
Bachelor Datascience and

Artificial Intelligence

Optimizing Deep Reinforcement Learning

Architectures for Pacman: A Comparative Study

of Manual Design and Evolutionary Algorithms

Keith Iqbal

First supervisors: Marcello Bonsangue and Thomas Moerland

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 1/Jul/2025

www.liacs.leidenuniv.nl

Abstract

Deep reinforcement learning has achieved impressive results on Atari games by using a fixed
convolutional neural network architecture. In a seminal study, agents learned to play directly
from raw pixel data using the Deep Q-Network (DQN). This thesis adopts and builds upon
some of the techniques introduced in that study. Our experiments focus on optimizing neural
network architectures to train autonomous agents to play the classic arcade game Pacman. We
use the Arcade Learning Environment for simulation. This study compared two approaches:
manually designed deep reinforcement learning models and models optimized using a genetic
algorithm.
The models were trained using Deep Q-learning. The input to the convolutional neural network
consisted of channel tensor maps. These channels represent preprocessed semantic features
extracted from key elements of the raw game frames. All other variables were kept constant.
The optimization process focused on finding the number of layers and nodes that resulted in
the highest game scores. Despite significant efforts to design neural networks manually, the
genetic algorithm was able to find a network configuration that outperformed them.
Models generated by genetic algorithms consistently achieved higher average scores than
manually designed ones. The findings demonstrate that evolutionary search can efficiently
uncover compact and high-performing neural architectures for reinforcement learning tasks.
Applying a genetic algorithm to multivariable scenarios could be prohibitively expensive.
However, carefully selecting which hyperparameters to optimize and applying the genetic
algorithm to a few hyperparameters at a time could be a practical strategy for solving complex
tasks efficiently and reliably.
The results showed that, while manually designed models can perform well with appropriate
tuning, architectures optimized using genetic algorithms achieved competitive performance
with less manual intervention. This demonstrated the potential of genetic algorithms for
automating neural network design in deep reinforcement learning.

2

Acknowledgements

I would like to thank everyone who motivated and supported me in making it this far. The
conception of this thesis would not have been possible without the expertise, guidance, and support
of my main supervisor, Marcello Bonsangue. I am also grateful to my professors—Max van Duijn,
Elena Raponi, Roy de Kleijn, and Anne Urai—who provided an unforgettable learning experience.
A special thanks to Bart Nikkelen for being a brilliant and inspirational teacher. Lastly, I would
like to thank my brother Andis for his constant support and encouragement, and my friend Nico
for his valuable companionship throughout this process.

3

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Reinforcement Learning . 1
1.3 Convolutional Neural Network . 3
1.4 Related Work . 4

2 Methods 5
2.1 Environment . 6
2.2 Deep Q-Learning . 7
2.3 Genetic Algorithm . 8

3 Implementation 9

4 Results 13
4.1 Comparison . 17
4.2 Statistical Analysis . 17

5 Discussion 18
5.1 Conclusion . 19
5.2 Further Research . 20

References 21

Appendices 22
Glossary . 22
Notations . 23
Notes . 24
Images . 25
Graphs . 28
Tables . 31

1 Introduction

Video games are a significant part of life for many children and adults. In addition to providing
entertainment, video games help children develop cognitive skills such as memory, attention, and
problem-solving. The practice of automated game playing contributes to the development and
understanding of intelligent algorithms. Game simulation is an ideal testing ground for existing and
new algorithms because modeling in simulation is much more cost-effective. In this study, neural
networks were trained to play Pacman. Models were trained using two separate strategies: manual
design and a Genetic Algorithm (GA). The performance of the two strategies was then compared
to determine which resulted in higher Pacman scores.
Pacman 1, originally called Puck Man, is a game introduced in the 1980s. It was first released in
Japan then later in the United States [NAM]. The game was developed by Toru Iwatani with his
team. A variant called Ms. Pac-Man, featuring a pink color scheme and a ribbon, was later created
in the US. The objective of the video game is for the player to guide Pacman to eat all the pellets
(dots) in the maze while avoiding ghosts. Four different colored ghosts chase Pacman, and if any
of them catch him, Pacman loses a life. Pacman has a total of three lives in which he must finish
eating all pellets. There are 154 pellets in total, including 4 special large pellets (power pellets).
When Pacman eats one of these power pellets, the ghosts temporarily become vulnerable and can
be eaten by Pacman.
The primary objective of this thesis is to explore how different neural network architectures
impact the performance of Deep Reinforcement Learning (DRL) agents when playing the classic
arcade game Pacman. While traditional DRL models use manually designed networks, this study
investigates whether an automated search approach using a Genetic Algorithm (GA) can uncover
more effective configurations.
This leads to the central research question: Can Genetic Algorithms discover neural network
architectures for DRL that outperform manually designed models in terms of gameplay
performance in Pacman?
To answer this, we compared the performance of 60 manually designed DRL models with 60
architectures discovered through a Genetic Algorithm, using the same training setup and evaluation
criteria. By analyzing and statistically validating the outcomes, we aimed to assess the effectiveness
and efficiency of using evolutionary optimization in the design of DRL architectures.

1.1 Motivation

Efficiency and automation are fascinating concepts. Combined, they have the potential to address
major global challenges. Our aim was to explore a project that reflected our interest in these areas,
while remaining feasible within our time frame. Pacman is a well-known game with simple rules
and strategic complexity, making it an ideal environment for reinforcement learning experiments.
This paper employs three main techniques. Together, these techniques form a process for creating
an intelligent Pacman agent.

1.2 Reinforcement Learning

All animals learn. Instead of theorizing how they learn, we approach the problem from an artificial
intelligence (AI) perspective. Reinforcement learning is based on the idea of learning through

1

Figure 1: Original Pacman screen

interaction with the environment [Sut18]. All activities have cause and effect; that is, every action
has a consequence. Interactions with the environment produce a response, providing an opportunity
to learn by determining whether the response was desirable.
There are three crucial elements for this to work: agent, environment, and reward. An agent is an
entity that takes actions. These actions should be based on the outcomes of previous interactions,
or, if no past experience exists, the agent should take random actions. The ability to make decisions
in a given state is referred to as a policy, usually denoted by π. The decision to take random
actions, known as exploration, is important for gaining experience. Exploitation, on the other hand,
involves using past experience to make better decisions, which eventually leads to learning. The
environment is the space in which the agent operates. It provides responses to the actions taken by
the agent. The response received is assigned a value, known as the reward. The reward is positive
for a desirable response and negative for an undesirable response. This measure dictates how useful
the action taken was. The higher the reward, the more the system perceives the chosen action as a
good choice in a given state. When the environment is in a particular configuration it is referred to
as a state.
Reinforcement learning (RL) in machine learning is different from supervised and unsupervised
learning. Unlike supervised or unsupervised learning, RL does not require labeled or unlabeled
datasets; instead, it generates and evaluates its own data through interactions with the environment.
This process is repeated to improve the policy. The generated data can be stored in single- or
multi-dimensional arrays. However, due to the sheer volume of possible states and calculations, this
approach quickly becomes infeasible. Deep reinforcement learning (DRL) is an advanced form of
RL in which neural networks are used to approximate policies or value functions, enabling agents to
predict responses to actions and generalize from past experiences. A multi-layer neural network can
handle complex and large datasets, provided it has an appropriate number of layers and nodes 2.
A deep neural network consists of an input layer, hidden layer(s), and an output layer. The input
layer receives the data, which in this case is a 210 x 160 pixel image. The hidden layers receive
calculated values from the preceding layers and forward them to the next layer. The final layer
is the output layer, which represents the possible actions. In this case, there are nine possible
actions to choose from. The information flow can be visualized as moving from one side to the
other, typically from left to right (see Figure 3). For a neural network to receive input X ∈ Rn and
produce a predicted output, commonly annotated as ŷ, several parameters need to be adjusted.

2

Figure 2: Reinforcement learning agent in an environment taking actions and receiving reward
[Sut18]

These include the learning rate (η), activation functions, batch size, among others. Additionally,
decisions must be made regarding the number of hidden layers and the number of nodes2 (neurons
or units) in each layer to achieve optimal performance.

Figure 3: A typical feedforward artificial deep neural network depicts an input layer with 4 nodes,
two hidden layers of 4 nodes each and the last layer as output layer with 2 nodes [Sut18]. The
calculation here flows from left to right.

1.3 Convolutional Neural Network

Inspired by the visual cortex, Convolutional Neural Networks (CNNs) were designed to process
images. In CNNs, kernels (also called filters) slide over the input to extract features such as edges
or textures. Kernels are usually much smaller than the input dimensions—for example, 3 x 3 pixels.
Other important elements of CNNs include stride and padding. Stride refers to how many pixels
the kernel moves at each step during convolution. Padding involves adding extra pixels around the
border of the input to preserve edge information and prevent excessive shrinking of the output.
CNNs automate the feature extraction process, eliminating the need for hand-crafted features and
improving pattern recognition performance[LBBH18]. They demonstrated their spatial capabilities,
highlighting their ability to extract local features by restricting the receptive field. They may also
use pooling layers to reduce the number of parameters and to analyze the structure of an image
more efficiently. While the original paper focused on digit recognition, their spatial learning aspects

3

are applicable to any image. For Pacman, this could mean extracting the locations of Pacman,
ghosts, and pellets within the environment. As the positions of Pacman and the ghosts change, the
CNN can detect these changes, which aids the learning process. This technique allows raw images
to be fed directly into the network, enabling feature extraction. The extracted features are then
passed to fully connected (FC) layers, which produce Q-values representing the expected future
rewards of possible actions. ‘’
CNNs were successfully used in ”Playing Atari with Deep Reinforcement Learning” [MKS+13,
MKS+15]. In this work, the authors processed game screen data to train a model to play Atari
games. They used video input (frames) directly, without hand-crafting visual features or providing
internal state information about the game. The only preprocessing applied was reducing the RGB
(Red Green Blue) image input from 210 x 160 pixels to 84 x 84 pixels to shrink the state space. They
noted that it was impossible to understand the current game state from a single frame. To address
the lack of temporal information in single frames, they stacked four consecutive frames to form each
input state. This stacking helps the agent approximate Markovian observability, ensuring that the
environment satisfies the Markov property required to apply Q-learning. Q-learning is a model-free
algorithm that enables agents to learn the optimal actions. Markov Decision Process (MDP) is a
mathematical framework used to model decision-making where outcomes are partly random and
partly under the control of an agent. It consists of states, actions, transition probabilities, and
rewards, and assumes that the next state depends only on the current state and action, Markov
property is fundamental requirement to apply Q-learning.
After the convolution process, a non-linear activation function is applied to allow the network to
learn complex patterns. The most commonly used activation function in CNNs is the Rectified
Linear Unit (ReLU). Non-linearity is important; otherwise, the network would be linear regardless of
the number of nodes and layers, as it could all be compressed into one or more constant multipliers.
A linear network cannot solve linearly inseparable problems. Pooling layers, such as max pooling,
reduce the spatial dimensions of the input while preserving important features. Lastly, inputs
processed by the CNN are flattened into a one-dimensional vector and passed to FC layers. During
training, the network uses backpropagation to update the network by comparing actual rewards
with predicted rewards for possible actions. Backpropagation is a supervised learning algorithm
used to update the weights of a neural network by propagating the error from the output layer
backward through the network. It uses gradient descent to minimize the loss function by adjusting
weights based on the error gradient. The difference between these two is called the loss, which is
calculated using a loss function such as Mean Squared Error (MSE). Huber loss is often preferred
over MSE, as it is less sensitive to outliers in the target values, which can occur in reinforcement
learning. While their paper used MSE, Huber loss is a common and often beneficial modification.

1.4 Related Work

The ’Playing Atari with Deep Reinforcement Learning’ paper published in 2013, and its follow-
up ’Human-level control through deep reinforcement learning’ by Mnih, are directly related to
our experiment. In their first paper, their approach outperformed all previous methods on six
Atari games and even surpassed human expert performance on three of them. As suggested in
’Gradient-Based Learning Applied to Document Recognition’ [LBBH18]. They refrained from using
hand-crafted features. They used raw pixel data (visual frames) as input to a CNN combined
with reinforcement learning to achieve impressive results. They applied Q-learning with stochastic

4

gradient descent to update the network weights. To address the credit assignment problem, they
implemented experience replay (ER), which stores previous experiences and random samples from
them during training to break correlations and improve learning efficiency. The credit assignment
problem in reinforcement learning refers to the challenge of determining which specific actions
taken by an agent are responsible for observed outcomes or rewards. They preprocessed the frames
by converting them into grayscale and resizing them to 84 x 84 pixels, stacking the four most recent
frames as input to the network. Their network architecture consisted of 16 convolutional filters of
size 8 x 8 in the first layer, followed by 32 convolutional filters of size 4 x 4 in the second layer.
This was followed by a FC layer with 256 nodes, and finally an output layer with one neuron for
each possible action. They started with an epsilon-greedy (ϵ-greedy) value of 1, which they reduced
linearly to 0.1 over the first million frames. Training then continued for another nine million frames
with ϵ set to 0.1. In practice, ϵ-greedy strategy selects the best-known action with probability of
1-ϵ and a uniform normal random action with probability of ϵ. For ER, they stored the most recent
10 million frames. They also used frame skipping, where the agent repeated the same action for
four consecutive frames before selecting a new action. This technique reduces computational load
and helps stabilize gameplay.
A recent study from 2024, ”Bridging Evolutionary Algorithms and Reinforcement Learning: A
Comprehensive Survey on Hybrid Algorithms” has introduced new hybrid approaches that combine
the strengths of two paradigms. The authors categorize hybrid algorithms into parallel, sequential,
and embedded strategies, aiming to improve exploration, sample efficiency, and robustness in
training agents [LHT+24]. Their findings support the idea that EAs can help address limitations
of gradient-based RL, particularly in discovering neural network structures and navigating sparse
or deceptive reward environments. This aligns directly with the motivation and methodology of
our work, where GAs were used to optimize the architecture of deep Q-learning networks to play
Pacman. Our approach is consistent with the class of hybrid methods described as evolutionary
architecture search, a strategy highlighted as particularly useful in neural design for RL agents. EAs
are powerful tools for improving deep RL agents by enhancing architectural search and escaping
local minima in policy space.

2 Methods

Various configurations were tested to determine which enabled Pacman to achieve the highest scores.
For this comparative study, 60 different manual configurations and 60 configurations generated
by a GA were tested to see which resulted in higher scores. As a baseline, the game was played
using random moves and also played manually by human participants. In random play, the highest
score was approximately 3,215, with an average score of 100. After reward shaping, these scores
corresponded to 309 and -2.54, respectively (see Figure 8). Reward shaping involved assigning
negative rewards when Pacman lost a life and positive rewards for progressing toward goals.
Reward shaping refers to the practice of assigning artificial rewards to encourage specific objectives.
On average, a typical Pacman game would score around 1,000 points without negative rewards.
Rewards 3 were shaped by dividing any points received by 10, subtracting 0.01 for each time
step, and deducting 15 points for each lost life. As human players, we achieved a high score of
approximately 6,500, with an average score of about 1,500. With this information, we were able to
assess the performance of the trained models and judge how well they were performing.

5

Following the approach in the Mnih papers, RGB images of size 210 x 160 pixels were converted to
grayscale and resized to 84 x 84 pixels [MKS+13, MKS+15]. This input tensor was then fed into a
CNN-based deep reinforcement learning (DRL) network consisting three convolutional layers with
16 to 64 nodes and kernel sizes ranging from 3 to 12. The output from CNN was then flattened and
fed into a FC layer with either 32 or 256 nodes. Like the other parameters, the number of nodes
and kernel sizes were chosen according to common industry practice, through trial and error, and
through heuristics. The ϵ value was annealed using the ϵ-greedy method, decreasing from 1.0 to
0.10 over the first 100,000 frames. The model was then trained for up to 1 million frames initially
during which their performance were evaluated at 100, 250, 750 thousand and finally at 1 million
steps. Training was limited to 100,000 steps, as this took an average of three hours to complete, and
was considered manageable given our time constraints. Over the course of the experiment, many
incremental changes were made, and all modifications were documented as thoroughly as possible.

2.1 Environment

The Arcade Learning Environment (ALE) for the Pacman simulator is freely available from the
Farama Foundation [Fou18]. ALE provides detailed outputs of the game state, including internal
information. A state refers to the specific configuration of the game at any given moment. For
example, when Pacman starts the game, this initial configuration can be considered state 1. If the
game runs at 20 frames per second (FPS), there would be 20 different states per second, with each
frame representing a separate state, assuming the game changes between frames. The number of
possible states increases with the number of elements in the game. Pacman, for instance, has nine
possible actions: up, left, down, right, up-right, up-left, down-left, down-right, and a default action
(such as no movement). Each possible action can lead to a different subsequent state.
To understand the system’s complexity, the total number of possible states is estimated. For
comparison, Chess has a state space of approximately 1050, Go has 10172 (see Figure 4), and Pacman
is estimated to have 1062 possible states (see Figure 21). This estimate considers key game objects
such as Pacman’s position, the positions of normal and scared ghosts, the remaining number of
lives, and the number of pellets left.
ALE provides state information in the form of random access memory (RAM), RGB images, or
grayscale images. The RAM output consists of 128 bytes (1,024 bits) that describe the game state.
This information may include Pacman and the ghosts’ locations, pellet status, the number of lives
remaining, current score, and rewards received. The Pacman game does not provide any negative
rewards. This 128-byte data is much easier to work with, as the information is compact compared
to the 210 x 160 pixels (33,600 bits) required for a grayscale image or 210 x 160 x 3 pixels (100,800
bits) for an RGB image. However, in this study, visual information is prioritized because most
real-world applications require visual sensory input. For this reason, only RGB images were used as
the input.
ALE offers many Atari game simulators, some of which are easy to model, while others are more
challenging. According to one paper [BHW13], Pacman is one of the more difficult games to build
a model for. Several challenges were encountered during the training process. For example, the
wall and pellet colors in the game were identical, making it difficult to differentiate them during
preprocessing. This issue was addressed by detecting pellet shapes rather than relying solely on
color.

6

Figure 4: State space calculation for famous board games [YA12].

2.2 Deep Q-Learning

The Bellman equation, Equation 1, defines optimal Q-function where Q-learning uses the Bellman
optimality update rule which is an approximation to iteratively update the Action-Value function,
Equation 2, which estimates the expected return for taking an action in a given state and following
the optimal policy thereafter. This process involves storing the values gained from different actions
and recalling them when needed. In a greedy policy, the action that gives the highest expected
return is selected. However, in the long run, this could lead to suboptimal returns due to the
exploration-exploitation problem. Exploration is when actions are taken at random, and exploitation
is when actions are taken to maximize the outcome based on available information.

vπ(s) =
∑

a∈A(s)

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

Equation 1: Bellman equation.

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]

Equation 2: Action-value function for Q-learning.

During training, an RL agent discovers actions that may return different outcomes, which can be
high or low, positive or negative. For example, if Pacman attempts to eat a ghost and loses a life,
this results in a negative reward, signaling to the network that this action was undesirable. On
the other hand, if Pacman eats pellets and receives a positive reward, this creates an incentive to
repeat that action. If Pacman later has the option to eat pellets and chooses to do so because it
has learned this yields a positive reward, this is an example of exploitation. If Pacman instead tries
a new action, this is an example of exploration.
Over many training episodes, Pacman alternates between exploitative and exploratory moves to
collect enough data to make informed decisions. This training process can be repeated many times to
develop the model, which ultimately results in a learned policy. Playing the game using the learned
policy is called policy evaluation. In reinforcement learning, there are on- and off-policies. Q-learning
is considered an off-policy algorithm because it learns the optimal Q-values independently of the
policy used to generate actions, often maintaining separate target and behavior policies.

7

During evaluation, the model only makes greedy, exploitative moves to try to achieve the highest
score possible. In order to balance exploration and exploitation, reinforcement learning implements
an ϵ-greedy strategy. This allows agents to occasionally select random actions and discover new
paths with potentially higher rewards.
To stabilize Q-learning, a separate target network is maintained, which is a copy of the current
Q-network. The target network is updated less frequently than the main network. This helps prevent
oscillations or divergence in training by providing a stable target for the loss function. For loss, the
Huber loss function was used to calculate the difference between the predicted rewards and the
actual rewards.

2.3 Genetic Algorithm

Hyperparameter optimization is needed to find the configuration values that are needed in image
preprocessing, environment settings, reward shaping, neural network parameters to name a few.
In order to train a high performing Pacman agent, optimal hyperparameter values need to be
found that will result in a high performing agent, however this is a challenging part of the process
primarily because there are infinitely many combinations of hyperparameters. Trying out so many
combinations of parameters to see which ones perform and which ones not is a matter of trial and
error and time consuming. When starting out heuristics are used to set initial hyperparameters and
then refine them over trials. Needless to say, heuristics are not always available nor always best.
Evolutionary Algorithm (EA) is a type of optimization technique inspired by how species evolve
in nature by natural selection. Genetic Algorithm (GA) is a type of EA introduced in 1975 in
Adaptation in Natural and Artificial Systems [Hol10] which aims to find optimal solutions through
probabilistic search and selection. The approach applied in this study is not to be confused with
Neuroevolution which is artificial evolution of neural networks using GA which searches through
space of behaviors for networks [SM02] which is different because many neuroevolution explore
neural architecture and weight space without using backpropagation. Our GA operates as a black-
box optimizer that explores hyperparameter combinations stochastically, unlike grid search which
exhaustively evaluates a fixed parameter grid.
GA is a population-based optimization technique that is well-suited for solving complex problems
where the solution space is large, poorly understood, or not differentiable. Unlike gradient-based
methods, which require a continuous and differentiable function to guide optimization, GA operates
on a set of discrete candidate solutions and does not rely on gradient information. In a GA, a
population of individuals represents potential solutions to the problem. Each individual is evaluated
using a fitness function, which quantifies how well it performs in relation to the task—in this case,
the average game score of a neural network agent after training. The individuals with higher fitness
are more likely to be selected to reproduce and pass their characteristics to the next generation.
Through evolutionary operations such as selection, mutation, and sometimes crossover, the algorithm
introduces variation into the population while preserving high-performing traits.
The selection process chooses top-performing individuals to serve as parents. Mutation introduces
random changes to the architecture of these parent networks—such as altering the number of layers
or adjusting the size of each layer—to explore new solutions. Crossover combines parts of two parent
individuals to create offspring, although in this project crossover was omitted to keep the process
simpler. This cycle of evaluation, selection, and mutation is repeated over several generations,
allowing the population to evolve toward better-performing neural network configurations.

8

Genetic algorithms offer several advantages for neural architecture search. They can optimize
over complex search spaces, do not require differentiability, and support exploration of diverse
architectural configurations. Their population-based nature allows for the parallel evaluation of
multiple candidate networks, which is beneficial when computational resources allow batch training.
In this study, GA was used to evolve deep reinforcement learning architectures for the Pacman
game, and its performance was compared to manually designed networks. The goal was to determine
whether an automated method like GA could discover architectures that outperform or match the
effectiveness of human-designed models.

Figure 5: A standard evolutionary algorithm [Nun06].

Pseudocode (Figure 5) illustrates a general EA procedure which evolves a population of solutions
over time to optimize a given objective. The algorithm begins by initializing a population ’P’, and
then evaluating it using a fitness function ’eval’ to produce fitness scores ’f’. A selection function
then filters the population based on fitness values, creating a new, more promising population. The
main loop of the algorithm runs until a predefined stopping criterion is met. In each iteration of the
loop, a new population is created through the ’reproduce’ function, which may involve crossover
using crossover probability ’pc’. Then, mutation is applied via the ’variate’ function, controlled by
mutation probability ’pm’. The new population is evaluated and the best individuals are selected
again. The generation counter ’t’ is incremented at each step. This iterative process continues until
the stopping condition is satisfied, gradually evolving the population toward better solutions.

3 Implementation

All experiments were conducted on a desktop computer with an Intel i7-12700k 3.6 GHz processor,
64 gigabytes of RAM and a NVIDIA RTX 3050 GPU with 8 gigabytes of memory. The setup
followed the approach described in [MKS+13], where the DQN takes as input a 210 x 160 RGB
image, which is downsized to an 84 x 84 grayscale image. The first convolutional layer consists of 16
filters with a kernel size of 8 x 8 and a stride of 4, followed by a second convolutional layer with 32
filters, a kernel size of 4 x 4, and a stride of 2. Both layers used the ReLU activation function. The
final hidden layer was a FC layer with 256 nodes, followed by an output layer with nine outputs,
one for each available action.

9

Furthermore, learning rates of 0.0001 and 0.001 were tested, along with replay buffer sizes ranging
from 10,000 to 50,000 frames, a batch size of 32, and a training frequency of every fifth frame. These
values were arbitrarily chosen by means of trial and error and then kept constant throughout. Unlike
in the Mnih papers, our models could not be trained for 10 million frames, as each configuration
trial would have taken at least 24 hours, if not several days. This was not feasible, so alternative
methods were explored to train models more quickly. They tested their approach on games such as
Pong, Breakout, Space Invaders, Seaquest, and Beam Rider. Of the games familiar to us, Pacman
proved to be much more sophisticated, with many intricacies and pitfalls that only became apparent
during our experimentation.

Figure 6: Using 2 dimensional grid canvas to create 3 channels tensor. Left column is the count of
1s in a given row. First channel 0, maps Pacman location, second channel 1 maps ghosts and third
channel 2 maps pellets.

Several issues were identified and documented during implementation, including ghost invisibility
and contradictory reward signals. The ghosts in Pacman tend to disappear for several frames (eight,
to be exact) while moving. All game frames were exported frame by frame to investigate this issue.
Ghosts tended to disappear and then become visible again. This presented a significant challenge
because the danger signal disappeared and reappeared suddenly, making it harder for the learning
algorithm to determine whether danger persists. A danger signal refers to a situation where the
system receives a penalty—specifically, when Pacman lost a life.
For humans, it is clear that when ghosts disappear, they are still present; however, for computers,
this is not the case. This phenomenon is known as occlusion in computer vision and artificial
intelligence. Another challenge for the model is that, under normal circumstances, eating ghosts is
associated with a danger signal. However, after Pacman eats a power pellet, the ghosts become
edible, and points are awarded for eating them. This situation can be confusing for the algorithm,
as the model must decide whether to eat the ghosts or avoid them.

10

Moreover, when ghosts become edible, they start flashing blue (see Figure 15). However, since the
models initially used grayscale images, this information was lost, making it more difficult for the
models to distinguish between edible and non-edible ghosts. To counter this problem, the model
was provided with RGB input frames. However, this solution increased the input space threefold,
which consequently required longer training times and a larger number of frames. This conflicted
with our goal of identifying configurations that could train efficiently within limited computational
resources.
To address the problem of increased input size, the frame size was reduced from 84 x 84 pixels to
smaller dimensions. Several different combinations were tested, such as 42 x 42 pixels and 21 x 21
pixels, but these did not result in any improvement. It was considered that excessive downsampling
might prevent the model from recognizing important features, but this was not a straightforward
conclusion. Models were then trained on 84 x 84 pixel RGB frames for one million frames to
determine whether the model could learn effectively.
After many attempts, some preliminary promising results were documented. The maximum score
achieved during training was 1040, and the average score 4 over 30 game plays after training was
701, measured across 10 episodes in Model E (see Figure 9). Several models (A, B, C, D, and E)
were trained, achieving average scores between 370 and 500. These scores outperformed the random
agent baseline (mean = 100), confirming that learning had occurred, even though the score was
not that high. This was expected, as the models were initially trained for only one million frames,
compared to the 10 million frames used in the Mnih experiments. However, once again, a more
efficient method was needed to achieve high performance with fewer training frames due to time
constraints.
Many image frame transformations were tried in order to keep the input data small while not losing
features information too much for the model to be able to learn. For example, excessive downsampling
of image frames leads to a loss of important game information (see Figure 10a). Walls were removed
by detecting only pellets, which were identified by searching for small rectangular shapes of the
pellet color (see Figure 11b). The size of the pellets was also increased (see Figures 12b and 13b)
before downsampling the image. This adjustment prevented the pellets from disappearing, as had
occurred in previous attempts (see Figure 11c). Some of our image frame transformation techniques
were documented (see Figures 10, 11, 12). Although these transformations produced visually
interesting results, the models did not perform as well as expected. Some of these transformations
were promising, but it was believed that successful implementation would require training on larger
frames leading to longer training times. In order to apply color filters an analysis of all the colors
used in the game were identified and documented (see Figures 16, 22).
After many unsuccessful image transformation techniques, a multi-channel tensor was created,
with each channel clearly marking objects of interest (see Figure 13b). With this technique, model
performance improved much more quickly. Initially, five different channels were created—one each
for Pacman, ghosts, pellets, scared ghosts, and cherries. It was soon realized that edible and
non-edible channels could be merged to reduce the number of channels, thereby decreasing the
input size. A visual representation of a such 3 channel input tensor is depicted in Figure 13c. This
proved beneficial because the network can learn faster with a more condensed and meaningful state
space. Edible ghosts and cherries do not appear frequently, the data in those channels were mostly
zero, for this reason they were merged into other channels. From the nine possible actions, four
diagonal actions—up-right, up-left, down-left, and down-right—were removed. These changes made
the output space smaller, which in theory should make learning more efficient.

11

Walls were left out deliberately to avoid excessive hand-crafted features, which was precisely what
we wanted to avoid. The input tensor size needed to match or exceed the number of pellets vertically
(top-down) and horizontally (across). The pellets in the two-dimensional image were not evenly
spaced or equally distributed; however, this was not an issue. The maximum number of pellets was
15 vertically and 18 horizontally, so the input tensor size needed to be at least 15 x 18. The input
tensor size was adjusted during our manual training runs. We tested several combinations, including
16 x 18, 22 x 20, 14 x 20, 16 x 20, 35 x 32, 28 x 36, 30 x 26, and 32 x 32. There was no immediate
noticeable difference in performance when changing the input tensor size, but the training time
increased for larger tensor sizes. For GA models, the input tensor size was kept constant at 20 x 24.
Three-channel tensors were used to train various models, while most other variables remained
unchanged. For hand-crafted models, additional techniques were tested to determine if better results
could be achieved. For example, the number of repeated actions taken every k-th step was varied,
but this parameter was mostly kept at 1, unlike the Mnih papers, which used a value of 4. This
choice was made to enable Pacman to react more quickly to ghosts.
After creating multiple manual models, a GA was set up to automatically find optimal network
configurations. Many parameters could have been optimized. However, optimizing more parameters
requires additional time and computing resources. The most fundamental decision when designing
a neural network is choosing the number of layers and the number of nodes in each layer. This
study is primarily focused on these aspects.
In addition to the number of layers and nodes, other relevant hyperparameters include the activation
function, dropout rate, learning rate, optimizer type, batch size, discount factor, and gradient
clipping value. For the exploration strategy, relevant parameters include the ϵ-greedy rate, its decay
rate, and the minimum ϵ value. For memory management, important parameters are the replay
buffer size, training frequency, and target network updated every 10,000 steps. This corresponds to
about ten Pacman game plays, so the target network is updated roughly every ten games. This
improves training stability and avoids Q-value overestimation. Additional considerations include
whether to use a Deep Q-Network (DQN), and whether to implement Priority Experience Replay
(PER). A DQN is a Q-Network with a neural network architecture used in deep reinforcement
learning (DRL). PER is a variant of ER that offers better performance but has a more complex
setup. Other factors include memory buffer settings, reward shaping, the number of frames to
stack, and the number of frames for which a selected action is repeated. For the genetic algorithm,
relevant parameters are population size, mutation rate, crossover rate, selection method, fitness
function, elitism, and convergence criteria. All of these parameters could be encoded in the genetic
algorithm for optimization. However, optimizing so many combinations would require significant
processing time, which is impractical.
After selecting which parameters to tune, we defined several limitations for the genetic algorithm
to operate within. In our network, there are two types of layers: CNN layers and FC layers. The
search space was limited to allow between zero and three CNN layers, and between one and three
FC layers. This means that each network must have at least one layer and no more than six layers
in total. CNN layers were optional, so the network could include them or not, but at least one FC
layer was required. The number of nodes in FC layers could range from 16 to 1024, while CNN
layers could have between 8 and 128 nodes. Setting these limits may restrict the full potential of
the GA, but this was necessary to complete the experiment within the available time frame.
For the GA parameters, 25% was selected as the δ, which denotes the upper and lower range used
when choosing a new value during mutation for the number of nodes. The population size was set

12

Figure 7: Bitstring of a chromosome in standard genetic algorithm. Each locus can assume either 0
or 1 [Nun06].

to 20, with elitism of six, five always brand-new random individuals, and the remaining individuals
selected from the top-performing models of previous generations. In the very first generation, all
20 individuals were initialized randomly. In the next generation, the six top-performing models
were mutated within the δ range. When mutating a model, there was a 20% chance of flipping
the state—either adding or removing a CNN layer. For both FC and CNN layers, there was a
50% chance of either adding a new layer at a random position or removing an existing one. Six
generations were evolved, producing a total of 120 models. For our statistical evaluation, only the
latter 60 models were considered. This is because the GA starts with random models; including
them in the assessment would be unfair.
Finally, the parameters are encoded for processing. One common method is to create a bitstring
(see Figure 7), where each bit represents a binary feature, and each unique bitstring corresponds
to an individual in the population. In our setup, a custom variant of a bitstring chromosome
was created using a Python dictionary with three keys: fc layers (an array), is cnn (a boolean),
and cnn layers (an array). The arrays hold the count of nodes in each layer. For example, an
individual could consist of one FC layer with 128 nodes and two CNN layers with 64 nodes each.
This configuration can be represented by a ’fingerprint’ such as [128],1,[64,64]. This custom data
structure allowed us to easily manage and process the population.
To reduce the creation of divergent models, recombination was not applied. Instead, models were
mutated directly by modifying parts of the sequence to create new individuals. Finally, after training,
the scores from 30 games were averaged to determine each individual’s overall score. This average
score served as the fitness function for our GA, which measures how well an individual performs
compared to others in the population.

4 Results

The three-channel tensor appeared to be effective, as the average scores increased significantly. An
effective method was identified for training high-performing models with fewer timesteps. Scores
are calculated as the average over 30 games after training for 100,000 steps, unless stated otherwise.
The results 5 from the manual network design implementation, with 60 models trained, are detailed
in Figures 23, 24, and 25. Results from the GA, with 120 models trained, are presented in
Figures 26, 27, 28, and 29. Each test has been given a unique ID to properly store and document
its results. For manual network design, models were trained up to 1 million frames to determine
whether performance would continue to improve with more training frames. This was not the
case; in fact, the models usually resulted in poor scores most likely due to overfitting. Overfitting
occurs when the network learns the training data so well that it performs poorly on new, unseen
data. However, performance also depended on the number and size of layers, as well as changes

13

Figure 8: Performance of random play over 2700 episodes and 1.5 million frames. Scores are scaled
down and reward shaped3.

14

in input tensor dimensions across different models. The documentation includes maximum scores,
overall average scores, and average scores over 30 games at 100,000; 250,000; 500,000; 750,000; and
1,000,000 frames. Finally, the tables show the configurations used to achieve these results. Each
configuration includes the size of the two-dimensional tensor used, as well as the size and number
of both FC and CNN layers.
From the 60 manually designed networks, the highest score was achieved by model ID 47, which
used a 16 x 20 grid tensor and consisted of two FC layers with 256 nodes each and no CNN layer.
Over the course of 1 million frames, this model showed fluctuating performance. Despite this, its
highest score was 474, which is lower than that of model ID 55, which achieved 784 points with
two FC layers of 512 nodes each and no CNN layer. This was a remarkable result, as this network
achieved the highest average score among all 60 hand-crafted models.
Across models ID 1 to 60, several parameters were varied—including input tensor size, number of
frames stacked, use of flicker-free frames, and number of available output actions—in an attempt
to increase model performance. The results tables are color-coded, with red highlights indicating
lower scores and green indicating higher scores. It appears that models with only FC layers and a
larger number of nodes performed better. The worst results came from networks with fewer nodes,
such as model ID 54, which had two FC layers of 16 nodes each and resulted in an average score of
only 340. This is likely due to underfitting, as the information from Pacman exceeded what the
network could process, leading to poor performance.
On the other hand, larger networks, such as model ID 60 with three FC layers of sizes 3840, 1920,
and 960, could be considered undertrained. It initially scored 664, but this increased to 1,173 after
training for 250,000 steps. However, this model’s performance declined with further training, which
could be due to overfitting.
Although adding more layers might improve performance, the number of layers was limited to
between one and three to avoid vanishing gradient problems and to keep the comparative study
manageable. Vanishing gradient is when due to too many layers the values in the nodes become so
small they become very small. This prevents additional training from having any further effect.

Figure 9: Model E performance results over 10 episodes.

For model IDs 22 and 23, only a single FC layer of 256 and 512 nodes, respectively, was used,
resulting in very poor scores of 311 and 364. This was expected because a single layer is too shallow
to capture complex patterns. For moderate scores, there needed to be at least two FC layers with
256 nodes each, as seen in model ID 49, which achieved an average score of 567. This configuration
of two FC layers with 256 nodes each was tested multiple times using different tensor sizes. For

15

example, model ID 3 used a 16 x 18 input tensor and achieved a score of 413. However, a different
input tensor size, such as 22 x 20 in model ID 10, resulted in a lower average score of 392. With
a smaller input tensor of 14 x 20, model ID 17 produced a score of 411. This score improved in
model ID 38, where an input tensor size of 35 x 32 resulted in a much higher score of 701. This
suggests that having a larger input tensor size is beneficial. This may occur because, on a smaller
two-dimensional input tensor, many cells are condensed into one. As a result, the system may not
know exactly how many steps are needed to take the action required to continue moving.
To understand this, consider an example where the tensor matches the image exactly, pixel for
pixel. If the cropped version of the frame (with the bottom part displaying scores removed) is 170
x 160 pixels, and the input tensor is also sized 170 x 160, then each action taken by Pacman moves
it by a predefined distance, which is assumed to be one pixel in each direction. This means that if
Pacman is at coordinates x=1, y=1, then one step to the right (east) will move it to x=2, y=1.
Now, imagine the tensor size is reduced by a factor of five, resulting in an input tensor of 34 x 32.
When Pacman is at x=1, y=1 in the input tensor, it aligns with its actual position. However, if
Pacman moves right (east), its actual position becomes x=2, y=1, but in the condensed tensor, it
still appears to be at x=1, y=1. This creates ambiguity for the deep reinforcement learning (DRL)
system, as it cannot determine how many steps are required for the action ”move right” to actually
result in a change to x=2, y=1 in the tensor representation.
To address this issue, the same action was repeated k times, similar to the approach used by Mnih
in their reports. However, their reasoning may have been different, as their downsampled frame
was 84 x 84 pixels, which, based on the original dimensions (210 / 4 and 160 / 4), does not directly
correspond to 84 Ö 84 pixels.
One noticeable change from the manual network design was that the tensor size was increased to 20
x 24 pixels. This change was made because, as shown earlier, larger input tensors resulted in better
outcomes for the same network configuration. The models generated by the GA are from model IDs
61 to 180, resulting in 120 GA-trained networks—twice as many as the manually designed networks.
For a fair comparison, it would be inappropriate to include the first few GA networks, as the GA
starts with completely random models and only produces improved models after several iterations.
It is up to us to decide which GA models are admissible for benchmarking and comparison. Since
there were 60 manual networks, the latest 60 GA models out of the 120 will be used for statistical
analysis. However, it is also important to analyze how the GA progresses from the beginning.
The GA produced model ID 61, which starts off with three FC layers of 645, 427, and 473 nodes,
and two CNN layers of 109 and 68 nodes, resulting in a meager score of 70. A person designing a
network would probably never create this configuration, as it appears quite random. This highlights
why algorithms such as GA can discover novel solutions—they are not limited by preconceived
assumptions. Humans are prone to bias; for this reason, manually constructed networks may exhibit
suboptimal performance.
For the most part, the average scores fluctuate greatly, with only a few models scoring over 1,000.
These include model IDs 77, 83, 127, 131, 134, 141, 145, 147, 151, 153, 158, 159, 164, 167, 168,
169, 172, 173, 174, 175, 176, 177, 178, 179, and 180. From this sequence, it is clear that almost all
models scoring higher than 1,000 appear in the later stages of training. The midpoint of the GA
neural network experiment is model ID 120. Between model IDs 61 and 120, only two models—IDs
77 and 83—scored above 1,000. This demonstrates that there was a clear improvement in scores as
the GA progressed.
Among all GA models, the highest average score was achieved by model ID 172, with 1,664 points,

16

using only one FC layer of 867 nodes and one CNN layer of 131 nodes. This model also outperformed
all manual models. This was quite a discovery because the network used a minimal number of layers
yet achieved a high score. This was unexpected, and it demonstrates why GA is so useful—because
of its ability to discover unexpected solutions. Most of the later GA models also scored quite highly,
which was a very positive outcome. It is also worth noting that the last nine models all included
CNN layers, suggesting that networks with CNN layers perform better for this application than
those with only FC layers.

4.1 Comparison

In this section, a comparison is made between manually designed neural networks and GA-generated
neural networks. Of the 60 manual networks, only three achieved an average score higher than
1,000: model IDs 50, 51, and 55. In contrast, the GA created twenty-five models that scored higher
than 1,000. This indicates that only 5% of manual models achieved average scores above 1,000,
whereas 41% of GA models did so. One weakness of the manual models is that most were composed
only of FC layers, due to our preconceived idea that an FC network would perform better with the
tensor input than a CNN network. This assumption was incorrect, as demonstrated by the GA.
Another unexpected discovery was made during the design of manual models. It was previously
assumed that achieving high scores required a large number of nodes in the network, but model
IDs 176, 177, and 180 prove that this is not the case. Model ID 176 scored 1,395 using only one
FC layer with 168 nodes and one CNN layer with 129 nodes. Model ID 177 scored 1,035 with one
FC layer of 442 nodes and one CNN layer of 55 nodes. Model ID 180 scored 1,267 with one FC
layer of 313 nodes and one CNN layer of 55 nodes. The total number of nodes for these models is
only 297, 497, and 368, respectively. To our understanding, having fewer layers and nodes creates a
computationally efficient model, requiring fewer calculations. These are remarkable results from the
GA.
Lastly, despite training all manual models extensively—up to 1,000,000 frames—the highest average
score was 1,493, achieved by model ID 19 after being trained for 750,000 frames. This shows that
longer training does not necessarily lead to better results. With these outcomes, the preliminary
judgment is a clear win for the GA. Nevertheless, a statistical analysis was conducted to confirm
this.

4.2 Statistical Analysis

In this section, the Mann-Whitney statistical test is used to determine whether there is a sig-
nificant difference between two independent groups. This statistical test was chosen because the
performance scores of the models were not normally distributed, making non-parametric methods
more appropriate. It allows comparison between two independent groups (manual and GA models)
without assuming equal variances or normality.
The scores from both groups can be ranked, and the data are not normally distributed. Here, µ1

represents the mean score of manual models, and µ2 represents the mean score of GA models.

H0 : µ1 = µ2 or in other words manual model scores are equal to GA model scores.
H1 : µ1 ̸= µ2 or in other words manual model scores are not equal to GA model scores.

17

The statistics calculations were as follows:

n1 = 60, n2 = 60, R1 = 2833.5, R2 = 4426.5
U1 = 2596.5, U2 = 1003.5, U = 1300.5

σU = 190.526, µU = 1800
z = -4.181, p ≈ 0.000, α = 0.05

r = z√
N

= −4.181√
120

≈ −0.381

The test yielded z-score of -4.181 and two-tailed p-value ≈ 0.000. This z-score falls well beyond the
critical z-value for α = 0.05 (± 1.96), indicating strong evidence against the null hypothesis and
hence we rejected the null hypothesis. Furthermore, to understand the variability in model scores,
we calculated the standard deviation of the U distribution to be 190.526. Although Mann-Whitney
U is a non-parametric test and does not directly yield a confidence interval, the z-score and p-value
provide inference strength equivalent to a 95% confidence level or higher, confirming that the
performance difference is statistically significant.
To measure the effect size, we computed the rank-biserial correlation, denoted as r, which was
-0.381—an effect size metric for the Mann-Whitney U test. The absolute value of r = 0.381, which
indicates a moderate to large effect size. This means the difference between the manual and GA
groups is practically meaningful. GA not only showed a higher likelihood of outperforming manual
models, but did so with substantial performance gaps. According to these findings, GA models
performed better than manual models, and this statistical analysis confirmed this result.

5 Discussion

The results made it clear that using a GA model is much more effective than designing the network
manually. However, it would not have been possible to begin directly with GA, as some base code
demonstrating initial progress was required. The GA requires a functioning codebase and cannot set
itself up automatically. Even with only three parameters being tuned, each generation in the GA
takes a significant amount of time because it depends on a population. The larger the population,
the higher the chance of discovering better combinations of hyperparameters. However, the biggest
obstacle is the time required to train for 100,000 frames. As mentioned earlier, there are many
hyperparameters that could be tuned, and it is impractical to implement all of them in the GA
because it would require an excessive amount of time.
For the RL algorithm to be effective, it is important to have a reward shaping strategy in place,
as this encourages models to pursue a given goal. In Pacman, it was found that there were no
negative rewards. Without this, it may not have been possible to achieve these results. The choices
made in formulating reward shaping may or may not lead to an optimal outcome. It is up to the
designer to determine this through trial and error. The process is imperfect and time-consuming.
Hypothetically, this task could also be assigned for the GA to solve. However, this would add more
hyperparameters and further exacerbate the problem of time efficiency, as it would require even
more training time. Graphics Processing Units (GPUs) are commonly used to train AI models.
More advanced GPUs, or multiple GPUs used simultaneously, could reduce training time, but this
could be a costly proposition.
When replaying trained models, some recurring patterns were observed, such as Pacman tending
to follow the same path almost every time. This behavior is unlike that of a human player, who

18

tends to take different paths. However, after extensive training, the network may have learned the
best path. As a result, it appears to us that Pacman is simply repeating the same path, but in
reality, the network has identified what it believes to be the optimal route, which may be only a
handful—or even just one—optimal path.
This fixed path becomes problematic for Pacman because the ghosts move randomly. This is why a
well-trained model might perform well in one game but poorly in others. This stochasticity in the
environment is the primary challenge for networks to overcome.
While watching gameplay, Pacman was sometimes seen hitting a wall and just staying there. The
reasons behind this strange behavior are not fully understood, and we can only speculate as to
what might be happening. One theory is that, due to the mapping of frames onto the tensor, there
were some mismatched pixels, which could place Pacman in a position where it stands still next to
a wall. However, this explanation seems unlikely, as Pacman must always take one of four possible
actions. Nevertheless, it was frequently observed that Pacman remained in the same spot on the
map until it was eaten.
Another possible reason is that, since wall information is not available, Pacman cannot differentiate
between a clear path and an obstruction. Nevertheless, it was not entirely clear why Pacman
sometimes chose to come to a standstill.
The idea of learning directly from the pixels in frames is promising and may unlock solutions for
a variety of applications. The biggest challenge is the sheer amount of data generated and the
processing required for a neural network to learn to optimize a given objective function. Having
access to fast computers can improve this process. Just over a decade ago, the computing power
available today did not exist. Computing power is expected to continue to increase in the coming
years. With greater and faster computing resources, neural networks could be trained more quickly,
saving time.
These findings have significant implications beyond games. For example, autonomous robots—such
as delivery drones, self-driving cars, logistics robots, and surveillance systems—must make optimal
decisions with limited information, often relying on visual sensory inputs similar to those demon-
strated in Pacman. Using GA to optimize neural network architectures can accelerate the discovery
of effective models without requiring exhaustive manual tuning, thereby saving resources. Learning
from visual inputs remains a compelling and realistic approach, especially in scenarios where raw
image data is often the primary or only available input. The challenge lies in using visual data
efficiently with robust algorithmic modeling. The combination of DRL, CNNs, and GA forms a
powerful toolkit capable of addressing a variety of complex real-world scenarios.

5.1 Conclusion

GA-optimized models achieved an overall 6 average score of 903, outperforming manually designed
models, which averaged 681 overall. This confirms the efficiency of evolutionary search in discovering
optimal network configurations under limited training time. Algorithms such as DRL, used in
playing Pacman, work but are far from efficient compared to human players. One hundred thousand
frame steps correspond to about 180 game plays. This is quite a lot of games for a person to play
in one sitting. Human players do not need to play that many games to become proficient.
Human players can understand the game objective, available actions, and their consequences
even before starting to play. This is an area where current artificial intelligence falls short. To
compensate for this flaw, algorithms are trained on a large number of examples (data) to cover as

19

many possibilities as possible, and this process is termed ’learning’. However, this kind of learning
is far from having an understanding of the underlying mechanics and the ultimate objective of the
game.
The idea of exploring the state space through exponential numbers of game plays requires exponential
computational resources, and this cannot be considered a smart solution. More efficient methods
are needed to better replicate the intelligence of the human mind. The lack of both advanced
algorithms and efficient computing power is what holds us back from creating more intelligent
systems.

5.2 Further Research

The success of this study was due to using a hybrid solution that involved detecting game fea-
tures—such as Pacman, pellets, and ghosts—mapping them into an input tensor, and feeding
this tensor into a neural network with a Q-learning algorithm. The process of manually encoding
features could be eliminated by creating a system that can automatically detect features to be
mapped into the tensor. Automating this part of the process could save time and effort, and also
improve the mapping of additional characteristics that may be useful for model training.
CNNs were particularly effective in producing high scores with fewer network nodes. For all of
these networks, a kernel size of 3 and a stride of 1 were used. A further study could be conducted
to explore different kernel sizes and strides to determine their effects.
For memory, ER was used, but another variant, PER, exists, which some papers claim delivers
superior results. An attempt was made to implement it in this study, but it was abandoned due to
its complexity. A comparison of the performance of ER and PER in Pacman could be explored in
future work.
Finally, during the progression of the study, novel approaches were explored, such as the ’flicker
free’ method we coined. In this approach, multiple tensors are combined over j frames to try to
capture ghosts that temporarily become invisible. This idea is analogous to frame stacking, but we
believe it is better because it does not require the input tensor to grow; the information from j
tensors is combined into a single tensor. This provides the network with transitional information
about moving objects within a single tensor.
However, this approach was abandoned during the experiment because the processing was too
time-consuming due to the way it was coded. To explain this in more detail, the ghosts can disappear
for a maximum of eight frames. If we were to create a composite tensor that adds information on
top of the previous tensor over nine frames, the model would retain information about the ghost’s
last position before being updated again after nine frames. This would eliminate the element of
surprise for the model.
The implementation involved creating a queue that held the last eight frames, with the latest frame
added to the top of the queue. A single consolidated tensor would then capture the movement
and transitions. This required processing eight frames every time, which significantly increased the
training time. However, it was later realized that this was not the optimal approach. Instead of
creating a queue that held RGB frames, we should have used the previous eight tensors, as tensors
are lightweight and would have required only matrix multiplications for the GPU, rather than
additional image processing.

20

References

[BHW13] Luuk Bom, Ruud Henken, and Marco Wiering. Reinforcement learning to train ms.
pac-man using higher-order action-relative inputs. CiteSeer X (The Pennsylvania State
University), 04 2013.

[Fou18] Farama Foundation. Ale documentation. https://ale.farama.org/environments/

ms_pacman/, 2018.

[Hol10] John H Holland. Adaptation in natural and artificial systems : an introductory analysis
with applications to biology, control, and artificial intelligence. Cambridge, Mass. Mit
Press [Ca, 2010.

[LBBH18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86:2278–2324, 2018.

[LHT+24] Pengyi Li, Jianye Hao, Hongyao Tang, Xian Fu, Yan Zhen, and Ke Tang. Bridging
evolutionary algorithms and reinforcement learning: A comprehensive survey on hybrid
algorithms. IEEE Transactions on Evolutionary Computation, pages 1–1, 01 2024.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning,
2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 02 2015.

[NAM] History the official site for pac-man - video games and more.

[Nun06] Leandro Nunes. Fundamentals of Natural Computing. CRC Press, 06 2006.

[SM02] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary Computation, 10:99–127, 06 2002.

[Sut18] Richard S Sutton. Reinforcement Learning, Second Edition : An Introduction : An
Introduction. The Mit Press, 2018.

[YA12] Arturo Yee and Mat́ıas Alvarado. Pattern recognition and monte-carlotree search for go
gaming better automation. Lecture notes in computer science, pages 11–20, 01 2012.

21

https://ale.farama.org/environments/ms_pacman/
https://ale.farama.org/environments/ms_pacman/

Appendices

Glossary

ALE Arcade Learning Environment
CNN Convolutional Neural Network
DQN Deep Q-learning Network
DRL Deep Reinforcement Learning
EA Evolutionary Algorithm
ER Experience Replay
ENAS Evolutionary Neural Architecture Search
FC Fully Connected
FPS Frames per Second
GA Genetic Algorithm
ID Identification
MSE Mean Squared Error
MDP Markov Decision Process
NEAT Neuroevolution of Augmenting Topologies
PER Priority Experience Replay
PIL Python Imaging Library
RAM Random Access Memory
RL Reinforcement Learning
ReLU Rectified Linear Unit
RGB Red Green Blue
SGD Stochastic Gradient Descent

22

Notations

X input matrix
∈ element of
Rn real number with n dimensions
ŷ prediction
ε probability of taking random action in ε-greedy policy
γ discount rate
λ decay factor
η learning rate
δ delta
a action
a′ next action
s state
s′ next state
r reward
t timestep
π policy
p probability
p(s′, | s, a) probability of transitioning into s′ from state s by taking action a
r(s, a) expected reward from state s after taking action a
vπ(s) value of state s under policy π
qπ(s, a) value of taking action a in state s under policy π
qπ(s

′, a′) value of taking next action a′ and arriving in next state s′ under policy π
π(a | s) probability of taking action a in state s
π(a′ | s′) probability of next action in next state
p(s′, r | s, a) transition probability from state s to state s′ by action a with reward r
n1 number of experiments in manual networks (group 1)
n2 number of experiments in GA networks (group 2)
R1 sum of ranks in manual networks (group 1)
R2 sum of ranks in GA networks (group 2)
U1 U statistic from manual networks (group 1)
U2 U statistic from GA networks (group 2)
U U statistic which is lower of U1 and U2

µU mean of U
σU standard deviation of U
α significance level of rejecting the null hypothesis

z = U−µU

σU
z-score, standardized test statistic score

H0 null hypothesis
H1 alternative hypothesis

23

Notes

1. Variant of Pacman, Ms. Pacman was used but always referred to as Pacman.

2. Nodes, neurons, units could be used interchangeably as they refer to the same thing.

3. Reward shaped calculations are calculated as, any reward received divided by 10, −0.01 for
every step, and −15 for losing life. The step deduction amount is not included because it is
very small and negligible.

4. Scores given refer to average of 30 game plays after 100 thousand frame training unless stated
otherwise.

5. Results in Figures 23 to 29 are based on 2 dimensional grid modeled detecting Pacman, ghosts,
and pellets with learning rate of 0.0001 with starting epsilon of 1.0 decreasing linearly over
100,000 frames and 0.10 thereafter and RELU as activation function. The cells have color
grading to indicate ranking for numbers where in each column lowest values are marked with
red, medium in orange and large in green color.

6. The GA optimized model average score of 903 is based on the latter 60 average game score
and manually designed model average score of 681 is based on 60 average games scores.

24

Images

(a) Downsampled grayscale
frame of where most of informa-
tion is lost

(b) Downscaled grayscale frame
with some blur

(c) Downsampled grayscale
frame using bicubic filter.

Figure 10

(a) Grayscale frame using PIL
format.

(b) Using a 2 dimensional
grayscale grid canvas to draw
boxes where pellets are detected.

(c) Downsampled color image
to emphasize Pacman by bright
green color.

Figure 11

25

(a) Image frame transformation
by mixing up different color
channels.

(b) Downsampled color image
frame with pellet color

(c) Downsampled grayscale im-
age with white squares drawn
where pellets are detected

Figure 12

(a) Downsampled color image
with white squares drawn where
pellets are detected

(b) Using a blank 2 dimensional
grayscale grid canvas to draw
boxes where pellets are detected
and draw colors at ghost and
Pacman locations effectively re-
moving objects considered noise.

(c) Visual representation of the 3
channels combined. The 3 chan-
nel tensor is fed into the network
as input, not the visual represen-
tation.

Figure 13

26

Figure 14: Image overlay with 4 frames stacked to detect motion and pellets overlaid with white
boxes.

Figure 15: Game state with scared ghosts

Figure 16: Pacman image color pallet.

Figure 17: Pixel count of a pellet. The measurement shows that a pellet is made up of 8 pixels.

27

Graphs

Figure 18: Performance and analysis graphs of experiment model ID 61 that was the very first
model by GA.

28

Figure 19: Performance and analysis graphs of experiment model ID 51 manually designed which
produced the highest average score over 30 game plays of 1113 after training for 100 thousand
frames.

29

Figure 20: Performance and analysis graphs of experiment model ID 172 created by GA which
produced the highest average score over 30 game plays of 1664 after training for 100 thousand
frames.

30

Tables

Figure 21: State space calculation for Pacman.

Figure 22: RGB color codes for colors used in Pacman.

31

Figure 23: Manual neural network (Result IDs 1-20)

Figure 24: Manual neural network (Result IDs 21-40)

32

Figure 25: Manual neural network (Result IDs 41-60)

33

Figure 26: Genetic algorithm neural network (Result IDs 61-90)

34

Figure 27: Genetic algorithm neural network (Result IDs 91-120)

35

Figure 28: Genetic algorithm neural network (Result IDs 121-150)

36

Figure 29: Genetic algorithm neural network (Result IDs 151-180)

37

	Introduction
	Motivation
	Reinforcement Learning
	Convolutional Neural Network
	Related Work

	Methods
	Environment
	Deep Q-Learning
	Genetic Algorithm

	Implementation
	Results
	Comparison
	Statistical Analysis

	Discussion
	Conclusion
	Further Research

	References
	Appendices
	Glossary
	Notations
	Notes
	Images
	Graphs
	Tables

