, yielding a
fairer evaluation for hair–line cracks whose manual annotations are often not pixel perfect.

Pixel-relax radius. Let P and G be the binary prediction and ground–truth masks, respectively.
Instead of counting a pixel-wise TP only when pij = gij = 1, we allow a prediction at (i, j) to
match any foreground pixel inside a closed Euclidean disk of radius r centred at (i, j). Concretely
we dilate one operand with a disk structuring element Dr before forming the confusion matrix.

Unknown class. Pixels labeled 255 carry no supervisory signal; they are ignored in both
the loss and the metric computation by masking them out before the operations above. This
ignore_index paradigm is common in ADE20k, Cityscapes and other dense-labeling datasets
(Zhou et al., 2018), (Cordts et al., 2016).

DISTANCE-TOLERANT CONFUSION MATRIX

Denote binary masks G, P ∈ {0, 1}H×W for ground-truth and prediction; Dr(·) is binary dilation
with a disk of radius r:

Dr(G) = G ∗Kr, (4.3)

where Kr(x, y) = ⊮
(
x2 + y2 ≤ r2

)
is the disk kernel and ∗ denotes 2-D convolution. The relaxed

counts are

TPr =
∣∣Dr(G) ∧ P

∣∣, FNr =
∣∣G ∧ ¬Dr(P )

∣∣, (4.4)

FPr =
∣∣P ∧ ¬Dr(G)

∣∣, TNr =
∣∣¬G ∧ ¬P ∣∣. (4.5)

The implementation follows Algorithm 2.
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Algorithm 2 Disk–kernel tolerant confusion matrix (PyTorch)

Require: probability map p, GT mask g, radius r, threshold τ
0: P ← (p ≥ τ)
0: G← (g = 1) {ignore pixels where g = 255}
0: K ← DISKKERNEL(r)

0: G̃← DILATE(G,K)

0: P̃ ← MORPHOLOGICAL OPEN(P,K)

0: TP← ∥G̃ ∧ P∥1
0: FP← ∥P ∧ ¬G̃∥1
0: FN← ∥G ∧ ¬P̃∥1
0: TN← ∥¬G ∧ ¬P∥1
0: return (TP,FP,TN,FN) =0

IMPLEMENTATION AND REPRODUCIBILITY

Metrics are computed in-process during training and re-computed during inference for the test set.
All operations are deterministic; we fix seeds for PyTorch, numpy, CuDNN and random, and save
every confusion matrix as a NumPy file for independent verification.
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4.7 SUMMARY OF METHODOLOGY

• Data pipeline. Long hectometer-strip scans are cut into non-overlapping 224 × 224 tiles
and paired with coarse DOS masks. More detail in Chapter 3 A naı̈ve threshold + opening
labeling baseline is reported for reference, but the main experiments use SAM2 low-
resolution mask prompting to yield the refined training set DSAM2.

• Network design. TransUNet is upgraded by (i) swapping the supervised ViT-B/16 encoder
for a self-supervised DINOv2 ViT-B/14, (ii) reinstating a shallow ResNetV2 stem for high-
frequency edges, and (iii) experimenting with optional UNet-style skip connections. These
components are toggled to form the ablation variants.

• Training regime. Hybrid Dice / BCE loss, AdamW (1 × 10−5 base LR, cosine decay),
batch = 18, early-stopping at 10 stagnant epochs. All encoders are fine-tuned rather than
frozen, a parameter-efficient strategy that re-uses pre-trained weights instead of training
from scratch.

• Robust evaluation. Noisy or incomplete masks are handled with a disk-kernel tolerant
confusion matrix (radius r=10px) and a 1-px morphological opening of predictions. Met-
rics reported are Precision, Recall, F1 and IoU, all computed after masking out unknown
pixels.

• Logic recap. Noisy labels motivate tolerant metrics and SAM2 pre-cleaning; fine-grained
cracks motivate a contour-aware DINOv2 backbone and skip fusion; computational econ-
omy is preserved by re-using pre-trained weights instead of heavy end-to-end training. To-
gether, these choices operationalize RQ1 (architecture under fine detail) and RQ2 (robust
learning under label noise).
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5 Experiments

This chapter reports and analyses the empirical evidence supporting the contributions of the the-
sis. We first describe the experimental protocol, followed by a series of quantitative and qualitative
evaluations that expose the strengths and limitations of the proposed approach under multiple archi-
tectural variants using ablation studies.

5.1 EXPERIMENTAL SETUP

This section will discuss the setup done for the experiments, the data and its splits, hardware used
and any other important configuration details.

Data splits this experiments used train, validation and test split setup where the train split is 70%
of the data. The validation set is 15% of the data. The test set is a subset of the remaining 15% of
data, to be specific it consists of 127 samples.

Hardware/Software: All experiments were conducted on the same machine using the same virtual
python environment with the same modules installed inside of a docker container.

Hardware:

1. GPU: NVIDIA RTX 2080TI 11GB VRAM

2. CPU: Intel i7 7820X 3.6GHz

3. RAM: 32 Gigabyte

Software:

1. Docker image: PyTorch 2.5.1 CUDA 12.4 CuDNN 9 runtime

2. Python version 3.12.3

Fixed seeds

1. python random: 1234

2. CuDNN/CUDA: 1234

3. NumPy: 1234

4. PyTorch: 1234

Training parameters:

1. Optimizer: AdamW

2. Learning rate 1e− 5

3. Weight decay: 0.01

4. Learning rate scheduler: Cosine annealing

5. Batch size: 18

6. Max Epochs: 100

7. Early stopping: After 10 epochs of no validation loss improvement stop training. Best
model = model with lowest learning rate.

In addition to this CuDNN was set to deterministic to help reproducibility.

Furthermore for the experiments the new evaluation methodology was used introduced in §4.6 since
this new methods should better represent real road cracks and their need to not be as tolerant as pixel
perfect segmentation. Finally, all quantitative experimental results listed in Tables 5.1, 5.3, 5.4, 5.6
are obtained by averaging the results across three runs for a representative result.
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5.1.1 METRIC DEFINITIONS

Let TP,FP,TN,FN be the counts after applying the radius-r tolerance.

Precision =
TP

TP + FP + ϵ
, Recall =

TP

TP + FN+ ϵ
,

F1 =
2TP

2TP + FP + FN+ ϵ
, IoU =

TP

TP + FP + FN+ ϵ

Here ϵ is a small value of 10−8 to prevent possible division by zero scenarios.

5.2 MAIN QUANTITATIVE RESULTS

5.2.1 COMPARISON WITH BASELINES

Model Training split DOS-orig test SAM2 test Hand-label test

F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑

Baseline TransUNet Orig. train/val 0.732 0.631 0.732 0.651 0.342 0.278
Baseline TransUNet SAM2 train/val 0.622 0.512 0.747 0.663 0.225 0.171
Ours (best arch.) Orig. train/val 0.757 0.659 0.746 0.668 0.376 0.315
Ours (best arch.) SAM2 train/val 0.639 0.531 0.765 0.684 0.215 0.164

Table 5.1: Headline segmentation results across three evaluation splits. All scores use the tolerant
disk–kernel metric (r=10 px).

Table 5.1 reports F1 and IoU measured with the r=10 px tolerant kernel on the three evaluation
splits introduced in Chapter 3. Results are grouped by training split (Orig. vs. SAM2) and by
architecture (Baseline TransUNet vs. our best arh.: TransUNet equipped with a pure DINOv2 ViT-
B/14 encoder).

Data quality dominates when train–test domains match. Training on the same label flavor that
is used for testing outweighs most architectural differences:

• On the DOS-orig test set, models trained on Orig. masks outperform their SAM2–trained
counterparts by ≈10 pp. F1 (rows 1/3 vs. 2/4).

• Conversely, on the SAM2 test set the roles reverse: SAM2–trained networks gain roughly
+0.02 F1/IoU over the ones trained on the thicker legacy masks (rows 2/4 vs. 1/3).

This confirms that the SAM2 prompts indeed yield cleaner supervision and that all pipelines can
capitalize on that cleanliness provided the evaluation domain aligns with the training domain.

Architecture still matters once label noise is reduced. When comparing networks trained on the
same split our DINOv2 backbone consistently outperforms the vanilla TransUNet:

DOS-orig test: ∆F1 = +0.025, SAM2 test: ∆F1 = +0.014

even under the forgiving r=10 px metric. The gap widens further on the stringent hand–labeled
benchmark (§3.6): training on Orig. masks our best architecture raises F1/IoU from 0.342/0.278 to
0.376/0.315, demonstrating that the self-supervised ViT features add resilience beyond what cleaner
labels alone can provide.
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Generalization to expert masks remains challenging. All models lose roughly half their F1
when evaluated on the 127 manually annotated images, indicating that neither label clean-up nor
architectural upgrades fully bridge the domain shift from synthetic DOS strokes to real hair-line
cracks. Nevertheless, the DINOv2 backbone trained on the legacy masks delivers the best headline
score on this toughest split, narrowing the precision–recall gap and motivating the qualitative error
analysis in §5.5.

In summary:

1. Matching the training labels to the test domain yields the largest absolute gain;
2. The proposed DINOv2 TransUNet provides an additional boost once label noise is under

control; and
3. Significant headroom persists on the expert benchmark, setting the scene for the ablations

in §5.3.

The next sections unpack how each architectural component (DINOv2 backbone, ResNet stem, skip
connections) contributes under different training regimes (§5.3), and why certain variants generalize
better than others across the three evaluation splits.

5.3 ABLATION STUDY

To fairly assess the changes made to the original network, TransUNet, it is important to highlight
the architectural variations on which experiments were ran to see what impact various parts had on
the final evaluation metrics. In this section the architectural variations that were constructed will be
explained.

1. Original TransUNet (Baseline)
2. TransUNet with only DINOv2 in the backbone (No ResNetV2 nor skip connections)
3. TransUNet with ResNetV2 and DINOv2 in the backbone (No skip connecitons)
4. TransUNet with ResNetV2 and DINOV2 in the backbone with Skip connections enabled.

Original TransUNet This is the original unmodified network that will serve as a baseline. In §4.6
new evaluation strategies are proposed to better and more fairly assess the predictions. This new
method is also used in combination with the original network for fair comparison. But the core
network and original weights are not modified nor re-trained. The new improved dataset discussed
in §4.4.2 is also used in this network and all other variants.

TransUNet with DINOv2 backbone only In this network the new ViT-B/14 (DINOv2) has been
integrated but without the CNN component originally present in TransUNet (ResNetV2). This will
test how well DINOv2 on its own will compare to the full original backbone of TransUNet. This
architectural variation will give early insights in the possible direction the research will be going in.

TransUNet with ResNetV2 and DINOv2 This will be the fully integrated architecture as used in
the original paper with all adaptations made mentioned in ??. This variation is two-fold, there will
be two sub-variations of this network.

1. TransUNet with ResNetV2 and DINOv2 in the backbone without skip connections.
2. TransUNet with ResNetV2 and DINOv2 in the backbone with skip connections.

These two versions will show how skip connections contribute to the prediction quality. In the
original paper it showed varying results on skip connection impact depending on what organ was
segmented from the fMRI scan (Chen et al., 2021).

Table 5.2 shows a summary of the architecture variations. These will be experimented with to see
the efficacy of the different configurations and which parts have the biggest impact on performance.

In addition to these model variations the model was also trained on two different dataset variants.
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Table 5.2: Overview of architectural variants and their components

Model Variant ResNetV2
(CNN)

ViT (Backbone) Skip Connec-
tions

Baseline TU ViT-B/16
TU+DINO+ResNet (skip conn.) DINOv2 (ViT-

B/14)
TU+DINO+ResNet (no skip
conn.)

DINOv2 (ViT-
B/14)

X

TU+Pure DINO backbone X DINOv2 (ViT-
B/14)

X

1. Original DOS data: This is the data which is not modified by SAM2 at all, this is the data
coming straight out of the existing data pipeline from TNO (Chapter 3)

2. SAM2 improved data: This is the original data, but modified with SAM2 to try and gen-
erated more accurate ground truth labels.

This additional ablation step was added to see if the data has any impact to avoid drawing false
conclusions on the impact of the architectural changes only.

5.3.1 ABLATION STUDY: NETWORKS TRAINED ON SAM2 DATA

Model variant DOS-orig test SAM2 test Hand-label test

P ↑ R ↑ F1 ↑ IoU ↑ P ↑ R ↑ F1 ↑ IoU ↑ P ↑ R ↑ F1 ↑ IoU ↑

Baseline TU 0.745 0.650 0.622 0.512 0.915 0.709 0.747 0.663 0.292 0.246 0.225 0.171
TU+DINO+ResNet (no skip conn.) 0.744 0.670 0.633 0.522 0.902 0.714 0.747 0.662 0.365 0.258 0.269 0.207
TU+DINO+ResNet (skip conn.) 0.728 0.703 0.649 0.537 0.894 0.751 0.767 0.684 0.366 0.277 0.283 0.221
TU+Pure DINO backbone 0.756 0.662 0.639 0.531 0.928 0.723 0.765 0.684 0.276 0.241 0.215 0.164

Table 5.3: Ablation study with all models trained on the SAM2 train/val split. Each row shows
performance on the three held-out test sets. Scores use our tolerant metric (r = 10 px). Best per-
column numbers are bold.

Table 5.3 compares four architectural variants, all trained on the same SAM2 train/val split, across
the three evaluation sets. Three observations stand out:

Skip connections provide the largest single boost. Adding ResNet–to–ViT and enabling skip-
fusion (TU+DINO+RESNET ( SKIP )) lifts F1/IoU on every test split, with the strongest gains on
SAM2 itself ( +0.020 F1, +0.022 IoU over the no-skip counterpart). The improvement stems mainly
from higher recall (0.751 vs. 0.714), confirming that low-level CNN features help the decoder re-
cover thin crack fragments that the ViT encoder alone misses.

Pure-ViT (DINO only) is precision-oriented. The “Pure DINO” backbone attains the highest
precision on all splits (e.g. 0.928 on the SAM2 test) but lags behind the skip-enabled hybrid in recall
and therefore F1/IoU. The model favors conservative, high-confidence masks; in the tolerant metric
this yields fewer FP counts but leaves additional TP potential untapped.

Hybridization helps cross-domain generalization. When confronted with the out-of-distribution
DOS-orig and Hand-label sets, the skip-enabled hybrid remains the best overall (F1/IoU
0.649/0.537 and 0.283/0.221, respectively), whereas the Pure-DINO variant slips in recall, and the
baseline TransUNet, despite having seen the same SAM2 labels, cannot match either hybrid in any
metric. We attribute this robustness to (i) multi-scale cues injected by the ResNet stem and (ii) the U-
shaped skip pathway, both of which ease adaptation when texture statistics deviate from the training
distribution.
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Interim summary. For models trained on the cleaner SAM2 labels, architectural upgrades matter.
The best configuration combines a ResNet stem, a DINOv2 ViT encoder, and full-resolution skip
connections, achieving state-of-the-art performance on in-domain data while remaining the most
reliable choice when the evaluation domain shifts. The next subsection repeats the analysis for
models trained on the noisier DOS-orig data (§5.3.2) and shows how the relative importance of
each component changes when label noise dominates.

5.3.2 ABLATION STUDY: NETWORKS TRAINED ON DOS DATA

Model variant DOS-orig test SAM2 test Hand-label test

P R F1 IoU P R F1 IoU P R F1 IoU

Baseline TU 0.803 0.744 0.732 0.631 0.894 0.709 0.732 0.651 0.454 0.300 0.342 0.278
TU + DINO + ResNet (no skip conn.) 0.801 0.776 0.748 0.644 0.896 0.735 0.753 0.671 0.438 0.283 0.325 0.251
TU + DINO + ResNet (skip conn. 0.785 0.754 0.729 0.621 0.887 0.721 0.739 0.653 0.428 0.267 0.309 0.251
TU + pure DINO backbone 0.823 0.770 0.757 0.659 0.908 0.722 0.746 0.668 0.470 0.341 0.376 0.315

Table 5.4: Ablation study with models trained on the DOS train/val split. All numbers are reported
with the tolerant disk–kernel metric (r = 10 px).

Table 5.4 shows the same ablation as done in (§5.3.1) but now the models are trained on the original
DOS data to see how the architectural elements are impacted when noisy labels prevail. A few
take-aways can be observed.

Pure DINO dominates under noisy supervision. The ViT-only backbone attains the highest
F1/IoU on two out of the three test splits, including the challenging hand-label benchmark, de-
spite having no CNN stem or skip pathway. We argue that the global self–attention helps to average
out annotation noise, while the absence of low-level fusion avoids propagating label errors to the
decoder.

Skip connections amplify label noise. Introducing ResNet features and skip fusion hurts perfor-
mance relative to the no-skip hybrid (row 3 vs. row 2). When trained on thick, coarse DOS labels,
the decoder learns to trust low-frequency blobs and over-segments at test time, explaining the drop
in precision on every split.

Hybrid, no-skip configuration trades precision for recall. Removing skips but keeping the
ResNet stem (row 2) yields the best recall on both DOS-orig (0.776) and SAM2 (0.735) tests, but
at a modest cost in precision. In scenarios where missing a crack is costlier than over-painting, this
variant may be preferable.

Cross-domain behavior flips compared to SAM2-trained models. Recall that with clean SAM2
supervision, the ResNet + ViT + skip variant was best (§5.3.1). When supervision is noisy, the hierar-
chy reverses and the simpler Pure-DINO backbone excels. This underscores the interaction between
architecture choice and label quality: richer decoders pay off only when the ground truth is reliable.

Interim summary. With noisy DOS supervision, the precision–oriented Pure-DINO variant de-
livers the strongest overall scores, while skip connections tend to amplify over-segmentation. Con-
versely, under cleaner SAM2 supervision (§5.3.1) the hybrid decoder with skips reclaims the lead,
illustrating that the benefit of architectural capacity depends on label fidelity. The fact that DOS-
trained models fare better on the hand-label test is also consistent with annotation style: both the
DOS masks and the expert drawings use a thick-brush convention, whereas SAM2 labels contain
many finer hair-line cracks and therefore induce a different decision boundary. Finally, this is also
exacerbated by the introduced metric (Section 4.6) which uses a generous dilation of r = 10 pixels
which conforms the predictions even more to the DOS automated annotation style.

39



Master’s Thesis Research Project, Master Computer Science - AI, Leiden University, 2025

5.3.3 ARCHITECTURE ABLATION ON CRACK500

To disentangle architectural effects from label noise and domain bias in our in-house data, we
re-trained all model variants on the public CRACK500 benchmark Yang et al. (2019) using its official
train/val/test split. Table 5.5 reports precision (P), recall (R), F1, and IoU.

Table 5.5: CRACK500 ablation: isolating backbone/stem/skip choices. The Pure DINOv2 Tran-
sUNet (no CNN stem) is best overall.

Variant P R F1 IoU

Baseline TransUNet (TU) 0.851 0.809 0.810 0.712
TU + DINO + ResNet (skip conn.) 0.804 0.788 0.775 0.662
TU + DINO + ResNet (no skip conn.) 0.777 0.789 0.763 0.644
TU + Pure DINO backbone (TU decoder) 0.856 0.867 0.851 0.762

Key observations.

1. Pure ViT wins. Replacing the entire encoder with a pretrained DINOv2 ViT-B/14 and
omitting the ResNet stem yields the best F1 (0.851) and IoU (0.762), outperforming the
baseline TransUNet by +0.041 F1 / +0.050 IoU. This reinforces the benefit of strong
self-supervised global features even on a relatively clean, RGB crack dataset.

2. CNN stem can hurt. Adding a ResNet stem in front of DINOv2 consistently lowers per-
formance (F1 drops to 0.775/0.763). A plausible explanation is feature interference: the
stem may downsample or distort cues that the ViT already captures at patch-level resolution
(14×14), effectively bottlenecking the information passed to the transformer.

3. Skips still help (a little). Within the “DINOv2 + ResNet” setting, skip connections recover
a small amount of precision (+0.027) and IoU (+0.018) over the no-skip variant, suggesting
that low-level detail fusion remains useful when a CNN stem is present, albeit the overall
ceiling is limited by the stem itself.

4. Precision–recall trade. Removing skips slightly increases recall (0.789) but lowers preci-
sion (0.777), hinting that the decoder hallucinated more positives without shallow features
to “anchor” edges. The pure DINOv2 model achieves both the highest precision and recall,
indicating a better global–local balance.

Implications & next steps. These results support the hypothesis that the ResNet stem may be
constraining DINOv2 rather than helping it. Two concrete follow-ups are suggested:

• Skip from ViT, not CNN. Instead of CNN skips, expose intermediate ViT block features
(multi-scale token maps or attention pyramids) directly to the decoder to recover fine detail
without re-introducing a CNN bottleneck.

• Ablate fusion adapters. Insert lightweight adapters (e.g., 1×1 conv or MLP) to better
align the statistics of any CNN stem with the ViT embeddings, testing whether the drop is
due to feature mismatch rather than architectural redundancy.

Wrapping up ablation studies Finally, we caution that all numbers are single-seed runs; repeat-
ing with multiple random seeds would firm up confidence intervals. Nonetheless, the ranking is
clear: if labels are noisy or not,, a pure DINOv2 backbone paired with a lightweight decoder is the
most effective configuration among those tested.
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5.4 NAIVE DATASET GENERATION (THRESHOLDING APPROACH)

Before investing in SAM2 we tested a trivial label-generation scheme: global gray-value threshold-
ing followed by morphological opening (§4.4.1). Table 5.6 contrasts the resulting model against our
stronger baselines on the hand-labelled benchmark.

Variant Training split Prec. ↑ Recall ↑ F1 ↑ IoU ↑
TU + ResNet + DINOv2 (full) threshold labels Thresholded 0.403 0.113 0.149 0.107
TU + ResNet + DINOv2 (full) SAM2 0.366 0.277 0.283 0.221
TU + ResNet + DINOv2 (full) DOS-orig 0.428 0.267 0.309 0.242
Baseline TU DOS-orig 0.454 0.300 0.342 0.278

Table 5.6: Performance on the hand-labelled test set (tolerant metric, r=10 px). Best numbers are
bold.

Conclusion The naı̈ve threshold–opening pipeline falls well short of every learned alternative
(−15–20 pp F1). Its extremely low recall confirms that fixed heuristics cannot capture the var-
ied crack appearance found in practice, validating our choice to pursue SAM2-assisted relabelling
instead.

5.5 QUALITATIVE ANALYSIS

5.5.1 OBJECTIVE

We visually compare the predictions of the best architecture (TU + Pure DINOv2) when it is
(1) trained on the original DOS labels and (2) trained on the SAM2-improved labels. The goal
is to illuminate how SAM2’s relabelling changes model behaviour, e.g. whether it removes omis-
sions, introduces over-segmentation, or shifts the type of false positives, thereby complementing the
headline scores of §5.2.

5.5.2 VISUAL PROTOCOL

All qualitative examples are drawn exclusively from the hand-labeled test set. We first rendered
the analytic plots (coloured plots where the RGB channels represent, False Positive, True Positive
and False Negative respectively) for every 224 × 1120 patch (5 × (224 × 224) patch stitched to-
gether horizontally) and inspected them side–by–side for the two training regimes (DOS vs. SAM2
supervision). During inspection we tagged each patch with concise error descriptors (FP{flood,
hairline{miss, thick{mask, neutral, recall ↑/FP ↑) and then clustered patches that
shared the same dominant behavior.

Five consistent groups emerged:

1. FP-flooding from SAM2 over-segmentation (plots 3, 6): SAM2 training floods large
background areas that DOS leaves untouched.

2. Hairline-crack omissions (plot 7): both models miss small 2-3 pixel–wide cracks, yielding
high FN.

3. Thick-label penalty cases (plot 10): the expert mask is much wider than the physical
crack, so both predictions are penalised.

4. SAM2 adds no extra detail (plots 19, 28): DOS already captures the crack; SAM2 neither
helps nor hurts.

5. Recall boost with FP trade-off (plots 22, 40): SAM2 recovers additional crack fragments
but introduces extra false positives.

From each cluster we selected two representative patches (listed in parentheses) to form the mosaic
grids in Figure 5.1. This purposive sampling favors interpretability over statistical completeness;
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nonetheless, the five patterns cover a majority of all tagged patches, so they characterize the domi-
nant qualitative differences between the two training regimes.

5.5.3 VISUAL ANALYSIS

(a) Raw (b) GT label (c) DOS-trained pred (d) SAM2-trained pred

G1 – FP-flooding from SAM2 over-segmentation

(a) (b) (c) (d)

G2 – Thinner cracks are harder to find

(a) (b) (c) (d)

G3 – Thick-label penalty cases

(a) (b) (c) (d)

G4 – SAM2 adds no extra detail

(a) (b) (c) (d)

G5 – Recall↑ with FP↑ trade-off

Figure 5.1: One representative patch per qualitative category (G1–G5). Green = TP, red = FP, blue
= FN. See §5.5.2 for the selection protocol.
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In Figure 5.1 the 5 distinct groups that are observed are shown. This subsection will discuss key-
points from each group separately and conclusions are drawn along the way. The full analysis can be
found where the results from this qualitative analysis are combined with those from the quantitative
analysis in either Chapter 6 or in § 5.6.

G1: FP–flooding caused by SAM2 over-segmentation. Figure 5.1 (top row) contrasts the same
road patch under three supervision regimes. Panel (b) shows the hand-labelled mask, where blue
pixels denote confirmed cracks and green pixels mark uncertain regions1.

With DOS-trained weights (panel (c)) the network behaves conservatively: it recovers part of the
true crack (TP) while introducing only a few small false–positive speckles (FP).

Training instead on the SAM2 masks (panel (d)) inverts this pattern. The model now fires almost
continuously along the vertical stripe, a behavior inherited from SAM2’s frequent over-segmentation
of faint sensor streaks. Recall on the true crack increases (more (TP) but at the expense of a flood
of FP, which overwhelms precision.

The visual evidence therefore explains the quantitative drop in precision observed for this error
category: SAM2 supervision biases the model toward over-predicting artifacts that resemble cracks,
whereas DOS supervision remains more restrained due to the more reserved labels present in the
DOS data.

G2: finer cracks remain elusive. Panel (b) depicts the hand-labeled mask for a nearly small pixel
count–wide transverse crack. Both supervision regimes struggle to recover its full extent:

• DOS-trained model (c). Roughly half of the crack is retrieved (TP) but extensive FN gaps
indicate that the network fails whenever the signal narrows to a single pixel or is partially
occluded by sensor noise. A few isolated FP speckles appear where loose aggregates in the
raw image resemble tiny cavities.

• SAM2-trained model (d). The recall pattern is almost identical: the same thin segments
are missed. On the positive side, FP speckles disappear, suggesting that SAM2 supervision
teaches the model to be more conservative on small blob-like artifacts. Yet this comes at no
clear recall benefit, the long, hair-line portions are still unsegmented. Take note, that our
introduced metrics also takes part in the role of effecting the results due to morphological
opening operations performed to clean up small noise blobs which could be these smaller
1-2px fine cracks.

The failure mode highlights a fundamental limitation shared by both training sets: neither provides
enough examples of small-count-pixel cracks with accurately thinned masks. Consequently the
decoder learns a bias towards two–to three-pixel-wide strokes and overlooks truly slender fissures
unless they are reinforced by strong local contrast. Future work could mitigate this via label thinning
or explicit super-resolution decoding stages that preserve crack continuity below the native patch
resolution.

G3: Thick–label penalty cases. In this patch the hand annotation (b) was brushed with a≈10-px
diameter, producing a corridor of ground truth that far exceeds the physical crack width visible in
the raw scan (a). Under the tolerant-disk metric (r=10 px) this has two side-effects:

• Inflated FN count. Both models faithfully trace the true, finer crack, yet the FN band
dominates because every pixel inside the thick label that is not predicted as crack is counted
as a miss. This is particularly evident for the DOS-trained network (c), where a single-pixel
ridge is correctly segmented but still scored as largely false negative.

• FP artifacts for SAM2 training. The SAM2-supervised model (d) inherits the tendency,
showcased in G1, to over-complete narrow structures. It fills gaps around the crack core
(more TP), but also spills red FP paint wherever the thick annotation encroaches on tex-
tured, non-crack pavement. This underscores how SAM2 masks can bias the network to-
wards aggressive, context-agnostic filling.

1Uncertain (unknown) pixels are ignored during metric computation; they neither contribute to TP, FP, TN,
nor FN.
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What appears as severe model failure in the confusion map is largely a label–format mismatch:
a crack that is one–to–two pixels wide is judged against a ten-pixel template. Future evaluations
should thin hand-annotations (or reduce r) to avoid penalizing geometrically accurate predictions,
or alternatively adopt boundary-aware metrics that down-weight interior pixels of bloated masks.

G4: SAM2 adds no extra detail The raw patch (a) shows a moderately wide longitudinal crack
whose edges are somewhat ragged. The hand mask (b) marks the main crack body with a mix of
certain (blue) and uncertain (green) pixels but is otherwise free of spurious annotations.

• DOS-trained model (c). The network predicts only a few connected pixels. Most fall
squarely on the true crack (TP), leaving very few false positives. Precision is therefore
high, albeit at the cost of limited recall.

• SAM2-trained model (d). Contrary to expectations, the SAM2 variant recovers virtually
no additional crack pixels beyond those already detected by the DOS model. Instead, it
introduces numerous vertical streaks of false positives that follow irrelevant texture seams.
These artifacts mirror over-segmentation patterns occasionally present in the SAM2 train-
ing masks.

When the DOS supervision already captures the essential crack region, SAM2 offers little benefit
and can even degrade precision by encouraging context-blind fill-in behavior. The added value of
SAM2 therefore appears case-dependent: helpful for bridging gaps (cf. G1, G5), but potentially
harmful where the original labels are already adequate or atleast, comparatively.

G5: Recall↑ with FP↑ trade-off The patch in (a) contains a well-defined longitudinal crack that
extends almost the full image height. The hand mask (b) marks the entire fissure as certain crack
(blue) without ambiguous regions.

• DOS-trained model (c). The prediction only overlaps the ground truth in a few short seg-
ments (TP, green) and misses the majority of the crack (FN, blue). A handful of isolated
specks away from the crack appear as false positives (red). Overall, the model is conserva-
tive: high precision but very low recall.

• SAM2-trained model (d). Here the network traces the crack almost continuously, con-
verting most former FN pixels into TP (green) and thus greatly boosting recall. The
improvement comes at a cost: the prediction also hallucinates additional vertical streaks
and small blobs in the background, inflating the false–positive count. Precision therefore
drops, but the F1 score still rises because the recall gain outweighs the extra FP under the
tolerant evaluation metric.

SAM2 supervision can recover near-complete crack extent on well-delineated fissures, validating its
utility for recall-critical applications. However, the accompanying FP increase underscores the need
for post-processing or a stricter evaluation regime when precision is paramount.
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5.6 CHAPTER SUMMARY

• Cleaner labels first, architecture second. SAM2 relabelling delivers the largest single
boost when the evaluation domain matches the training domain; architectural upgrades
(ResNet stem, DINOv2 backbone, skip connections) add a further ≈2 pp F1/IoU once
label noise is reduced.

• Choose the backbone to match label quality. A lightweight, Pure-DINO encoder is most
robust under noisy DOS supervision, while the full ResNet + DINOv2 + skip hybrid excels
on cleaner SAM2 data.

• Architecture isolation on CRACK500. Re-training all variants on the clean CRACK500
benchmark (§5.3.3) showed that a pure DINOv2 backbone with a TU decoder achieves
the best F1/IoU (0.851/0.762), the ResNet stem hurts performance, and skip connections
give only marginal gains, confirming that strong self-supervised ViT features are sufficient
when label noise is minimal to none-exisitent.

• Residual challenges. Hair-line cracks remain poorly recalled and thick hand-drawn masks
can penalize otherwise accurate predictions, signaling the need for finer-grained annotation
and boundary-aware metrics.

• Practitioner takeaway. Invest in semi-automatic relabeling (e.g. SAM2) before increasing
model complexity; select a recall-oriented hybrid decoder when labels are reliable, and a
precision-oriented ViT-only model when label noise is high.

45



6 Discussion & Conclusion

This chapter reflects on the work presented in the preceding chapters, answers the research questions
posed in §1.2, evaluates the strength of the evidence, and candidly describes the limitations that
accompany the results. We close with directions for future work.

6.1 WHAT THIS THESIS DID

In response to the opaque, low-fidelity crack masks produced by the Pavemetrics laser-line system
with some post-processing done by the DOS pipeline. (Chapter 3), this thesis:

1. Curated a large corpus of laser-derived strip imagery and noisy auto-generated (DOS) crack
masks; designed a robust patch extraction, de-duplication, and deterministic split scheme
that prevents spatial leakage (§3.5).

2. Produced refined training targets at scale by prompting Segment Anything 2 (SAM2) with
low-resolution DOS masks (§4.4.2); yielding a paired dataset of identical RGB patches
with two label variants (DOS-orig vs. SAM2-refined; §3.7).

3. Collected an expert hand-labeled benchmark with three classes (crack/unknown/back-
ground) and a group-wise evaluation protocol to aggregate sub-patch predictions into
mother-patch metrics (§3.6, §4.6).

4. Integrated and fine-tuned a self-supervised DINOv2 ViT-B/14 backbone into a
TransUNet-style encoder–decoder where we trained the decoder from scratch (§4.5), ex-
ploiting pretrained global context while retaining shallow convolutions for fine structure.

5. Developed tolerant, uncertainty-aware evaluation metrics (disk-kernel counting;
unknown-class masking) suitable for noisy / incomplete ground truth (§4.6).

6. Benchmarked multiple training regimes (DOS vs. SAM2 supervision) and architectures
(baseline TransUNet vs. DINOv2 variants) across three evaluation splits, including the ex-
pert benchmark (§5.3).

6.2 ANSWERING THE RESEARCH QUESTIONS

This thesis consisted of one encompassing research question which was subdivided into two research
question that were tackled during this thesis. The main research question was formulated as such:

How can a semantic segmentation model be designed and implemented to reliably detect and
segment fine-grained structures in heightmap data, given the practical constraints of imperfect
groundtruth and large-scale data?

The following subsections will tackle answering the subquestions outlined in the introduction and
encompassed within the main research question.

RQ1: HOW CAN DINOV2 BE EFFECTIVELY INTEGRATED INTO EXISTING SEGMENTATION
BACKBONES TO ENHANCE FINE-GRAINED CRACK DETECTION?

Integration strategy. We replaced the standard Transformer encoder in TransUNet with a pretrained
DINOv2 ViT-B/14 feature extractor and added shallow convolutional stem layers plus skip fusions
to reinject high-resolution spatial detail (as done in the original TransUNet) (§4.5.3). A lightweight
decoder (UNet-style upsampling + fusion) converts token features to pixel logits. Integrating a
DINOv2 ViT-B/14 Transformer was hypothesized to have better global context extraction with more
fine-grained crack masks due to the higher patch count per image versus a ViT-B/16.

Effect on performance. When trained on the same supervision, DINOv2-backboned models con-
sistently matched or exceeded the baseline TransUNet across automatic test splits and, critically,
achieved the best scores on the expert hand-labeled benchmark (Table 5.1): F1=0.376, IoU=0.315
vs. baseline 0.342/0.278 under identical training data (Orig. train/val). Gains persisted, though were
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smaller, on the SAM2 refinement split. These results indicate that rich self-supervised ViT features
can improve generalization to out-of-domain labels (expert masks) even when absolute label noise
remains high.

Architecture isolation on CRACK500. To decouple architecture from label noise, we re-trained
all variants on the clean CRACK500 benchmark. A pure DINOv2 backbone with the TU de-
coder achieved the strongest scores (F1 = 0.851, IoU= 0.762), surpassing the baseline Tran-
sUNet (0.810/0.712). Re-introducing a ResNet stem reduced performance (0.775/0.662 with skips;
0.763/0.644 without), suggesting the stem can bottleneck the ViT features when labels are clean.
Skip connections helped slightly but did not close the gap to the pure-DINO variant. These findings
support the hypothesis that, once supervision quality is high, DINOv2’s pretrained representation is
sufficient and additional CNN stems may be unnecessary or even detrimental.

Take-away. Fine-tuning a large self-supervised ViT and adapting its multi-scale tokens through a
thin decoder is a practical path to leveraging global context for slender, low-contrast structures such
as cracks, provided that high-frequency detail is reintroduced via skips. On clean labels, however,
a pure DINOv2 encoder already excels, and extra CNN stems can be counterproductive, use them
only when noisy supervision demands additional low-level guidance.

RQ2: WHAT TRAINING AND EVALUATION METHODOLOGIES IMPROVE PERFORMANCE WHEN
LABELS UNDER-REPRESENT CRACK PIXELS?

Label refinement at scale. Prompting SAM2 with low-resolution DOS masks produced thinner,
better-aligned pseudo-labels without manual interaction (§4.4.2). Training on these refined labels
yielded improved scores when evaluated on SAM2-style ground truth (Table 5.1, rows 2 vs. 4),
confirming that the refinement pipeline increases usable signal. SAM2 refined masks are not the
best because, most likely, the train-test domains do not align. The DOS data more closely resemble
the expert hand-labeled dataset, biasing the results in favor of the raw DOS dataset even when in
general the DOS dataset under segments cracks. This points us towards further refining the SAM2
data refinement pipeline to remove over segmentation and in general refining its output.

Unknown-aware metrics. For hand labels we introduced an “Unknown” class that is ignored during
metric computation (ignore_index), preventing ambiguous regions from biasing scores (§3.6).
Most of the time the expert labeler was not sure if a region of pavement was either crack or some-
thing else, it could be either or, and this should not influence the metric calculation. A disk-kernel
tolerance (r=10px) reduces sensitivity to pixel-level misalignment that arises from broad annotation
brushes (§4.6). Since the exact pixel perfect prediction does not necessarily matter compared to the
crack being detected in the general vicinity, this method was developed to more fairly judge crack
prediction. Although, this method does punish models that can/may predict finer grained cracks
(models trained on SAM2 data) since the morphological opening operations being conducted on the
predictions may remove fine-grained crack pixels, which can results in an even more biased result
towards the thicker more coarse DOS labels.

Group-wise aggregation. Sub-patch predictions are summed in confusion-space before computing
precision/recall/F1/IoU, ensuring that metrics reflect the entire crack extent within a mother patch
rather than arbitrary tile boundaries (§3.6.2).

Take-away. A combination of (i) scalable label refinement, (ii) uncertainty-aware evaluation (un-
known masking + distance tolerance), and (iii) hierarchical metric aggregation provides a workable
recipe for training and fairly assessing models under incomplete / noisy crack annotations. Although,
as stated, these methods currently hold some inherent bias towards the raw DOS data because of the
immaturity of the methods development. Further research needs to be done on SAM2 refinement
and more fine-grained expert labels need to be annotated to represent the better crack masks that
SAM2 produces.
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6.3 INTERPRETING THE RESULTS

Three high-level patterns emerged (cf. Table 5.1):

1. Label quality dominates within-domain testing. Models trained and tested on the same
label type perform best on that domain (DOS→DOS, SAM2→SAM2, DOS→Expert la-
bels). Cleaner supervision yields immediate gains without architectural change. This is
due to the data characteristics of the SAM2 and DOS dataset being so different due to the
current implementation of the SAM2 refinement pipeline producing higly over-segmented
crack masks. In further research this can be mitigated with a less naive, more novel mask
generation/selection strategy. This should also close the gap cross dataset domains.

2. Architecture helps cross noisy/clean label domains. The DINOv2 variant shows the
largest relative improvement on the expert benchmark, suggesting that stronger pretrained
features regularize against label noise and domain shift. This is most likely due to DINOv2
ViT-B/14s higher resolution with patch size of 14 × 14 pixels versus ViT-B/16s 16 × 16
pixels patches. This high resolution achieves better/finer crack delineation. Together with
DINOv2’s self-supervised training regime translating to better domain agnostic segmenta-
tion performance. This should explain the higher relative performance increase.

3. Manual benchmark remains hard. All models drop sharply on the expert set, underscor-
ing the gap between auto-generated supervision and human judgment. This, most likely
is happening because of the abrupt domain switch between train-test splits, the hand la-
beled test set is simply to coarse and to far removed from either the DOS or SAM2-refined
dataset. Even so, the DINOv2 model closes part of the gap and produces qualitatively
crisper, less over-dilated masks (§5.5).
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6.4 LIMITATIONS

The study has several important caveats that should temper interpretation:

1. Noisy foundation labels. DOS masks are coarse, incomplete, and generated by an unre-
vealed proprietary pipeline; residual errors persist even after SAM2 refinement. Having no
insight in the most fundamental part of the data generation process is a crutch this research
has not found a definitive resolution for. Fine-tuning the SAM2-refinement method is for
now hypothesized as the best bet for dealing with this foundational issue.

2. Small expert test set. Only 127 mother patches were annotated; In our DOS dataset split
the test set consisted of 15% of the dataset, this was 387 images. We now have only 127
which is not even half of what we previously have. Also, the cracks for the test set need
to span a broad range of crack scenarios which, for now, was not the focus during hand
annotation.

3. Thick hand annotations. The expert used a 10–20+ px brush (possibly wider for the
unknown class), inflating crack width; tolerant metrics reduce but do not eliminate this
bias. This wide crack annotation biases the expert hand labeled set even more towards the
original DOS data because these auto-generated labels were also over dilating cracks while
not being precise in the annotation of fine-grained crack pixels, just like the hand labeled
set.

4. Single sensor domain. All imagery stems from one laser-line platform and one
pre-processing stack (depth flattening, clipping). Cross-sensor generalization is untested.

5. Patch-centric training. Models see cropped, crack-centric tiles; In the pre-processing
pipeline outlined in the thesis, and also in the DOS pipeline, cracks are mostly centered in
the extracted patches. But this presents a bias towards center pixels during inference time.
The model has been trained on data where cracks tend to skew towards the center region
of patches. Whilst cracks can occur in various different parts of a patch. This is something
needed to be taken into account when reviewing results and thinking about viability.

6. Tolerance parameter. Scores depend on the disk radius r; smaller radii penalize coarse
masks more strongly and rewards models which predict finer-grained masks. Only one
radius is reported in headline tables. Because of a singular radius being used we cannot
observe the impact of varying radii on the final scores and qualitatively analyze these pre-
dictions. This is something that is interesting to tackle later.

7. Limited literature coverage. The related-work survey (Chapter 2) was not conducted
as structured as needed. The selection of DINOv2 ViT-B/14 as a backbone and the use
of SAM2 as a label refinement foundation were well researched. On the other hand, the
baseline selection was done to quick. A solid model was found outside of the pavement-
crack detection field because of previous models tested not providing reproducible results.
Because of time constraints we moved outside of the field. But looking back when writing
the related work section a lot more well established models were found for crack detection
which performed better than TransUNet, like CrackFormer (Liu et al., 2021) for example.
(see §6.5).

8. Dense or sparse predicitons Dense semantic segmentation expects pixel-accurate super-
vision; our DOS and SAM2 masks are coarse, incomplete, and unevenly dilated. Given
the abundance of strip-level detections but scarcity of reliable fine masks, a bounding-box
or centreline detection formulation may be better aligned with available supervision and
downstream maintenance needs. The fact that a tolerant distance-based disk metric was
needed already hints we are grading models more like localization than exact segmenta-
tion, supporting a future shift to detection.
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6.5 ON THE LITERATURE REVIEW

The literature study in Chapter 2 should be viewed as a targeted, practice-driven survey rather than
a comprehensive systematic review. Time constraints, inconsistent terminology across civil and
computer-vision venues, reproducibilty and other issues made it a complicated matter to complete
a comprehensive literature review that spanned the full scope of state-of-the-art crack detection
models Readers seeking a broader overview should consult recent surveys of pavement distress
detection and looking at well established models; incorporating such sources would strengthen a
future version of this thesis.

6.6 CONCLUDING REMARKS

This thesis set out to improve crack segmentation on laser-derived road imagery in the face of
noisy, proprietary auto-labels. By pairing scalable label refinement (SAM2 mask prompting) with
a DINOv2-augmented TransUNet, and by evaluating with uncertainty-aware, group-wise metrics
against a new expert benchmark, we demonstrated measurable, if modest, improvements in both
in-domain and out-of-domain performance. The absolute numbers remain far from human relia-
bility, yet the pipeline establishes an open, reproducible baseline and a pathway for incremental
improvement: clean the labels, leverage large pretrained features, measure fairly.

The road from opaque black box to transparent, extensible crack mapping is long; this work cov-
ers the first few meters. We hope the data handling, evaluation protocol, and integration lessons
documented here make the next steps faster for others.
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7 Future Work & Practical Recommendations

This chapter looks beyond the present study. The first section distils immediate, low-effort actions
that TNO can adopt today using the insights and tooling developed in this thesis. The second section
outlines research directions that would materially strengthen crack segmentation from laser-derived
pavement imagery, address the limitations cataloged in §6.4, and extend the pipeline toward opera-
tional deployment at scale.

7.1 IMMEDIATE OPERATIONAL RECOMMENDATIONS

Even without additional research, several practical steps can improve the quality and utility of crack
data products derived from laser line systems:

1. Bulk label upgrading via promptable segmentation. The workflow in §4.4.2 shows that
noisy, over-dilated auto-labels (DOS) can be upgraded in batch by low-resolution mask
prompting with SAM2, yielding thinner and more spatially aligned supervision. Asset
owners should prioritize running existing archives through such a refinement pass before
anything else.

2. Leverage large ViT features when labels are scarce. As demonstrated in §6.2 (RQ1) and
Table 5.1, a pretrained DINOv2 ViT-B/14 backbone, lightly adapted with a convolutional
stem and UNet decoder, provides competitive performance even under imperfect supervi-
sion. This is a pragmatic way to bootstrap new projects that lack dense, high-quality crack
annotations.

3. Deterministic data partitioning and provenance tracking. The hash-based split in §3.5
prevents spatial leakage across train/val/test and ensures reproducibility. Store and version
the mapping from original strip IDs to patch-level files; doing so guards against overly
optimistic metrics and simplifies cross-study comparisons.

4. Include an “Unknown” label in manual QA. The three-class expert protocol (§3.6)
avoids penalizing models for ambiguous pavement artifacts by masking those pixels at
evaluation time. The DOS software pipeline could integrate this unknown class generation
into their pipeline such that during training and testing the model can learn what pixels are
actually usefull for predictions and which ones should be diregarded entirely.

Taken together, these four actions can materially raise data quality and the credibility of reported
performance metrics with minimal engineering effort.

7.2 RESEARCH DIRECTIONS

The work reported in this thesis opens several avenues for deeper study. The subsections are ranked
on their immediate importance except for the last three sections. (§7.2.6, - §7.2.8)

7.2.1 DETECTION-FIRST OR WEAKLY SUPERVISED FORMULATIONS

Dense semantic segmentation presumes pixel-level truth, yet our supervision (§3.4, §4.4.2) remains
noisy and coarse. Recasting crack mapping as object detection (bounding boxes around crack spans)
or centreline/segment detection could better exploit abundant but low-fidelity annotations. Can-
didate workflow: (i) derive boxes from DOS polylines with width margin; (ii) train lightweight
detectors (, YOLO-family, RT-DETR) to localize crack instances; (iii) optionally refine detected
regions to masks via promptable segmentation (SAM2) or lightweight region decoders. Such a
two-stage pipeline may deliver more stable maintenance-grade outputs under weak supervision than
end-to-end dense segmentation. Firstly, it should be clear what is needed in the prediction task, a
pixel level mask that exactly pinpoint a crack, or a general idea if cracks exist in a localized area.
From here the implementation/research can differ broadly, so care should be taken into what direc-
tion is truly best suited.
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7.2.2 OPEN SOURCING DATA

During the thesis this idea was thrown around, but at the end it was concretized more. The idea
of open sourcing a large chunk of the raw data or processed data ran through the DOS software
pipeline. During the literature study it became clear that there were not many or any annotated large
scale laser-line datasets that match ours. For the entire field of pavement distress detection we think
it can be of great value to release the dataset in a conference setting such that the broader field can
tackle some problems for us. Or even more naively, that they will properly label a good chunk of
data we can use again for evaluation or even training later down the line. We believe the broader
field will benefit from the release of such a dataset with the caveat that any method developed with
this data needs to be completely open source to the benefit of the scientific community.

7.2.3 LARGER & FINER EXPERT DATASET

The current hand-labeled benchmark (§3.6) spans only 127 mother patches and employs a broad
10–20+ px brush. Using a more intelligent annotation method that could potentially help the anno-
tator suggest regions of finer cracks. Or using an actual finer brush would tremendously boost anno-
tation quality and would give deeper, more trustworthy insights into the quantitative and qualitative
analysis done. Taking the time to label a moderate amount of labels to a fine degree is paramount
for proper assessment of any developed method

7.2.4 SAM2-REFINEMENT; FURTHER RESEARCH ON THE RAW OUTPUT

At the moment, as described in §4.4.2 the second highest IoU prediction out of the three predictions
is taken in bulk across the entire dataset. This is a naive method of mask selection. A more novel
way of selecting a mask can be to take the raw logits SAM2 also outputs and develop a method
ontop of these raw predictions. First extract statistics across all raw predictions to try and detect
patterns in the data and act on these patterns. This would be a logical first step to continue on with
the SAM2 refinement pipeline. We are still adamant that SAM2 can provide major improvement
across the entire dataset. Further experimentation was planned, but due to unforeseen circumstances
this research had to be cut short.

7.2.5 METRIC SENSITIVITY STUDIES

Headline scores used a single disk-tolerance radius (r=10 px; §4.6). Sweeping r exposes how mod-
els trade boundary precision against coverage, critical when comparing coarse DOS-style labels,
SAM2 refinements, and future fine annotations. Similarly, reporting curves over probability thresh-
olds (ODS/OIS; see §5.3) can standardize evaluation across studies. This experiment was planned,
but due to lack of time it was not conducted.

7.2.6 ITERATIVE HUMAN-IN-THE-LOOP REFINEMENT

SAM2 refinement (§4.4.2) is a one-shot process. Active-learning loops could flag low-confidence
or high-disagreement regions for targeted expert correction; refined masks would feed successive
training rounds, progressively improving both model and pseudo-labels. This deviates a lot from
an automated process and this step, if applicable time-wise, should be thought out carefully before
implementing to avoid downstream problems.

7.2.7 UNCERTAINTY MODELING & CONFIDENCE PROPAGATION

Current outputs are binary masks. Calibrated per-pixel uncertainty, via ensembles, Monte-Carlo
dropout, or temperature scaling, would enable risk-aware crack prioritization (e.g., maintenance
triage) and allow metrics that weight confident errors more heavily than uncertain ones (cf. §4.6).
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7.2.8 MULTI-CHANNEL/SENSOR FUSION

All experiments used single-channel laser height imagery (§3.2). Pavemetrics also capture inten-
sity, and co-registered RGB imagery. Fusing complementary modalities may disambiguate shallow
texture from true cracks and improve robustness to lighting, contamination, or wear patterns. Do-
main adaptation across hardware vendors (Pavemetrics vs. future TNO builds) is a related challenge
(§6.4). Take note, there was an intensity channel available for the available data, but it was decided
not to use it early on because it did not fit the format of popular model inputs.

7.3 CLOSING NOTE

Improving crack segmentation accuracy is only one link in a broader infrastructure chain. By (i)
upgrading noisy legacy labels at scale, (ii) harnessing transferable self-supervised vision backbones,
and (iii) adopting evaluation protocols that acknowledge ground-truth uncertainty, practitioners and
researchers alike can shorten the path from raw survey data to defensible maintenance insight. The
directions above are intended as a roadmap for that journey.
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