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Abstract

Graphical Processing Units (GPUs) are used for an ever-increasing amount of computational
tasks, particularly in the training of Neural Networks. To optimize performance and resource
usage, GPU code must be finely tuned, which often involves a vast configuration space. Manually
exploring this space is infeasible, which is why auto-tuning frameworks like Kernel Tuner have
emerged. This thesis investigates the correlation and sensitivity of tuning parameters in GPU
kernel tuning, and extends the Kernel Tuner dashboard with interactive graphs to visualize
these effects. Experimental evaluation on a range of kernels shows that certain parameters
consistently exhibit high sensitivity (e.g., block size and unroll factor), while others have
negligible influence.
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1 Introduction

In recent decades, computing has undergone a transformative evolution, particularly through
advances in parallel processing. At the heart of this transformation is the Graphical Processing
Unit (GPU). Originally designed to accelerate graphics rendering, GPUs are now widely adopted
in High-Performance Computing (HPC), scientific simulations, and deep learning applications.
This shift is largely driven by the GPU’s architecture, which enables the concurrent execution of
thousands of threads, making it ideally suited for tasks with high degrees of parallelism.

Despite their power, efficiently utilizing GPUs remains a significant challenge. When developers
write GPU kernel code—typically small, performance-critical routines—they must fine-tune numer-
ous parameters (such as block size, grid size, memory usage strategies, etc.) to achieve optimal
performance. Manually navigating this large configuration space is laborious and error-prone. As a
result, auto-tuning tools like Kernel Tuner have emerged to automate this process. However, while
these tools find good configurations, they often function as black boxes, offering limited insight
into why certain parameter settings lead to better performance.

This thesis addresses the following problem: How can we gain deeper insight into which GPU
kernel parameters most significantly affect performance, both individually and in combination?
Understanding these relationships not only helps optimize new kernels more efficiently, but also
enhances interpretability, reproducibility, and trust in the tuning process.

To solve this problem, the Kernel Tuner Dashboard, a visualization tool that supports Kernel
Tuner, is extended by incorporating analytical methods to identify and rank parameter importance.
Using statistical analysis and interaction effects, the enhanced dashboard provides users with
actionable insight into the sensitivity of the objective function (e.g., execution time) to various
tuning parameters.

This insight is valuable for multiple reasons: It aids developers in understanding performance
bottlenecks, guides manual and automated tuning strategies, and helps in developing heuristics or
models for parameter selection. Ultimately, this contributes to more efficient and explainable GPU
code optimization.

1.1 Thesis overview

Section 2 gives background information and discusses related work on GPU kernel tuning and
performance modeling. Section 3 details the experimental setup and improvements made to the
Kernel Tuner Dashboard. Section 4 presents empirical results and analyses in multiple kernel
benchmarks. Section 5 discusses the resulting analyses. Section 6 concludes with directions for
future work.

2 Background and related work

Before diving into the technical implementation of this thesis, it is important to provide background
knowledge on GPU computing and the tools used throughout this work. This section starts by
explaining the basics of GPU programming and its differences with CPU computing (Section 2.1).
Then, commonly used GPU kernels relevant to this research and how they are optimized for
performance are discussed (Section 2.2). Following that, the section introduces the Kernel Tuner



tool, which enables automated performance tuning of GPU kernels (Section 2.3). Finally, a brief
overview of related academic work provides context for the novelty and relevance of this thesis
(Section 2.4).

2.1 GPU programming

Modern GPUs are designed to accelerate data-parallel computations by executing thousands of
lightweight threads concurrently. To take advantage of this capability, developers write specialized
functions called kernels, which are executed on the GPU (the device) while the main application
code runs on the CPU (the host). Kernels are launched in parallel by specifying a grid of thread
blocks, where each block contains multiple threads. This hierarchical execution model enables
massive parallelism, but also introduces complexity when optimizing for performance.

In GPU programming models, such as CUDA and OpenCL, developers manage memory and
execution explicitly. Threads within a block can communicate through shared memory and can be
synchronized using barrier operations. Thread blocks execute independently and can be scheduled
in any order.

Different GPU architectures (e.g., Nvidia’s Volta, Turing, Ampere) vary in their number of
streaming multiprocessors (SMs), memory bandwidth, and instruction throughput. These differences
influence the performance of GPU kernels and motivate the need for auto-tuning tools that can
adapt configurations to specific hardware.

2.2 GPU kernels

A kernel is a piece of code that the GPU executes on many threads, in parallel, where each thread
does part of the work. This differs from a function run on a CPU, where instructions are run
serially.

Different GPU kernels exist for different use cases. This subsection outlines the kernels that
were studied for this thesis, the description of which are outlined by Tgrring’s et al. in their paper
on a benchmarking suite for kernel tuners known as BAT | |. Each subsection also lists
and describes all the tunable parameters for each kernel.

It is important to note that for these kernels, there exists a set of constraints that limit the
number of valid parameter value combinations. For example, the total "area” of a thread block is
limited to 1024, i.e. block_size x - block_size_ y <= 1024

2.2.1 Convolution kernel

The convolution kernel | | places a filter on a given input matrix and computes the weighted
sums. Figure 1 shows an example of how this works.

Especially 2-dimensional convolution kernels have use cases in image processing, such as
sharpening and edge detection. The tunable parameters for the convolution kernel are shown in
Table 1.

block_size denotes the thread block dimensions, tile_size the dimensions of the output
pixels by each thread. Enabling use_padding uses the padding scheme in shared memory to avoid
shared memory bank conflicts. read_only, when enabled, loads the input elements from global
memory through a read-only cache. Lastly, use_shmem enables or disables the use of shared memory.
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Figure 1: The workings of a convolution kernel | ).

Parameter Possible values
block_size_x (bsx) | {1,2,4,8,16,32,48,
64,80,96,112,128%}

block_size_y (bsy) {1,2,4,8,16,32}
tile_size_x (tsx) | {1,2,3,4,5,6,7,8}
tile_size_y (tsy) | {1,2,3,4,5,6,7,8}

read_only (ro) {0,1}
use_padding (pad) {0,1}
use_shmem (shm) {0,1}

Table 1: Tunable parameters for convolution kernel.

2.2.2 Dedispersion kernel

The dedispersion kernel has its origins in astronomy. Dispersion refers to the separation of frequencies
in waves (light, radio, etc.) through space. Dispersion occurs because lower frequencies are slowed
down more than higher frequencies. Dedispersion is the reverse process; the reconstruction of
the original signal. To do this, the scale of dispersion (dispersion measure) needs to be found,
which depends on how far away the source of the signal is. This distance is usually unknown, so a
dedispersion kernel tries out many different dispersion measures until it finds a peak.

The tunable parameters for the dedispersion kernel are shown in Table 2.

Parameter Possible values
block_size_x (bsx) | {1,2,4,8} U {16, 32, 48, ..., 512}
block_size_y (bsy) {4n for 4n € [4,128]}
tile_size_x (tsx) {n for n € [1,16]%}
tile_size_y (tsy) {n for n € [1,16]}

tile_stride_x (trx) {0,1}

tile_stride_y (try) {0,1}

loop_unroll_factor —
blocks_per_sm —

Table 2: Tunable parameters for the dedispersion kernel.



The parameters block_size_x, block_size_y, tile_size_x and tile_size_y are analogous
to the parameters of the same names used in the convolution kernel. The parameters tile_stride_x
and tile_stride_y control the stride used to vary the amount of work per thread, in the  and y
directions, respectively. That is to say, if tile_stride_x is equal to 1, each thread will process
tile_size_x samples that are block_size_x apart. If the parameters are equal to 0, each thread will
just process tile_size_x consecutive samples. Finally, loop_unroll_factor and blocks_per_sm
are parameters that were not used for the purpose of this thesis.

2.2.3 GEMM kernel

The Generalized dense matrix-matrix multiplication (GEMM, also known as xGEMM) ker-
nel | | does what it says on the tin; it multiplies two matrices, A and B, into an output matrix
C, using scalars a and f:

C =aAB+ 8C

Figure 2 shows this matrix multiplication visually, albeit without the scalars.

Figure 2: Matrix multiplication | -

GEMM is one of the most abundantly used kernels. Its tunable parameters are listed in Table 3.

Parameter | Possible values
MWG {16,32,64,128}
NWG {16,32,64,128}
KWG {16,32}

MDIMC {8,16,32}
NDIMC {8,16,32}
MDIMA {8,16,32}
NDIMB {8,16,32%}
VWM {1,2,4,8}
VWN {1,2,4,8%}
STRM {0,1%}
STRN {0,1}
SA {0,1}
SB {0,1}

Table 3: Tunable parameters for the GEMM kernel.

Here, MWG, NWG and KWG change how much work each thread block gets assigned, while MDIMC
and NDIMC control the size of each thread block. MDIMA and NDIMB decide the amount of shared
memory, and VWM and VWN describe the vector widths used for global memory. STRM and STRN



determine the use of tile strides in an analogous way to the dedispersion kernel. Lastly, SA and SB
dictate whether shared memory is used for matrix A and B, respectively. The GEMM kernel has
by far the most amount of tuning parameters. This makes it the most expensive to optimize. To
combat the amount of parameters, they do not have as many possible values.

Additionally, the GEMM kernel may use the parameter nvml_gr_clock, which effectively boosts
the GPU’s clock speed. Clock speed is measured in Hz (s™1) and represents how many operations
the GPU can perform per second.

2.2.4 Hotspot kernel

The final kernel that was evaluated for this thesis is the Hotspot kernel | |. This kernel is
used to estimate processor temperatures by iteratively solving differential equations. This thesis
looks at the version of Hotspot written for BAT. The tunable parameters for the Hotspot kernel
can be found in Table 4.

Parameter Possible values
block_size_x (bsx) {1,2,4,8} U {32, 64, 96, ...,1024}
block_size_y (bsy) {1,2,4,8,16,32}
tile_size_x (tsx) {n for n e [1,10]}
tile_size_y (tsy) {n for n € [1,10]}

temporal_tiling_factor (ttf) {n for n € [1,10]%}
loop_unroll_factor_t (luf) {n for ne [1,10]}
sh_power (shp) {0,1%}
blocks_per_sm —

Table 4: Tunable parameters for the Hotspot kernel.

Here, the parameters block_size_x, block_size_y, tile_size_x and tile_size_y are anal-
ogous to their counterparts in the convolution and dedispersion kernels. The parameter
temporal_tiling_factor decides the number of stencil operations performed in a single kernel
launch. More information on this parameter can be found in Hijma et al’s paper | ]. The
parameter loop_unroll_factor_t, which was left unused in the dedispersion kernel, determines
to what degree loop unrolling is applied. Finally, the sh_power parameter tells whether shared
memory is used as a cache for storing the input power currents. Similarly to the dedispersion kernel,
the blocks_per_sm parameter is not used.

2.3 Automatic tuning

It is in a developer’s best interest to optimize these kernels. However, this often turns out to be
difficult, mainly because of the many different methods of optimization. For this reason, automatic
kernel optimization tools (auto-tuners) have been in high demand.

One such tuner is the Kernel Tuner | |. Kernel Tuner was originally created by Ben van
Werkhoven, with many more developers having joined the project since then. Kernel Tuner is
publicly available on GitHub!. It is written for multiple programming models, including CUDA,
OpenCL and HIP, and has an interactive dashboard, see the next section.

Thttps://github.com/Kernel Tuner /kernel tuner



2.3.1 KTDashboard

KTDashboard is an interactive dashboard developed for Kernel Tuner, that, according to its
README.md file, ”KTdashboard allows you to monitor, analyze, and visualize an active or
completed auto-tuning run of Kernel Tuner [...]” [v\W]. The dashboard offers insight for developers
as to what kernel configurations are the most optimal. KTDashboard is available on its public
GitHub repository?.

= Kernel Tuner Dashboard [©)
v

Auto-tuning convolution_kernel on NVIDIA A100-PCIE-40GB

««««« o

‘‘‘‘‘

Figure 3: Screenshot of KTDashboard, January 2024.

As visible in Figure 3, the original dashboard shows all different configurations based on two
tuning parameters, here index and GFLOP/s. The index "parameter” refers to that configuration’s
index in the data collected by the tuner. GFLOP/s means how many billion floating-point operations
the GPU is able to do per second. The dashboard then colors every point according to a third
parameter, usually an outcome variable, here again GFLOP/s. In other words, this specific screenshot
does not tell a whole lot, other than which indices performed really well. Hovering over any
point shows which values were used for that configuration, as well as the results for time, energy
consumption, etc.

2.4 Related Work

The optimization of GPU kernels has received significant attention due to the increasing computa-
tional demands of parallel workloads. Early work by Volkov and Demmel [VD08] demonstrated
that hand-tuned GPU kernels could far outperform compiler-generated ones, emphasizing the
importance of tuning.

Other kernel optimisation tools, such as OpenTuner [AIXV " 11] from Ansel et al. and Whaley’s
and Dongarra’s ATLAS [WDO8], have explored similar avenues in CPU or linear algebra optimiza-
tion, contributing strategies such as multi-armed bandits and genetic algorithms. Kernel Tuner
distinguishes itself by focusing on CUDA and OpenCL kernels and integrating seamlessly with
Jupyter-based workflows.

Baghsorkhi explored sensitivity and correlation analysis of tuning parameters in contexts like
design space exploration [BDP " 10], where they introduced adaptive performance modeling for
GPU kernels, using parameter sensitivity to guide optimization.

Zhttps://github.com/Kernel Tuner/dashboard



Meanwhile, Tgrring et al. | | presented the BAT benchmarking suite and performed
a detailed analysis of parameter sensitivity across a range of GPU kernels, highlighting which
parameters most affect performance.

Jain et al. | | also conducted a comprehensive study on parameter sensitivity, employing
correlation and variance-based techniques to analyze the effects of different tuning parameters on
GPU kernel efficiency.

Xiang and Agrawat | ] experimented searching the search space with their shrinking sample
strategy where they look for specific combinations of parameter values. They were able to achieve
7around 99% percent of the performance from exhaustive search (on average) with orders of
magnitude much less tuning time”.

This thesis builds on this foundation by applying and visualizing sensitivity and correlation
analyses within Kernel Tuner’s framework, offering practical tools to guide kernel developers in
optimizing GPU performance more effectively.

3 Methodology

This section outlines the steps taken to achieve the goals of this thesis. The first goal is to investigate
which sensitivity and significance metrics work well for analyzing auto-tuning search space. The
second goal is to extend Kernel Tuner’s dashboard to visualize these metrics. The first goal can
be broken down in calculating the correlations (Section 3.1) and the first-order sensitivities of
parameters (Section 3.2). The second goal is achieved by placing interactive graphs displaying the
metrics from the first goal on an empty space of the dashboard, see Section 3.3.

Kernel Tuner’s and its dashboard are written in Python. Their source code can be found on
their respective GitHub repositories | 1[vW].

3.1 Parameter significance

To calculate parameter significance, Pandas’ | ] corr() function is used. This function allows
for a correlation method to be chosen, with the choices being Pearson’s | |, Spearman’s | ]
or Kendall’s | ] methods. These methods each have their own uses, with Pearson’s method
measuring linear correlation, while Spearman’s method and Kendall’s method measure rank
correlation. The tuning parameters are not ranked, and so, this thesis exclusively focuses on
Pearson’s method.

Pearson’s method gives the ratio between the covariance of two variables—X and Y—and the
product of their standard deviations:

cov(X,Y)

0x0y

PXyYy =

where cov(X,Y) is the mean of the product of X and Y’s deviations from their respective
means:

cov(X,Y) = B[(X — E[X])(¥ - B[Y])]
where E[X] is the mean of X.



Setting Y as the tuning objective; one by one, each tuning parameter is filled in as X and their
correlation pxy recorded. This always results in a value of -1 to 1, assigning a positive or negative
"score” to the parameters. This immediately shows which parameters have a positive or negative
impact on the objective, but suffers from the drawback of not being able to look at subsets of
parameters.

3.2 Sensitivity analysis

While interesting in its own right, variable significance has one major downside: the parameters
are exclusively looked at by themselves. It has, however, been proven that the interaction between
specific tuning parameters can have meaningful impact on the overall kernel performance | .
This is where sensitivity analysis comes into play. Sensitivity analysis (SA) is performed using
the Python library SALib | i |. SALib employs variance-based sensitivity analysis, also
known as the Sobol” method | |. This method is Monte-Carlo based and decomposes a model’s
output variance into each variable’s influence on that variance.

The sensitivity of each input is also called the sensitivity index, and can be of a specific order:
First-order indices measure the contribution of a single input variable on the output variance;
Second-order indices measure the contribution of two inputs; Total-order indices measure the
contribution of a model input, including its first-order and higher-order effects.

If Y is the output variable, and X = {X3, Xs, ..., X4} the set of input variables, the variance of
Y — Var(Y) — can be written as

d d
Var(Y)=> Vi+ > Vij+ ..+ Vis.a
i=1 i<j
with
Vi=Varx,(Ex.,(Y]X;))
‘/ij = VarXij (EX~ij (Y’XMX])) - Vi— ‘/]

and so on. X.; denotes all variables except X;, and E(X). A first-order index is then measured as:

Vi

Var(Y)

S; is the contribution of X; alone on the ouput variance, averaged out over variations in other
input parameters.
A total-order index is measured as:

~ Varx  (Ex,(Y|X<))

Sri =1 Var(Y)

St; is then the contribution of X; on the output variance, including all variance caused by its
interactions with any other input variables.



3.3 Expanding Kernel Tuner Dashboard

To expand upon Kernel Tuner’s dashboard, these analyses need to be incorporated into the already
existing functionality. The dashboard has its plots constructed using Bokeh | | and Panel [Io]],
two open-source Python modules that allow the creation of custom interactive plots on a local
webpage.

4 Experiments and results

For the purposes of this thesis, only Nvidia and AMD GPUs are studied, and for lack of a compatible
GPU, only readily available cache files are studied. In this context, a ”cache file” is the output
file generated by Kernel Tuner that contains the raw data of the GPU’s performance on the
kernel. This is also the file that KTDashboard reads to display this information. Experiments were
performed on data from Milo Lurati’s research on the differences between tuning Nvidia and AMD
GPUs | ] (Nvidia vs. AMD; from here on: NvA). Their work was aimed at expanding
Kernel Tuner with HIP capabilities and to that end, they generated many usable cache files, mainly
focused on execution time. These files are accessible on the public GitHub repository associated
with the paper | ]. In a later stage of the project, more cache files by Lurati were found
on Floris-Jan Willemsen’s GitHub repo for benchmarking auto-tuners [\Wil]. The results of these
experiments are found in Sections 4.1.1 and 4.1.2.

Furthermore, experiments were performed on data obtained from Schoonhoven’s paper on
optimizing GPU energy consumption | |. This data concerns the GEMM kernel and
is obtained from Nvidia’s A100 GPU, see Table 5. The results of this cache file are visible in
Section 4.1.3.

The GPUs that were used for analyzing the cache files are listed in Table 5, which was partially
obtained from Lurati’s paper on bringing automatic tuning to HIP | ].

GPU | Year | Architecture | Cores | Memory | Cache | Bandwidth (GB/s) | Peak SP (TFLOPS/s)
Nvidia A100 [ ] 2020 | Ampere 6912 | 40 GB HBM2e | 40 MB L2 1555 19.5
Nvidia RTX A4000 | ] 2021 | Ampere 6144 | 16 GB GDDR6 | 4 MB L2 448 17.8
Nvidia RTX A6000 | ] 2020 | Ampere 10752 | 48 GB GDDR6 | 6 MB L2 768 38.7
AMD Instinct MI250X* | ] 2021 | CDNA 2 7040 | 64 GB HBM2e | 8 MB L2 1638 28.2
AMD Radeon PRO W6600 | ] | 2021 | RDNA 2 1792 | 16 GB GDDR6 | 32 MB L3 224 10.4
AMD Radeon PRO W7800 [ ] | 2023 | RDNA 3 4480 | 32 GB GDDRE6 | 64 MB L3 576 45.2

Table 5: GPUs used in experiments. *Only one out of two dies of MI1250X is used.

These GPUs were chosen for being relatively new and for their equal split among Nvidia vs.
AMD cards.

From here on, these cards are simply referred to by their series number (i.e. Nvidia A100 is
referred to as A100).

4.1 Results from significance and sensitivity analyses
4.1.1 Significance analysis

The NvA cache files paint a difference between significant parameters between GPUs and not
necessarily between different kernels. As mentioned in Section 2.2, different kernels have very



different tuning parameters associated with them and this makes it difficult to compare them
Figures 4 through 7 show parameter significance analyses obtained from these cache files.
In Figures 4, 5 and 6, the objective is time. Positive values indicate an undesirable increase in

GPU time. In Figure 7, the objective is GFLOP/s. Positive values indicate a desirable increase in

performance.

Figures 4 through 7 show parameter significance for the four different kernels discussed in
Section 2.2 on the GPUs mentioned above. The top two rows in these figures show Nvidia GPUs
while the bottom two rows show GPUs from AMD. These figures have their contents discussed in

Section 5.1.
It should be noted that Figure 4¢ does not have a bar for the parameter sh_mem. This is because

sh_mem was not present in the cache files for that specific GPU
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Figures 8 through 11 show first-order sensitivity analyses performed on the four

kernels discussed in Section 2.2. These analyses look at all parameters used for that kernel. The

ty analyses
contents of these figures are discussed in Section 5.2.
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It should again be noted that Figure 8c does not have a bar for the parameter sh_mem.
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Figure 11: Sensitivity analyses on the Hotspot kernel.

Subsets of parameters As mentioned in Section 3.2, the main highlight of sensitivity analyses
is that it is possible to look at subsets of parameters. Figures 12 through 15 show total-order
sensitivity analyses for pairs of parameters, with Figures 12 and 13 looking at the convolution
kernel, and Figures 14 and 15 looking at the dedispersion kernel. These two kernels were chosen for
this part because of their low computational complexity, which allowed the experiments to run
faster, accommodating time constraints. Figures 12 and 14 look at the A100, while Figures 13
and 15 look at the A6000. These GPUs were randomly selected.

The meaning of the abbreviations in the captions of these figures can be found in Tables 1 and 2,
respectively. The captions on the left indicate the blue column for each row, while the captions
below each subfigure indicate the orange column. The parameters are not compared by themselves,
as this always results in a sensitivity of 1.

It should again be noted that Figure 13 does not have a bar for the parameter sh_mem.

4.1.3 Energy cache file

In addition to the cache files between Nvidia and AMD, experiments were also performed on a
cache file dedicated to measuring energy consumption, the results of which are visible in Figure 16.
This ”energy cache file” is only available for the GEMM kernel on the A100. This disallows for a
proper comparison between GPUs or different kernels. However, since Section 4.1.1 also includes
this GPU using GEMM, it is possible to compare these two cache files specifically. This cache file
is also the largest that was used for this project, hosting more than 230 MB of data — a text file
with 243 million characters in 239 million lines. For reference, the largest file used for Section 4.1.1
(AMD W7800, GEMM kernel) was almost 180 MB in size, but most cache files did not exceed 150
MB.
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Figure 16: Significance/sensitivity analysis on GEMM kernel, time as objective.
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4.2 Dashboard improvement

The second aim of this bachelor project is to improve Kernel Tuner’s dashboard. Here, it is key to
find the balance between displaying useful information about tuning parameters and displaying it
in a visually pleasing way. A well-crafted graph should already give the reader an idea of what it
displays at first glance.

Sidebar The old and new sidebar can be seen in Figure 17. The updated sidebar includes an
"objective” to calculate significance and sensitivity for and the parameters that should be included
in the sensitivity analysis. At least one parameter needs to be selected for the sensitivity to be
analyzed.

Y

GFLOP/s v
x
index
Color By
v GFLOP/s v
GFLOP/s v
Objective
X
time
index
Parameters for Sensitivity Analysis
Color By
. X : "
GFLOP/s block_size x | block size_y |
Xaxis | linear | log Xaxis | linear  log
Y axis linear | log Y axis linear | log
(a) Old sidebar. (b) Updated sidebar.

Figure 17: Sidebar difference.

Analysis plots The first versions of the plots used to visualize significance and sensitivity can
be found in Figure 18, while the revised versions can be found in Figure 19. Discussion of these
revisions can be found in Section 5.3.
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Figure 18: First versions of analysis graphs.
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Figure 19: Revised versions of analysis graphs.

5 Discussion

This section contains discussions of the results from the previous section.

5.1 On the significance of parameters

This subsection contains a discussion of the results of the significance analyses from Section 4.1.1.

5.1.1 Convolution kernel

As visible in Figure 4, on two of the six GPUs (A100 and A4000), the parameter read_only appears
to have a positive correlation® with the objective variable (time), while all other parameters are
associated with shorter times. After further discussion with Professor van Werkhoven, this is a
surprising result; read_only is a variable that is not expected to have much of an influence on
the kernel’s performance. As mentioned in Section 2.2, read_only merely enables or disables the
use of a read-only cache. A possible explanation for this correlation is an architectural difference,
though it is remarkable the A6000 (also using the Ampere architecture) does not show the same
pattern. Another noteworthy phenomenon is that most GPUs (all but the W7800) appear to favor
use_shmem.

0.5 |INvidia | |

g 24 l0 AMD
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Figure 20: Average correlation on convolution kernel.

3To reiterate, "positive correlation” here is undesirable — the objective variable (time) should be kept as low as
possible.
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Figure 20 shows the average correlations of the tuning parameters of the convolution kernel; see
Table 1 for the meaning of the labels. To re-iterate, negative values correspond to a decrease in
time and thus a better performance. Here, it is especially noticeable how much of an impact the
parameter use_shmem has. This is likely due to the GPU being able to communicate between threads
more easily, significantly improving the performance. The highly positive correlation exhibited by
tile_size_x may perhaps be explained by hardware misalignment. If the tiles do not fit into the
GPU cache, they might hurt performance rather than boosting it.

Note that on average, the parameter read_only does not have a large impact on performance.
This suggests that the high values found for the A100 and A4000 are outliers, and not the norm.

5.1.2 Dedispersion kernel

The significance analysis on the dedispersion kernel, visible in Figure 5, shows some extremely
varying results. Not one parameter is the most significant for all GPUs, though the block_size
parameters correlate with a lower time across most analyses; only the W6600 shows a thoroughly
positive correlation to the block_size_x parameter. The opposite is true for the tile_size
parameters; on all GPUs these parameters have a positive correlation to time. The tile_stride
parameters are mostly neutral toward the objective, with the exception of tile_stride_x on the
MI250X, where it is the most negatively correlated parameter.
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Figure 21: Average correlation on dedispersion kernel.

Figure 21 shows the average correlations of the dedispersion parameters; see Table 2 for the
meaning of the labels. It is clear that, similarly to the convolution kernel, increased tile_size
correlates to worse performance. In fact, on the dedispersion kernel, tile_size_y also exhibits this
correlation. This may again be the result of tiles not fitting inside of the GPU cache. At the same
time, increased block_size and/or enabling tile_stride correlates to better performances.

5.1.3 GEMM kernel

On the GEMM kernel, visible in Figure 6, the NWG parameter has the most negative correlation
to time on all Nvidia GPUs and the W7800. The MWG takes second or third place on these same
GPUs. On the other hand, the two parameters most positively correlated are NDIMC and MDIMC.
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Remarkably, the A100 and W6600 exhibit almost entirely opposite behavior, with these parameters
exhibiting a very positive correlation.

The significance analyses for the energy cache files, visible in Figures 16a shows mixed results.
The parameters MWG are among the most positively correlated parameters. This aligns with the
results for the A100 above. However, what is intriguing is that the parameter NDIMC has the most
positive correlation to time, and the NWG has extremely negative correlation. This aligns with the
results from the Nvidia GPUs. Lastly, the newly introduced nvml_gr_clock appears to strongly
correlate to time negatively. This is entirely expected, as increasing this parameter effectively
increases the GPU clock speed and thus lower the execution time.
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r?j O [ O 0 oo j)[] DD oo o0 O5 2 DD DD —— oo oo _
g +0.03 H .04 —0.03-0.05—0.0 L 011-0.08 —0.02-0.04
—0.2
—0.5 | .
C}‘ G\ 6\ C)\ C)\ I %\ @/\ %‘ @\ $\ YJ %\
QS QDS H D QKK DS
TS PO SN
Parameter

Figure 22: Average correlation on GEMM kernel.

In Figure 22, it looks as though, on average, none of the parameters reach a high significance
on the AMD GPUs. This is because the W7800 has its significances flipped when compared to the
MI250X and W6600, or vice versa. Since the Nvidia GPUs are largely in agreement on significance,
their average values skyrocket in comparison. It is apparent that for the Nvidia GPUs, the most
significant parameters here are NWG, MWG and VWN. Taking the AMD GPUs into consideration, STRM
lands at third place and MWG is no longer as significant.

5.1.4 Hotspot kernel

The Hotspot kernel’s significance analyses is visible in Figure 7. As a reminder, this analysis was done
with GFLOP/s as the objective, so the expected outcome is the opposite of the previous analyses.
It is immediately visible that the temporal_tiling_factor parameter has a negative correlation
with the objective variable on most of the GPUs. The only GPU that does not show this is the
A100, where this parameter shows little effect. The block_size and tile_size parameters seem
to have a positive correlation with the objective, for the most part. Lastly, loop_unroll_factor_t
shows a neutral to negative correlation.

Figure 23 (see Table 4 for the meaning of the labels) shows that the Nvidia and AMD GPUs, on
average, are mostly in agreement on significance. To re-iterate, a positive correlation here indicates
more floating-point operations per second. Only the tile_size parameters are in opposite direction
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Figure 23: Average correlation on Hotspot kernel.

from one another, and even then, not far apart. It is clear that the most significant parameter here
is temporal_tiling_ factor, with loop_unrolling_ factor_t in second place.

5.2 On the sensitivity of tuning parameters

This subsection contains a discussion of the results of the sensitivity analyses from Section 4.1.2.

5.2.1 Convolution kernel

All parameters Looking first at the convolution kernel, visible in Figure 8, it is clear that the
parameter read_only is very sensitive on the A100 and A4000 cards. This coincides with the
findings of Section 5.1. This phenomenon is especially visible on the A4000, where it is practically
the only peak. Again, this behavior is not seen for the A6000, which instead exhibits a sensitive
tile_size_y, a parameter that — for that GPU — also showed high significance in the previous
section.

In stark contrast to this, the AMD cards exhibit a low sensitivity for read_only, and instead
show relatively sensitive tile_size_x and tile_size_y parameters. Another interesting thing to
note is that the W7800 in Figure 8f has a high sensitivity for the parameter tile_size_x, but not
for tile_size_y.

Subsets of parameters Figure 12 provides useful insight, as the analysis for all parameters had
read_only overshadow all other parameters. It is now visible what the relation is between those
other parameters. block_size_x seems to be more sensitive than all parameters except read_only,
while use_shmenmn is clearly the least sensitive parameter here. One key phenomenon to notice is that
read_only doesn’t appear that sensitive when compared to parameters other than block_size_x,
and even displays almost no sensitivity at all when compared to use_padding. Also, that same
use_padding exhibits a strong sensitivity compared to block_size_x. This might indicate a strong
relation between the trio of parameters.

Figure 13 immediately shows that the parameters read_only and use_padding are extremely
insensitive compared to all other parameters. Funnily enough, the only time use_padding ap-

23



pears sensitive is against read_only. What is interesting, is that none of the comparisons with
tile_size_y indicate a high sensitivity, contrasting the observations in Figure 8c. This may arise
from the difference in sensitivity index, where other parameters have their sensitivities in higher
orders.

5.2.2 Dedispersion kernel

All parameters Moving on to the dedispersion kernel, visible in Figure 9, some peaks that stand
out are: block_size_x for the A100, tile_stride_x for the MI250X and for block_size_y for
the W6600. The W7800 in Figure 8f has two peaks; one in block_size_y and one in tile_size_x.
The A4000 and A6000 have a more equal spread of sensitivity across parameters.

Subsets of parameters From Figure 14, it is clear that the parameters block_size_x and
block_size_y enjoy a greater sensitivity than the other parameters on the A100. The former is
not surprising, as this also came to light in the previous paragraph. block_size_y having a larger
sensitivity too is a novelty, though. This may stem from a higher-order sensitivity, or perhaps
because block_size_x is too sensitive in the general analysis. Furthermore, tile_size_x seems
to be more sensitive than the remaining parameters, and tile_size_y shows more sensitivity than
tile_stride_x but not tile_stride_y. At the same time, tile_stride_y is more sensitive when
compared to tile_stride_x.

Looking at the A6000, block_size_x is more sensitive than other parameters again, but here,
block_size_y seems to be slightly more sensitive. This behavior is replicated from the general
analysis in Figure 8c. block_size_y is more sensitive than any other parameter and tile_size_x
is more sensitive than most parameters, save for the block_size parameters.

5.2.3 GEMM kernel

The sensitivity analyses on the GEMM kernel, visible in Figure 10, show that a parameter that
sticks out in almost all graphs is NWG. Only for the W7800 it is not the most sensitive parameter,
outdone by MWG. The Nvidia cards follow a consistent pattern with NWG being the most sensitive,
MWG being second and NDIMC following third.

The values for the AMD cards are all over the place. Strangely enough, the MI250X shows no
sensitivity for MWG at all, while the W6600 shows a sensitive MDIMC, behaviors not found in any of
the other cards, respectively.

Looking at the sensitivity analyses on the energy cache files, visible in Figure 16b, results
that align with the significance analyses can be found. By far the most sensitive parameter is
nvml_gr_clock, with NWG and MDIMC in second and third place.

5.2.4 Hotspot kernel

Lastly, the Hotspot kernel, visible in Figure 11, seems to display the most coherent pattern so
far. Four out of six analyses — those for the A4000, A6000, W6600 and W7800 — show the same
pattern occur: highly sensitive block_size_x and temporal_tiling_factor, with a lower sensitive
tile_size_y. The other two GPUs show only a sensitive block_size_x, visible in Figures 11a
and 11d. It is interesting that the GPUs between manufacturers align on this kernel. This shared
feature might rise from certain similarities between the architectures of those GPUs.

24



The schism in the patterns between the older GPUs and the newer ones is also noteworthy.
This might have something to do with the architecture changes between generations.

5.3 On the improvement of the dashboard

The old graphs, visible in Figure 18, convey the necessary information, though not very well. During
the mid-terms of the bachelor project, a few points were addressed:

e For the significance analysis, it is not visible which values are desirable and which are not.
e For the sensitivity analysis, it looks as if the bars are related to each other.

e The graphs display very different information, so them having the same color scheme is
confusing.

Figure 19 shows the improved versions of the graphs. These solve the problems found in their
old versions. The significance analysis receives a gradient from red to blue, to indicate a spectrum
of positive to negative values. The sensitivity analysis receives a wide array of colors, to distinguish
between parameters. Now that the two analyses have different color schemes, it is also much easier
to tell they display different information.

6 Conclusions and Further research

Section 6.1 closes with some finishing thoughts, while Section 6.2 contains suggestions for further
research.

6.1 Conclusions

This thesis investigated the significance and sensitivity of tuning parameters in GPU kernel optimiza-
tion. Building upon existing datasets — particularly those generated by Lurati, Schoonhoven and
Willemsen — kernel tuning parameters were analyzed on how they affect performance. Additionally,
the Kernel Tuner dashboard was extended by incorporating interactive visualizations that assist
developers in interpreting tuning data more effectively.

From the evaluation, several key findings emerged:

e (Certain parameters, such as block_size and unroll_factor, consistently demonstrated a
strong influence on execution time across a range of kernels and GPU types.

e Conversely, parameters like read_only and use_shmem showed unexpected patterns of signifi-
cance, occasionally appearing impactful where no strong theoretical justification existed. This
may indicate underlying biases or artifacts in specific cache files or kernel implementations.

e The visualization enhancements to the Kernel Tuner dashboard have the potential to make
complex sensitivity relationships more interpretable and actionable for users.
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This work provides valuable empirical insight into which tuning parameters truly matter for
performance, helping to narrow the search space for auto-tuning and manual optimization efforts.
The improved dashboard serves as a practical tool that can reduce guesswork and guide developers
toward more informed decisions when optimizing GPU code.

Several limitations must be acknowledged. Firstly, the analysis was restricted to publicly available
cache files, with no new benchmarks run directly on physical hardware due to resource constraints —
the GPU used on the system running the analyses did, at the time of writing, not include support
for programming models supported by Kernel Tuner (CUDA, HIP, OpenCL, etc.). Secondly, the
conclusions are based on a limited set of kernels and GPU models, which may not generalize to all
contexts. Finally, some anomalous findings (e.g., surprising parameter impacts) suggest the need
for deeper investigation into the structure and consistency of the data sources used.

In practical terms, this thesis contributes to a more efficient and informed tuning process for
GPU kernels, potentially saving developers significant time and compute resources. As auto-tuning
becomes more critical in high-performance computing and machine learning, tools like the enhanced
Kernel Tuner dashboard will help bridge the gap between raw performance data and actionable
insights.

The key takeaway from this research is that not all tuning parameters are equal, and that their
importance can vary not just by kernel but by GPU architecture.

6.2 Further research

To further this work, future research could focus on:

e Conducting real-time experiments on a broader set of GPUs.

e Exploring interactions between more than two parameters but not all at the same time, as
well as interactions on kernels other than those studied here.

e Study the total-order sensitivity of all parameters in the kernels that were studied here,
instead of only their first-order sensitivity.

As GPU workloads become increasingly central to computing tasks — from deep learning to
scientific simulations — every increment in efficiency matters. By improving our understanding of
tuning parameters and enhancing the tools available to developers, this work helps pave the way
toward more accessible and performant GPU programming. In this sense, the world becomes a
slightly better place: where smarter tuning leads to faster computation, reduced energy consumption,
and ultimately, more responsible and effective use of our computational resources.
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