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Abstract

HasHi, or BripGES, is a logical puzzle. Bridges must be placed to connect the islands in the
puzzle. Islands indicate how many bridges should be attached to them, and all islands must
be connected together. This offers an intriguing challenge different from grid-based puzzles,
which are more common. The main focus is on providing a generalised version of the puzzle,
multiple solving techniques, a classification and ways to generate puzzles.
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1 Introduction

Imagine a group of islands close together. People using boats to get around from one island to
another. Yet, this is becoming inconvenient with the rising number of travelers between the islands.
That’s why each island got together teams of builders to build bridges. To build a bridge between
two islands, both islands need a team. Each team can only focus on one bridge. You are the one
designer. Try to connect all the islands. All teams of builders need to be put to work. If only there
was someone to help solve this puzzle.

This bachelor thesis will focus on the Hasur (Hashiwokakero) puzzle genre!, also known as BRIDGES
or BUILDING BRIDGES. HaAsHI is an intriguing and purely logical puzzle genre. One with numerous
unanswered research questions. Its solutions are not made up of placed symbols, like in a grid-based
puzzle genre. Instead, elements of the puzzle must be connected to reach a solution. The HasHr
puzzle genre is discussed in many sources. Almost all in the form of a description with unnecessary
extra wording. Therefore, this thesis provides its own version. All story is left out with the goal
to have concise rules. These rules are also separated in the smallest sentences. This will make it
easier to generalise upon.

1.1 Hashi definition

Hashi is a genre of puzzles. These all share the same type of input and identical objective. The
input is what is presented to the solver. The objectives are what the solver must accomplish.
Any output where all objectives are accomplished is a solution. Solvable puzzles have at least one
solution. Uniquely solvable puzzles have exactly one solution. The input of an instance of HasHi
is often represented on a rectangular grid of any size and contains the following elements:

o Grid intersections may contain islands.
o All islands contain a number.
o Numbers range from 1 through 8.
The objective is to place bridges such that the following constraints are met.
o Pairs of distinct islands share 0, 1, or 2 bridges.
e Bridges are oriented horizontally or vertically.
e Bridges do not cross other bridges or islands.
e The number of bridges attached to each island must equal the island’s number.
o All islands and bridges must form a single connected component.
There is a rule for what a connected component is.

o Distinct islands sharing at least one bridge are called connected.

'When mentioning HasHi, it means the whole type of puzzles, not some instance(s) of it. For the latter, HasHi
puzzle instance will be used. Hasur and instance might be left out. Those words are implied. An example HasHi
puzzle instance is on the titlepage.



o Distinct islands being connected is a transitive property.

e In a connected component, any two distinct islands are connected.

1.2 Thesis goals

This thesis will address the following key objectives:

o Expand the HasHr puzzle genre with generalisations, allowing more freedom in creating
puzzles.

» Develop separate solving techniques that, through combined efforts, solve puzzles.
« Develop a puzzle difficulty classification system based on subsets of needed solving techniques.
» Generate uniquely solvable puzzles.

These key objectives address both theoretical and practical aspects of the HasHi puzzle genre. They
will contribute to the broader field of puzzle-solving algorithms. Generalising the puzzle definition
to allow for novel variants introduces originality and expands the scope of the classic HasHI puzzle
genre. Human solving tricks will form a basis on how the computer might find solutions with
a more general solving method. In this way, the research builds upon existing knowledge, while
aiming to uncover novel insights into possible solving techniques. Classifying the puzzle difficulty
based on these solving techniques can increase understanding of the complexity of puzzles. It also
provides a framework for future studies aiming to generate puzzles by difficulty group or scale.
Lastly, developing a method to generate uniquely solvable instances ensures practical relevance. It
offers tools for use in educational or recreational contexts. Overall, these objectives are relevant,
original, and build upon established research, making them a valuable contribution to the field.

1.3 Research questions
The main research question is

How can generalising, solving, classifying, and generating instances of Haswr be realised?
A subdivision into multiple questions is made.

o How can the HasHr definition be generalised to allow variants of Hasui that can be solved
with generalised or new methods?

— Which conditions in the Hashr definition can be relaxed? Are they interesting?
— Which additions to the Hasnr definition introduce more possible restrictions?
— What consequences do relaxations of and additions to the definition have on solving?

o Which solving techniques can be used for solving HasHi1?

— Which different solving techniques or tricks do humans use on HasHi?

— Based on which puzzle information can be determined that two distinct islands must
necessarily be connected by some number of bridges or cannot be connected?

— Can any puzzle be solved, considering only local solving techniques, only local and
global techniques, or will a method like backtracking be unavoidable?



o (How) can puzzles be classified by difficulty using subsets of solving techniques?

— How can solving techniques be separated to function on their own towards a (partly)
solved puzzle?

— How powerful is each solving technique?

— Can logic be found in the difficulty classification of HasH1 puzzle sources, or might it
be human assigned?

o How can uniquely solvable instances for HasHur be generated?

— How can solvable instances for HasHr be generated?
— How and when can it be validated that an instance has a unique solution?
— (How) can it be ensured that any allowed puzzle might be generated?

1.4 Thesis overview

The HasHri puzzle genre was introduced in Section 1 along with formulating the thesis goals and
reasearch questions Some related work will be discussed in Section 2. The main part of this thesis
will then consist of four parts. First will be shown how the puzzle genre can be generalised in
Section 3. Then how puzzles can be solved using a combination of multiple techniques in Section 4.
How different puzzles can be classified will be shown in Section 5. Furthermore, methods of gener-
ating puzzles will be discussed in Section 6. Lastly, some experiments are presented in Section 7
and conclusions and future research in Section 8.

This bachelor thesis is authorised by the LIACS and MI departments of Leiden University and
supervised by Jeannette de Graaf (LIACS) and Floske Spieksma (MI).

2 Related Work

The HasHr puzzle is a logical puzzle, thus belonging to single-player combinatorial game theory
in mathematics. Logical puzzles have long interested researchers due to their potential to enhance
critical thinking and problem-solving skills | , |. A deep understanding of a puzzle’s
type is essential not only for solving existing puzzles, but also for generating new puzzles, preferably
uniquely solvable and interesting. While some logical puzzles like Sudoku and its variants have
been extensively covered by previous work, enough opportunity remains to explore other types of
puzzles.

There is some previous work on Hashi. This thesis takes a step forward on what was previously
accomplished, thereby contributing mutually to the broader field of study. Knowledge used from
previous work is limited to the knowledge used to compare techniques against each other. The
reason being the use of different techniques, besides human techniques that are common knowledge
known by puzzlers. The generalisation also takes a different spin on Hashi that is different from
anything that was done before. Previous work on HasHI sometimes contains descriptions of a
few human techniques, like a bachelor thesis by T. Morsink and another work by Malik et al.
[ , |. Both of these also include a version of backtracking that is not guaranteed to
solve any HasH1 puzzle. The first one includes another method where puzzles are transformed to
an input of an external form of SAT solver and a method to generate solvable puzzles not always



having unique solutions. Human techniques can also be found on Wikipedia | ]. Another work
focuses on mathematical restrictions, performs a branch-cut backtracking algorithm that solves any
puzzle, and also generates solvable puzzles not always having unique solutions | |. It has
also been proven that Hasur is NP complete [ .

Some previous bachelor theses in Leiden are similar to this one in that they solve and generate
logical puzzles. There is one from Gerhard van der Knijf on solving and generating puzzles with
connectivity constraints in general | ], one from Hanna Straathof on the Kuroshuto puzzle
[ ], one from Casper Jol on the Marupeke puzzle | |, finally, one from Rob Mourits on the
Nurimeizu puzzle | ]. There are many more. However, since these are about different puzzle
genres, they only serve as examples of how a thesis about puzzles can be useful to the field.

3 Generalising

From the clearly separated rule set in the HasHr definition, it is easy to take a critical look at every
rule. If they might limit the puzzle in some way, it can be generalised. The next definition will
provide an intuitive generalisation for every rule in the classic definition, if there is any.

Generalised Hashi definition

The input of an instance of generalised HasH1 contains the following elements:

« A graph G = (V, E) of any size.

Two natural numbers, M and k.

An indicator function cross : E* — {0,1}.

The nodes in set V' represent islands.

All islands contain a natural number.

The objective is to place bridges such that the following constraints are met.

Pairs of distinct islands share up to at most M bridges.

Bridges can only be placed on graph edges.

Bridges must not cross other bridges: z,y € E cannot both have bridges for cross(z,y) = 1.

The number of bridges attached to each island must equal the island’s number.

All islands and bridges must form k connected components.
The defintion of a connected component is as provided in the HasH1 definition in Section 1.1.

The key correspondences between these definitions include the use of bridges and islands with
numbers. It includes the fact that distinct islands sharing at least one bridge are connected and
that the number of bridges attached to each island must equal the island’s number. Apparently
these form the core concept of this puzzle genre.



The key difference is that a general graph is used instead of being limited to a rectangular grid. This
works well, because the core concept of this puzzle does not rely on the rectangular grid structure to
begin with. The added value of the rectangular grid is in keeping it simple and easy to understand
and visualise. While generalising, however, it is not important anymore. This difference introduces
several things to address. Firstly, the rectangular concept of orientation is lost. Therefore, the rule
forcing horizontal and vertical bridges is replaced by allowing bridges only on graph edges. This
leaves full freedom to the puzzle instance maker, since the graph, including its edges, is chosen.
Secondly, the planar structure and thus the original meaning of crossing are also lost. The most
elegant solution to this is simply explicitly defining which graph edges are or are not crossing
instead. This is done with an indicator function

cross : B* — {0,1}

cross(z,y) = {

1 if z,y € E cannot both have bridges, since those bridges would cross

0 if x,y € E can both have bridges, since those bridges would not cross

The function is part of the puzzle instance, again leaving it completely to the puzzle instance
maker. This function is necessary to be able to let classic HasH1 puzzles also satisfy the rules of
generalised HasHi. In that case, the function is not up to the puzzle maker, but decided upon the
spatial locations of islands. Any two edges x,y € E with cross(z,y) = 1 are called a conflict edge
pair, since there is a conflict if both edges would contain a bridge. The edges that form a conflict
edge pair with another edge are called conflict edges of that edge. Lastly, the graph structure
removes the upper bound of only four other islands to possibly share a bridge with. Before, islands
could only share bridges with the closest island to the north, south, east, and west, if there was
one. As a result, together with the maximum of 2 bridges shared by a pair of islands, the number
of an island was limited to 1 through 8. For generalised Hasui, numbers above 8 can naturally be
allowed. This was not possible before. Of course,e number is still limited by the graph size and
its specific edges. However, the graph size itself may be arbitrarily large and the edges arbitrarily
chosen.

Introducing the graph generalised concepts and meanings. The other generalisations introduce
parameters to replace fixed numerals. The maximum of 2 bridges shared by a pair of islands is
replaced by M bridges. Instead of forming 1 connected component, & components must be formed.
Allowing up to M bridges for a chosen M also removes the upper bound on island numbers, just
like the graph structure did. Because there is no upper bound on the number that islands can have
anymore, there is no need to specify which range of numbers is allowed, like in the classic HasHi
definition. However, some subtlety arises with just leaving out the range. While it is clear the
numbers are not negative, nothing prevents them from being 0. However, in the original definition,
islands with number 0 are indeed excluded. After all, such an island can never be connected to
any other island. Therefore, will always form an additional connected component of its own and
therefore removing any possible solution. Ways to deal with this issue include the following

 Still banning 0’s by definition, like in the original definition.
o Workaround by saying 0’s are excluded from the connected component rule.

o Ask for k components by definition. This allows up to £ — 1 0’s as a natural part of solvable
puzzles.



Here, the last one is by far the best option. It is more general than banning 0, it does not use a
workaround for a specific number. Furthermore, besides solving the issue, it is a valuable generali-
sation on its own.

The key takeaway is that while simplicity and some structure is lost, the general definition allows
any classic puzzles and many more. Any puzzle satisfying the original definition can be modelled
as a puzzle satisfying the general definition. This is exactly what a generalisation should do. For
any classic Hasa1 puzzle, a graph can be constructed. It will have edges between islands that were
located next to each other without islands in between. Classic Hasur uses M = 2 and k& = 1.
Together with the structure of this constructed graph, this forces the island’s numbers to be
between 1 and 8, which they indeed are. The cross function can be made such that it aligns with
the spatial meaning of crossing, like in the classic HasHr definition. Therefore, this is a successful
generalisation. Note that for the rest of this thesis, k is assumed to be 1. Solving puzzles where
this is not the case will be discussed in Section 8, along with other future research possibilities.



Example

Figure 1: A generalised HasHr puzzle instance with M = 4, to show an example of what it might
look like.

Figure 1 is a picture output of a puzzle, generated by the second generalised puzzle generator that
will be described in Section 6. For this puzzle, the global maximum number of bridges is 4. In
ilsand with number 7 in the right bottom corner, with only two edges, shows that edges having 4
bridges need to exist in a solution. This example also shows non-horizontal and non-vertical edges.
Because the bridges are placed on these graph edges, instead of purely horizontal and vertical, a
node can have more than 4 edges. This can be seen on the middle left, the island with number 23.
More edges means that the number can be even higher. It might look like this puzzle has no or
multiple solutions if one tries to solve it by hand. However, that is because the conflict edge pairs
are not properly shown in this picture. Note that if lines are crossing, that does not mean those
edges are crossing. It is just the way the graph was projected on 2D. The actual conflict edge pairs
that make this puzzle uniquely solvable are invisible on the picture.
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4 Solving

To solve HasHi, a solving method is constructed using multiple solving techniques?. All are in-
dividually able to deduce where bridges need to be or other information, progressing the puzzle
towards a solution. All of them have their own strengths, limitations and scenarios where they
deduce something resulting in progress. For HasHi, a distinction exists between solving techniques
using local and global information.

Local information is found close around a specific node or edge. Formally, a reference to the edges
of a node or nodes sharing an edge is followed no more than ¢ € N times before the information
is retrieved. For any local technique, ¢ is known in advance, regardless of the puzzle size. Two
examples are given. Note that each edge stores its own maximum number of bridges. Let’s imagine
a local technique only using the number of a node itself and the information gathered from the
edges attached to that node. To do this, only ¢ = 1 reference is needed to access all required
information. Therefore, the technique only using this information is a local technique. Another
local technique might need to know all edges unable to have a bridge when some specific edge has
gained a bridge. These can be stored as a list of other edges for every edge, only needing t = 1
reference so far. However, if from those edges, their nodes and the edges attached to these nodes
need to be looked at, that technique would have ¢ = 3. The first example relates to the Degree of
freedom technique in Section 4.1 and the second example to the simplifying technique Reducing
prevented edges in Section 4.2.

Global information includes looking at an unknown number of nodes and edges. For example,
a technique that aims to find a whole connected component. The number of references will be
dependent on how big the component is, thus on the puzzle size. There is no fixed ¢ € N such
that the number of references will stay below ¢ regardless of the puzzle size, while executing this
technique on one component. Local information can always be accessed in fixed time, no matter
how big the puzzle instance is. Global information cannot. This makes techniques using only local
information much cheaper.

For this reason, a solving method combining all techniques was constructed in such a way that
techniques using local information are always prioritised. Other techniques are only used when
local techniques cannot progress the puzzle anymore.

Some explanation is given on what to expect from the solving techniques, with regard to classic
versus generalised HasHi. Most of the techniques will work correctly for any classic or generalised
puzzle, regardless of how many solutions there are or what value of M or k they might have.
Some exceptions are the following. The external human techniques from Section 4.1.1 only work
for classic HasHi, since they assume M = 2, k = 1 and islands only having up to 4 neighbours to
share bridges with. These human techniques have no chance of finding multiple solutions if there
are more than 1. Next, the local connectivity technique from Section 4.1.2 assumes k£ = 1. This
means it will work incorrectly when this technique is still used on a puzzle with k # 1. The global
techniques from Section 4.3 assume k£ = 1 as well. They too rely on the connectivity constraint
from the classic Hasnr definition. All islands and bridges must form a single connected component.
Future research could provide adapted or other techniques in these last two cases. Otherwise these

2A solving technique is simply a technique that helps progress while solving, a solving method is a method that
will be able to solve puzzles on its own.



techniques could simply not be used when the solver comes across a puzzle with k # 1. Note that
the main focus of the combined solver of this thesis is on solving generalised puzzles with any
kind of graph, thus allowing more than 4 neighbouring nodes to share bridges with and alternative
definitions of which bridges cross. Allowing any kind of M is an extension that can be supported by
the solver relatively naturally when generalising techniques to be independent of exact numbers.
As such, it remains close to the thesis objectives and has been focussed on as well. The input
parameter k, however, is mainly included out of completeness and as an idea for future research,
since it will alter solving techniques quite a bit, not staying close to the research of this thesis.

First some local solving techniques are given. These will include human techniques described in
other sources. Some more techniques will be shown to simplify the puzzle. This is done by not
looking at solved or conflicting parts anymore. Then the more complex techniques that use global
information will be discussed. After that, backtracking will be discussed and finally two theorems
on puzzles not having exactly one solution.

4.1 Local solving techniques

A definition and theorem will be provided for a powerful technique to locally deduce where some
bridges need to be. The intuition here will be that a specific number of bridges must be placed
somewhere, because if they are not, the number of bridges still to be placed is strictly higher than
how many can still be placed elsewhere. Another perspective is supposing all possible positions
except one have their maximum allowed number of bridges. The leftovers then need to be placed
at the one possible position left.

Definition 1 (Degree of freedom technique). Take any (possibly uniquely solvable) instance of
Hasur with at least an island .

(a) Let n; be the number assigned to island i.
(b) Let S; be the collection of islands that can potentially share a bridge with i.

(¢) Let M;; be a mazimum number of bridges that can be placed between islands i and j, such that
we can prove or have proved that no valid solution can have strictly more than M;; bridges
shared between i and j. In an implementation the value of M;; will change as the puzzle
progresses towards a solution.

(d) Let C;:= ) M;; be the mazimum total number of bridges that can be attached to island i.
JES;

Now define the degree of freedom as DoF; := C; — n;. So the difference between how many
bridges there can be and how many there need to be at island i.

Theorem 1 (Degree of freedom technique). Any valid solution must have at least M;; — DoF;
bridges shared by islands © and j, for every j € .S;.

Proof. Let j € S. Suppose islands ¢ and j share strictly less than M;; — DoF; bridges in a valid
solution, say M;; — DoF; — k, k > 0. Then we have that

ni—Mij+D0Fi+k:=ni—Mij+C'i—ni—i—k:C’i—MZj—i—k>C’Z»—Mij.



The left hand side is the remaining number of bridges island ¢ needs besides the bridges shared
between islands i and j. The right hand side is the maximum total number of bridges where 7 is
one of the islands the bridges connect besides the bridges shared between islands ¢ and j. The fact
that this left hand side is strictly greater than the right means that we have more bridges to add
then positions where we can add them. This makes it impossible to arrive at a valid solution that
has strictly less than M;; — Dok} bridges shared between islands 7 and j. O

Intuitively one can say that we place M;; — DoF; bridges shared between i and j (for every j € S)
because if we place as many bridges as we can somewhere besides shared with j, then we still
need to place the remaining M;; — DoF; bridges, which can only be shared between i and j.
Algorithmically, the technique works like described in Algorithm 1.

Algorithm 1: Degree of Freedom
Let e;; be the current number of bridges shared between islands ¢ and j;
Pop an island ¢ from the queue;
Progress < False;
JES;
for j € S; do
if Mz‘j — DoF; > €ij then
€ij Mij — DOFZ,
Progress < T'rue;
end

end
Return Progress;

4.1.1 Human techniques

The degree of freedom technique was made baed on research on human techniques to solve HasHi
puzzles. More specifically, what they lack and how an algorithm can be made that makes as little
assumptions as feasible. Here, human techniques understood to be techniques used and known by
average puzzlers. These include specific patterns easily spotted by humans. The degree of freedom
technique is more general and ecompasses all following useful human techniques, making them no
longer needed for solving. Yet, it is still useful to touch upon these human techniques. Comparing
them shows that for some specific patterns the degree of freedom technique will yield the same
result as one of the human techniques. None of the techniques in this subsection will be proven
to be correct since all of the correct techniques are encompassed by the technique in the previous
subesection and the one in the following subsection. These human techniques will also be useful for
an experiment in Section 7. The solving strength of human techniques from two external sources
will be compared against the combined solving method of this thesis. Note that it is hard to get
exactly correct how these sources would have implemented what they say, but an attempt was
made.

Staying close to the wording and meaning of the previous works, some human techniques are as
follows. On Wikipedia some human techniques are described quite clear | .

10



An island showing ‘3’ in a corner, ‘5" along the outside edge, or ‘7’ anywhere must have at
least one bridge radiating from it in each valid direction.

A ‘4’ in a corner, ‘6’ along the border, or ‘8’ anywhere must have two bridges in each direction.

This can be generalized as added bridges obstruct routes: a ‘3’ that can only be travelled
from vertically must have at least one bridge each for up and down, for example.

Two islands with number 1 can only share a bridge if this is the complete solution.

For the work by Malik et al. | |, more interpretation is needed as there is little to no
description of the techniques and one specific example for each.

o Connect an island with its neighbours when the number of bridges owned by the island is
the same as the number of bridges that can be placed.

— Only an example of a ‘4’ in a corner is given and that there need to be 2 bridges is
only mentioned in that specific example. Yet, for experimental purposes, all other such
cases have been assumed to be correctly included as well. So for any ‘2’) ‘6’ or ‘8" with
1, 3 or 6 neighbours, 2 bridges will be placed towards all neighbours.

o Connect an island with its neighbours when there is only one neighbour island near the island
with the rest of the weight of one.

o When there is a ‘3’ that can only reach two other islands, and one has only a number 1, one
bridge must be placed to that island and 2 bridges to the other island.

o Connect an island with its neighbours if the island has a weight of N and the number of
neighbouring islands is N, with (N — 1) neighbours have a weight / remaining weight = 1,
then build a bridge from the island with neighbours who do not have a remaining weight of
1.

— Here it would be useful to know what exactly they mean with neighbours. If nodes with
remaining weight 0 are still considered neighbours or not. This is not specified, and
no mention of not looking at already solved islands exists. Therefore, neighbours are
assumed to still include ones with remaining weight 0.

— Also, for the neighbours the word 'remaining’ is specifically added. For the island it just
says 'weigth’ seemingly implying the original weigth of the starting puzzle. However,
that interpretation seems contradictory to the example which shows only one neighbour
with remaining weight 1, while the original weight of the island is 4 and has two bridges
already.

— Regardless of which way to interpret the things above, this technique will place bridges
where they should not. Therefore, this technique, as it is written, is wrong. Thus, it is not
used in the comparison. The problem lies in the island possibly already sharing bridges
with its neighbours which also counts towards neighbours possibly having remaining
weight 1.

o If two islands with weight one are connected, then the two islands will become isolated.
Therefore, these islands must be connected with other islands instead.

11



— Nothing is said about these islands possibly being the only two islands of a puzzle.

4.1.2 Local connectivity

All techniques so far but one have not touched upon the connectivity constraint. One human
technique that does not use global information does this. This is the technique about not placing a
bridge between two islands with number 1. Unless these two islands are the entire puzzle, in which
case placing 1 bridge between them is the unique solution. Suppose two islands with number 1
are sharing a bridge. They will both not share any other bridges, because that would violate the
definition saying the number of bridges attached to each island must equal the island’s number.
This means, however, that these two islands will never be able to form a connected component
with any other islands. Because that would require at least one bridge to be shared between one of
those islands and another island. Therefore, to have a valid solution where two islands with number
1 share a bridge, these two islands must be all islands. Since the definition states all islands and
bridges must form a single connected component.

This existing technique is, in essence, another special case. It can be generalised along with the
generalisation of the HasHi definition with M. For example, suppose two islands having number
2 share 2 bridges. Just like the previous case, they will not be able to share any other bridges.
Therefore, the same argument applies. Thus, only in a puzzle where two islands having number 2
are the only two islands, may they share 2 bridges. Otherwise, they can share a bridge, just not
two. In general, when 2 is not a global maximum number of bridges, the following can be said.

Theorem 2. Two number m islands can share up to m — 1 bridges, unless they are all islands.

Proof. Note that if an island with number m shares more than m bridges with another island, it
can never be part of a valid solution. The number of bridges attached to each island must equal
the island’s number, not be more. This applies even if those two islands are all islands.

Suppose a solution exists where two number m islands share m bridges. From the definition, the
number of bridges attached to each island must equal the island’s number. Therefore, the islands
may not share any bridges with any other islands. This means those two islands are connected
with each other, but not with any other islands. However, because all islands and bridges must
form a single connected component, these two islands must be all islands, since a valid solution
was assumed. [

The local connectivity constraint can be neatly tied into the degree of freedom technique. This will
use the convenient nature of the degree of freedom technique. Using a specific maximum number
of bridges for each edge allows for any other technique to insert a lower maximum. This means
all information from the result of Theorem 2 can be used seemlessly by the degree of freedom
technique. Any bridge that can be deducted because of the local connectivity constraint, can then
also be deducted by the degree of freedom technique. That is, if the values for the maximum
number of bridges for specific edges are set in a special way. This can be done by going through
all edges only once. For every edge between nodes that share the same number m, the maximum
number of bridges can be set to the minimum of the global maximum and m — 1.

12



Since specific maximum numbers of bridges are being set at the start already, more known infor-
mation can be inserted. Any maximum number of bridges must also not be higher than either
island’s number. Though the coming simplifying techniques will dynamically encompass this as
well. So at best doing this at the start will reduce solving time.

The maximum number of bridges are set once at the start by Algorithm 2. This makes sure any
information known from the local connectivity constraint is used while executing the degree of
freedom technique for the rest of the solve. This makes another separate technique for the local
connectivity constraint obsolete.

Algorithm 2: Smartly setting max bridges

for edges do
edge specific max bridges = min(global max bridges, first island’s number, second
island’s number —1 4), A = island’s numbers are equal;
end

4.2 Simplifying techniques

Note that no solving technique needs to consider parts of the puzzle that necessarily must be solved
in a known way. As such, the puzzle can be reduced to only the part that still needs solving. For
Hashi, we split off the possible positions for bridges, where the exact number of bridges in any
possible solution is known. These edges will remain in a separate list that is not considered for
progressing the puzzle. For any node, all edges that have not been put in the separate list are called
the active edges of that node. There are two main cases when the number of bridges for an edge
can become known. The first is when an edge is known to have at least one bridge. Therefore, any
edge that cannot have a bridge at the same time as that edge should contain exactly 0 bridges and
never needs to be considered again. The second is when it becomes known that an edge requires
another bridge and then it reaches the maximum number of bridges for to that edge. Reaching
this maximum might mean that an adjacent island has reached its designated number of bridges,
for example. All that island’s active bridges can then be put in the separate list and the island will
be called satisfied.

The simplifying techniques are described in Algorithm 3, Algorithm 4, and Algorithm 5. These are
all local techniques, since they only use local information.
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Algorithm 3: Reducing prevented edges

/* One or more bridges are about to be placed on edge e; */

if Edge e has 0 bridges yet then
for edges c that cannot have any bridge when edge e has any bridge do
for both nodes sharing edge ¢ do
if edge ¢ in active edges list of this node then
Remove edge ¢ from the list of active edges and add it to a list of edges that
never get any bridge;
end

end

end
end

Algorithm 4: Reducing local max bridges

/* One or more extra bridges have just been placed on edge e; */

for both nodes sharing edge e do
Update how many extra bridges this node can support;

for edge €' in active edges list of this node do
Local max bridges of edge ¢/ = min(local max bridges of edge €', how many bridges
edge €' currently has + how many extra bridges this node can support);
end
end

Algorithm 5: Reducing completed edges

/* One or more bridges have just been placed on edge e; */

for both nodes sharing edge e do

for edge €' in active edges list of this node do
if this edge has reached its mazimum number of bridges or either node that shares

this edge has 0 bridges left to place then

for both nodes sharing edge ¢ do

Remove edge €’ from the list of active edges and add it to a list of edges
that has reached the exact number of bridges it must have, so that no
more bridges need to be considered;

Lower how many bridges in total this node needs with its active edges
(since some of its bridges with a previously active node are now cut out of
the active puzzle);

Perform a check on the node if it is still possible to reach a solution;

end

end

end
end
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4.3 Global solving techniques

Important to note here is that techniques using global information have a worse complexity than
techniques that only use locally available information. This is why, the combined solver uses the
local techniques to their full solving potential before using global techniques at all.

In this section, one global technique will mainly be discussed. This technique combines many ideas
that were gradually added into one final technique. First, the main idea behind the technique will
be explained. Then, each idea that improved upon the main idea will be discussed. Finally, two
separate techniques that were not implemented will be described.

The main idea of the technique is based on the definition requiring all islands and bridges to form
a single connected component. The technique will only work for generalised puzzles if k£ = 1. For a
starting node it will first search the entire component of nodes that are connected with bridges to
the starting node. Then, it will draw a conclusion about whether adding specific bridges shared by
the starting node and others will close that component. That means that if those specific bridges
were to be added the component has no more chance to be connected to any other nodes that are
not already in the component. If this is the case for those specific bridges, then it knows those
cannot be placed like that. Therefore, at a bridge must be placed differently from those specific
bridges. If there is one option for that, a bridge will be placed.

Algorithm 6 and Algorithm 7 will show a simplified version of the implementation for the global
technique. The actual code for this is divided among multiple functions and is very large and
complex in comparison to that of the degree of freedom technique. Algorithm 6 shows the main
part of the technique, and Algorithm 7 the most crucial sub-technique. The sub-technique has one
necessary and two optional arguments. A node ¢, set of nodes to ignore, and a set of edges that
conflict with an edge towards ¢. The first argument is the starting node. The second argument is
a set of nodes that will not count as finding a node outside the component that can be connected
to the component by placing a bridge. The first time Algorithm 7 is called it is used to ignore the
nodes the starting node can share a bridge with, the second time to ignore the starting node. The
last argument is used when trying to find out if placing a bridge on some specific edge will make
a closed component. It then checks against the conflict edges of that edge in a way that will be
described after the algorithms.
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Algorithm 6: Global solving technique(s)

Let e;; be the current number of bridges shared between islands 7 and j;
Progress <— False; /* For making sure backtracking is only used when no other technique
can make more progress; */
for node v in all nodes except ones who have the same number of bridges attached as their
number; do
Bridgeable nodes <— nodes that i CAN SHARE at least one more bridge with;
/* Check if i is the only node of its current component that can still share a bridge
with a node outside the component; */

if Algorithm 7 returns False with arguments i, bridgeable nodes, and an empty set then
| Return False; /* Do not do anything and it will try again for another node; */

end

Initialise non isolated nodes with all bridgeable nodes;

Initialise isolated nodes empty;

for node j in bridgeable nodes do

/* Else there is no way to form a closed component; */

if The number of additional bridges that can be attached to node 7 < the number of

additional bridges that can be attached to node i then
if Algorithm 7 returns 1 with arguments j, the set with only node i, and the

conflict edges from the edge between node i and j then
| Remove node j from non isolated nodes and add it to isolated nodes;
end

end

end

Find all subsets of the isolated nodes such that if enough bridges towards the selected
isolated nodes were placed to satisfy those nodes, the starting node is exactly
satisfied as well.

for subsets do

if there is only one node that can share a bridge with node i, but is not in the
subset then

if while making sure there is at least one bridge between that node and i an

additional bridge is added then
| Return True;

end

end
end

end
Return False;
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Algorithm 7: Almost closed component searching

Called with a node 7, set of nodes to ignore, and a set of edges that conflict with an edge
towards 7. The last two are optional and can be empty;
possible outside bridgeable nodes is initialised as an empty set; /* A set of nodes that are
possibly not in the component, but a bridge can be placed such that they will be; */
visited < set with just node ¢ in it;
for node j in nodes that i SHARES at least one bridge with do
if node j not visited then
if node j not in list to ignore then
for edge €' in active edges list of node j do
if €' has 0 bridges and is not in the list of conflict edges then
for both nodes sharing edge e do
| Add it to possible outside bridgeable nodes;
end

end

end

end

add node to visited;

Recursive call on node j, keeping other arguments the same;
end

end
/* After the recursive part; */

Remove all visited nodes from the possible outside bridgeable nodes;
Return True if possible outside bridgeable nodes is nonempty and False if empty;

The first idea for an improvement on the basic idea is seen in Algorithm 7. This algorithm uses a
search similar to Depth First Search. In particular, for each visited node, all nodes that share a
bridge with them will be visited. As such, when visiting a node, it is not yet clear if nodes that
do not share a bridge with the node will later be visited or not. This means that whenever a node
has another node that it can share a bridge with, but does not yet, it is not known whether that
other node is in the same component or not. Therefore, it is insufficient to stop searching when
such a node is found, but the whole component needs to be searched. The purpose of looking at
the component is to see if there are any nodes outside the component that can share a bridge
with a node inside the component besides the starting node. At the end of searching the whole
component, any nodes in the component will be removed from the set of nodes that might be this
kind of node outside the component. Because this idea was utilised in the technique, even if a node
besides the starting node still has opportunities to form additional bridges with other nodes inside
the component, the technique still recognises that the component can become closed by adding
bridges to the starting node.

Another idea is about finding subsets of the isolated nodes. Isolated nodes is a set filled as described
in Algorithm 6. For any subset of isolated nodes such that placing enough bridges to satisfy all
nodes in the subset will exactly satisfy the starting node as well the following can be said. If these
bridges were to be placed, a closed component will form not including all nodes of the puzzle.
Therefore, the number of bridges the starting node can still additionally share cannot be divided
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over only the nodes of the subset. Therefore, the starting node must share a bridge with at least
one other node. If there is only one other node available, then the starting node must share a
bridge with that node. This has been done considering an arbitrary subset of the isolated nodes,
because it is more powerful than only considering what happens when enough bridges were placed
to satisfy one single node and the starting node at the same time. This idea allows the technique to
place a bridge in the following example scenario. For example, a 4 that already shares one bridge
with some satisfied node and has an edge towards a 1, 2 and 3. If the 4 shares one bridge with
the 1 and two with the 2, a closed component is formed without the 3 in it. Therefore, 1 and 2
together form one of the subsets that should be found, so will the 3 on its own.

Finally, there’s another idea tied into the global solving technique. It will be called the Special
Case technique. That is because this idea came to mind after seeing a puzzle not be solved before
this idea. It was then figured out by hand which additional bridge could be placed in that specific
scenario. Then the idea was tied into the existing global technique. The idea comes from the
following. When another node, besides the starting node, is found that can share a bridge with a
node that is definitely outside the component, there is still another way to form a closed component.
This has to do with conflict edge pairs, edges that cannot both have a bridge. In the above scenario,
placing one bridge can satisfy one of the nodes and prevent the other node from sharing a bridge
with a node outside the component at the same time. This results in a closed component. Because
of this, Algorithm 7 has the possibility to provide conflict edges. It will consider this scenario as
forming a closed component too and act on it just like otherwise.

Besides this case, there are likely many more situations that cannot be solved unless another specific
idea is taken into account. Clearly, there can be many variations of global solving techniques. These
might be similar, but each might take situations into account that others do not. This is likely
because global solving techniques are used to gain information in a lot of differing puzzle situations.
This was also ultimately the reason to implement backtracking, rather than continuing to try to
improve the solver until it would be able to solve any puzzle. The latter not even sure to be possible.

Other global techniques that were chosen not to be implemented include the following. Firstly,
keeping track of all components and all possible edges to connect a component with other compo-
nents. Then using that at least one of those edges will need a bridge. Secondly, to look if there
are edges that conflict with all edges from such a set. This means that edge will have exactly 0
bridges in a valid solution. Implementing these would likely cost a lot of bookkeeping and extra
functionality for remembering and effectively using sets of edges where at least one needs at least
one bridge. It is also not intuitively clear that this will indeed improve the solving strength.

4.4 Backtracking

Backtracking is a common solving technique. It is known for being able to solve various problems
without needing much domain knowledge. When applied correctly it will always arrive at a solution.
It will arrive at all solutions if multiple exist. The word backtracking means retracing steps. That
is essentially all it does. It chooses randomly or based on a heuristic. When it fails, it undoes
the previous choice. However, a drawback of its simplicity is that it might take much longer to
solve problems. Another is that implementing backtracking does not make one learn much about
the problem itself. For these reasons, a solver was made that avoids backtracking until necessary.
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However, it is still implemented for the property that it is known it can solve any Hasui puzzle. This
achieves the goal of having created a program that will solve any instance of Hasui. Backtracking
solves any instance by eventually having tried all combinations of bridgeplacements unless they
could not lead to a valid solution.

Doing backtracking on a HasHr puzzle goes like this. One bridge is placed that is not guaranteed to
be part of a solution. Before doing this, the ‘state’ of the puzzle instance is stored on a stack. After
placing the bridge, the non-backtracking solving techniques take over again. Then a solution will
be reached, an error will occur or another bridge needs to be placed that is not guaranteed to be
part of a solution. That last part is where we can distinguish how many steps - bridge placements
- of backtracking are used. A more detailed description is given in Algorithm 8.

The bridge to be placed is chosen by a heuristic. This could be any heuristic, even random choosing.
However, for this thesis, one specific heuristic is used. It orders all edges according to some layered
criteria, then takes the first option. First, any edges with no bridges yet are given priority over
all edges that have bridges already. This is because going from zero to nonzero bridges is more
impactful then from some to more, because of conflict edges. Second, each edge will get a score

VP +Va

where p is the number of active edges attached to one node and ¢ of the other node. The lowest
score is taken. This means the edge will belong to nodes that have as little possible other edges
to add a bridge to. This is because the chance to place a correct bridge is favorable and whenever
the bridge is incorrect there are fewer other positions left to place a bridge. If there was just one
alternative, that bridge can be placed regardless of backtracking.

Algorithm 8: Backtracking
First use any non-backtracking technique until none are useful anymore;

while puzzle not solved do
Enable backtracking mode to handle errors differently:;

Save dynamic puzzle instance state in a stack;

Use heuristic to select ‘best’ edge for increasing its bridges by 1 only considering edges
where it is possible;

Save chosen edge in another stack;

Increase chosen edge’s bridges by 1;

while any non-backtracking technique is still useful and thus being used do

if error occurs and in backtracking mode then
Set state back to the previously saved state, popped from the stack;

Pop previously chosen edge from the other stack;

if that stack is empty then
| Disable backtracking mode;

end
Mark the edge as known 0 bridges;
end
end
end
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4.5 0 or multiple solutions

Something of note is that none of the above solving techniques assume a puzzle to be uniquely
solvable or even solvable. This is a desirable, since finding a solution will not make that known
to be the only correct solution otherwise. Instead, checks able to prove the puzzle has 0 solutions
in some scenarios have even been implemented. These include a check at the very beginning that
sums up all island’s numbers.

Theorem 3. If the sum of all island’s numbers is odd in a puzzle, there are 0 solutions.

Proof. Suppose the sum of all island’s numbers is odd. From the HasHhi definition, the number of
bridges attached to each island must equal the island’s number. Therefore, the sum of all island’s
numbers is the total number of attachments of bridges to islands. The definition also says bridges
are shared by pairs of distinct islands. So any bridge is attached to two islands. Therefore, the
sum of all island’s numbers is twice the number of bridges needed to satisfy all island’s numbers.
This means there are 0 solutions, since the sum is not even while it is twice the number of bridges
needed for any solution. O

Another check determines for a node if it has more than zero active edges or does not need to share
any additional bridges. This check is done immediately whenever the additional bridges an island
need or its active edges decreases. This will shortcut the solving process as early as possible.

Theorem 4. If a puzzle has any node with zero active edges that needs to share nonzero additional
bridges to equal its number, there are 0 solutions.

Proof. Suppose a node exists with zero active edges, but needs to share nonzero additional bridges.
Then, there are no other nodes available to share those nonzero bridges with. Therefore, that node
will never satisfy its number. This means there are 0 solutions, since from the HasHui definition,
the number of bridges attached to each island must equal the island’s number. [

Multiple solutions are a different matter. While most solving techniques are not able to find all or
any solutions if there exist multiple, backtracking will. In fact, backtracking is a solving method
on its own, since it will find all solutions even without any of the other techniques.

Example

An example of a difficult Hasur puzzle taken from previous work on Hasui by Coelho et al.| ].
It requires the global connectivity constraint and is shown in Figure 2.
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Figure 2: Example of a difficult Hasur puzzle by Coelho et al. requiring the global connectivity
constraint.

An example on how this can be solved using the solving techniques described in Section 4 is shown
in Figure 3.

22 22 22 2-2
| |1 | |
1-4 4 1 1-4 4-1 1-4 4-1 1-4-4-1
. |
22 2 2 22 . 22
|
22 22 2 2 2-2 2 2 2-2 22 2-2
| | | | (I
1-2 2 2 4 4-1 1-2 2 2-4-4-1 1-2 2 2 4-4-1 1-2 2-2-4-4-1
| | |
22 2 2 22 22
|| | |
22 2 2 2 2 22
| | |
12 2-1 1-2 2-1 1-2 2-1 1-2 2-1
(a) local (b) global (c) Special Case (d) solved

Figure 3: Solving the puzzle using different stages of the solver.

Part (a) shows the puzzle instance including all bridges that can be placed with the local solving
techniques and simplifying techniques. Lot’s of easy puzzles can be completely solved with local
solving techniques and simplifying techniques. Even without the local connectivity constraint. Yet,
in this puzzle, it only places 25% of its bridges. In fact, all these are placed using only the local
connectivity constraint. Without that 0 bridges can be deduced. All of this shows the difficulty of
this puzzle.
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Part (b) shows the state global solving techniques could take the puzzle before the Special Case
technique was implemented.

Part (c) shows a specific situation that the global solving techniques were not able to solve before.
However, after looking at this scenario the Special Case technique was found which could also
solve this situation. In Figure 3(c) the red dotted line is the edge that will satisfy the node below
and prevent the only other node from sharing a bridge with a node outside the component. That
only other node is the 2 on the right of the red dotted line. Instead of the vertical red dotted line,
which cannot be included in a valid solution, the horizontal green bridge needs to be placed. This
shows how hard it would be to be able to solve all puzzles without backtracking. It seems like lots
of similar, but slightly different scenarios will need to be considered. It might very well be possible
to deduce how the puzzle can be solved without backtracking for a scenario. Yet, the problem is
that the more puzzles a solver can solve, the more specific its added techniques must be to solve
even more puzzles. This also makes it hard to show a solver can solve all puzzles. A solve might
perform well on hundreds of puzzles, but there might very well still be another puzzle that it will
not solve.

Part (d) shows the solved puzzle after applying the solver after the specially added solving technique
has done its work in advancing the puzzle.

5 Classifying

Classification of puzzle instances is a way to distinguish puzzles with different properties. Some
classifications relate to an estimation of difficulty of the puzzle instance, but not all. For example,
instances of generalised HasHr can be grouped by their global maximum number of bridges. Each
class then has instances where this number is set to a specific integer. For example, all classic
instances belong in the class where the global maximum number of bridges is 2, a rule appearing
within the classic definition. There are also classifications related to the size of the puzzle. The
number of nodes and number of edges. They might have some correlation with difficulty, but size
does not determine difficulty in itself.

There is also the total number of bridges that must be placed. This is one of the most interest-
ing classifications, if combined with the maximum number of bridges times the number of edges.
Because this will determine how many bridges need to be placed in how many possible spots for
bridges. These parameters will influence the total different bridge configurations without taking
the rules into account. This in turn might be closely correlated to the difficulty. This is extra
interesting since these parameters are known instantly before attempting to solve the puzzle. More
on this in the experiment in Section 7.2. Other parameters suspected of having correlation with
difficulty can be accessed after solving. These include the ratios of bridges placed before using
global techniques and before using backtracking and also the number of solve steps.

A classifier was made that attaches classification parameters and there values to puzzles before,
during and after solving. To easily show these and compare to others, some extra parameters are
introduced. These do not have to do with the puzzle itself, but how to present the rest of the
data. There is also filter parameter that stores a set of classification parameters which will make
only those show up. This is nice to gather certain statistics without having to find where they are
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between lots of others. However, this cannot be considered a classification of itself. Then there are
parameters to identify puzzles read from files. The folder it was read from, the name of the file
and a puzzle number, which is the identifying part of the name.

A list of classification parameters and short explanations is shown in Table 1.

max bridges

Global maximum number of bridges for any islands-pair

number of nodes

How many islands the instance has

number of edges

How many island-pairs can a priori share bridges

edges to nodes ratio

Number of edges divided by number of nodes

total bridges needed

Total number of bridges that needs to be placed in a solution

bridges to nodes ratio

Total bridges divided by number of nodes

bridges to edges ratio

Total bridges divided by number of edges, average number of bridges on edges

number of conflict edge pairs

Number of pairs of edges that cannot have a bridge at the same time

trivially connected

True if there is a unique solution before using global connectivity techniques

ratio bridges placed

Placed bridges divided by total bridges

- First: ratio bridges placed before using global techniques
- Then: ratio bridges placed before using backtracking

- Only if not solved: ratio bridges placed

bridges to be placed

Only if not solved: bridges remaining to be placed

total backtracking steps

How many times a bridge has been placed based on the backtracking heuristic

backtracking depth

Max number of backtracking-placed-bridges the puzzle relies on at a time

solve steps

Number of steps done (nodes inspected) to solve

number of used edges

How many edges have at least 1 bridge

number of unused edges

How many edges have 0 bridges

used edges to edges ratio

Only if solved: number of edges with nonzero bridges divided by number of edges

bridges to used edges ratio

Only if solved: average number of bridges on used edges

solution is tree

True if the solution is a tree and False if it contains a cycle

folder Only with puzzles read from files: the name of the folder the puzzle comes from
name Only with puzzles read from files: the name of the puzzle
nr Only with puzzles read from files: the identifying number of the puzzle

Table 1: These are implemented classifications.

5.1 Separating puzzles in difficulties

The most interesting classification for HasHr puzzles seems to be some not having any additional
solution when all islands and bridges do not need to form 1 single connected component anymore.
Meaning that even without that rule, all islands and bridges form 1 single connected component
automatically after solving. These puzzles thus never need a solving technique that uses that
connectivity constraint while solving. In general, this seems to make those puzzles significantly
easier to solve. In fact, they might all be solvable with just the Degree of freedom technique and
the Simplifying techniques. However, this is not known. Further classification methods relating to
difficulty are based on which solving techniques are needed in order for the puzzle to be completely
solved. The ratio of bridges that is placed using only a specific set of techniques can also be
recorded. How far the puzzle can be progressed without using the most powerful technique used
to solve it can thus be considered by using this ratio.

An example of concrete difficulty classes using these ideas are provided in Table 2.
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Level -1 | Already solved puzzles where the solution requires 0 bridges.

Level 0 | Solvable with just placing M bridges shared by all distinct island pairs that
may share bridges.

Level 1 | Solvable with just the degree of freedom technique and reducing prevented and
completed edges, by always finding an island with 0 degrees of freedom until
solved. The addition of the technique using the local connectivity constraint
not included.

Level 2 | Solvable with just the degree of freedom technique and reducing prevented and
completed edges. The addition of the technique using the local connectivity
constraint not included.

Level 3 | Solvable with just the local solving techniques, except the addition of the tech-
nique using the local connectivity constraint.

Level 4 | Solvable with just the local solving techniques.

Level 5 | Solvable with just the local and global solving techniques, except the Special
Case idea, and only considering subsets of the isolated nodes set of size 1, and
not using the idea that differentiates nodes able to share an additional bridge
to a node inside the component from nodes able to share an additional bridge
to a node outside the component.

Level 6 | Solvable with just the local and global solving techniques, except the Special
Case idea, and only considering subsets of the isolated nodes set of size 1.
Level 7 | Solvable with just the local and global solving techniques, except the Special
Case idea

Level 8 | Solvable with just the local and global solving techniques.

Level 9 | Solvable with backtracking.

Table 2: An example concrete difficulty classes with required solving techniques and the connec-
tivity constraint as a basis. For this example, it does not matter whether these levels are actually
interesting to distinguish.

From the integer level, that belongs to the method that can completely solve the puzzle, the ratio of
bridges that could be placed only using the solving method of the previous level can be subtracted
from this level to create a continuous difficulty scale instead. For example, a puzzle that is solvable
with backtracking, but only 10 out of 40 bridges can be placed using just the local and global
solving techniques, will be classified as a level 8.75 puzzle.

5.2 Assigning islands in 4 color classes

In HasHi, in general, not all islands can share bridges with all other islands. Some edge cases do
exist in the generalised definition. For classic HasHi, however, something a little more interesting
can be said. Islands of a classic HasHr can be put into classes, which will have some property.

Theorem 5. [t is possible to define a way to color any classic Hasur puzzle using at most 4 colors
Co, C1, C2, C3, such that no islands colored cy can share bridges with islands colored c3 and no islands
colored ¢y can share bridges with islands colored co. And such that any solvable classic Hasui, whose
islands are not on one horizontal or vertical line, are colored with at least 3 colors.
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Proof. Because classic HasHi is played on a grid, each island is associated with a row and column.
Rows can be numbered from left to right and columns from top to bottom. Now we have odd and
even rows, odd and even columns. Assign ¢y to any island associated with an odd row and odd
column, ¢; to any island associated with an odd row and even columns, ¢, to any island associated
with an even row and odd column, ¢3 to any island associated with an even row and even column.
In classic Hashi, bridges can only be shared between islands that are in the same row or same
column, since the definition states bridges are oriented horizontally or vertically. Now it is almost
trivial that no islands colored ¢y can share bridges with islands colored c3. These islands cannot
be in the same row or column. By construction, ¢, is associated with an odd row and odd column,
but c3 with an even row and even column. No row or column can be odd and even so they are
distinct. A similar argument applies for colors ¢; and c¢y. Because ¢; is associated with an odd row
and even column, which is the opposite from ¢y, which is associated with an even row and odd
column.

Any solvable classic HasHi, whose islands are not on one horizontal or vertical line, must have at
least two separate rows and two separate columns. Additionally, one of the rows must have at least
two islands, because of solvability. Suppose none of the rows have at least two islands. Then, no
horizontal bridges will be possible, so all islands must be connected together with vertical bridges.
This means all islands must be on one vertical line. Therefore, none of the rows having at least
two islands is impossible. The row with at least two islands will provide the existence of 2 of
the 3 colors. The other distinct row will provide the 3rd distinct color. Note that empty rows or
columns might need to be removed before coloring to ensure at least two rows and two columns

have different parity. ]
Example

An example puzzle from a Denksport puzzle book [Den] has been solved and colored like described
before.

Figure 4: Denksport puzzlebook example. Coloring with 3 colors and only one red island.

In Figure 4, no purple islands can share a bridge with yelow islands, following the proof from earlier.
Since there is only one red island and all islands need to be connected, this red islands will need to
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share a bridge with a purple and a yellow island. This is the only way for purple and yellow islands
to become part of a single connected component. The red island’s number is 2, thus must share
exactly one bridge with the yellow 6 and one with the purple 3 below. Sharing a bridge with the
purple 1 above will result in no other purple islands becoming connected to the red island. This,
because they cannot share a bridge with the purple 1 or red island anymore, since they already
have enough bridges attached, and cannot share bridges with yellow islands. Thus, no solution can
be reached. Furthermore, because the red islands shares a bridge with only one purple and one
yellow island, all purple islands must form a single connected component if the bridge shared with
the red island is left out. The same for the yellow islands. This essentially splits the puzzle in two
different parts, except for the fact they still have conflict edges with each other. Intuitively it can
be seen as an hourglass where the red island is the small hole in the middle where all sand must
go through to reach below. All these observations can be quickly made with a trained eye, from
just the almost trivial coloring. This is a nice way of showing how interesting, but also useful it
can be.

6 Generating

There exist numerous ways to generate puzzles. The main differences between them is what kind of
puzzles they are able to generate. For example, following the classic Hasni definition, a generator
could simply generate a rectangular grid of random size where each cell contains a random number
ranging from 1 through 8 or nothing. This generator would thus be able to generate any instance of
classic HasHi. However, many of these will not be solvable. And even if they are, they might have
more than 1 solution. An ideal generator would provide only puzzles that have exactly 1 solution,
but also be able to provide any puzzle that has exactly 1 solution. This ideal, however, is very
hard to achieve for some puzzle genres, which is why an appropriate balance needs to be found.

First, a solvable puzzle generator will be introduced. It can in theory generate every possible solv-
able generalised puzzle. However, it will not consistently create uniquely solvable puzzles. Unless,
in addition, it checks by solving, throws away puzzles with multiple solutions and tries again. After
this generator, some ideas on smarter generators will be discussed. Finally a method is proposed to
turn puzzles with multiple solutions into uniquely solvable puzzles. This should make the previous
generator able to generate all and only uniquely solvable Hasn1 puzzles. Though it might not be
very efficient, since it does require one or more iterations of solving while generating.

6.1 Solvable puzzle generator

For the solvable puzzle generator there is no focus on making puzzles uniquely solvable. It will just
create a puzzle knowing it will be solvable. It does so by creating a solution first, including where
all bridges should be placed. Then assigning numbers to islands appropriately and removing all
bridges afterwards. There are some parameters that can be chosen. If not chosen, they are taken
from random distributions. The parameters are

e M: Max number of bridges for any edge o Number of bridges in total
o Number of islands o Number of unused edges
o Number of used edges o Number of conflict pairs
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All parameters are non-negative integers. In addition, some of these relate to each other and need
to be in certain bounds:

When islands with nonzero number exist, bridges must be allowed to exist at all:

M >0

e There should be enough used edges to connect all islands and not more used edges then a
used edge between every node pair:

islands — 1 <= used__edges <= islands * (islands — 1)/2

e There should be enough bridges to use all used edges and not more then the maximum
number of bridges on all used edges:

used__edges <= bridges <= used__edges x M

e The maximum conflict pairs would every unused edge with every unused edge plus every
unused edge with every used edge:

conflict_pairs <= unused__edges * (unused__edges — 1)/2 + unused__edges x used__edges

The generator works as follows. If there are zero or one islands, the trivial puzzle with that number
of islands is returned. Otherwise, starting from one island, islands will be added along with an
edge shared by an existing island. These edges will start out with one bridge. The existing island
to share the edge with is randomly determined, but weighted on how many attached edges islands
already have. The number of islands added will be the same as the corresponding parameter since
this is easily tunable and some there needs to be some number of islands. Since this procedure
will create a connected tree, it will automatically be a solution provided that the island’s numbers
match. However, not all puzzles are supposed to have a tree solution. Therefore, more edges will be
added between existing islands, starting out with one bridge. However, not all puzzles are supposed
to have only edges with exactly one bridge. First, edges with multiple bridges will be created by
selecting edges that do not have the maximum number of bridges and increasing the number of
bridges. This is done until the desired number of bridges is reached. Second, unused edges are
added between nodes that did not have a used edge yet. These will have zero bridges on them.
After that, conflict pairs will be selected. One of the edges can be any edge. The other is always
an unused edge, to not interfere in the possibility of the guaranteed solution. Now these selected
edges will never be able to both contain more than zero bridges. Lastly, appropriate numbers are
assigned to each node and all bridges are removed from all edges.

Interesting to note is that every solvable puzzle can be generated by this generator. Firstly, the
parameters are all random across their entire domain, even when they can be arbitrarily high. So
for any valid solvable puzzle, its M, the number of islands, used edges, bridges, unused edges and
conflict pairs can appear as the selected parameters by the generator. This generator perfectly
respects these parameters. Though another solution with different used and unused edges might
exist. Secondly, all steps, like adding islands, edges and assigning bridges are random without
restrictions. Such that for any valid solvable puzzle one could select some order of the islands and
imagine how the generator could have added them in that order, then added edges until all edges
of the puzzle were added and so on.
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6.2 Uniquely solvable generators

Smarter generators need to provide a uniquely solvable puzzle without the need to check for exactly
1 solution after generating. They need to inherently create only uniquely solvable puzzles. This will
remove the need to discard generated puzzles with more solutions. There are at least three clearly
different ways to approach this. The first is to use a solvable generator like before, but instead of
simply checking for uniqueness, perform some additional transforming steps on the puzzle after
which it is confirmed to be uniquely solvable. The second is to use a method to make a bigger
uniquely solvable puzzle from a smaller uniquely solvable puzzle, thus building up the puzzle being
uniquely solvable along the way, stopping when it has the desired size. The third is to keep track
of what part of the puzzle’s solution is already set in stone based on how far the puzzle has been
created. As such, this generator can keep going while never introducing something that makes the
puzzle have no solution and keep going until the puzzle has one solution.

These all have their advantages and disadvantages. They are noted down in Table 3.
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Method

Advantages

Disadvantages

If a solvable generator is already avail-
able, there is less work left to do.

This will be able to generate all
uniquely solvable puzzles, if it could
generate all solvable puzzles.

The transforming steps must form a fi-
nite algorithm that always stops, prefer-
ably always resulting in a desired out-
put. this can be challenging or ineffi-
cient.

A solver might be needed to make sure
the transforming steps succeeded, or
even before every next step.

The bigger the size of the puzzle, the
more transformation might be needed.

This procedure can be stopped at any
time resulting in a valid puzzle.

Has potential to prove the resulting
puzzle has a unique solution theoreti-
cally, bypassing any need of a solver
during or after generating.

Finding ways to make a bigger uniquely
solvable puzzle from a smaller one takes
a very deep understanding of what
makes these kinds of puzzles uniquely
solvable.

It is one thing to find a way to do it, but
many different ways to add to a puzzle
while keeping it uniquely solvable are
need to not have a very limited amount
of variation in puzzles.

This method will very likely not be able
to generate all uniquely solvable puz-
zles, because of the method of construc-
tion and because not all uniquely solv-
able puzzles need to contain a uniquely
solvable sub-puzzle.

Table 3: Advantages and disadvantages of different ways to try to make uniquely solvable puzzles.

The first method was chosen to create a uniquely solvable generator. Two different transformations

This seems to have potential to be
made more efficient then the other two
methods.

This might not be able to generate all
uniquely solvable puzzles, because of
the method of construction.

This requires an absolute solver, that
will know immediately when adding
something contradicts the solution as
build up so far.

It might at some point not be feasible to
add more to the puzzle to reduce the so-
lutions to 1 solution, if everything that
can be added is added.

have been used after one another. They are described in the next subsections.
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6.2.1 Reducing solutions with conflict edges

One way to see a puzzle with multiple solution can be that it does not have enough constraints.
Luckily, in generalised HasHi there is a useful constraint the puzzle maker can add at will: conflict
edges. These are edges that cannot both have a bridge. Those bridges would cross and that it
not allowed. Adding a conflict edge eliminates any solution using both those bridges. If edges
are chosen smartly, it is sometimes possible to remove some solutions, while keeping at least one
solution valid.

Firstly, this does require solutions to be found. Not all possible solutions need to be found, but at
least two. These are found by calling the solver. Which finds up to all solutions, because of the use
of backtracking and saving any found solution. Once a number of solutions is found they are each
represented as a list of 0’s and 1’s. The order is a constant order the edges of the puzzle have. The
0’s mean 0 bridges and the 1’s mean 1 or more bridges. Now two edges are found such that among
all solutions as many as possible have a 1 in the list for that edge, but at least one has a 0 for one
of the edges. The edges also should not be a conflict edge pair already. Those two edges will be
made a new conflict edge pair. All solutions that had a 1 in the list for both edges disappear. At
least one solution will remain, since there was at least a 0. This is because in that solution only
one of the edges in the conflict edge pairs is used, which is allowed. This whole process is repeated
until only one solutions remains or no suitable edges can be found anymore. The example of this
section will include performing this transformation.

There exist cases where it is impossible to transform the puzzle to be uniquely solvable by adding
more conflict edges. This is because the technique with adding conflict edges relies on making it
impossible for two edges to both contain nonzero bridges. However, because of that, it can only
distinguish between zero and nonzero bridges. Suppose a HasHr puzzle has multiple solutions, but
all of them use the same edges. That is, if an edge has 0 bridges in one solution, it has 0 bridges in
all solutions. The same for nonzero bridges. In this scenario it does not matter what conflict edge
pair is added, it will always leave all possibilities or cut out all of them. This is because the same
edges must contain bridges in each solution.

This makes it interesting to find more solutions before performing a transformation iteration. After
all, the lower the number of solutions searched for, the higher the chances that all those solutions
share the same used edges and that this transformations cannot be applied immediately. In that
happens more solutions can be searched. Though it must be possible to continue searching from
where the solver happened to stop or some solutions need to be found again. Finding more solutions
also allows for selecting edges that having a higher chance of eliminating more solutions. This is
because the number of solutions that had a 1 in the list for both edges can be higher if the
number of found solutions is higher. And these solutions will disappear for sure. There is simply
more information to select on. However, each iteration will take longer. And it is not guaranteed
that this time will be compensated by more solutions disappearing per iteration. Lots of unknown
solutions might also be eliminated after seeing only two, which in that case never have to be found.
Clearly, a balance should be found if one wishes to make the generator more time efficient.

While this is a technique designed specifically for generalised Hashi, the idea can be applied with
the classic structure intact as well. However, it will be more limited. In generalised HasH1 one
can assign any two edges to conflict with each other. In Classic HasHi, conflict edges are directly
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dependent on spatial locations of islands. Therefore, spatial locations must be changed to introduce
conflict edges.

6.2.2 Reducing solutions by lowering numbers

Luckily, there is still another technique to reduce the puzzle to have exactly one solution. This
involves lowering the number of two islands that share different numbers of bridges different solu-
tions. More specifically, find an edge that has a bridges in some solution and b bridges in another
for some preferably low 0 < a < b < M. For classic HasHr this means a = 1 and b = 2. These
bridges are shared by two islands. How much to lower the two islands numbers then depends on
whether or not they are both part of the same cycle of nodes, each node sharing at least one bridge
with the next. If they are, lower their numbers by the number of bridges from the solution with
the higher number of bridges, so b. If they are not, lower the two islands number’s by a. This might
sound arbitrary, but these have a clear reason.

After transforming, a new valid solution is guaranteed to exist in both cases. For the cycle case,
this is the previous solution with b bridges shared by the two islands, but with b less bridges. This
will indeed be a valid solution. Firstly, the two islands whose numbers were lowered by b also
have b less bridges attached. Secondly, all numbers of bridges attached to other islands remain
equal to the numbers of those islands. Thirdly, all islands and bridges that were connected are still
connected in this new solution. For the no cycle case, the new valid solution is also the previous
solution with b bridges shared by the two islands, but now with a less bridges. This will be a valid
solution for the same reasons. However, nodes still being connected is not because some nodes
formed a cycle, but because lowering the b bridges by a still leaves b — a > 0 bridges. Therefore,
the two nodes remain connected. After transforming, the number of valid solutions should be less
in both cases. The other previous solution, with a bridges shared by the two islands, cannot be
changed in the same way to get a solution for the transformed puzzle. In the cycle case, simply
because there are not enough bridges shared by the two islands to take away. In the non cycle
case, because taking away a bridges takes away all bridges shared by those nodes, thus introduces
another separate connected component. Because of this, for both two islands, b — a bridges shared
with another island need to be taken away. This results in that island needing b — a additional
bridges. However, that is either not possible or compensating islands in a chain will result in the
same solution as the guaranteed solution. Therefore, lowering numbers like this should reduce the
number of solutions even further. This process seems repeatable until all cycles causing multiple
solutions are no longer cycles in the transformed puzzle solution. Also, until all edges not part of
a cycle have only one valid number of bridges for a solution left. Therefore, with all of the above,
a uniquely solvable puzzle generator is realised.

Note that this generator does not completely respect the parameters anymore. More specifically it
does not respect the number of used and unused edges because the solution with these might be
reduced and another solution can use a different number of edges. It does not respect the number
of bridges because it lowers numbers on islands. It can also add additional conflict pairs. However,
all uniquely solvable puzzles can still be generated. Since all uniquely solvable puzzles are a subset
of all solvable puzzles. All solvable puzzles can be generated by the solvable puzzle generator from
Section 6.1. And this generator first generates a puzzle with that one and only modifies it if it is
not already uniquely solvable.
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Example

To illustrate the effect of the solution reducing techniques, a small puzzle is provided in Figure 5.

33 3-3 3=3 3-3 3=3
"o | " I
342 3-4 2 3=4 2 3-4-2 3=4-2
| | | |
23 2-3 2-3 2=3 2=3
(a) puzzle (b) solution 1 (c) solution 2 (d) solution 3 (e) solution 4

Figure 5: A small puzzle and its 4 solutions. How to transform it to have 1 solution?.

By reading edges left to right, top to bottom, this puzzles 4 solutions can be represented as

(1,2,2,1,0,1,2,1)
(2,1,1,2,0,1,2,1)
(1,2,2,1,1,0,1,2)
(2,1,1,2,1,0,1,2).

Though for adding the conflict edges any 2 might as well be a 1, like

(1,1,1,1,0,1,1,1)

(1,1,1,1,0,1,1,1)

(1,1,1,1,1,0,1,1)

(1,1,1,1,1,0,1,1).

Now it can easily be seen why adding conflict edges alone will not result in a uniquely solvable
puzzle in this example. Regardless, half the solutions can be eliminated. Let’s add a conflict edge
pair for the 4th and 5th edge. Since the 4th edge has 1 bridge in all solutions and the 5th edge
has a 0 in the first half of the solutions. This means the two horizontal edges in the middle of the
puzzle can no longer both contain a bridge. Therefore, solution 3 and 4 in Figure 5 are no longer
valid. In this example, it is not hard to apply a similar transformation that also preserves this
puzzle as a classic Hasni puzzle. Instead of taking the possibility of a bridge on the 5th edge away
by adding a conflict edge pair, the 2 and 3 on the right can be flipped to the left hand side of the
puzzle to achieve the same. The new puzzle is and its solutions are shown in Figure 6.
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33 3-3 3=3
n-n | |
234 2 3-4 2 3=4
n | n |
3 2 3-—-2 3--—-2
(f) classic puzzle (g) solution 1 (h) solution 2

Figure 6: A small transformed puzzle and its 2 solutions. How to transform it to have 1 solution?.

To avoid confusion, let’s continue with a transformation that is identical performed on the original
puzzle with added conflict edge pair or performed on the transformed classic puzzle. As such, select
the 1st edge. It has 1 bridge in solution 1 and 2 bridges in solution 2. Thereby selecting the two
3’s at the top of the puzzle. Since they are part of a cycle, their number will be lowered by b = 2.
This will give the puzzles and their one solution as shown in Figure 7.

11 11 33 11
| |
3.4.2 3=4|2 234 2 3=4
| n n |
23 2-3 3 2 3-—-2
(1) puzzle (j) solution (k) classic puzzle (1) solution

Figure 7: Two small transformed puzzles and their only solution. Subfigure (i) shows a conflict
edge pair in red, and (j) shows the resulting edge where no bridge is allowed in red.

7 Experiments

For the experiments, three solving methods will be compared. The combined solver described
in Section 4 and the solving methods from Wikipedia and the paper by Malik et al., discussed
in Subsection 4.1.1. Furthermore, puzzles from two different puzzle database websites are used.
The Janko website | | and the Puzzle-bridges website [I1as]. Naturally, these are classic HasH1
puzzles only. The websites include categorisation of puzzles by size. From the Janko website, puzzles
from the category 9x9 are used. From the Puzzle-bridges website, puzzles from the categories
10x10easy and 7x7dense are used. Dense likely referring to more islands fitting on a smaller grid.
Apart from these puzzles, a variety of other puzzles is used. In the order they will appear in Table 7
and Table 11 these are the following. From the Janko website, three of the few puzzles not marked
as puzzles with replayable logical solutions. From the Puzzle-bridges website, a puzzle from both
the 25x25easy and 15x15dense categories. Two puzzles from a physical Denkspot puzzle book [Den]
Five puzzles from the websites that were used as early testing puzzles or shared by others. The
puzzle from Coelho et al. | ] that was shown in Figure 2.
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It is important to note that within HasHI puzzle instances there is an enormous number of factors
in play. Every puzzle is different and might have specific characteristics that have an effect on
results. It is possible to focus on puzzles with roughly the same size or ‘difficulty’, measured by the
websites. However, it is not possible to guarantee puzzles will behave roughly similarly, even if they
are from the same size or difficulty category. Because of this, it is very hard to conclude results
come from specific parameters or characteristics. For example, some puzzles can be solved without
ever using the connectivity constraint. This can have huge consequences on other factors that are
experimented on. If the experiments should focus on only 1 factor and keep the rest roughly the
same, these would need to be split out from other puzzles. However, it is not feasible to identify
all of such factors and characteristics. Nor is it feasible to try to eliminate all of these while testing
only a specific factor. This seems to be something in the nature of this kind of puzzle collection.

7.1 Solver versus existing human techniques

To get an idea about solving strength for solvers, the ratio of bridges that can be placed using the
different solvers is calculated. This ratio will be 1 if all required bridges were indeed placed. The
total number of bridges needed to solve the entire puzzle is also shown. For the thesis solver, two
ratios are given. The left column is the ratio using only local techniques. The right column is the
ratio when global techniques were used, but not backtracking. That column represents the solving
strength of the smart part of the thesis solver. Backtracking always gets the ratio to 1, since the
backtracking part of this solver solves all Hasur puzzles. This is done by repeatedly guessing from
the point where the other techniques got stuck. The number of steps the thesis solver uses to solve
the entire puzzle, including backtracking, is also shown. The bottom row shows the mean values.
This is done for different ranges of puzzles to avoid a narrow view. Therefore, four groups of results
are shown in Table 4, Table 5, Table 6, and Table 7. The last one consists of a wide variety of
puzzles.
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Janko 9x9 puzzles | Wikipedia solver ‘ Malik et al. solver Thesis solver
nr | total bridges bridges ratio bridges ratio solve steps
all their techniques LT LT+GT | LT+GT+B
1 34 0.324 0.088 1 1 43
10 30 0.067 0.033 0.6 1 102
14 27 0.259 0.0 0.852 1 80
16 27 0.222 0.0 1 1 40
2 33 0.485 0.03 1 1 44
361 40 0.4 0.325 1 1 50
4 32 0.25 0.0 0.594 1 157
5 39 0.308 0.205 1 1 49
8 30 0.467 0.4 1 1 45
9 39 0.256 0.0 1 1 68
mean 33.1 0.304 0.108 0.905 1.0 67.8

Table 4: Solving strength for 9x9 puzzles by Janko. Measured by ratios of bridges different solvers
can deduce. Separate columns exist for using local techniques (LT), global techniques (GT) and
backtracking (B). After backtracking, the ratio is always 1. The total number of bridges and number
of solve steps for the thesis solver are included.

10x10easy puzzles Wikipedia solver ‘ Malik et al. solver Thesis solver
nr total bridges bridges ratio bridges ratio | solve steps
All their techniques LT LT+GT | LT+GT+B
1916045 25 0.28 0.2 1 1 32
2647497 23 0.565 0.261 1 1 26
3334419 25 0.76 0.76 1 1 23
3345352 19 0.789 0.842 1 1 16
3589471 25 0.64 0.56 1 1 24
498530 27 0.889 0.778 1 1 18
6620332 30 0.767 0.367 1 1 24
731665 23 0.696 0.391 1 1 25
9143614 28 0.679 0.429 1 1 27
9561556 26 0.769 0.5 1 1 17
mean 25.1 0.683 0.509 1.0 1.0 23.2

Table 5: Solving strength for 10x10easy puzzles by Puzzle-bridges. Measured by ratios of bridges
different solvers can deduce. Separate columns exist for using local techniques (LT), global tech-
niques (GT) and backtracking (B). After backtracking, the ratio is always 1. The total number of
bridges and number of solve steps for the thesis solver are included.
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TxT7dense puzzles Wikipedia solver ‘ Malik et al. solver Thesis solver
nr total bridges bridges ratio bridges ratio solve steps
All their techniques LT LT+GT | LT+GT+B
1605088 18 0.222 0.056 1 1 19
1830710 19 0.316 0.316 1 1 21
274144 19 0.316 0.105 1 1 28
27953 20 0.4 0.25 0.65 1 58
3060643 19 0.316 0.053 1 1 20
4734744 18 0.222 0.0 1 1 28
5456883 17 0.118 0.118 1 1 26
5516729 21 0.143 0.095 0.571 1 84
703627 23 0.522 0.261 1 1 34
907518 18 0.278 0.111 1 1 22
mean 19.2 0.285 0.136 0.922 1.0 34.0

Table 6: Solving strength for 7x7dense puzzles by Puzzle-bridges. Measured by ratios of bridges
different solvers can deduce. Separate columns exist for using local techniques (LT), global tech-
niques (GT) and backtracking (B). After backtracking, the ratio is always 1. The total number of
bridges and number of solve steps for the thesis solver are included.

Various puzzles Wikipedia solver ‘ Malik et al. solver Thesis solver
nr total bridges bridges ratio bridges ratio solve steps
all their techniques LT LT+GT | LT+GT+B
352 45 0.044 0 0.156 | 0.178 o287
524 49 0.041 0.265 0.245 | 0.367 446
886 176 0.17 0.125 0.938 1 845
5000159 106 0.66 0 1 1 127
4550114 96 0.302 0.135 1 1 132
1 49 0.469 0.082 1 1 59
2 52 0.654 0.346 1 1 53
bigger 58 0.672 0.517 1 1 70
biggest 317 0.363 0.151 0.994 1 735
coelho 28 0.0 0.071 0.25 | 0.571*** 2583
example 34 0.529 0.294 1 1 49
X 124 0.121 0.008 0.379 0.96 1569
Y 120 0.458 0.192 0.95 1 216

Table 7: Solving strength for various puzzles. Measured by ratios of bridges different solvers can
deduce. Separate columns exist for using local techniques (LT), global techniques (GT) and back-
tracking (B). After backtracking, the ratio is always 1. The total number of bridges and number
of solve steps for the thesis solver are included.

These results make it quite clear that more bridges can be placed when using the solver this thesis
proposes compared to the solver ideas by the two external sources. It can be seen that neither the
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Wikipedia or Malik et al. solver always outperforms the other. This is expected, since part of their
techniques are closely related, but they both contain ideas in techniques the other does not take
into account.

Looking at the solve steps column, it seems all puzzles are solved in reasonable number of iterations
of looking at a node.

It seems like when the thesis solver needs to rely on the global techniques or even backtracking, the
bridges ratio for the external solvers is also lower. The solve steps are higher. Together suggesting
that those puzzles are inherently more difficult, regardless of what kind of solver is used. This
experiment also vouches for the thought that which solving techniques are needed to solve puzzles
and how far other solving techniques come is a useful measure of difficulty of a puzzle.

Some other observations can be made from this data that were not necessarily part of the original
experiment intention. When puzzles need the global techniques and also when they need back-
tracking, it can take many more solve steps. Puzzles that are solvable by local techniques only use
fewer solve steps. There seems to be a correlation between the total bridges needing to be placed
and the solve steps. Note that this can also be a correlation between the number of nodes and
solve steps and that the total bridges needed correlates to the number of nodes for classic HasHI.
Either way, this is expected, since the more bridges need to be placed or more nodes there are, the
more often one would expect to look at a node to try and place bridges. This needs to be done
until all bridges are placed and all nodes are satisfied after all.

7.2 Mean number of bridges per edge

For this experiment only the thesis solver is used. The purpose of this experiment is to find a
classification that is known ahead of solving and has a relation with puzzle difficulty, solving
techniques needed, or solving steps, if any exist. The most promising contender seemed the mean
number of bridges per edge. This is the total number of bridges divided by the number of edges.
The reasoning for choosing this contender is as follows. For classic HasHi, the maximum number of
bridges per edge is always 2. Therefore, the total number of bridges that could fit on a puzzle with
|E| edges is 2|E|. Therefore, the closer the total bridges in the solution is to 2|E| or 0, the lower
the number of possible configurations of bridge placements. Meaning the closer the mean number
of bridges per edge is to 0 or 2, thus farther from 1, the lower the number of configurations. Note
that if this experiment had differing maximum number of bridges per edge, the mean number of
bridges per edge could be divided by it to get values between 0 and 1 instead.

The idea here is that having less configurations of which one is the solution will make it easier to
decide where the bridges should be in the solution. Thus, needing lower solve steps. Something else
that might be of influence is the number of conflict edge pairs. Any bridge placement configuration
that used edges that are in conflict cannot be a solution, still ignoring the numbers in the islands.
Therefore, more conflict edge pairs might mean the puzzle can be solved in fewer solve steps. Of
course, this is only an idea. The results of this experiment are shown in Table 8, Table 9, Table 10
and Table 11. The tables show the total bridges in the solution, the number of edges, the mean
number of bridges per edge and the number of conflict edge pairs. These are known before solving.
Furthermore, the tables again show the ratio of deduced bridges for different parts of the thesis
solver and number of solve steps. These are recorded during and after solving.
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Janko 9x9 puzzles bridges ratio steps
nr | total bridges | edges | mean b/e | conflicts LT LT+GT | LT+GT+B
1 34 34 1.0 21 1 1 40
10 30 32 0.938 6 0.6 1 118
14 27 29 0.931 14 0.852 1 67
16 27 26 1.038 6 1 1 39
2 33 32 1.031 8 1 1 36

361 40 40 1.0 16 1 1 44
4 32 32 1.0 11 0.594 1 122

5 39 39 1.0 15 1 1 50

8 30 28 1.071 10 1 1 44

9 39 38 1.026 10 1 1 72
mean 33.1 33.0 1.004 11.7 0.905 1.0 63.2

Table 8: Comparison of classifications before and after solving for 9x9 puzzles by Janko. Before
solving, the mean number of bridges per edge (total bridges divided by number of edges) and the
number of conflict edge pairs are known. After solving, the ratio of deduced bridges and number of
solve steps are recorded. Separate columns exist for using local techniques (LT), global techniques
(GT), and backtracking (B). The mean bridges per edge for Janko 9x9 puzzles seems suspiciously
close to 1.0 for these puzzles. This could have been intended by the puzzle makers.

10x10easy puzzles bridges ratio steps
nr total bridges | edges | mean b/e | conflicts || LT LT+GT | LT+GT+B

1916045 25 22 1.136 3 1 1 41
2647497 23 19 1.211 0 1 1 29
3334419 25 19 1.316 1 1 1 17
3345352 19 15 1.267 3 1 1 14
3589471 25 19 1.316 2 1 1 24
498530 27 17 1.588 3 1 1 19
6620332 30 23 1.304 5 1 1 31
731665 23 18 1.278 4 1 1 23
9143614 28 22 1.273 2 1 1 37
9561556 26 18 1.444 1 1 1 22

mean 25.1 19.2 1.313 2.4 1.0 1.0 25.7

Table 9: Comparison of classifications before and after solving for 10x10easy puzzles by Puzzle-
bridges. Before solving, the mean number of bridges per edge (total bridges divided by number of
edges) and the number of conflict edge pairs are known. After solving, the ratio of deduced bridges
and number of solve steps are recorded. Separate columns exist for using local techniques (LT),
global techniques (GT), and backtracking (B).
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7x7dense puzzles bridges ratio steps
nr total bridges | edges | mean b/e | conflicts LT LT+GT | LT+GT+B

1605088 18 20 0.9 4 1 1 21
1830710 19 21 0.905 6 1 1 23
274144 19 20 0.95 6 1 1 27
27953 20 21 0.952 6 0.65 1 40
3060643 19 20 0.95 7 1 1 22
4734744 18 21 0.857 8 1 1 27
5456883 17 20 0.85 5 1 1 24
5516729 21 20 1.05 3 0.571 1 79
703627 23 21 1.095 6 1 1 25
907518 18 20 0.9 7 1 1 24
mean 19.2 20.4 0.941 5.8 0.922 1.0 31.2

Table 10: Comparison of classifications before and after solving for 7x7dense puzzles by Puzzle-
bridges. Before solving, the mean number of bridges per edge (total bridges divided by number of
edges) and the number of conflict edge pairs are known. After solving, the ratio of deduced bridges
and number of solve steps are recorded. Separate columns exist for using local techniques (LT),
global techniques (GT), and backtracking (B).

Various puzzles bridges ratio steps
nr total bridges | edges | mean b/e | conflicts LT LT+GT | LT+GT+B
352 45 54 0.833 18 0.156 | 0.178 393
524 49 58 0.845 24 0.245 | 0.367 725
886 176 204 0.863 123 0.938 1 1056

5000159 106 89 1.191 61 1 1 133
4550114 96 105 0.914 56 1 1 147
1 49 46 1.065 15 1 1 72
2 52 48 1.083 25 1 1 51
bigger 58 51 1.137 19 1 1 64
biggest 317 334 0.949 407 0.994 1 664
coelho 28 39 0.718 1 0.25 0.643 334
example 34 32 1.062 9 1 1 41
X 124 148 0.838 93 0.379 0.96 1588
Y 120 110 1.091 62 0.95 1 209

Table 11: Comparison of classifications before and after solving for a variety of puzzles. Before
solving, the mean number of bridges per edge (total bridges divided by number of edges) and the
number of conflict edge pairs are known. After solving, the ratio of deduced bridges and number of
solve steps are recorded. Separate columns exist for using local techniques (LT), global techniques
(GT), and backtracking (B).

Looking at all the data, there seems to be no direct correlation between the ratio of the total
bridges of the solution divided by the number of edges with the solve steps or bridges ratio. This
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does not mean that this ratio does not have any influence on the difficulty. Because of the many
characteristics of the puzzles at play, the influence of this ratio might as well be overshadowed by
other influences. This does mean it sadly should not be used as a way of gauging how difficult a
puzzle is before solving. Thus, no way of classifying the difficulty of a puzzle with only data from
before solving the puzzle was found with this experiment.

Another interesting observation is about the number of conflict edge pairs for each puzzle category.
Conflict edge pairs are interesting since they say something about the spatial locations of islands
in relation to other islands for classic HasHi. It seems different categories were made in such a way
that the category will have similar numbers of conflict edge pairs, but different compared to other
categories. Initially there was an idea that the number of conflict edge pairs would be higher for
10x10easy puzzles compared to 7x7dense puzzles. This was because the 10x10easy puzzles leave
much more space in between islands, while 7x7puzzles have islands closely packed together. In
classic HasHI, this means the number of conflicting edges for a ’longer’ edge can in theory be
higher compared to edges between islands closely packed together. However, the data shows that
this idea turns out to be the other way around. The 7x7puzzles have a higher number of conflict
edge pairs instead. Apparently, the 10x10puzzles are not made in such a way that utilises the space
between islands for possible perpendicular bridges. Upon investigating some individual 10x10easy
puzzles, it seems the extra space is instead used in a way that islands avoid each other more,
thus creating less possibilities where bridges could be crossing each other. This makes sense for
puzzles labelled as easy, since giving islands more space in this way might reduce the number of
possibilities for islands to divide their bridges to other islands.

8 Conclusions and Further Research

HasHi is a very interesting type of puzzle. It involves ideas most other puzzles do not have. Such
as placing connections instead of symbols. This thesis has shown that the potential of the core
idea of this puzzle genre is not limited to the classic puzzle definition, but can be extended by
the provided generalisation. While solving puzzles without backtracking can come a long way,
it seems backtracking will still be required, if only as a way to be able to prove a solver can
indeed solve any uniquely solvable puzzle. The most interesting classification for Hasui puzzles
seems to be some not having any additional solution when all islands and bridges do not need to
form 1 single connected component anymore. Meaning that even without that rule, all islands and
bridges form 1 single connected component automatically after solving. Different kinds of level or
scale systems based on required solving techniques and the progress without them can be used
to classify difficulty of puzzles. While generating puzzles it is important to consider what kind of
puzzles can be generated. There are different approaches of generating puzzles, each having their
own advantages and disadvantages. It is indeed possible to create a generator that can generate
any uniquely solvable puzzle and only generates puzzles that are uniquely solvable.

There are still numerous things to consider for future research on this puzzle or its introduced
generalised variant. The generalisation could use some more work. Especially in visualising the
generalised puzzles. Methods for visualising a graph are already there, but visualising the conflict
edges might be able to be done more naturally. Perhaps something with colors.

Building upon the generalised variant, research could also be done into methods that solve puz-
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zles where all islands must form &k connected components for & # 1. Only the local connectivity
technique and global techniques will need to be changed. Note that once k£ components are known,
these techniques can still be used on individual components. In fact, they can be used on any
group of nodes known to belong to one closed component as soon as it is formed. When £ — 1
closed components are known, the rest of the puzzle may be treated as an individual component
as well. A possible simplifying technique will be to reduce k£ by 1 each time a closed component is
split from the rest of the puzzle. The split of component will become a puzzle with k£ = 1. There
could also be techniques that prevent 2 closed components not including all islands from forming
simultaneously when k = 2 for some part split off the puzzle.

Another angle would be to go further into puzzles that do not have a unique solution. Possible
ways to find out a puzzle has no valid solution have been discussed. However, for finding multiple
solution, only backtracking has a chance so far. Techniques could be devised dedicated specifically
into finding multiple solutions without using backtracking. For example, there might be techniques
able to identify parts of the puzzle that can be solved in two or more ways regardless of what
happens around that part. Another technique could split a puzzle in two and choose to play a
different number of bridges somewhere in each copy, when it is likely that a solution exists for both
choices of bridges.

Building on the introduced classification, it can be compared to classifications of different HasHr
puzzle providers, looking for similarities and differences with their difficulty gradings. Here, puzzle
providers might be websites, but also physical puzzle books. It can also be researched from the
perspective of their classifications, trying to find grounds that classification could be based on. Or
how likely it is they used human solving time. Furthermore, research can be done into trying to
generate puzzles that will fall into a desired classification. For some parameters like the number of
islands this can be easier than parameters specifying some kind of difficulty.

Since the proposed uniquely solvable puzzle generator is unable to generate a puzzle known to have
a classic representation, future research can continue on applying similar transformations that work
well for classic Hasui. The generator also uses a parameter to decide how many solutions it should
try to find before doing a transformation. As explained, a balance will need to be found so future
research could perform experiments with the generator and tune this parameter. More research can
also be done into other ways of generating only uniquely solvable puzzles. The proposed different
kinds of methods and their advantages and disadvantages could be used as a basis. As well as
the described qualities the most desirable generator should have. Research can be done into what
makes a HasHI puzzle have a unique solution. Also, in checking this property quicker then solving
the entire puzzle.

Finally, research could be done in creating more variants of Hasur and into solving, classifying and
generating those new puzzles. For example, an existing variation of Hasur that could be looked into
is Hasur? | |. In this variation, islands have letters instead of numbers. Each letter represents
an unknown number that has to be found out in the middle of solving the puzzle. Other possible
variations include introducing a second way to connect islands, like rivers, that can cross bridges,
but not other rivers. These could use up the same number in islands or get a separate number.
Another one would be allowing bridges to be shared by more than two distinct islands. Then, one
bridge might be seen as a platform connecting 5 islands together. Many more even crazy variants
could be created and some might actually work well.
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