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Abstract—Video Anomaly Understanding (VAU) extends tra-
ditional anomaly detection by not only identifying irregular
events in real-world video streams but also providing inter-
pretable explanations of these events. This capability is increas-
ingly important in wide range of real-world applications where
enhanced trust and transparency are essential. Recent progress
in multi-modal large language models (MLLMs) has shown
potential for building more generalizable and explainable VAU
systems, but two key challenges remain: (1) high sensitivity
to prompt variations in instruction-tuned models, and (2)
the computational inefficiency of current MLLM architectures
for real-time scenarios. In this work, we propose a novel
framework to address both challenges. First, we introduce a
prompt learning strategy that integrates learnable, instance-
conditional context tokens into textual prompts. This approach
overcomes prompt sensitivity without requiring partial or
full model finetuning, significantly improving robustness in
open-world anomaly detection settings. Second, we adopt a
lightweight video encoder, VideoMamba, which preserves the
structure of Vision Transformers while leveraging the Mamba
architecture for efficient sequence modeling. This enables
significantly faster inference and adaptation. Our combined
approach improves generalization to unseen anomalies and
reduces latency, making MLLM-based VAU more viable for
real-world use. Extensive results demonstrate that our method
offers a solid balance between strong performance, efficiency,
and interpretability.

1. Introduction

Video Anomaly Understanding (VAU) aims to detect
irregular events in unstructured, real-world video streams
and provide textual explanations for them [I]. Compared
to traditional Video Anomaly Detection (VAD), which is
concentrated on identifying whether an event is normal or
abnormal, VAU extends the scope toward understanding by
incorporating contextual reasoning and explanation. This
shift reflects the practical demands of applications such as
public surveillance [2, 3,4, 5, 6], autonomous driving [7, 8],
and industrial monitoring [9, 10], where both accurate de-
tection and meaningful interpretation are essential.

Because of the sensitive nature of these domains, ex-
plainability and generalization are critical. A system that
only signals anomalies without offering interpretable rea-
soning may limit trust and restrict practical deployment. The
emergence of multi-modal large language models (MLLMs)
[11,12,13,14,15], alongside new benchmarks for video
anomaly understanding (VAU) [16, 17, 18], has created new
opportunities for building more accurate and explainable
anomaly detection systems via instruction-tuning [17, 18].

Despite recent progress in video anomaly understanding,
our study identifies a critical limitation of instruction-tuned
MLLMs: their sensitivity to prompt variations. This issue
becomes particularly noticeable when the number of ques-
tion—answer pairs in the training data is limited, causing
models to overfit to specific phrasings or question formats
[19,20]. In crucial applications such as video anomaly un-
derstanding, this is a serious concern. Minor changes in
prompt wording could lead to the misclassification of an
abnormal event as normal, potentially resulting in missed
responses or safety failures.

To address this, we propose adapting prompt learning
to the MLLM setting as an alternative to partial or full
model finetuning. Prompt learning addresses the limitations
of manual prompt engineering by learning the optimal “con-
text” for prompts, and it has been successfully applied to
both natural language processing and vision-language tasks
[21,22,23,24,25]. In contrast to hand-crafted prompts,
learnable prompts provide a more parameter-efficient ap-
proach, enabling task-specific adaptation without the need to
finetune the model and alter the pre-trained weights. While
prompt learning has proven effective in CLIP-style vision-
language models [26] and large language models (LLMs)
[27], it has not been explored in MLLMs, particularly for
temporally complex tasks like video anomaly understanding.
In this work, we propose integrating learnable, instance-
conditional context tokens, drawing inspiration from Condi-
tional Context Optimization (CoCoOp) [23], into the textual
prompt. These context tokens are optimized to become
anomaly-aware while preserving the general knowledge of
the base MLLM. This lightweight prompt optimization strat-
egy reduces sensitivity to prompt variations in MLLMs
compared to their instruction-tuned counterparts, improving
the robustness of anomaly understanding and lowering the



risk of misclassifying abnormal events.

Another key challenge is the real-time application of
MLLMs. The computational complexity of many current
architectures makes them unsuitable for latency-sensitive
environments, limiting their practical applicability in real-
world video surveillance systems. To address this, we
propose integrating an efficient and state-of-the-art video
encoder, VideoMamba [28], into the MLLM framework.
Our approach adopts the commonly used “ViT-MLP-LLM”
paradigm [29,30,31,32], replacing the standard Vision
Transformer (ViT) [33] with VideoMamba, which follows
the ViT architecture closely and benefits from the computa-
tional efficiency of the Mamba design [34].

To address these limitations, and to further improve the
practicality and generalization of VAD with MLLMs, we
contribute the following:

o Prompt Learning for MLLMs: We introduce
a novel prompt learning strategy for MLLMs in
video anomaly detection. By integrating learn-
able, instance-conditional context tokens into textual
prompts, our method improves robustness to prompt
variations without modifying the underlying model
parameters.

o Efficient Video Encoder Integration: We pro-
pose the integration of a lightweight and high-
performance VideoMamba encoder into an MLLM
framework. This design follows the “ViT-MLP-
LLM” paradigm while leveraging the efficiency of
the Mamba architecture, enabling real-time inference
in latency-sensitive scenarios.

o Anomaly-Aware Generalization: Our approach en-
hances the model’s ability to generalize to unseen
anomalies by integrating anomaly-aware context to-
kens into prompts, while leaning on the broad visual-
textual knowledge present in the base MLLM.

2. Related Work

Video Anomaly Detection. Video Anomaly Detection
(VAD) aims to detect unusual events or frames in long,
raw videos [3,35,36,37,38,39], which presents a signif-
icant challenge due to the scarcity of labeled anomalous
data and, as the name suggests, the rarity of these events.
Traditional approaches to VAD were based on handcrafted
features [2, 3,35, 36,40,41], but recent developments have
seen the dominance of deep learning approaches, with dif-
ferent types of unsupervised, fully-supervised and weakly-
supervised methods.

Unsupervised Video Anomaly Detection (UVAD) [37]
has been widely studied due to the difficulty of collecting
and annotating large-scale anomalous videos, focusing on
learning the normality of videos and detecting deviations
as a one-class classification problem [42]. The two main

UVAD approaches are reconstruction-based [43,44,45] and
regression-based methods [40,47,48,49].
Fully-supervised video anomaly detection [50] has re-

ceived comparatively less attention in the literature due to

the challenges that come with obtaining fine-grained data
and precise temporal annotations for anomalies.

Weakly-Supervised Video Anomaly Detection (WS-
VAD) relies on video-level annotations, since these are more
viable to obtain than fine-grained ones. Because of this,
weakly-supervised approach has gained increasing attention
in recent years. Multiple-Instance Learning (MIL) [51,52]
is the mainstream paradigm used for various weakly-
supervised learning methods [4,53,54,55,56,57,58]. In
these approaches, anomaly classifiers are trained using bags
of positive (anomalous) and negative (normal) samples.

These methods have two main drawbacks: they pro-
vide limited semantic understanding of anomalies and of-
ten depend on either outdated models or computationally
intensive transformers. In contrast, our approach leverages
VideoMamba, an efficient video understanding model, for
feature extraction and enhances semantic interpretation by
integrating it with an MLLM.

Large Models in Video Understanding. The rapid ad-
vancement of proprietary and open-source Large Language
Models (LLMs) such as ChatGPT [59], LLaMA [60], and
Mistral [61] has sparked significant interest, based on their
conversational and text generation capabilities. These mod-
els are pretrained on vast amounts of text data, making
them highly effective in a variety of natural language pro-
cessing tasks. More recently, the scope of LLMs has ex-
panded into multi-modal domains, with Multi-modal LLMs
(MLLMs) [29,31,62,63, 64,65, 66,67] incorporating visual
understanding into the model’s capabilities. The introduction
of large-scale video-text pair datasets, such as WebVid [68]
and Valley [69], has enabled the addition of video modality
into MLLMs, improving their capacity for video understand-
ing. This area has significant attention from the research
community, leading to the development of various models,
including VideoChat [67], Video-ChatGPT [12], LLaMA-
Adapter [66], Qwen2.5-VL [11], Intern2.5-VL [15], In-
ternVideo2.5 [70], LLaVA-Next-Video [71], Video-LLaMA
[13], and Video-LLaVA [14]. This list is not exhaustive and
continues to grow rapidly, with each model continuously im-
proving its capabilities through newer versions and updates.

Adapting general-purpose large models to sensitive tasks
such as anomaly detection and understanding is crucial. In
this work, we introduce instance-conditional anomaly-aware
tokens that guide these models toward improved anomaly
understanding, without requiring any modification of the
pre-trained models themselves.

Large Models in Video Anomaly Detection. Recent ad-
vancements in video anomaly detection have been signif-
icantly influenced by the integration of large pre-trained
models and MLLMSs. Several recent works [72,73,74,75]
have leveraged pre-trained vision-language CLIP [26] model
improving the anomaly detection process by including tex-
tual information alongside visual features. Zanella et al.
[76] introduces a training-free framework that uses the pre-
trained BLIP-2 [77] captioning model to generate captions
for each frame and prompts LLM to estimate an anomaly



score. Lv et al. [78] introduced video-based large language
model in a weakly supervised setting, which is able to
detect anomalies and explain their details, highlighting the
potential of combining video data with language models for
anomaly detection tasks. In addition to textual and visual
modalities, Tang et al. [17] introduces a motion modality,
calculated from temporal and spatial information in video
frames using Gunnar Farneback’s algorithm [79]. Tang et
al. [17] also introduces a dataset of anomalous videos with
language descriptions and question-answer pairs. Zhang et
al. [18] introduces a novel large-scale hierarchical video
anomaly dataset for multi-granular anomaly comprehension,
enabling multi-modal instruction tuning for more detailed
anomaly detection, and also presents an Anomaly-focused
Temporal Sampler (ATS) to select relevant frames for feed-
ing into MLLMs based on respective anomaly scores.

These approaches to video anomaly understanding
[17,18,78] typically rely on partial or full finetuning of gen-
eralist models to improve their ability to understand anoma-
lies. However, such finetuning often leads to catastrophic
forgetting, where the model loses its general knowledge. To
address this issue, we propose the use of learnable, instance-
conditional anomaly-aware context tokens that guide the
generalist model toward anomaly understanding without
sacrificing its broader capabilities.

Prompt Learning. Prompt learning, originating from the
natural language processing domain, builds on the idea
of knowledge probing, where cloze-style “fill-in-the-blank”
prompts are used to get answers from pre-trained language
models [21]. While effective for adapting language models
to downstream tasks such as sentiment analysis, their man-
ually crafted prompts are often suboptimal. To address this,
continuous prompt learning was introduced, where continu-
ous vectors in the embedding space are optimized to better
exploit the capabilities of language models, without being
limited to the discrete word representations [80, 81, 82].

This concept has been extended to vision-language mod-
els (VLMs) such as CLIP [26], with the objective of adapt-
ing these models to new tasks, surpassing the performance of
zero-shot model with hand-crafted prompts, and ultimately
achieving domain generalization. Instead of updating the
model parameters, prompt learning inserts a small set of
learnable embeddings, known as prompt tokens, into the
input space, offering efficiency in both parameter count and
convergence rate [22,23,24,25]. Zhou et al. [22] optimizes
continuous sets of prompt vectors that replace the context
words in a prompt as an input for the language encoder of a
frozen CLIP model [26], while, in a subsequent work, Zhou
et al. [23] improves upon this approach by introducing con-
ditional prompts on visual features to address generalization
issues, specifically overfitting on base classes when handling
unseen classes. Similarly, Khattak et al. [25] optimizes the
prompts in both the vision and language branches of CLIP
[26] to enhance alignment. On the other hand, Khattak et al.
[83] addresses previous challenges by adding regularization
to optimize both task-specific and task-agnostic representa-
tions.

In contrast to existing prompt learning methods, which
are increasingly tailored to dual-encoder CLIP-like models,
we propose a method designed specifically for video-based
question answering (VideoQA), with a focus on anomaly
understanding. To achieve this, we extend the idea of prompt
learning to MLLMs. To our knowledge this is the first
prompt learning application for MLLMs.

3. Preliminaries

In this section, we review the key components used
in this work: BatchNorm-based Weakly Supervised Video
Anomaly Detection (BN-WVAD) [58], Anomaly Fo-
cused Temporal Sampler (ATS) [18], Context Optimization
(CoOp) [22], and Conditional Context Optimization (Co-
CoOp) [23]. These are organized into subsections based on
their interactions and collectively form the foundation of our
approach.

3.1. Review of BN-WVAD & ATS

We review the weakly supervised anomaly detection
method along with an anomaly-focused temporal sampler, as
these components will directly interact and heavily depend
on each other in the following sections.

BatchNorm-based Weakly Supervised Video Anomaly
Detection (BN-WVAD). We adopt the BN-WVAD [58]
model as our anomaly detection algorithm for relevant frame
filtering. An overview of its architecture is shown in Fig. 1.
This method leverages the statistical properties of anomalous
events, which typically deviate from normality, by exposing
this information through a BatchNorm layer [85]. The input
batch to the vision encoder consists of equal bags of normal
and abnormal videos, following the Multi-Instance Learning
(MIL) paradigm [4, 51, 52]. The vision encoder, as proposed
in the original paper, is a frozen I3D [84], followed by a
feature enhancer comprising a Global and Local Multi-Head
Self-Attention layer [57]. Zhou et al. [58] introduced a new
abnormality criterion called the Divergence of Feature from
Mean (DFM), which quantifies the divergence of a feature
from the BatchNorm mean vector using a Mahalanobis-
inspired distance [86]. The DFM is formulated as follows:

DFM (X, 1,0%) = (X = )" 51 (X =), (1)

where X represents the hidden features, p is the mean
calculated in a BatchNorm layer, and ¥ = diag(o?) is the
covariance matrix, with o2 being the variance.

The paper also introduces a novel loss function based on
the DFM criterion, called the Mean-based Pull-Push (MPP)
loss. This loss function optimizes the model by pulling
normal features closer to the mean and pushing abnormal
features further away. The MPP is formulated as follows:
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Figure 1: Overall architecture of the Anomaly Scorer
(BatchNorm-based Weakly Supervised Video Anomaly
Detection [58]). The input mini-batch consists of half nor-
mal and half abnormal videos, which are embedded by a
frozen 13D [84] followed by a Transformer-based enhancer
[57], producing enhanced features. “DFM” refers to the
Divergence from Mean criterion (Eq. 1).
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where X™ and X® represent the normal and abnormal
features, respectively, each containing K instances. The /i
and &2 are the running mean and variance, calculated from
w and o2, and updated using the exponential moving average

(EMA) [87] to capture the long-term statistics of the feature
distribution.
Zhou et al. [58] also propose two new abnormal snippet

selection strategies, namely, batch-level selection (BLS) and
sample-batch selection (SBS). BLS uses the statistical prop-
erties of BatchNorm to identify potential abnormal snippets
across the entire mini-batch, rather than individual videos.
This strategy adjusts the proportion of abnormal snippets
selected from both the video and the mini-batch, making
it more flexible to varying abnormality ratios across dif-
ferent videos. SBS strategy simply combines the selected
snippets from both commonly used sample-level selection
[54,88,89] and BLS strategies, addressing the limitations
of each.

The anomaly score is computed by aggregating the DFM
scores and the predictions of an anomaly classifier through
element-wise multiplication. The anomaly classifier (repre-
sented by the [Convld, Sigmoid] block in Fig. 1) is trained
solely on normal snippets from normal videos, minimizing
the impact of label noise.

The overall training objective for this model is as fol-
lows:

[ = [ror + Alﬁrlnpp + )\2£51PP7

where £"°" is the Lo norm loss for the anomaly classifier,
L7PP and L3P are the MPP losses computed for the
hidden features from the first and second Convld layers,
respectively. A\; and Ao are hyperparameters used to weight
the respective losses.

Anomaly-focused Temporal Sampler (ATS). The density-
aware sampler ATS [18] selects frames based on the
anomaly scores provided by the anomaly scorer, giving
priority to frames with higher scores and minimizing the use
of less relevant snippets. Anomalous frames usually contain
more diverse and relevant information than normal frames
[54], making them more suitable for processing by heavier
MLLMs. This approach ensures that the selected frames
capture both critical anomaly frames and essential contex-
tual information. It overcomes the limitations of methods
such as dense window sampling that can introduce redun-
dancy [76], and uniform sampling that may overlook key
anomalies [16, 17], especially in short videos. The method
proposes that anomaly scores are treated as a probability
mass function, accumulated along the temporal axis to com-
pute the cumulative distribution function. Frames are then
sampled uniformly based on this cumulative distribution.

3.2. Reviews of CoOp & CoCoOp

We review both prompt learning techniques, as one
is a continuation of the other, and both are crucial for
understanding the main contribution of this paper.

Context Optimization (CoOp). CoOp [22] presents a
straightforward approach for adapting CLIP-like vision-
language models [26] to specific downstream tasks. It ad-
dresses the challenge of manual prompt engineering by



automatically learning the optimal “context” for prompts.
This is achieved by replacing the context words of a prompt
with continuous learnable vectors, while keeping all pre-
trained parameters of the CLIP-like model frozen.

The core idea behind CoOp is to replace fixed, hand-
crafted context (such as “a photo of a”) with a set of
continuous, learnable vectors. The paper [22] explores this
approach for the image recognition task specifically. These
vectors, denoted as {v1,va, ..., upr }, are designed to capture
the most effective prompt context for a given downstream
vision task, with each of these M vectors having the same
dimensionality as the word embeddings in the model. For
a specific class ¢, the prompt ¢; is then constructed by
concatenating these learnable context vectors with the word
embedding of the class name ¢;. This forms the prompt
t; = {v1,va,...,up,¢;}. The prompt is passed down the
text encoder of CLIP into the shared embedding space of
vision and text encoder. These continuous context vectors
are learned directly from the downstream task data, allowing
the model to learn task-specific prompt contexts, as opposed
to relying on manual prompt engineering.

Conditional Context Optimization (CoCoOp). CoCoOp
[23] builds on the foundation of CoOp [22] to address its
limitations, more specifically, the issue of overfitting to the
seen classes, which results in poor performance on unseen
classes within the task. This is done with the introduction of
the Meta-Net, a learnable lightweight neural network, which
takes as an input the embedding of the image and outputs
a conditional token, which is added to the context tokens
introduced by CoOp [22]. The Meta-Net is composed of
a two-layer bottleneck architecture (Linear-ReLU-Linear),
where the hidden layer decreases the input dimension by
16 times. In this method, the trainable parameters include
both the context vectors and the Meta-Net. Unlike CoOp’s
static prompts, this approach adapts to each new instance,
making it less sensitive to unseen classes within the task,
and more dependent on the visual information of each
instance. The results in the paper demonstrate improved
generalization from base classes to new classes within the
same task, as well as improved cross-dataset transfer and
domain generalization, when compared to both CoOp and
the out-of-the-box CLIP model [26].

4. Methodology

In this section, we describe the methodology proposed
in this study, outlining the overall approach, the design
choices made, and the key contributions that distinguish it
from existing work. This provides a clear foundation for
understanding how the proposed framework addresses the
challenges discussed earlier. An overview of our approach
is shown in Fig. 2. Our method builds upon the frame-
work proposed by Holmes-VAU [18], incorporating several
modifications and improvements to address its limitations.
Specifically, we target two key issues: first, we overcome
the original method’s sensitivity to prompt variations and
improve its domain generalization; second, we improve the
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Figure 2: Architecture of the proposed method. The model
processes an input video through the anomaly scorer for
relevant frame sampling. The extracted visual features are
fed into an MLP projector and combined with instance-
conditional context tokens (combination of a meta token and
context tokens) and the prompt are passed to the LLM for
textual output. Training is divided into three phases, with
different modules being trainable or frozen in each phase.
The training phases are shown in Fig. 3.

model’s efficiency to move explainable anomaly detection
closer to real-time streaming applications.

4.1. Model Architecture Details

For the vision encoder, we use a frozen VideoMamba
[28]. The MLP projector is initialized from scratch and
the large language model (LLM) used is the pre-trained
InternLM2 [90] with 1.8 billion parameters. For anomaly
detection, we use the BN-WVAD [58] as the anomaly scorer
and use the ATS method for anomaly-focused temporal
sampling, as described in Section 3.1. In our implemen-
tation of BN-WVAD, the vision encoder is replaced with
VideoMamba instead of I3D [84]. The Meta-Net and context
tokens follow the same configuration as detailed in Section
3.2 for CoOp [22] and CoCoOp [23].



4.2. Integration of Instance-conditional Context
Tokens

The primary contribution of this work lies in adapting
the key idea of CoCoOp [23], instance-conditional context
tokens, to an MLLM architecture. While the conceptual
motivation of our implementation remains the same with
the original method, using the instance-specific context em-
beddings, the technical implementation differs due to the
nature of the multi-modal input (video-text pairs) and the
downstream task. It is also important to note that the original
CoCoOp was designed for a dual-encoder architecture such
as CLIP, where the vision and text encoders are independent.
In contrast, the architecture used in our setup features a
strongly connected encoder design, where the text encoder
depends heavily on the outputs of the vision encoder. Be-
cause of this fundamental difference we need a different
integration strategy for instance-conditional context tokens.

In our adaptation, the instance-specific context tokens do
not replace the entire prompt. Instead, the learnable instance-
conditional context tokens (ctx_token) are appended at the
end of the prompt. This design choice comes from the fact
that our prompt can contain variable types of questions
(e.g., descriptive, judgmental, or analytical), which cannot
be substituted fully by a fixed set of learnable vectors.
Therefore, these context embeddings serve more as task-
adaptive vectors that bias the model toward specific focus
areas, in our case, abnormalities in the input video. This
design addresses the challenge of prompt sensitivity that can
occur when finetuning the LLM component of an MLLM.
It is important to note that the pre-trained LLM already
possesses generalist knowledge and does not exhibit prompt
sensitivity issues due to its vast pre-training on multiple
datasets. Rather than finetuning the LLM, which could
lead to overfitting on specific questions and their phrasing,
task-specific information is incorporated by updating the
learnable context tokens. This approach avoids modifying
the model weights and lowering the likelihood of overfitting
to the limited training set. To further enhance robustness
to prompt sensitivity and improve domain generalization,
these learnable context tokens are conditioned on the visual
input, specifically, the output of the Meta-Net. This ensures
that the context tokens takes into account both the visual
information and the corresponding question-answer pairs,
reducing the risk of overfitting to specific formulations of
question-answer pairs during the training process.

The final prompt follows to the formatting convention
used in InternVL2 [91], and is structured as follows:

“Frame 1: (img,),...,Frame n: (img,)
Please provide a detailed description of the video.
(ctx_tokeny ) . .. (ctx_tokenpy)”,

for visual input consisting of n frames and the pre-defined
M context tokens. This modified prompt is used for forward
pass through the tokenizer and subsequently into the LLM.

The Meta-Net receives as input the projected positional
embeddings generated by the vision encoder. Let the input
be denoted as z € RBX(T-HW)XC yhere B is the batch
size, T' is number of frames, H = W is the height and
width of the positional embedding, and C is the context
dimension. Note that the context embedding dimension C
must be equal to the LLM’s token embedding size, to make
it compatible during concatenation. Firstly, we apply a mean
pooling across the spatio-temporal dimension to obtain:

1 T-HW
Fo— (k) Bx1xC
I7T~H~W ; V%) e R

This pooled feature Z is passed to the Meta-Net as input.
Let hg(:) denote the Meta-Net, parametrized by 0, and let
{v1,v9,...,vp} be a set of learnable context vectors. Each
instance-conditional context token is computed as:

U (Z) = vy, + m, where © = hg(Z), m = {1,2,... , M}

These learnable instance-conditional context vectors re-
place the placeholders (ctx_token) in the prompt string after
the tokenization step.

This differs from the original CoCoOp pipeline, where
the input was a single image embedding. Here, the input
contains an explicit spatio-temporal dimension, which we
reduce via pooling to maintain compatibility with the con-
text tokens and, hence, the LLM architecture.

4.3. Integration of VideoMamba

VideoMamba [28] is a state-of-the-art video understand-
ing model based on the Mamba architecture [34], specifi-
cally designed to efficiently handle long and fine-grained
action sequences. In this work, we utilize the medium-
sized variant of VideoMamba, pre-trained on the Kinetics-
400 dataset [92], which processes video clips with fixed
32 frames at a resolution of 224 x 224 pixels, and has
approximately 74 million parameters. The decision to use
a 32-frame input configuration is driven by the nature of
the anomaly detection task, where anomalies can occur at
any moment, and missing critical frames could significantly
impact performance. Additionally, a larger input frame size
generally leads to better results across all tasks. By capturing
a longer temporal context, the model’s ability to detect
subtle or short-lived deviations from normal behavior is im-
proved [93, 94]. Therefore, a larger number of input frames
increases the likelihood of identifying anomalies without
skipping key moments.

In our setup, VideoMamba replaces InternViT [91] as
the visual encoder, which was previously used in Holmes-
VAU [18]. The lightweight 300-million-parameter variant of
InternViT, named as InternViT-300M, is used in the lighter
versions of InternVL2 [91] and its iterations. It is built
on a Transformer architecture with self-attention [95]. It
is pre-trained using various strategies to support general-
purpose visual understanding. While it has strong perfor-
mance across various tasks, its self-attention mechanism
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introduces quadratic computational and memory costs with
respect to the number of input frames, which limits its
efficiency for processing longer video sequences. In contrast,
VideoMamba’s Mamba-based architecture scales linearly
with sequence length, making it more suitable for scenarios
that require efficient handling of extended temporal infor-
mation.

Since VideoMamba closely follows the Vision Trans-
former (ViT) architecture [33] and replaces ViT’s self-
attention mechanism with the bidirectional Mamba block
[96] for video sequences, its use as a vision encoder in
our approach aligns with the widely used “ViT-MLP-LLM”
paradigm [29,30,31,32]. The proposed MLLM would be
referred to as InternMambaVL.

4.4. Training Details

In this section, we describe the two primary training pro-
cesses involved in our method: the training of the anomaly
scorer and the multi-stage training of MLLM with instance-
specific context tokens.

Training of Anomaly Scorer. The anomaly scoring method
BN-WVAD [58] uses the I3D [84] vision encoder to extract
visual features for model training. In our approach, since
the overall architecture is based on VideoMamba [28], we
use it instead to extract features from the anomaly detec-
tion datasets and train the anomaly scorer accordingly. The
visual features are extracted prior to the training, as the
method itself requires an input of equally sized instances
of normal and abnormal videos, with all of their snippets,
which is computationally expensive. The extracted features
are sampled at a rate of 1, as previously mentioned, to ensure
that no critical frames are missed, considering the nature of
the downstream task. During training, upon receiving the
input features, we apply the distortion strategy known as

“Noise All Patches”, as introduced in GeneralAD [97], that
essentially adds random Gaussian noise to the embeddings.
This technique is used to improve the model’s robustness to
noise and serves as a sort of augmentation in the embedding
space.

Training of MLLM with Instance-Conditional Context
Tokens. The training of InternMambaVL begins with a
Multi-Layer Perceptron (MLP) warmup stage, illustrated in
Fig. 3a. During this phase, only the MLP component is
trainable, while both the vision and language models are
kept frozen. As it can be seen from Fig. 3a, the MLP serves
as a bridge between the vision and language representations.
Since the vision and language models are pre-trained on
distinct datasets for different tasks, this warmup stage is
essential to align their feature spaces. It enables the MLP to
adapt the outputs of the vision model into a representation
that is more understandable and technically compatible with
the input of the language model.

Using the model trained in the previous stage, we pro-
ceed to integrate the Meta-Net and context tokens into the
architecture for further training, as shown in Fig. 3b. The
core MLLM remains frozen, with all of its components
kept constant and only the newly added Meta-Net and
context tokens are trainable. During this stage, the Meta-
Net and context tokens learn to better handle the anomaly
explanation task, providing the necessary additional cues to
enhance the LLM’s response to the user’s instruction. This
approach is aimed to replace the LoRA finetuning strategy
[98], previously used in [18], which suffers from prompt
sensitivity and catastrophic forgetting of the model’s general
knowledge [99]. Once this step is completed, the training
process is concluded. It is important to note that during
the experimentation phase, the InternVL2 [91] model with
instance-conditional context tokens will also be utilized. For
this, the InternVL2 model is trained only in the second



stage, as its vision and text representations are already well
aligned from its vast pre-training. Additionally, to increase
the model’s robustness to frame sampling strategies, frames
used in both training stages are sampled using segment-
based random sampling technique.

5. Data

In this section we introduce the datasets used in this
paper.

UCF-Crime. UCF-Crime [4] is a large-scale indoor and
outdoor video surveillance dataset containing 1,900 real-
world videos labeled across 13 types of anomalous events,
including abuse, arrest, arson, assault, burglary, explosion,
fighting, road accidents, robbery, shooting, shoplifting, steal-
ing, and vandalism. The training set includes 800 normal
and 810 abnormal videos annotated at the video level.
The testing set consists of 140 normal and 150 abnormal
videos, each with precise temporal annotations, for frame-
level evaluation.

XD-Violence. XD-Violence [100] is a multi-modal, multi-
source dataset featuring 4,754 untrimmed videos collected
from diverse environments including movies, games, live
scenes, and surveillance footage. It captures six types of
anomalous events: abuse, car accident, explosion, fighting,
riot and shooting. The training set contains 2,049 normal and
1,905 abnormal videos with video-level annotations, while
the testing set includes 300 normal and 500 abnormal videos
annotated at the frame level. XD-Violence has both video
and audio modalities.

HIVAU-70k. HIVAU-70k [18] is a large-scale benchmark
developed for hierarchical instruction-based video anomaly
understanding across multiple granularities. The dataset in-
troduces 70,000 multi-granular annotations at the clip, event,
and video levels, including 5,443 videos, 11,076 events, and
55,806 clips. The final form of the dataset is a video-based
question answering (VideoQA) task focused on anomalies.

The dataset is constructed using a semi-automated an-
notation pipeline that combines manual video segmentation
with recursive free-text annotations generated by LLMs. A
video perception model is first used to extract detailed cap-
tions for each clip, that is expanded into an event and video
summary with the use of LLMs. Based on these summaries,
structured prompts are created to extract various types of
responses: captions, judgments, descriptions, and analytical
answers. All LLM-generated outputs are manually verified
to ensure high-quality annotations. To build instruction-
tuning data for video anomaly understanding, the method
matches free-text annotations with pre-designed anomaly-
related user instructions.

Built upon the UCF-Crime [4] and XD-Violence [100]
datasets, HIVAU-70k provides a detailed and extensive
dataset for the field of advancing video anomaly understand-
ing. Including annotations at multiple granularities should
enable the model to develop both short-term and long-term
reasoning capabilities.

HAWK. HAWK [17] is a benchmark designed to improve
instruction-based video anomaly understanding by introduc-
ing rich language annotations and question-answer pairs for
anomaly scenes across seven widely-used video datasets:
UCF-Crime [4], ShanghaiTech [5], CUHK Avenue [3],
UCSD Pedl [101] and Ped2 [2], DoTA [8], and UBnormal
[102].

The dataset is constructed through a semi-automated an-
notation process that begins with generating textual captions
of anomalous events using perception tools. These captions
are then refined and expanded into detailed descriptions
using LLMs, followed by manual verification for quality
assurance. Using these verified descriptions, HAWK gener-
ates open-ended question—answer pairs for each scenario is
aimed to improve the model’s ability to handle diverse user
queries, which are then manually checked.

CUVA. CUVA [16] is a benchmark designed to improve
understanding of video anomalies, and offers a rich col-
lection of question-answer pairs and detailed annotations
for unusual events. The dataset includes 1,000 video clips,
totaling 32.46 hours, and features 6,000 question-answer
pairs. These videos are drawn from popular platforms like
Bilibili and YouTube, with a focus on VideoQA tasks related
to anomalies.

The dataset is broken down into several key subtasks,
that answer the following questions: “Why did this anomaly
occur?”’, “What caused the anomaly?”’, and “How serious
is this anomaly?”. It covers 11 broad categories, including
incidents like animals hurting people, pedestrian accidents,
traffic violations, fires, fights, thefts, and vandalism, cover-
ing 42 fine-grained types of anomalies.

What sets CUVA apart from other video anomaly
datasets, like HAWK [17] and HIVAU-70K [18], is that
it is fully hand-annotated, ensuring the highest quality and
accuracy of the labels possible.

6. Experiments

Our approach is primarily evaluated across the following
key experimental settings: 1) performance of the proposed
model on the same dataset (Section 6.1); 2) analysis of
prompt sensitivity (Section 6.2); 3) assessment of domain
generalization (Section 6.3); 4) anomaly detection results
with a comparison to relevant methods (Section 6.4); and
5) ablation study for different components of the proposed
approach (Section 6.5). In Section 6.4, we provide an im-
plementation overview for the video anomaly detection task
separately. Below, we outline the experimental setup for the
video anomaly understanding task.

Implementation Details. Our proposed method is initialized
as described in Section 4.1, using the VideoMamba visual
encoder [28], a newly initialized MLP projection layer, and
InternLM2 [90] with 1.8 billion parameters as an LLM. It is
important to note that all models for instruction-tuning de-
scribed in this section are trained on the HIVAU-70k dataset.
For all experiments, a Stage 1 warmed-up InternMambaVL



model is used, unless stated otherwise. The Stage 1 MLP
warmup, shown in Fig. 3a, is conducted for 1 epoch with a
batch size of 4 and a gradient accumulation step of 8.

To comprehensively evaluate the impact of integrating
instance-conditional context tokens into the MLLM, all ex-
periments also involve training the InternVL2 model [91]
with 2 billion parameters under the same settings. Both the
InternMambaVL and InternVL2 models, when integrated
with instance-specific context tokens (shown in Fig. 3b), are
trained for 3 epochs, as loss convergence slows significantly
before the third epoch. The naming convention for instance-
conditional context tokens integrated into the MLLMs In-
ternMambaVL and InternVL2 is InternMambaVL+C and
InternVL2+C, respectively. In these settings, the batch size
is 1, with a gradient accumulation step of 32. It is important
to note that InternMambaVL samples 16 to 32 frames per
video and InternVL2 samples from 6 to 12 frames.

Training for both Stage 1 and Stage 2 uses the AdamW
optimizer [103] with cosine learning rate decay [104], a
warm-up period, and a learning rate of 4e—>5. All experi-
ments are conducted on a NVIDIA A100 40GB GPU.

Baselines. To assess the impact of learnable instance-
conditional context tokens as an alternative to traditional or
LoRA finetuning [98], we compare the developed models for
InternVL2 MLLM against two baselines: the out-of-the-box
InternVL2, which serves as a zero-shot model, and Holmes-
VAU [18], which has its LLM finetuned using LoRA [98]
on the same dataset. Similarly, for the InternMambaVL
MLLM, we compare the developed models to two baselines:
the stage 1 warmed-up InternMambaVL (used as a zero-
shot model), and InternMambaVL-LoRA, which undergoes
LoRA finetuning under the same settings as the Holmes-
VAU method. It is important to note that stage 1 pre-trained
InternMambaVL is used for comparison purposes. However,
it cannot be considered a fully developed MLLM, as it has
not undergone the multi-staged extensive training on large-
scale general datasets that InternVL2 has. We make the
comparison for both MLLMs to better assess the effect that
learnable instance-conditional anomaly-aware tokens have
on the task of video anomaly understanding.

Evaluation Metrics. To evaluate the quality of reasoning
texts generated by the baseline models and the proposed
approach for the task of video anomaly understanding,
we adopt several standard text generation metrics: BLEU
[105], which measures n-gram precision between generated
and reference texts; CIDEr [106], originally proposed for
image captioning, but here repurposed to assess similarity
with human-annotated reasoning using TF-IDF-weighted n-
gram similarity; METEOR [107], which evaluates unigram
matches with consideration for synonymy, stemming, and
word order; and ROUGE [108], which measures the recall of
overlapping n-grams and sequences. It is important to note
that there are several BLEU scores, based on the different
levels of n-grams specified (1-4), and we use the cumulative
of these. These metrics are computed by comparing the

model’s outputs with the annotated ground truth textual
explanations.

In addition to traditional evaluation metrics, we use
model-based scorers to assess the quality of generated re-
sponses. These evaluators judge responses based on how
effectively they follow the given instructions, considering
not only the prompt but also additional information such
as reference answers and visual inputs. These evaluators
can provide more detailed feedback than traditional metrics,
which primarily focus on word overlap.

MLLM-as-a-Judge [109] is an evaluation framework that
uses powerful MLLMs as evaluators for vision-language
tasks. Given the original user prompt, the model-generated
response, and a predefined scoring rubric, the MLLM evalu-
ates how effectively the response aligns with the instruction
and associated visual content. Since the original framework
does not cover video-instruction scenarios, we adapt it for
this purpose using Qwen2.5-VL [11], a 7-billion parame-
ter MLLM. Our evaluation involves providing the MLLM
with 16 representative frames sampled from the video, the
corresponding instruction, and the model’s response. The
prompt template used for this setup is illustrated in Prompt
Template 1.

Prometheus 2 [110] is a state-of-the-art open-source
evaluator language model (LM) with 7 billion parameters,
specifically trained to serve as an automatic evaluator for
assessing the quality of responses generated by various
language models. It demonstrates strong correlation with
both human judgments and proprietary LM-based evalua-
tors. Given the original user prompt, the model-generated re-
sponse, a reference answer, and a predefined scoring rubric,
Prometheus 2 evaluates how effectively the response aligns
with the instruction and the reference. Unlike the MLLM-as-
a-Judge framework, which repurposes existing multi-modal
models, Prometheus 2 is specifically trained for the purpose
of evaluation and explicitly incorporates a reference answer,
which is treated as the gold standard. The prompt template
used for Prometheus 2 is shown in Prompt Template 2.

6.1. Anomaly Reasoning Analysis

In this subsection, we examine the impact of integrating
prompt learning on the downstream HIVAU-70k dataset
[18]. Specifically, we compare the performance of the zero-
shot model, the proposed model with instance-conditional
context tokens, and the LoRA finetuned version. As pre-
viously mentioned, the experiments were conducted using
both the InternVL2 and InternMambaVL MLLMs. The re-
sults for each model will be presented separately. All metrics
are computed based on the test partition of the HIVAU-70k
dataset.

Results for InternVL2 MLLM. As shown in Table 1,
the LoRA finetuned version Holmes-VAU [18] excels in
the same downstream task it was trained on. This result
is expected, as finetuning specifically adjusts the model’s
parameters to produce output that aligns with the annotations
present in the training data. The first thing that can be



Template prompt for MLLM-as-a-Judge Scoring Evaluation

(System Input)
You are a helpful assistant proficient in analyzing vision reasoning problems.
(Instruction)
Please serve as an unbiased judge in assessing the quality of the responses from Al assistants regarding the user’s instruction and a video.
Evaluation Steps
Please examine the provided video attentively. Begin by conducting a detailed analysis of the responses provided. Capture your comprehensive observations and insights in
the ‘Analysis’ section. Following your analysis, move on to the judgement phase, where you will make informed decisions or conclusions based on the analysis conducted.
Give your final judgements in the ‘Judgement’ section. Ensure that your final output is in a JSON format with keys **Analysis" for the initial response analysis, and
* *Judgement " for your final judgement only. Ensure that the content under each key does not contain any nested JSON structures.
Evaluation Method
You will receive a single response from the Al assistant to the user’s instruction. Use scores to show the quality of the response. Here is the detailed scoring rubric for evaluating
the quality of responses from Al assistants:
Poor (1): The response significantly deviates from the user’s instruction and fails to address the query effectively. It shows a lack of relevance, accuracy, and comprehensiveness.
Creativity and granularity are absent or poorly executed.
Fair (2): The response addresses the user’s instruction partially, with evident shortcomings in relevance, accuracy, or comprehensiveness. It lacks depth in creativity and
granularity, indicating a superficial understanding of the user’s inquiry.
Average (3): The response adequately addresses the user’s instruction, showing a fair level of relevance, accuracy, and comprehensiveness. It reflects a basic level of creativity
and granularity but may lack sophistication or depth in fully capturing the user’s inquiry.
Good (4): The response is well-aligned with the user’s instruction, demonstrating a high degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced
understanding of the topic, with detailed granularity that enhances the response quality.
Excellent (5): The response perfectly adheres to the user’s instruction, excelling in relevance, accuracy, comprehensiveness, creativity, and granularity. It provides an insightful,
detailed, and thorough answer, indicating a deep and nuanced understanding of the user’s inquiry.
Notice
Your assessment should identify whether the assistant effectively adheres to the user’s instruction and addresses the user’s inquiry.
In your evaluation, weigh factors such as relevance, accuracy, comprehensiveness, creativity, and the granularity of the responses.
Do not allow the length of the responses to influence your evaluation.
Do not favor certain names or positions of the assistants. Be as objective as possible.
Here is the input:
[The Start of User Instruction]
{item[’instruction’]}
[The End of User Instruction]
[The Start of Assistant’s Answer]
{item[’ response’ ]}
[The End of Assistant’s Answer]

Prompt Template 1: MLLM-as-a-Judge

Template prompt for Prometheus Direct Assessment

(Instruction)

You are a fair judge assistant tasked with providing clear, objective feedback based on specific criteria, ensuring each assessment reflects the absolute standards set for
performance.

Task Description:

An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assesses the quality of the response strictly based on the given score rubric, not evaluating in general.

2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.

3. The output format should look as follows:

‘‘Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"

4. Please do not generate any other opening, closing, and explanations.

The instruction to evaluate:

{item[’instruction’]}

Response to evaluate:

{item[’ response’ ]}

Reference Answer (Score 5):

{item[’ reference_answer’]}

Score Rubrics:

“criteria”: Is the model proficient in following a detailed process of analyzing and judging Al assistant responses based on user instructions and a video?
“scorel_description”: The model fails to examine the video attentively and provide a coherent analysis. It gives judgments that are uninformed or irrelevant, lacking a structured
approach to assessing the responses.

“score2_description”: The model intermittently follows the instructions and attempts an analysis, but often misses key insights or provides superficial judgments. The response
lacks consistency in evaluating the quality of the responses.

“score3_description”: The model usually follows the steps in examining the video and analyzing the responses, providing a basic level of understanding. However, the analysis
and judgment may lack depth or nuance in some areas.

“score4_description”: The model provides a thorough analysis and judgment, demonstrating a strong understanding of the process. It effectively identifies key aspects of the
responses and offers a well-structured evaluation, though there may be occasional gaps in granularity or insight.

“score5_description”: The model excels in conducting a detailed, insightful analysis of the video and responses, showcasing an excellent grasp of the process. It provides a
nuanced, well-rounded judgment that addresses all aspects of the task with precision and clarity.

Prompt Template 2: Prometheus

noticed is that InternVL2+-C' achieves results that are closer
to those of Holmes-VAU than to the off-the-shelf InternVL2
model. A more interesting comparison can be made be-
tween the out-of-the-box generalist model, InternVL2 [91],
and InternVL2+C'. Both models share the same underlying
parameters, but InternVL24-C' differs by having additional
instance-conditional context tokens, which are specifically
trained for anomaly detection.

When comparing these models, it becomes evident that
there is an inconsistency between the model-based metrics
and traditional text generation metrics. Traditional met-
rics BLEU, ROUGE, METEOR, and CIDEr indicate that
InternVL2+-C clearly outperforms InternVL2, with the for-
mer showing a performance improvement ranging from
2x to 10x across all granularities. These traditional met-
rics suggest that the words or word sequences generated



Method Granularity | BLEU [105] | ROUGE [108] | METEOR [107] | CIDEr [106] | Prometheus 2 [110] | MLLM-as-a-Judge [109]

Clip 0.0694 0.2958 0.3137 0.2619 2.2609 2.8164
InternVL2+-C Event 0.1020 0.3145 0.3274 0.8857 1.8895 2.3464

Video 0.1252 0.3100 0.3130 1.1248 1.6859 2.1901

Clip 0.0282 0.2122 0.2632 0.0777 2.3128 3.1533
InternVL2 [91] Event 0.0044 0.1055 0.1739 0.0119 1.7439 2.5559

Video 0.0052 0.1146 0.1741 0.0186 1.7085 2.5442

Clip 0.1294 0.3479 0.3635 0.5173 2.3248 3.1964
Holmes-VAU' [18] Event 0.1414 0.3843 0.4129 1.0841 2.5852 2.8507

Video 0.1655 0.3935 0.3886 1.2489 2.3879 2.8580

TABLE 1: Comparison of anomaly reasoning performance on the HIVAU-70k dataset [18] for InternVL2+C' and its
corresponding baselines. “+C” denotes the integration of instance-conditional context tokens into the model and “{” denotes
reproduced results. Results are reported across traditional and model-based evaluation metrics and at multiple granularities
to assess anomaly reasoning in the downstream task, with higher scores indicating better anomaly understanding.

Method Granularity | BLEU [105] | ROUGE [108] | METEOR [107] | CIDEr [106] | Prometheus 2 [110] | MLLM-as-a-Judge [
Clip 0.0249 0.2189 0.2366 0.0831 2.0844 1.8801
IntermMambaVL+C Event 0.0156 0.1753 0.2228 0.1006 1.8842 2.1739
Video 0.0240 0.1837 02197 0.1199 1.8291 2.1797
Clip 0.0129 0.1532 0.1641 0.0338 15133 15851
InternMambaVL Event 0.0030 0.1137 0.1237 0.0716 13079 17833
Video 0.0110 0.1074 0.1198 0.0583 12563 17107
Clip 0.0488 0.2558 0.2729 0.1656 21742 2.0995
InternMambaVL-LoRA Event 0.0577 0.2583 0.3017 0.4259 2.0150 2.2603
Video 0.0731 0.2639 0.2906 0.5499 1.9621 2.3405

TABLE 2: Comparison of anomaly reasoning performance on the HIVAU-70k dataset [18] for InternMambaVL-+C
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and its corresponding baselines.

+C” denotes the integration of instance-conditional context tokens into the model.

Results are reported across traditional and model-based evaluation metrics and at multiple granularities to assess anomaly
reasoning in the downstream task, with higher scores indicating better anomaly understanding.

by InternVL2+C' are more aligned on average with the
annotated descriptions of anomalies. On the other hand,
model-based metrics Prometheus 2 and MLLM-as-a-Judge
show a contrasting results, with Prometheus 2 reporting
comparable performance between the two models across
all granularities, while MLLM-as-a-Judge favors the out-of-
the-box InternVL2, suggesting that it performs better than
InternVL24-C'.

This disagreement in results also appears when compar-
ing InternVL2 to Holmes-VAU. While Prometheus 2 clearly
favors Holmes-VAU, suggesting a significantly better perfor-
mance, MLLM-as-a-Judge indicates that the performance of
both models is comparable across the clip granularity. This
discrepancy may point to a potential bias in the MLLM-as-
a-Judge metric toward out-of-the-box models, given that it
operates in a similar manner to the zero-shot model. Since
MLLM-as-a-Judge has not been trained on anomaly detec-
tion tasks and takes as input the original model’s response,
frames sampled from the video, and the user’s instruction, it
is highly likely that both this model and the out-of-the-box
InternVL2 reference the same visual cues unrelated to the

anomaly itself. This could explain why MLLM-as-a-Judge
assigns a higher score to the out-of-the-box model.

Results for InternMambaVL MLLM. As shown in Ta-
ble 2, the LoRA finetuned InternMambaVL-LoRA model
outperforms in the same downstream task it was trained
on, as expected. Interestingly, we notice a larger gap be-
tween InternMambaVL-LoRA and InternMambaVL+C' in
terms of text generation metrics, while the model-based
metrics are more aligned. In terms of text generation met-
rics, InternMambaVL-+C' is closer to InternMambaVL than
InternMambaVL-LoRA, but in model-based scores, the re-
verse is true.

This further highlights the disagreement observed in the
anomaly reasoning results for the InternVL2-based mod-
els. The poor performance of both InternMambaVL and
InternMambaVL+C was expected, as discussed in pre-
vious subsections. Specifically, InternMambaVL does not
contain well-aligned general knowledge, and consequently,
InternMambaVL+C' also lacks this alignment. Neverthe-
less, InternMambaVL+-C' performs better across all metrics



compared to InternMambaVL, indicating that the instance-
conditional context tokens have effectively learned the nec-
essary information to improve the model’s ability for the
task of anomaly reasoning.

6.2. Evaluation of Prompt Sensitivity

Combating the prompt sensitivity issue of finetuned
models is the main focus of this research. To evaluate
the proposed approach and its corresponding baselines for
prompt sensitivity, we utilize the Qwen2.5 LLM [111]
to paraphrase the original prompts from the HIVAU-70k
dataset’s test partition, which were designed by the anno-
tators. Examples of the paraphrased questions can be seen
below:

Examples of Paraphrased Questions from HIVAU-70K

D

2)

3)

Original question: Are there anomalies observed in the video clip?
Paraphrased question: Is anything unusual or unexpected detected
in the recorded footage?

Original question: Could you provide a summary of the anomaly
events in this video?

Paraphrased question: Could you give me an overview of the un-
usual occurrences depicted in this video?

Original question: How do the characteristics of this event support its
classification as an anomaly?

Paraphrased question: What factors contribute to this occurrence
being classified as unusual or abnormal?

This test aims to determine whether rewording the same
question, without changing its context, affects the perfor-
mance of models trained on the downstream dataset. Similar
to the previous subsection, we compare InternVL2+4-C' (in-
tegrated instance-conditional context tokens) with the out-
of-the-box InternVL2, LoRA-finetuned Holmes-VAU, and
InternMambaVL+C' with stage 1 warmed-up InternMam-
baVL, and LoRA-finetuned InternMambaVL-LoRA.

Method Granularity | BLEU [105] | ROUGE [108] | METEOR [107] | CIDEr [106] | Prometheus 2 [110] | MLLM-as-a-Judge [109]

Clip 0.0694 0.2936 0.3099 0.2643 2.1574 2.8561
InernVL2+C' Event 0.0903 0.3014 0.3081 0.8206 1.7762 23141

Video 0.0996 0.2852 0.2800 0.8817 1.6549 22573

Clip 0.0220 0.1759 0.2389 0.0396 2.3260 2.9396
InternVL2 [91]  Event 0.0058 0.1203 0.1894 0.0115 1.8583 2.7126

Video 0.0057 0.1229 0.1796 0.0080 17581 2.7123

Clip 0.1060 0.3216 0.3540 0.4135 2.2848 2.9899
Holmes-VAU [15] Event 0.0682 0.2732 03019 0.5036 2.3770 2.9208

Video 0.0643 0.2548 0.2657 04723 21935 2.9246

TABLE 3: Evaluation of anomaly reasoning and prompt sensitivity for InternVL2+C and its corresponding baselines
on the HIVAU-70k dataset [18] using paraphrased prompts. “+C” denotes the integration of instance-conditional context
tokens into the model. Results are reported across traditional and model-based evaluation metrics and at multiple granularities
to assess both the robustness of anomaly reasoning and the models’ sensitivity to variations in prompt wording, with higher

scores indicating better anomaly understanding.

Method Granularity | BLEU [105] | ROUGE [108] | METEOR [107] | CIDEr [106] | Prometheus 2 [110] | MLLM-as-a-Judge [109]

Clip 0.0219 0.2083 0.2300 0.0775 2.0471 1.8177
InterMambaVL+C Event 0.0123 0.1651 0.2069 0.1195 17779 21417

Video 0.0153 0.1587 0.1858 0.0901 1.6960 20516

Clip 0.0079 0.1132 0.1404 0.0196 14621 17044
InternMambaVL Event 0.0015 0.0881 0.0953 0.0505 12674 1.6364

Video 0.0018 0.0826 0.0884 0.0364 1.1738 1.6395

Clip 0.0351 0.2277 0.2723 0.1073 2.1701 20792
InternMambaVL-LoRA Event 0.0422 0.2041 0.2365 0.3704 1.7589 1.9696

Video 0.0449 0.2014 0.2202 0.3896 1.6859 1.9578

TABLE 4: Evaluation of anomaly reasoning and prompt sensitivity for InternMambaVL+C' and its corresponding
baselines on the HIVAU-70k dataset [18] using paraphrased prompts. “+C” denotes the integration of instance-
conditional context tokens into the model. Results are reported across traditional and model-based evaluation metrics and at
multiple granularities to assess both the robustness of anomaly reasoning and the models’ sensitivity to variations in prompt
wording, with higher scores indicating better anomaly understanding.
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Figure 4: Performance comparison of InternVL2+C' and InternMambaVL+-C with their respective LoRA-finetuned
versions on the HIVAU-70k dataset [18] and its paraphrased variant. “4+C” denotes the integration of instance-
conditional context tokens into the model. Results are reported across all metrics to evaluate both anomaly reasoning
performance and sensitivity to prompt variations, with higher scores indicating better anomaly understanding.

Results for InternVL2 MLLM. As shown in Table 3,
the results observed in the previous subsection, where the
Holmes-VAU outperforms all other models with every met-
ric, has shifted. This change can be attributed to the fine-
tuned model’s high sensitivity to prompts, which is clearly
reflected in the results.

For this dataset, the noticeable discrepancy between
model-based and traditional text generation metrics persists.
Specifically, when the text generation metrics improve, the
model-based metrics tend to decrease. Interestingly, both
the event and video granularities perform best with the
InternVL2+-C model, which integrates instance-conditional
context tokens. In contrast, the clip granularity performs best
with the Holmes-VAU model. This is likely because clip
granularity focuses solely on the simpler caption question
type, as well as the dominance of clips in the dataset com-

pared to other granularities. The divergence between model-
based and traditional metrics is most apparent at this granu-
larity. According to model-based metrics, the InternVL2+C'
performs similarly to both InternVL2 and Holmes-VAU.
However, traditional metrics show that InternVL2+C' out-
performs InternVL2, but still lags behind Holmes-VAU.

A clear illustration of Holmes-VAU’s sensitivity, com-
pared to InternVL24-C, can be seen in Fig. 4a. There,
the traditional metrics reveal a significant score decrease
between the paraphrased and original data, while the
InternVL2+4-C' model remains stable and consistent across
all metrics.

Results for InternMambaVL MLLM. As shown in Ta-
ble 4, the performance of InternMambaVL-LoRA drops
significantly when tested with paraphrased prompts com-



Method | BLEU [105] | ROUGE [108] | METEOR [107] | CIDEr [106] | Prometheus 2 [110] | MLLM-as-a-Judge [109]
InternVL2+-C 0.0027 0.1582 0.1589 0.0510 15184 2.5476
InternVL2 [91] 0.0045 0.1693 0.2182 0.0099 2.8698 3.5935
Holmes-VAU [18] | 0.0005 0.1438 0.0946 0.0128 1.5050 2.4972

TABLE 5: Evaluation of anomaly reasoning and domain generalization for InternVL2+C' and its corresponding
baselines on the HAWK dataset [17]. “4+C” denotes the integration of instance-conditional context tokens into the model.
Results are reported across traditional and model-based evaluation metrics to assess the anomaly reasoning and the capability
of the domain generalization, with higher scores indicating better anomaly understanding.

Method | BLEU [105] | ROUGE [108] | METEOR [107] | CIDEr [106] | Prometheus 2 [110] | MLLM-as-a-Judge [109]
InternVL2+C 0.0012 0.1408 0.1637 0.0299 1.4733 2.0777
InternVL2 [91] 0.0007 0.0632 0.1250 0.0000 2.2517 2.8517
Holmes-VAU [18] |  0.0013 0.1365 0.1257 0.0183 1.8297 2.3354

TABLE 6: Evaluation of anomaly reasoning and domain generalization for InternVL2+C and its corresponding

baselines on the CUVA dataset [

]. “4+C” denotes the integration of instance-conditional context tokens into the model.

Results are reported across traditional and model-based evaluation metrics to assess the anomaly reasoning and the capability
of the domain generalization, with higher scores indicating better anomaly understanding.

pared to the original test prompts. In contrast, as seen in
Fig. 4b, the InternMambaVL+C model demonstrates more
consistent results. Moreover, InternMambaVL+C' outper-
forms InternMambaVL-LoRA in model-based metrics for
both event and video granularities. Although the perfor-
mance of InternMambaVL+C was suboptimal for anomaly
reasoning for the downstream dataset, as discussed in the
previous subsection, it shows greater consistency across the
paraphrased dataset. This suggests that InternMambaVL-
LoRA, like the other LoRA finetuned model Holmes-VAU,
is sensitive to prompt variations.

In this benchmark, the stable performance of
InternMambaVL+C' and the fluctuating performance
of InternMambaVL-LoRA lead to InternMambaVL+C
performing closer to InternMambaVL-LoRA than to the
base InternMambaVL. Again, the poor performance of
InternMambaVL is due to its lack of a well-aligned general
knowledge base, which disrupts its overall performance.

6.3. Domain Generalization

Generalization to out-of-distribution data is critical for
machine learning models to function reliably in real-world
settings, where distributional shifts are common [112]. Un-
like humans, who adapt quickly to new or unseen conditions,
machine learning models often struggle with such scenarios.

In previous subsections, we observed that including
instance-conditional context vectors enables models to retain
their general knowledge while improving their anomaly
understanding. This setup also shows greater robustness to
changes in prompts compared to finetuned baselines.

To assess whether this combination of general knowl-
edge preservation and anomaly-aware context tokens trans-
fer effectively to other anomaly understanding datasets, we
evaluate on the test splits of the HAWK [17] and CUVA
[16] datasets. For CUVA, we use the original test partition,
whereas for HAWK, we retain the anomaly descriptions

and append relevant prompts. Importantly, we exclude the
UCF-Crime subset from HAWK to prevent potential data
leakage, as our models were partially trained on videos
from UCF-Crime. In contrast to the previous subsections,
we exclude the InternMambaVL model from this evaluation.
This decision is based on the observation that the stage 1
warmed-up InternMambaVL, along with its other variants,
lacks sufficiently well-aligned and generalizable knowledge
due to the lack of pre-training on diverse data. Including it
in this comparison could introduce distortions in the results
and complicate the evaluation of generalization to out-of-
distribution anomalies.

As shown in Table 5, the out-of-the-box InternVL2
model outperforms both InternVL2+-C' and Holmes-VAU
across the majority of both traditional and model-based
metrics. Furthermore, InternVL2+C' outperforms Holmes-
VAU across all metrics. These results confirm that adding
instance-conditional context tokens can improve domain
generalization compared to finetuned models. However, the
inclusion of instance-conditional tokens can also mislead
the model in some cases. This may be due to the significant
differences in anomaly types between the datasets: HAWK
(excluding the UCF-Crime subset, as used in our case) fo-
cuses on general, socially unusual, and contextual anomalies
such as loitering, unusual movements, and the presence of
non-pedestrian objects. In contrast, HIVAU-70k [18], on
which the instance-conditional context tokens are trained,
primarily focuses on violence-related anomalies. The gener-
alist InternVL2 model handles this broader range of anoma-
lies better than the version with instance-conditional context
tokens. While there is a limited number of video anomaly
understanding datasets, the experiments conducted on the
HAWK dataset suggest that, overall, instance-conditional
context tokens outperform finetuned models.

For the CUVA dataset (Table 6), InternVL2+C sur-
passes both finetuned Holmes-VAU and out-of-the-box In-



ternVL2 baselines on most traditional metrics. However, for
the model-based metrics, it performs the worst, with the
out-of-the-box InternVL2 achieving the best results. This
further supports the observed bias of model-based metrics
toward the generalist InternVL2 model, regardless of the
dataset it is being evaluated on. The stronger performance
of InternVL2+C' over both finetuned Holmes-VAU and the
base InternVL2 on CUVA may be attributed to CUVA’s
anomaly categories being more closely aligned with those
in HIVAU-70k than with HAWK’s categories.

Taken together, results across both datasets indicate that
instance-conditional context tokens improve domain gener-
alization over finetuned models and, in certain cases, can
even exceed the performance of a strong out-of-the-box
generalist model.

6.4. Anomaly Detection Results

This subsection presents the anomaly detection results
obtained from our experiments and analyzes them. We first
provide the implementation details for the video anomaly
detection task.

Implementation Details. The anomaly scorer is trained
on the UCF-Crime and XD-Violence datasets following the
original settings proposed in [58]. Videos are divided into
100 snippets, and features are extracted and linearly interpo-
lated to this fixed length. Two Conv1D layers with a kernel
size of 1 output feature dimensions of 32 and 16, respec-
tively. Hyperparameters are set to \; = 5 and Ay = 20, with
selection ratios aligned to dataset distributions: p; = 0.1 and
pp = 0.2. Optimization is performed using Adam [ 13] with
a learning rate of le—4 and a weight decay of 5e—5. The
model is trained for 3000 iterations using a mini-batch of 64
normal and abnormal videos. Feature extraction uses 5-crop
augmentation for XD-Violence and 10-crop for UCF-Crime.
All experiments are conducted on an NVIDIA GeForce RTX
2080 Ti GPU.

Evaluation Protocols. We follow established evaluation
protocols to ensure fair comparisons with previous methods.
Specifically, for UCF-Crime, we use the area under the curve
(AUC) of the frame-level receiver operating characteristic
(ROC) curve as the primary metric. For XD-Violence, the
frame-level average precision (AP) is the key metric for
assessment.

Results. We compare our method against state-of-the-art
weakly supervised anomaly detection approaches. The re-
sults are summarized in Table 7. Unlike prior works that
train models separately on UCF-Crime and XD-Violence,
our method is trained on a combined dataset of both,
which introduces significant domain variability. Despite this
challenge, our model achieves an AP of 81.46% for XD-
Violence and an AUC of 84.01% on UCF-Crime, which are
competitive results considering the added complexity from
dataset mixture.

Method Backbone XD-Violence | UCF-Crime
AP/ % AUC/%
RTFM [114] 13D [84] 77.81 84.30
MSL [115] 13D [84] 78.28 85.30
S3R [88] 13D [84] 80.26 85.99
CU-Net [89] 13D [84] 78.74 86.22
MGEN [116] 13D [84] 79.19 86.98
UR-DMU [57] 13D [84] 81.66 86.97
CLIP-TSA [72]  ViT [33] 82.19 87.58
VadCLIP [74] ViT [33] 84.51 88.02
Yang et al. [75]  ViT [33] 83.68 87.79
BN-WVAD [58] 13D [84] 84.93 87.24
BN-WVADT 13D [84] 80.62 83.92
Ours (separate) VideoMamba [28] 82.96 85.91
Ours (combined) VideoMamba [28] 81.46 84.01

TABLE 7: Comparison of video anomaly detection per-
formance under combined and separate training settings
with state-of-the-art weakly supervised methods. “i”
denotes reproduced results.

Our model uses a VideoMamba [28] backbone for fea-
ture extraction, which performs better in the same setup
as the I3D [84] counterpart, as it can be seen from our
reproduced results for BN-WVAD and our separately trained
models results, displayed in Table 7. However, combin-
ing datasets like UCF-Crime and XD-Violence introduces
challenges due to their different video characteristics and
definitions of anomaly. This results in a domain shift and,
consequently, negative transfer, where learning from both
domains interferes with the model’s ability to perform well
on either one individually [117]. The drop in performance
observed when training on the combined dataset compared
to separate training (Table 7) further confirms the negative
effect of domain shift.

6.5. Ablation Study

Context Length. The ablation study on context length
is conducted across all datasets discussed in the previous
subsections. We assess context lengths of 64, 512, and 1024,
with results presented in Fig. 5. The choice of 1024 is based
on its proximity to the average length of input tokens being
fed into the LLM, taking into account both the prompt and
the additional tokens appended during processing, such as
image start and end tokens. To explore how context length
influences performance, we select three values, ranging from
0 to 1024, to cover a broad range. The metrics shown
in the figure are averaged across various granularities. As
demonstrated, a context length of 512 consistently outper-
forms the other settings across most metrics and datasets.
Moreover, it shows the least performance variation when
prompt questions are paraphrased (second setting on the x-
axis), highlighting that it is both the most effective and the
most stable configuration across different datasets.

Instance-Conditional Context Tokens vs Context To-
kens. An ablation study on the instance-conditional network
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Figure 6: Ablation on instance-conditional network (Meta-Net). “+C”, denotes the integration of context tokens into the
model. Results are reported across traditional and model-based metrics and datasets, averaged over all granularities.

(Meta-Net) was conducted across all datasets discussed in
the previous subsections. As shown in Fig. 6, incorporating
instance-conditional context tokens consistently outperforms
the pure context tokens without Meta-Net. The metrics
shown in the figure are averaged across all granularities.
This improvement is noticeable across all evaluation set-
tings, including downstream task performance, prompt sen-
sitivity, and domain generalization. These results suggest
that conditioning context tokens on visual information im-
proves overall model performance in anomaly detection.

Vision Encoder Input Size (T, H, W) | # params | FLOPS
VideoMamba [28] (32, 224, 224) 74M 900G
InternViT [91] (32, 224, 224) 300M 4977G
InternViT [91] (12, 448, 448) 300M 7443G

TABLE 8: Comparison of vision encoders in terms of
computational cost (GFLOPs) and model size (number
of parameters). Lower values indicate faster models.

InternVL2 vs InternMambaVL. An ablation study on
the integration of the VideoMamba vision encoder is con-
ducted by evaluating the performance of InternVL2+C' and
InternMambaVL+C' across all settings discussed in the
previous subsections. As shown in Fig. 7, InternVL2+C
generally outperforms InternMambaVL+C, which is ex-
pected given that InternVL2 benefits from multi-stage and

multi-strategy pre-training, unlike InternMambaVL. How-
ever, a notable observation from the comparison is that
InternMambaVL+C' exhibits more consistent performance
than InternVL2+C, which shows a significant drop in per-
formance for domain generalization task across all metrics,
specifically when transitioning from standard downstream
tasks to the HAWK and CUVA datasets. This may be
associated with InternMambaVL’s use of 32 input frames,
providing richer temporal information than InternVL2.

Another advantage of InternMambaVL lies in its effi-
ciency. Despite VideoMamba having a fixed large tempo-
ral size, it is significantly lighter than InternViT. This is
illustrated in Table 8, where the training configurations for
InternMambaVL+C' and InternVL2+4-C' correspond to the
first and third rows, respectively. Notably, the vision encoder
in InternMambaVL is over eight times more computationally
efficient than that of InternVL2.

7. Conclusion

Our research tackles key challenges in adapting large
pre-trained multi-modal large language models to down-
stream tasks such as video anomaly understanding (VAU).
Although foundation models have demonstrated impressive
generalization capabilities across both vision and language
domains [11, 12,13, 14, 15], their deployment in critical ap-
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+C”, denotes the integration of context tokens into the model.

Results are reported across traditional and model-based metrics and datasets, averaged over all granularities.

plications like VAU is slowed down by high computational
demands and sensitivity to prompt formulation. Instruction-
tuning is often required for such adaptations and it can
introduce over-reliance on specific prompt formats, cause
reduced generalizability, and even catastrophic forgetting.

To address these limitations, we propose a parameter-
efficient and computationally practical adaptation frame-
work for MLLM-based VAU. Building on the success of
dual-encoder vision-language models for prompt learning
[22,23,25], we introduce a learnable, instance-conditional
context tokens design. These tokens are appended to user in-
structions and help minimize prompt sensitivity and overfit-
ting, and maintain the foundational model’s general knowl-
edge. Our approach avoids full or partial model finetuning
of the core model and improves robustness across domains,
datasets, and previously unseen anomaly types.

Additionally, by integrating a lightweight vision encoder
VideoMamba [28] we reduce the computational overhead
substantially, achieving a favorable balance between perfor-
mance and efficiency.

Limitations and Future Work. A key limitation of our
approach lies in training efficiency. For instance, in In-
ternVL2 [91], the variable number of video frames per
input constrains the batch size to one, which complicates
training due to inconsistent temporal dimensions of visual
inputs. InternMambaVL overcomes this issue, as the visual
backbone of VideoMamba [28] enforces a fixed temporal
size, making a mini-batch training possible.

Another limitation is that InternMambaVL lacks the
broad general knowledge embedded in InternVL2, primar-
ily because it does not undergo multi-stage pre-training
on large-scale datasets. Future work could address this by
conducting comprehensive video understanding pre-training
on InternMambaVL, following the strategies used for In-
ternVL2 [91], InternVL2.5 [15], or leveraging large video-
text datasets such as WebVid [68] or Valley [69]. Moreover,
an interesting direction would be to construct a fully state
space model-based MLLM by replacing InternLM?2 [90] in
InternMambaVL with the Mamba language model [34], and,
again having a vast pre-training. Such a design could signif-
icantly improve efficiency over transformer-based MLLMs,

making real-time usage of MLLMs more viable.

Finally, while instance-conditional context tokens en-
hance domain generalization compared to models finetuned
solely on related downstream tasks, their performance can
still lag behind their respective out-of-the-box models that
do not use context tokens. This indicates potential overfitting
to the downstream dataset and limited generalization in
anomaly understanding. To address this issue, one promising
direction is to regulate learned prompts by maximizing the
agreement between prompted and frozen MLLMs (Mutual
Agreement Maximization), as introduced in [83]. This can
be achieved by introducing a regularization term in the
training loss that minimizes the distance between the outputs
of the frozen MLLM and the prompted MLLM, preventing
the model with context tokens from drift too far from the
generalist model. Another complementary direction is to
replace mean pooling before the Meta-Net with explicit
spatio-temporal modeling, such as incorporating a 3D con-
volution layer [118] to serve as a more expressive spatio-
temporal aggregator. This modification can improve the
Meta-Net’s spatio-temporal comprehension and result in a
more informative outputs from this model. Addressing these
limitations is crucial for improving anomaly understanding
and achieving robust generalization across diverse anomaly

types.
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