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This thesis evaluates the application of Deep Reinforcement Learning (DRL) algo-
rithms, specifically DDPG, PPO, and SAC, to the complex task of portfolio alloca-
tion. Instead of focusing on achieving optimal performance, this work offers a com-
prehensive analysis of key elements that influence and can enhance DRL agents in
this domain, including the incorporation of lookback windows, contextual market
information, advanced feature engineering, exploration strategies, and exposure to
transaction costs. We have established a framework for assessing training stability
and performance with statistical significance, a practice that is, in our experience, not
yet standard in DRL applied in finance, and we stress the importance of mitigating
biases in data and training methodology for unbiased experimentation. Through a
series of carefully designed experiments, we address fundamental challenges inher-
ent to employing DRL in finance, such as navigating high-dimensional state spaces,
capturing long-term dependencies, ensuring sample efficiency, mitigating training
instability, and achieving robust generalization. The findings reveal the learning ca-
pacity and generalization to out-of-sample data of off-policy algorithms (DDPG and
SAC) when handling diverse portfolios. We also highlight the persistent challenge
of outperforming simple benchmarks like BuyAndHold. In addition, this thesis em-
phasizes the significant challenge of handling order-invariant inputs using standard
network architectures, together with ways to address this problem in the context
of portfolio allocation. Ultimately, this thesis contributes with an empirical evalua-
tion of DRL for portfolio optimization, providing valuable insights into its current
capabilities and providing a roadmap for future research — most importantly an
improved neural network architecture and reward function — aimed at enhancing
the performance, robustness, and practical applicability of DRL-driven investment
strategies.
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Chapter 1

Introduction

The world of finance has many applications that are critical to both individual in-
vestors and large financial institutions. Some of the key areas are risk and wealth
management, portfolio allocation and optimization, market making, algorithmic
trading, derivative pricing and hedging, and quantitative analysis. In many of these
areas, machine learning algorithms are helping to make financial markets or invest-
ment strategies more stable, profitable and efficient. Machine learning models are
able to process vast amounts of financial data, beyond any human capacity, and are
better at extracting complex information and dependencies from that data than tra-
ditional methods (Rundo et al., 2019).

Machine learning is generally classified into three paradigms: Supervised learn-
ing, unsupervised learning, and reinforcement learning (RL). Supervised learning
already dominates in financial settings and is used to tackle various problems, such
as predicting stock prices, credit scoring, fraud detection and risk management (Dixon,
Halperin, and Bilokon, 2020). Unsupervised learning is generally less popular, but
can be very valuable, for example in financial forecasting (Corchado, Fyfe, and Lees,
1998). Meanwhile, reinforcement learning is gaining significant traction due to its
ability to learn complex patterns from interacting with an environment in sequential
decision-making problems, for example in market making and portfolio optimiza-
tion (Osterrieder and GPT, 2023). A key approach within this domain is deep rein-
forcement learning (DRL), which uses deep neural networks for function approxi-
mation, allowing it to handle more complex tasks and environments effectively.

RL, like DRL, gained much of its popularity through successes in playing games.
A breakthrough application of DRL was demonstrated by Mnih et al., 2015, where
they trained a Deep Q-Network to successfully play multiple Atari 2600 games.
Building on this success, many researchers continued to solve other games, like
chess, shogi, and go with state-of-the-art algorithms like AlphaZero (Silver et al.,
2018), Heads-up No-Limit Hold’em Poker (Morav¢ik et al., 2017), and to solve video
games such as Starcraft (Vinyals et al., 2019).

RL has found numerous applications beyond gaming. Robotics is another promi-
nent field (Plaat, 2022), where RL algorithms learn to control robot movements and
achieve objectives. RL is also used in diverse domains such as education (Fahad
Mon et al., 2023), healthcare (Yu et al., 2021), smart grid (Li et al., 2023), computer
systems, business management and natural language processing (NLP) (Li, 2017).
For example, ChatGPT and other large language models (LLMs) now extensively
utilize reinforcement learning from human feedback (RLHF) to align them with hu-
man preferences.
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While the finance sector is also adopting RL, its application remains in a rela-
tively premature and exploratory phase, especially in published literature. Further-
more, the application of DRL to financial problems presents challenges such as high-
dimensional state spaces, long-term dependencies, and limited data availability (Os-
terrieder and GPT, 2023). RL-specific challenges, such as poor generalization and
high training variance, are particularly prevalent in financial applications, where the
absence of rigorous statistical frameworks makes it difficult to determine whether
the results represent a significant improvement over the state-of-the-art (Henderson
etal., 2018).

This thesis explores the application of DRL algorithms to the portfolio optimiza-
tion task using stocks from the S&P1500, which is an index comprising the 1,500
largest U.S. equities (S&P Dow Jones Indices, 1995). We propose an effective method-
ology for training DRL agents by employing a wide range of financial features and
using random portfolio sampling. This approach addresses the challenge of limited
data availability and establishes a statistically sound framework for evaluating DRL
performance. Additionally, a consolidation layer is introduced to integrate these
features with contextual market data and previous allocations.

By sampling a diverse range of assets, we mitigate the risk of cherry-picking
a specific portfolio and reduce potential bias in our results. Our goal is to assess
the training stability and generalization of DRL algorithms with continuous action
spaces, specifically in their ability to learn profitable portfolio weights from inher-
ently noisy financial data and adapt to evolving market dynamics. To this end,
we focus on three widely used DRL methods: Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2015), Proximal Policy Optimization (PPO) (Schulman et al.,
2017), and Soft Actor-Critic (SAC) (Haarnoja et al., 2018).

During the thesis, we aim to answer the following questions regarding DRL in
portfolio allocation.

1. What is the impact of varying portfolio size on the learning stability and in-
vestment performance of DRL agents (DDPG, PPO, and SAC) in a financial
setting? How well do these algorithms scale under the growing complexity in
action and observation spaces?

2. How do different exploration strategies within DRL algorithms affect the learn-
ing and generalization capabilities of portfolio allocation agents when trained
on deterministic historical financial data?

3. To what extent do transaction costs, contextual macroeconomic information,
and historical feature lookback windows influence the behavior, performance,
and robustness of deep reinforcement learning agents in portfolio optimiza-
tion?

4. What are the key architectural considerations, particularly regarding permuta-
tion equivariance, for designing effective and robust DRL models for portfolio
allocation when dealing with randomly sampled sets of assets? What is the
influence of an attention mechanism (Vaswani, 2017) on permutation equivari-
ance?

5. How do DRL algorithms compare to traditional benchmark strategies, such as
the buy and hold strategy, an equal-weighted portfolio, and the global mini-
mum variance portfolio (Markowitz, 1952)?

Through these questions, we hope to provide a comprehensive and thorough
view of the current standing of DRL in portfolio allocation. In the remainder of this
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introduction, we discuss the concept of reinforcement learning, with its applications
and challenges, in Section 1.1. In Section 1.2, we introduce the specific finance appli-
cation this thesis tries to tackle, namely the portfolio allocation problem. In Section
1.3, we discuss the existing literature on applying DRL to the portfolio allocation
task. Lastly, in Section 1.4, we present our contribution to this field of research.

1.1 Reinforcement Learning

Reinforcement learning (RL) is a framework to teach algorithms to solve decision-
making problems, closely resembling the way humans learn. It uses principles from
behavioral psychology (Sutton, 2018), rewarding desirable actions and punishing
unwanted behavior. More formally, it is a paradigm in machine learning (ML), be-
sides supervised and unsupervised learning, concerned with making sequential de-
cisions in an uncertain environment with the view of realizing some kind of objec-
tive.

In RL, an agent is the decision maker. It learns to interact with its environment
by taking actions based on the currently available information (the state), so as to
maximize some notion of cumulative rewards. The states and rewards are provided
by the environment. This interaction is visualized in Figure 1.1. Over time, the
agent learns a decision-making rule, or a policy, that maps the available information
to the desirable behaviors in order to maximize its expected cumulative reward over

a span of time.
’J Agent ll
state reward action

Sx Rr Ar
Rr+1 ("

S.. | Environment ]4—

\

FIGURE 1.1: The agent—environment interaction in reinforcement
learning (Sutton, 2018).

Initially, RL algorithms focused on solving problems with discrete state and ac-
tion spaces, often represented in tabular forms. For instance, in a discrete state
setup, the weather could be either sunny or rainy, and temperature might be catego-
rized into one of ten distinct ranges. These tabular RL methods, such as Q-learning
(Watkins and Dayan, 1992), provide a strong basis for the field.

However, tabular methods suffer from the curse of dimensionality (Bellman,
1957). This means that as the complexity of the environment grows, with larger
or continuous state and action spaces, these methods become computationally in-
feasible. Categorizing temperature into discrete bins, for example, is only practical
up to a certain point.

To overcome these limitations and tackle more complex, real-world problems,
researchers have turned to function approximation techniques, and in particular,
deep neural networks. This has led to the rise of deep reinforcement learning (DRL)
algorithms. Instead of a table, DRL algorithms employ a deep neural network to
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map states to actions. One of the major DRL algorithms is Deep Q-Networks (DQN)
(Mnih et al., 2015). DQON combines Q-learning with deep convolutional neural net-
works to handle high-dimensional sensory inputs, achieving human-level perfor-
mance in playing Atari games. However, DQN still uses discrete actions.

Value-based algorithms, such as DQN, aim to learn how promising each action is
in a given state. Another significant branch of DRL algorithms constitutes the policy
gradient methods, with REINFORCE (Williams, 1992) as one of the more prominent
versions. Instead of estimating how good each action is, these algorithms learn by
directly adjusting their behavior based on the rewards they receive. Algorithms like
REINFORCE prove especially valuable for problems with continuous actions, where
precisely controlling things like robot joint angles or steering adjustments is crucial.
However, the learning process of REINFORCE can be quite unstable.

To mitigate these issues and combine the benefits of both value-based and policy-
based methods, Actor-Critic algorithms have been developed (Sutton et al., 1999).
Actor-Critic methods utilize two networks: an actor network that learns the policy
and a critic network that estimates the value function, which helps with more stable
learning. Prominent examples of Actor-Critic algorithms are A2C (Wu et al., 2017),
A3C (Mnih et al., 2016), and later advancements like PPO (Schulman et al., 2017)
and SAC (Haarnoja et al., 2018). These algorithms can handle increasingly complex
and high-dimensional state and action spaces, and have subsequently been applied
in difficult tasks in game Al, robotics (Tang et al., 2024), healthcare (Yu et al., 2021)
and finance (Hambly, Xu, and Yang, 2023).

1.1.1 Applications

RL algorithms are probably most famous for their applications in game Al Deep-
Mind’s AlphaGo, and its successors AlphaGo Zero and AlphaZero (Silver et al.,
2018), have defeated world champions in the game of Chess and Go. These systems
have demonstrated the ability of RL agents to master complex strategic reasoning
and long-term planning. OpenAl Five (Berner et al., 2019) achieved superhuman
performance in the complex multi-agent game of Dota 2. Vinyals et al., 2019 intro-
duce AlphaStar, an agent which achieved a grandmaster status in the multiplayer
game Starcraft. RL has also shown competence in Heads-up No-Limit Hold’em
Poker (Moravcik et al., 2017). These breakthroughs show RL’s capability in environ-
ments with large state and action spaces, with limited information and with other
(competing) agents.

Beyond games, RL has made significant progress in robotics (Kober, Bagnell,
and Peters, 2013). RL enables robots to learn complex motor skills, navigate intricate
environments, and perform manipulation tasks. As gathering real-world data is ex-
pensive and RL algorithms are often quite sample inefficient, most agents are trained
in simulated environments. Research in this area is consequently also focused on
transferring learned policies in simulations to the real world (Zhao, Queralta, and
Westerlund, 2020). In autonomous systems, particularly in autonomous driving, RL
is also being explored to develop intelligent agents that can make driving decisions
(Kiran et al., 2021).

Other prominent areas benefiting from RL are recommendation systems (Afsar,
Crump, and Far, 2022), healthcare (Yu et al., 2021), energy systems (Zhang, Zhang,
and Qiu, 2019), logistics and supply chain (Yan et al., 2022) and finance (Hambly,
Xu, and Yang, 2023), where it has been applied to portfolio optimization and risk
management.
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1.1.2 Challenges

Despite its successes, RL faces several significant challenges, which are also very
relevant to this thesis. One of the major challenges is their sample inefficiency, as RL
algorithms often require a vast amount of interaction data with the environment to
learn effectively (Sutton, 2018). In real-world scenarios this is most problematic, as
gathering data can be expensive or dangerous.

Another challenge is dealing with sparse rewards (Ng, Harada, and Russell,
1999). In many realistic scenarios, rewards are either infrequent or delayed, mak-
ing it difficult for the agent to learn which actions are truly contributing to achieving
the goal. It comes down to designing effective and informative reward functions to
tackle this challenge.

Training stability is another practical challenge. RL algorithms, particularly deep
RL algorithms, can be sensitive to hyperparameter settings and prone to instability
during training (Henderson et al., 2018). Furthermore, due to the absence of ro-
bust statistical frameworks and significance tests, it remains challenging to assess
whether the observed improvements over the state-of-the-art are truly meaningful.
This lack of statistical rigor is also evident in RL applications within finance.

Lastly, generalization remains a key challenge. RL agents trained in one envi-
ronment may not generalize well to new, unseen environments or slightly differ-
ent tasks (Cobbe et al., 2019). Developing RL algorithms that can generalize effec-
tively is very important for real-world deployment where environments are often
non-stationary and unpredictable. In finance, generalization is especially useful, as
agents are trained, validated, and tested on different sections of the dataset and mar-
ket dynamics might change over time.

Current research aims to improve upon these challenges. For example, sample
efficiency is tackled through techniques like model-based RL (Moerland et al., 2023),
meta-learning (Huisman, Van Rijn, and Plaat, 2021; Hospedales et al., 2021), and
transfer learning (Zhu et al., 2023). Model-based RL builds a model of the envi-
ronment to learn from, meta-learning aims to make algorithms better at learning in
general, and transfer learning involves training an agent on one task and then adapt-
ing its skills for another, allowing it to leverage previously acquired knowledge in
new settings, such as the real-world robot that has learned from a simulation. Re-
search on addressing sparse rewards is exploring methods like intrinsic motivation,
hierarchical RL, and curriculum learning. These methods improve reward signals or
break up learning into multiple, more manageable tasks.

To summarize, while RL still faces challenges such as sample inefficiency, sparse
rewards, training instability, and generalization, ongoing research is continually en-
gaged in addressing them. In this thesis, we contend with these challenges through
our framework for training and evaluating agents in the context of portfolio allo-
cation in finance. Specifically, we address the challenge of sample inefficiency by
using a comprehensive dataset of engineered financial features and enhancing data
efficiency through random portfolio sampling from a large universe of stocks. To
address training instability and promote generalization, we use a separate valida-
tion set and test on a substantial set of unseen assets to ensure robust out-of-sample
performance (Packer et al., 2018). Our evaluation is conducted within a rigorous
statistical framework, allowing for a clear analysis of the implications and impacts
of particular design choices.

With our current understanding of RL, we can turn to the task on which we will
experiment, namely the problem of portfolio allocation.
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1.2 Portfolio Allocation

Portfolio allocation is a fundamental problem in finance, focused on profitably allo-
cating investment capital across a set of available assets. These assets can be bonds,
stocks, derivatives, currencies, or any other financial instrument. The primary goal
is to construct a portfolio that aligns with an investor’s specific financial objectives,
typically aiming to maximize returns while taking into account risk.

In financial literature, researchers have tried to approach the portfolio allocation
problem from different angles. Classic approaches represented by Modern Port-
folio Theory (MPT) (Markowitz, 1952) search for the optimal allocation that maxi-
mizes expected returns for a given level of risk, typically measured by the variance
of the portfolio. Although MPT provides the groundwork for understanding the
risk-return trade-off, it builds on assumptions that are not necessarily valid in prac-
tice. Some of these assumptions include normally distributed returns, that investors
are rational, and that market conditions are stationary. Furthermore, MPT does not
incorporate transaction costs.

Later advances in portfolio optimization involve dynamic strategies that adapt
to shifting market conditions. Merton’s continuous-time portfolio problem, for ex-
ample, introduced stochastic control for dynamic rebalancing (Merton, 1969). With
this framework, we can model changes in wealth and time-varying risk.

RL is a relatively recent approach to portfolio allocation, but it appears very
promising (Hambly, Xu, and Yang, 2023). The portfolio allocation task, which aims
to optimize the risk-return trade-off sequentially, closely aligns with the RL objective
of maximizing cumulative rewards by optimizing a sequence of returns (Sato, 2019).
Model-free RL methods enable agents to learn adaptive policies from market inter-
actions without predefined models of return distributions. Since deep RL algorithms
can support highly dimensional state and action spaces, we can build significantly
large portfolios with hundreds of financial features to characterize the health and
potential of assets, along with market regimes. We can also model high-order non-
linear relationships between different assets using neural networks. Another key
advantage of DRL is its potential to support multiple objectives and constraints sim-
ply by shaping the reward function. This enables us to optimize any risk-reward
trade-off while including transaction costs, risk management measures, and liquid-
ity constraints. The following section examines the current state of (D)RL algorithms
in finance and explores the various approaches used to train them in this domain.

1.3 Literature Review

The portfolio allocation problem has been approached with various methods rang-
ing from classical financial theory to advanced computational techniques. Also, ma-
chine learning (ML) is being adopted to enhance portfolio management strategies.
This comes mainly from its ability to discern complex, nonlinear patterns within
often large financial datasets. Alongside supervised and unsupervised learning as
ML paradigms, (deep) reinforcement learning (DRL) is quickly gaining traction in
financial applications (Hambly, Xu, and Yang, 2023).

However, applying RL to such complex problems as determining optimal port-
folio allocations comes with various challenges and considerations. The most com-
mon challenges include high-dimensional state and action spaces (especially when
the number of assets in the portfolio and the features per asset grow), long-term
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dependencies, and limited data availability (Osterrieder and GPT, 2023). To ad-
dress those problems, researchers have to consider the differences between various
(D)RL algorithms, state spaces, action spaces, reward functions, and model architec-
tures. Another crucial step in this process involves selecting suitable financial assets,
including stocks, bonds, derivatives, or (crypto-)currencies, and curating historical
data for training the algorithms.

In this section, we provide a comprehensive overview of design choices when
applying DRL to the portfolio allocation task. Table 1.1, summarizes the most im-
portant aspects discussed in this section.

Both value-based, policy-based, and actor-critic algorithms have been applied
to the portfolio optimization task, using various asset classes. In particular, value-
based methods, such as Q-learning (Du, Zhai, and Lv, 2016; Pendharkar and Cusatis,
2018), SARSA (Pendharkar and Cusatis, 2018), and DQN (Zhang, Zohren, and Roberts,
2019; Chakraborty, 2019; Park, Sim, and Choi, 2020; Carta et al., 2021; Zejnullahu,
Moser, and Osterrieder, 2022; Li and Hai, 2024), have shown promising results.
These algorithms typically employ discrete action spaces, where actions correspond
to distinct investment decisions. Common examples include "Buy", "Hold", and
"Sell" actions or target orders (Huang, 2018) that directly translate to specific port-
folio positions. Given their nature as tabular solutions, Q-learning and SARSA ne-
cessitate the use of discrete state spaces, where states are distinct entries within the
Q-table. As DON can handle continuous high-dimensional state spaces, we can di-
rectly input asset prices and other continuous features.

With policy-based and actor-critic algorithms, we can use continuous action spaces.
This allows the algorithm to directly output the portfolio weight vector. Several
studies have successfully applied policy-based methods (Jiang, Xu, and Liang, 2017;
Zhang, Zohren, and Roberts, 2019; Benhamou et al., 2021) and actor-critic methods,
such as A2C (Zhang, Zohren, and Roberts, 2019; Yang et al., 2020; Lu, 2023), DDPG
(Liu et al., 2018; Yang et al., 2020; Jang and Seong, 2023; Lu, 2023), PPO (Yang et al.,
2020; Lu, 2023; Sood et al., 2023; Jama, 2023), TD3 (Lu, 2023), and SAC (Lu, 2023) to
the portfolio optimization task.

Various reward functions have been adopted in the literature. Among the most
common variants are direct profits and losses (PnL) (Du, Zhai, and Lv, 2016; Liu et
al., 2018; Chakraborty, 2019; Zhang, Zohren, and Roberts, 2019), portfolio returns (Li
and Hai, 2024; Pendharkar and Cusatis, 2018), the (differential) Sharpe ratio (Ben-
hamou et al., 2021; Sood et al., 2023; Jama, 2023), logarithmic portfolio returns (Jiang,
Xu, and Liang, 2017; Jang and Seong, 2023), the Kelly criterion (Lu, 2023), and the
value-at-risk (Jama, 2023). Some of these reward functions directly optimize the to-
tal return, while others also take risk into account. Although direct comparisons
of identical agents across various reward functions are scarce in the literature, the
observed performance differences remain minimal, with a slight tendency favoring
risk-adjusted reward functions.

In financial settings, where the environment is inherently complex and noisy, the
formation of high-quality observations is crucial for effective RL. Although most ar-
ticles utilize open, high, low, close (OHLC) pricing data (Jiang, Xu, and Liang, 2017;
Liu et al., 2018; Lu, 2023; Jama, 2023; Li and Hai, 2024), extracting valuable signals
from raw prices can be challenging. To address this, Chakraborty, 2019 propose the
use of feature engineering to derive technical indicators, such as the MACD, RSI,
Williams %R, and asset return series, which can facilitate the extraction of meaning-
ful information from the asset price series by (D)RL algorithms (Zhang, Zohren, and
Roberts, 2019; Benhamou et al., 2021; Jang and Seong, 2023). Others also include
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TABLE 1.1: Overview of methods and techniques in DRL for portfolio
allocation.

Aspect Details

ALGORITHMS - Value-based methods: Q-learning (Du, Zhai, and Lv, 2016; Pendharkar and
Cusatis, 2018), SARSA (Pendharkar and Cusatis, 2018), DON (Zhang, Zohren,
and Roberts, 2019; Chakraborty, 2019; Park, Sim, and Choi, 2020; Carta et al.,
2021; Zejnullahu, Moser, and Osterrieder, 2022; Li and Hai, 2024).

- Policy-based methods: Direct output of portfolio weight vector (Jiang, Xu,
and Liang, 2017; Zhang, Zohren, and Roberts, 2019; Benhamou et al., 2021).

- Actor-critic methods: A2C (Zhang, Zohren, and Roberts, 2019; Yang et al.,
2020; Lu, 2023), DDPG (Liu et al., 2018; Yang et al., 2020; Jang and Seong, 2023;
Lu, 2023), PPO (Yang et al., 2020; Lu, 2023; Sood et al., 2023; Jama, 2023), TD3
(Lu, 2023), SAC (Lu, 2023).

REWARD - Profit and Loss (PnL) (Du, Zhai, and Lv, 2016; Liu et al., 2018; Chakraborty,
FUNCTIONS 2019; Zhang, Zohren, and Roberts, 2019)

- Portfolio returns (Li and Hai, 2024; Pendharkar and Cusatis, 2018)

- (Differential) Sharpe ratio (Benhamou et al., 2021; Sood et al., 2023; Jama,

2023)

- Logarithmic returns (Jiang, Xu, and Liang, 2017; Jang and Seong, 2023)

- Kelly criterion (Lu, 2023)

- Value-at-risk (Jama, 2023).

OBSERVATIONS - Use of OHLC pricing data (Jiang, Xu, and Liang, 2017; Liu et al., 2018; Lu,
2023; Jama, 2023; Li and Hai, 2024).
- Technical indicators (e.g., MACD, RSI) (Chakraborty, 2019; Zhang, Zohren,
and Roberts, 2019; Benhamou et al., 2021; Jang and Seong, 2023).
- Asset correlations (Benhamou et al., 2021; Benhamou, 2023; Jang and Seong,
2023; Li and Hai, 2024)
- Previous weights (Jiang, Xu, and Liang, 2017; Liu et al., 2018; Chakraborty,
2019; Benhamou et al., 2021; Benhamou, 2023; Sood et al., 2023; Lu, 2023; Jama,
2023).
- Contextual market data (e.g., indices, macroeconomic variables) (Benhamou
et al., 2021; Benhamou, 2023; Sood et al., 2023; Li and Hai, 2024).

NORMALIZATION - Min-max scaling or Z-score normalization to ensure stability and robustness
TECHNIQUES (Patro, 2015).

MODEL ARCHI- - Time series models: RNNs, LSTMs (Chakraborty, 2019; Zhang, Zohren, and
TECTURES Roberts, 2019), GRUs.
- CNN:s for temporal pattern extraction (Benhamou et al., 2021).
- Ensemble strategies combining multiple agents (e.g., PPO, A2C, DDPG) or
classifiers (Yang et al., 2020; Carta et al., 2021).

FINANCIAL AS- - Stocks in various markets (e.g., S&P500 (Sood et al., 2023), SSE (Li and Hai,
SETS 2024), DJIA (Liu et al., 2018)).
- Forex market (currency conversions) (Chakraborty, 2019).
- Cryptocurrencies (Jiang, Xu, and Liang, 2017).
- Futures contracts in commodity and equity index markets (Zhang, Zohren,
and Roberts, 2019).

asset correlations to include dependencies between elements in the portfolio (Ben-
hamou et al., 2021; Benhamou, 2023; Jang and Seong, 2023; Li and Hai, 2024). To
give agents a sense of the impact of their previous actions on the reward, especially
when dealing with transaction costs, many researchers include the previous weights
in the observations (Jiang, Xu, and Liang, 2017; Liu et al., 2018; Chakraborty, 2019;
Benhamou et al., 2021; Benhamou, 2023; Sood et al., 2023; Lu, 2023; Jama, 2023).
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Other features try to capture the state and risk of the market by including contex-
tual market data, such as market indices, macroeconomic variables, and volatility
indices (Benhamou et al., 2021; Benhamou, 2023; Sood et al., 2023; Li and Hai, 2024).
Normalization of input data is important to ensure learning stability and robustness
in machine learning settings (Patro, 2015), and most articles do this using min-max
scaling or a Z-score.

To effectively capture the inherent complexities of financial data, researchers of-
ten employ sophisticated model architectures and training techniques. A frequent
strategy involves utilizing time series of pricing or feature data as input and lever-
aging recurrent neural networks (RNNs), such as vanilla RNNs, Long Short-Term
Memory Units (LSTMs), or Gated Recurrent Units (GRUs), or convolutional neu-
ral networks (CNNSs) to extract temporal patterns. Chakraborty, 2019 and Zhang,
Zohren, and Roberts, 2019 use LSTMs to extract sequential data relations from the
time series of several technical indicators and pricing series. Benhamou et al., 2021
also use LSTMs and compare them with CNNs, showing that CNNs perform the
best. Jiang, Xu, and Liang, 2017 introduce the Ensemble of Identical Independent
Evaluators (EIIE) topology, where independent networks, sharing parameters, are
employed for each asset. The authors compare the performance of RNNs, CNNSs,
and LSTMs within this framework, observing that CNNs and RNNs perform partic-
ularly well.

Other articles use more advanced setups, combining several agents into an en-
semble. Yang et al., 2020 introduce an ensemble strategy that combines three actor-
critic-based algorithms (PPO, A2C, and DDPGQG) to create a robust automated stock
trading system. Carta et al., 2021 develop a sophisticated stock trading model that
integrates multiple layers of deep neural networks and an ensemble of meta-learner
classifiers to generate trading signals and improve trading decisions. Li and Hai,
2024 introduce CMPS, a model for managing a portfolio of stocks that uses a three-
agent structure with a self-attention mechanism to make informed trading decisions.

Finally, these algorithms are applied to various financial assets and markets.
Chakraborty, 2019 focus on the Forex market, focusing on currency conversion data,
applying their algorithm to 10 different currency conversions. Jiang, Xu, and Liang,
2017 train and evaluate their agents on the cryptocurrency market. Zhang, Zohren,
and Roberts, 2019 focus on futures contracts in the commodity, Forex, fixed income,
and equity index markets. When focusing on stocks as a financial instrument, re-
searchers cover a wide variety of markets. Li and Hai, 2024 focus on the China
Shanghai Stock Exchange (SSE), comprising 34 stocks. Liu et al., 2018, Guan and
Liu, 2022, and Jang and Seong, 2023 train and test their agents on the constituents
of the Dow Jones 30 (DJIA) index, which consists of 30 US stocks. Sood et al., 2023
focus on stocks in the S&P500, which are the 500 largest companies in the US. Jama,
2023 analyzes DRL agents on the Swedish stock market, specifically on the OMXS30
index. Although all these algorithms are trained on real historical data, Lu, 2023 em-
ploy a price simulator based on correlated geometric Brownian motion to generate
stock prices, along with the Bertsimas-Lo model to simulate market impact. This
approach provides greater flexibility in evaluating algorithm performance, as it is
not constrained by the availability of historical data.

Most of the papers reviewed use a single model for each configuration and per-
form backtesting on one portfolio over a span of several years. An exception to this
approach is Sood et al., 2023, who use five agents and a sliding window technique
to generate ten independent backtests. When evaluating a single trained model on
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only one or a few portfolios, researchers are prone to selection bias, where a well-
performing model and portfolio may be unintentionally favored. This makes it diffi-
cult to determine whether a proposed method genuinely adds value or if the results
are merely due to random fluctuations or noise in the data, especially in the inher-
ently volatile and noisy financial markets. Without statistical significance tests, it is
hard to gauge the genuine performance of DRL on the portfolio allocation task.

To address this challenge Wang, 2019 sample thousands of portfolios of size n =
20-100 from the S&P 500. Their approach provides the foundation for a robust sta-
tistical framework for assessing the performance of financial models more reliably.

In the next section, where we introduce our contribution to the literature, we also
discuss how we build on the work of Wang, 2019 and aim to provide a real statistical
foundation for evaluating DRL algorithms on the portfolio allocation task.

1.4 Owur Contribution

Most reinforcement learning (RL) tasks use a simulator that simulates an environ-
ment, providing an endless stream of diverse and high-quality signals for an agent
to train on. Games, for example, are an essentially bounded environment where the
agent is free to take actions and states are produced organically.

In domains without an inherent data-generating environment, such as finance,
healthcare, energy grid management, or supply chain optimization, curating rele-
vant data for training machine learning models is essential. Some resort to simulate
the dynamics of the real-world data, but this severely reduces the applicability in
real-world situations, as we do not know the true data-generating process. For in-
stance, in financial settings, simulating price series using Brownian motion can pro-
vide a game-like environment for training agents, but it will never take into account
economic crises.

To achieve competitive performance in real financial markets, training on histori-
cal data currently seems the only option. But despite having only a limited and fixed
dataset at our disposal, we can still successfully train our agent on real-world data.
Offline reinforcement learning, for example, allows agents to learn from previously
collected datasets without interacting with the environment in real-time (Levine et
al., 2020). We can also create our own environment following the Gymnasium API
(Towers et al., 2024) using historical data, much the same way as for more standard
RL environments, allowing algorithms to learn online (Liu et al., 2020). Essentially,
the environment acts as a wrapper around the financial market, simulating trading
by sliding over historical data, while handling the algorithm’s actions and calculat-
ing portfolio returns (Sood et al., 2023). We favor this simulated online approach
over purely offline RL, because it enables the agent to interactively generate experi-
ence based on its evolving policy, reducing the need to curate transitions. Further-
more, it enables the use of standard online algorithms without requiring modifica-
tions to their core implementation.

Unfortunately, RL algorithms are not particularly efficient with data, often re-
quiring datasets with millions of (state, action, reward, next state) tuples to properly
learn a policy. Lu, 2023 have trained several deep reinforcement learning (DRL)
agents on simulated data using geometric Brownian motion with the Bertsimas-Lo
market impact model. They show that a PPO agent takes about 2M steps to learn
the optimal policy, which translates to roughly 8000 years of daily data points.
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To facilitate the extraction of valuable signals from raw financial data, experts of-
ten turn to feature engineering. This involves calculating the momentum and mov-
ing averages of the pricing data series, along with trading volume and other tech-
nical indicators such as volatility, relative strength index (RSI) (Wilder, 1978), and
Bollinger Bands (Bollinger, 1992). The modeling of stock shares can be enhanced
by incorporating features related to company fundamentals, analyst predictions,
and market sentiment. These engineered features provide a deeper understanding
of company potential, reducing the number of data points necessary for training
(Chakraborty, 2019).

Furthermore, Wang, 2019 introduce another interesting avenue to improve data
efficiency. They propose an RL framework for continuous-time mean-variance port-
folio selection, proving the optimality of a Gaussian policy with time-decaying vari-
ance and establishing a policy improvement theorem. Their EMV algorithm, based
on this theorem, demonstrates superior performance compared to traditional and
DRL methods on S&P500 data. To improve data efficiency, they sample a portfolio
of size d = 50, 75, and 100 from the total pool of 500 stocks in the S&P500, essentially
providing them with (};) different portfolios for training. They show that their EMV
algorithm significantly outperforms model-free RL alternatives, such as DDPG.

Following the methodology proposed by Wang, 2019, we can benchmark the per-
formance of RL algorithms on a diverse set of test portfolios. In contrast to studies
that optimize a single, deterministic portfolio, the framework in Wang, 2019 enables
the evaluation of RL algorithms across a wide range of portfolios. This approach
improves statistical significance and mitigates the risk of data mining, backtest over-
fitting (Liu et al., 2020), and cherry-picking results.

Building on these foundational studies, our contribution can be summarized in
five key areas:

¢ To address the problem of limited data availability in financial applications,
we combine feature engineering and portfolio sampling from the works of
Chakraborty, 2019 and Wang, 2019 into a new powerful training framework.
Specifically, we sample portfolios of size 10 from the S&P1500, giving us (1‘;380) ~
1.54e25 different portfolios. This allows our agents to learn across a diverse
range of market conditions and asset combinations, leading to more robust
and generalizable policies. Additionally, we craft 116 virtually uncorrelated
features for each company in the S&P1500 !, ranging from company funda-
mentals, technical indicators, analyst predictions, and market sentiment for

over 20 years, providing us with almost a billion high-quality data points.

¢ Building on the EIIE topology from Jiang, Xu, and Liang, 2017, we train a sin-
gle deep neural network to extract small embedding vectors, sharing weights
across all companies. Unlike Jiang, Xu, and Liang, 2017, which handles portfo-
lio company embeddings separately, we process them simultaneously in a con-
solidation layer alongside the previous allocation and contextual market data,
capturing complex inter-company relationships and integrating them with the
macroeconomic context.

¢ By randomly sampling portfolios, we evaluate RL agents across a wide range
of portfolios, ensuring statistically significant results. To address RL training
instability, we train multiple agents on the same configuration (Henderson et
al., 2018). This approach allows us to analyze performance and behavioral

!In preliminary studies, we observed that the features are nearly uncorrelated, with most correla-
tion values consistently below 0.1 in magnitude.
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aspects such as portfolio turnover, stock diversity, lookback window length,
market data incorporation, and training efficiency. We assess whether agents
genuinely learn by comparing their performance with random and optimal
policies, a factor often overlooked in existing literature. Using train, valida-
tion, and test sets, we also evaluate generalization to new data. In all of this,
we uphold rigorous standards for processing financial data to minimize look-
ahead and survivorship bias.

¢ Since different permutations of stocks within a portfolio do not convey addi-
tional information, we aim to make the company embedding vectors context-
aware by employing an attention mechanism (Vaswani, 2017), which is inher-
ently permutation-equivariant. This design ensures that the refined embed-
ding vectors facilitate information processing in the consolidation layer, elimi-
nating the need for it to learn that 10! possible portfolio permutations are fun-
damentally identical. This method draws inspiration from Tang and Ha, 2021,
where RL agents are trained to process randomly permuted inputs from vari-
ous RL tasks effectively.

* Using our framework, we benchmark our DRL agents against several strong
baselines, including the buy and hold strategy, the equal-weighted portfolio,
and the minimum variance portfolio (Markowitz, 1952). Although these algo-
rithms are simple, they are often very effective and hard to outperform in the
long run.

1.5 Thesis Outline

Before we dive into DRL algorithms in the portfolio allocation task, we will briefly
introduce the rest of the chapters and their contents.

In Chapter 2, we will provide the necessary theoretical background on portfo-
lio optimization, reinforcement learning, and deep learning techniques relevant to
the following experiments. In Chapter 3, we will detail the DRL algorithms (DDPG,
PPO, SAC), the financial environment and dataset used for training and evaluation,
the network architecture, and the experimental design for each set of experiments.
Chapter 4 presents the core experimental results. It begins by assessing the learn-
ing capabilities of the algorithms across varying portfolio sizes. It then examines
the influence of exploration strategies on performance and the out-of-sample per-
formance of the trained agents against several baseline strategies. The experiments
thereafter investigate the permutation equivariance of the network, the impact of
different transaction cost regimes, and the effect of incorporating contextual market
information and a lookback window into the observation space. Building upon the
findings of Chapter 4, Chapter 5 will summarize the key findings of the thesis, dis-
cuss their implications for the field of DRL-based portfolio allocation, and outline
potential directions for future research based on the limitations and insights gained
from this thesis.
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Chapter 2

Background

This chapter provides the theoretical foundation for applying Deep Reinforcement
Learning (DRL) to portfolio allocation. We begin by introducing reinforcement learn-
ing (RL) within the framework of a Markov Decision Process (MDP), detailing essen-
tial components and outlining how policies are formulated to maximize cumulative
rewards via the Bellman equations. Next, we review the principal RL algorithms,
including value-based, policy-based, and hybrid actor-critic methods.

We then transition to deep learning fundamentals, discussing neural network ar-
chitectures, training via backpropagation, and optimization strategies, with a focus
on specialized models such as Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs) for processing financial data.

Finally, we discuss the portfolio allocation problem by presenting its mathemat-
ical formulation, introducing objective functions, utility measures, and constraints
like transaction costs. We hope to establish a robust foundation for exploring DRL-
based strategies in the following chapters.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm that focuses on train-
ing agents to make sequences of decisions in an environment. In RL, an agent navi-
gates an environment by taking actions, transitioning through states, and receiving
rewards. The agent’s objective is to learn an optimal strategy (a policy) that maxi-
mizes expected cumulative rewards over time.

In the following sections, we formally define RL using the Markov Decision Pro-
cess (MDP), discuss policies that guide agent behavior, and introduce value func-
tions that quantify the value of different states and actions. We also discuss the
foundational types of RL algorithms, such as value-based algorithms, policy-based
algorithms and actor-critic algorithms.

2.1.1 Markov Decision Process

We can express the agent-environment interaction, introduced in Section 1.1, more
formally, using the definitions and notations introduced by Sutton, 2018. At each
discrete time step t = 1,2,3,... in the environment, the agent observes a state s,
performs actions a;, and is given rewards r;. The state s; is a full representation of the
environment at step ¢. In chess, for example, this would be the complete observable
board position and the player to make the next move. The states s; come from the
set S, the agent chooses its actions a; from the total set of possible actions A, and the
rewards r; that the environment produces in return come from a set k.

Just like humans favor an ice-cream given now more than an ice-cream given
after two years of waiting, RL has a way of balancing the importance of immediate
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rewards versus future rewards. For this, we use a discount factor ¢y € [0, 1]. Lower
values of y put a greater emphasis on immediate rewards, whereas values towards
1 put a higher value on future rewards. In the extremities, a discount factor of 0
considers only an immediate reward, and a value of 1 gives all rewards equal weight.
In financial contexts, it is standard to set the discount factor to reflect the risk-free
rate, so that at any time step, rewards received in the future are discounted by the
opportunity cost of not investing them in a risk-free asset, such as a government
bond.

Given these sets and the discount factor v, we can define a mathematical process
that formalizes the sequences of states, actions, and rewards. For this, we use the
Markov Decision Process (MDP), and we can define it as a tuple (S, A, T,R,7),
where:

¢ S represents the state space,

A is the action space,

T defines the transition function, or the set of probabilities P of moving from
one state to the next state given an action,

R denotes the reward function,
* v € [0,1] is the discount factor.

By definition, this process follows the Markov property. This means that the next
state, denoted as ¢/, is a function of only the current state (s) and the action (a), and
not of previous states or actions. In that case, we are able to predict the next state
and expected next reward given the current state and action (Sutton, 2018). This is
an important concept in RL and sequential modeling, as we have to be able to model
how our current behavior affects the future. If this transition would be random, we
would never know how our actions shape the future.

2.1.2 Policies

Using the former terminology, we can formulate the behavior of an agent using a
policy, or decision-making rule. A policy maps states to actions, such that the agent
learns what action to take in each state. In RL, the goal of the agent is to find an
optimal policy, i.e. one where the agent takes the most lucrative action in each state.

Formally, the agent needs to determine an optimal policy 77*(a|s), that maximizes
the expected cumulative discounted reward G; at each step ¢,

" = argmax E[G| 7], (2.1)

T
for a discrete time MDP with an infinite horizon, and where Gy = r; + yri 1 +
Voo + -0 = Yo Y7,k is referred to as the return. In other words, the agent

needs to find the behavior that ensures that we reach the highest attainable reward
in the long run, discounted by 7.

Policies can be deterministic or stochastic. Deterministic policies map each state
s to a fixed action 4, ensuring that the same action is chosen for a given state every
time. Stochastic policies map s to a probability distribution over actions 4, allowing
for variability in the actions taken, even for the same state. This randomness can
be beneficial in exploration, enabling the agent to discover more diverse strategies
without inducing randomness at the level of the actions.



2.1. Reinforcement Learning 15

2.1.3 Value Function

Maximizing the return G; entails achieving the highest cumulative reward over a
sequence of actions. To effectively maximize this return, we need to relate the return
to the states and actions that contribute to it. This connection can be further refined
by linking the return to the current state or action through the state value function
and the action value function.

The state value function V7 (s) denotes the expected return when starting in state
s and subsequently following policy 7. It is defined as

V7(s) = Ex[Gilst = 5. 22)

The action-value function, or Q-function, Q”(s,a), on the other hand, denotes
the expected return when starting in state s, taking action a, and following policy 7t
thereafter. It is defined as

Q" (s,a) = Ex[Gt|s; = s,a; = a. (2.3)

These functions measure how lucrative the current state and action are. For ex-
ample, if we still have the queen on the board, the value of V" (s) will be higher than
in a state where the queen is just blundered away. Also, Q" (s,a) of the action that
inadvertently sacrificed the queen will be lower than one that leads to a checkmate
in three.

The true applicability of the value function and the Q-function emerges when
we recognize their recursive nature. As there exists a relationship between subse-
quent values of these functions, we can more easily estimate and optimize long-term
rewards. Formally, the value function and Q-function can be recursively defined
through the Bellman equations (Bellman, 1957). Through Equations 2.2 and 2.3, we
can define the Bellman equation for the value function as

V7 (s) = Ex[re + vV (st41)[st = 5], (24)
and the Bellman equation for the Q-function as

Q™ (s,a) = Ex[rt + vQ™ (St41,4141) |5t = s, ar = al. (2.5)

In essence, these equations express the relationship between the value of a state (or
state-action pair) and the values of the states coming after. This recursive relation-
ship allows us to iteratively update our function estimates with observed actions,
states, and rewards, gathered from experience by interacting with the environment.
This phenomenon is useful for dynamic programming and forms the foundation of
most RL algorithms.

Using these functions, we can define an optimal policy 7%, which achieves the
optimal value function and optimal Q-function for all states and actions. The opti-
mal value function is defined as

V*(s) = max V7 (s), (2.6)
which represents the highest expected return of being in state s, given that the agent
behaves optimally according to policy 77*. In the same way, the optimal Q-function
represents the maximum achievable expected cumulative reward from taking action
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a, while starting from state s,
Q*(s,a) = max Q" (s, a). (2.7)
7T

Hence, the optimal policy 7t* effectively maximizes the expected return in the given
MDP, as it does so in each state and for each action. To find 7%, the RL algorithm
needs to implicitly learn the transition probabilities from 7 and the reward function
R.

This foundation of MDPs, value functions, and Bellman equations provides the
mathematical framework for understanding and developing RL algorithms. An RL
algorithm can focus either on calculating the (action-)value function, which gives
rise to value-based RL algorithms, or on optimizing the policy directly, as done in
policy-based methods. Actor-Critic methods combine these two elements. We will
explore these methods further in the upcoming sections.

Before we discuss value-based and policy-based algorithms, we have to intro-
duce some important RL concepts. While learning the policy, RL algorithms can
perform updates on-policy or off-policy. On-policy algorithms update the policy
with transitions from the current policy iteration, while off-policy algorithms up-
date the policy also with older, previously gathered transitions, for example from a
replay buffer.

Another important distinction can be made between model-free and model-based
methods, where the latter tries to build a model of the environment in order to im-
prove learning. This thesis focuses exclusively on model-free reinforcement learning
algorithms, as we hypothesize that building a model of financial markets is too com-
plex. Model-based approaches, while relevant to the broader field, fall outside the
scope of this particular research.

2.1.4 Value-Based Reinforcement Learning

Value-based algorithms aim to learn an optimal value function V*(s) or Q-function
Q*(s,a) to guide decisions. By estimating the expected return G; for each state or
state-action pair, the agent can choose actions to maximize long-term (discounted)
rewards for any given state. In other words, the agent’s policy is derived from the
learned (action-)value function and therefore makes decisions considering the ex-
pected cumulative rewards.

A classic value-based algorithm is Q-learning, which is an off-policy algorithm
(updating the policy using older, previously gathered transitions) that learns itera-
tively given observed rewards and the maximum estimated Q-value of the next state
(Watkins and Dayan, 1992). Q-learning relies on a table, often called a Q-table, for
storing and updating the Q-values for each state-action pair. This process uses the
relationship in Equation 2.5 to learn optimal policies in a model-free manner. It be-
gins with a random initialization of the Q-table and iteratively updates it with the
observed rewards, states, and actions gathered in the environment.

Using the relationship in Equation 2.5, we can formulate the update rule for Q-
learning as

Q"W (st,ar) = Qlse,ar) + o |11+ y max Qlst41,a") = Qst,ar) |, (2.8)

where « is the learning rate and the term in the square brackets is coined the tempo-
ral difference (TD) error. The TD error measures the difference between the current
Q-value and the TD target, which is the reward r; attained after taking action a; in
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state s; plus the best possible future value (max, Q(s;+1). The new Q-value is calcu-
lated by adjusting the current value with a weighted difference between the current
Q-value and an estimate derived from the observed reward and the maximum Q-
value of the next state s;; after taking action a;.
Another popular value-based method is State-Action-Reward-State-Action (SARSA),

an on-policy algorithm that updates the Q-function based on the current policy and

the rewards observed (Rummery and Niranjan, 1994). The update rule for SARSA
can be formulated as

Q"% (st,a1) + Qst,ar) +a[re +vQ(se41,ar41) — Q(st,a1)], 2.9)

where a is the learning rate, r; is the reward received after taking action a; in state s¢,
and a;41 is the next action chosen according to the current policy. The term within
the square brackets again represents the TD error. In SARSA, the TD target is defined
by the Q-value corresponding to the subsequent state-action pair (s;41,4+1), rather
than the maximum Q-value over all possible actions. This update rule ensures that
the learning process remains consistent with the current policy, making SARSA an
on-policy algorithm.

However, the problem with a table is that it can not capture continuous states,
as the dimensions grow too large. This caused the advent of Deep Q-Networks
(DQNs), which extend Q-learning to high-dimensional state spaces with the use of
deep neural networks to approximate the Q-function (Mnih et al., 2015). RL algo-
rithms combined with neural networks from deep learning are called Deep Rein-
forcement Learning (DRL) algorithms. DRL is especially useful when states become
high-dimensional and tabular solutions grow too complex. DQN’s breakthrough
has enabled significant advances in the application of RL to complex tasks, such as
playing Atari games directly from high-dimensional pixel inputs, which would be
impossible to model with a Q-table.

Value-based RL algorithms are particularly well-suited for environments featur-
ing discrete action spaces, where actions fall into distinct categories, such as "Left"
and "Right" or "Buy" and "Sell".

2.1.5 Policy-Based Reinforcement Learning

Instead of relying on value functions, policy-based algorithms directly optimize the
policy. These methods optimize the policy parameters to maximize the expected
return J(719), which is defined as

T
](779) = IETNTL’G [Z 7trt] y (2.10)

t=0

where T represents a trajectory sampled from the policy 7ry. A trajectory is simply
a sequence of states, actions, and rewards, and when it terminates it is called an
episode.

The core idea behind policy-based methods lies in adjusting the policy parame-
ters in a direction that increases the probability of selecting actions leading to higher
returns. This optimization process, commonly referred to as the policy gradient, con-
sists of an iterative update of the policy parameters proportionally to the gradient of
the expected return:

0111 = 0: +aVe](70), (2.11)
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where 6 represents the policy parameters, « is the learning rate, and V,J(71p) is the
gradient of the expected return with respect to the policy parameters.

Using the policy gradient theorem (Sutton et al., 1999), we can express the gradi-
ent of J(71g) as

T
Vol (m9) = Ernr, | Y, Volog ma(ar|si)Re |, (2.12)
=0

where R; is an estimator of the return from time step t onward, often equal to G;.
The REINFORCE algorithm (Williams, 1992) estimates R; using Monte Carlo simu-
lations.

Policy-based methods have several advantages. First, they can handle continu-
ous action spaces. Since the output of the policy network directly corresponds to the
actions, which can be continuous, these methods are not limited to discrete action se-
lections through Q-values, for example. The second advantage is that policy-based
methods can learn stochastic policies. By injecting variability into the policy net-
work itself, they offer a more nuanced approach towards exploration compared to
adding stochasticity at the level of the actions via action noise. However, they can
be sensitive to hyperparameter settings and can have high variance in the gradient
estimator V] (71p).

2.1.6 Actor-Critic Methods

To address the high variance issue, which slows down learning, actor-critic methods
(Konda and Tsitsiklis, 1999) combine the strengths of value-based and policy-based
approaches. They use an actor network to represent the policy 7p(als), which out-
puts (continuous) actions, while a separately learned critic network approximates
either the value function V7 (s) or the action-value function Q™(s,a). We can then
compute the advantage function using the estimated value function, and use the ad-
vantage in place of the raw return in updating the policy network. This mechanism
reduces the variance in gradient updates.

To illustrate this, we can slightly modify the policy gradient representation from
Equation 2.10 to

T
Vol (79) ~ Evwr, | Y Velog mg(ar|se) A" (s, at) | , (2.13)
=0

where we use the advantage function A7 (s;, a;) instead of the return estimator R;.
The advantage function can be approximated as A™(s¢, a;) = Q™ (s, a;) — V™ (s¢) or
Ry — V7 (s¢). Here, the critic estimates V7 (s;) or Q" (s, a;), reducing the variance of
the policy gradient as it centers the gradient estimates around zero. Now, the actor
updates his policy parameters 6 based on the feedback from the critic.

Actor-critic methods are the golden standard in most RL tasks nowadays. One of
the first successful implementations was the Asynchronous Advantage Actor-Critic
(A3C) (Mnih et al., 2016), which introduced an actor-critic architecture combined
with asynchronous updates. Unlike its asynchronous counterpart, A2C (Wu et al.,
2017) is a synchronous, deterministic variant of A3C. It uses multiple workers to
avoid the use of a replay buffer.

Later, many more algorithms have been introduced, improving robustness and
sample-efficiency in the process. Trust Region Policy Optimization (TRPO) (Schul-
man et al., 2015) provides constraints on policy updates, such that the new policy
does not diverge from the old one too much. This improves stability significantly.
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Proximal Policy Optimization (PPO) (Schulman et al., 2017) is another very popu-
lar RL algorithm. It generally provides a much more computationally efficient and
scalable alternative to TRPO while maintaining stability. Soft Actor-Critic (SAC)
(Haarnoja et al., 2018) incorporates entropy maximization into the objective to en-
courage exploration. This helps overcome premature convergence to suboptimal
policies.

Other popular actor-critic algorithms are Deep Deterministic Policy Gradient
(DDPQG) (Lillicrap et al., 2015) and its improvement Twin Delayed DDPG (TD3) (Fu-
jimoto, Hoof, and Meger, 2018). These algorithms rely on the deterministic policy
gradient theorem and are effective in high-dimensional continuous action spaces.
TD3 improves on many RL tasks by mitigating the Q-value overestimation bias (Van
Hasselt, Guez, and Silver, 2016) through employing a pair of critics instead of one.

We will discuss some of these algorithms, specifically DDPG, PPO and SAC in
more detail in the following chapters. In the next sections, we introduce deep learn-
ing, which is vital for function approximation in DRL algorithms.

2.2 Deep Learning

Since most state-of-the-art RL algorithms rely on deep learning networks to approx-
imate value or policy functions, we provide a brief introduction to the concept in
this section. Deep learning draws inspiration from the workings of the brain and
neural networks, mimicking their layered structure and learning mechanisms (Le-
Cun, Bengio, and Hinton, 2015). The primary motivation behind deep learning is
to approximate any mathematical function through a model f, which maps inputs
X to outputs Y, parameterized by a large set of trainable parameters 6 (Goodfellow,
Bengio, and Courville, 2016). In this framework, deep neural networks serve as uni-
versal approximators, representing any function with an arbitrary number of nodes,
layers, and non-linear transformations (Hornik, 1991).

In Figure 2.1, we present an illustration of a basic neural network with an input
layer of dimension 5, several hidden layers, and an output layer of dimension 3.
The lines between node j in layer i — 1 and k in layer i have a weight w; ; . Not
represented in the figure, but very common in neural networks, is a bias term b; ;. for
each node k in the layer i in the network, which essentially serves the same role as
the intercept in a linear regression.

If we combine weights w; j into a matrix W; and biases b; ;. into a vector b;, each
layer i in the network represents a multivariate linear regression W;x + b;. On top, in
most neural networks, each layer has an activation function A;. Common activation
functions, include tanh, softmax, and the rectified linear unit (ReLU) (Nair and Hin-
ton, 2010), which enable the networks to model complex, non-linear relationships in
data effectively. Using the activation function A;, the output h; of each layer can be
formulated as

h; = Ai(WZ-x + bi), (2.14)

which is a non-linear relationship between inputs x and output h;. If we stack n
layers together, the output /1, of the final layer can be expressed as the composition
of all intermediate layers:

h, = An(Wn(An,l(Wn,l(. .. A1(W1x + bl) ce ) + bn,1) + bn) (2.15)

In this section, w or W specifically refer to neural network weights. In all subsequent sections and
chapters, unless stated otherwise, w or w will denote portfolio weights.
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Deep neural network
Input layer Multiple hidden layers Output layer

FIGURE 2.1: A basic neural network architecture with an input layer,

multiple hidden layers, and an output layer (Lotfinejad, 2023). The

input layer consists of 5 nodes and the output layer of 3 nodes. Each
line between nodes has a trainable weight w; j.

In deep learning, finding the optimal weights W, or, equivalently, the optimal
parameters 6, is done by the backpropagation algorithm (Rumelhart, Hinton, and
Williams, 1986). Backpropagation calculates the gradient of the loss function with
respect to each parameter by applying the chain rule of differentiation, propagating
errors backward through the network. These gradients are then used to update the
weights in the direction that minimizes the loss, denoted as

9k+1 = Gk — OCV(;L, (2.16)

where 6 are the parameters at step k, « is the learning rate, and VgL is the gradient
of the loss function L with respect to the parameters 6. Intuitively, we change the
parameters each step with size « in the direction that minimizes some loss function.

In practice, this update step is done by optimization algorithms, such as stochas-
tic gradient descent (SGD) (Robbins and Monro, 1951; Ruder, 2016), where param-
eters are updated iteratively using the gradient of the loss function computed on
random subsets (batches) of the training data. Variants of SGD, such as momen-
tum (Polyak, 1964), add a moving average of past gradients to the current update
to accelerate convergence and avoid oscillations. Adaptive methods like AdaGrad
(Duchi, Hazan, and Singer, 2011), RMSProp (Tieleman and Hinton, 2012), and Adam
(Kingma and Ba, 2014) dynamically adjust the learning rate for each parameter
based on historical gradient information, enabling faster convergence in complex,
high-dimensional optimization landscapes.

2.2.1 Convolutional and Recurrent Neural Networks

Up to this point, we have only discussed fully connected architectures. However,
deep learning offers more specialized network architectures for different data types
and tasks. Two prominent examples are Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), which excel in processing spatial and se-
quential data, respectively.
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image patch hidden layer 1 hidden layer 2 final layer
1 layer 4 feature maps 8 feature maps 4 class units
36x36 28x28 14x14 10x10 5x5

convolution max convolution max convolution
(kernel: 9x9x1) pooling (kernel: 5x5x4) pooling  (kernel: 5x5x8)

FIGURE 2.2: Schematic representation of a convolutional neural net-
work (CNN) architecture designed for image classification.

Convolutional Neural Networks are particularly effective for analyzing grid-
structured data, due to their ability to extract hierarchical spatial features. CNNs
are known for their capabilities in analyzing images (2D), but they are also adapt at
learning spatial temporal features in videos (3D) and recognizing patterns in time
series (1D). Instead of connecting each neuron in a layer to every neuron in the next
layer, as in fully connected networks, CNNs apply convolutional filters over local
regions of the input. This approach reduces the number of trainable parameters,
making CNNs well-suited for image recognition, object detection, and related tasks
(LeCun et al., 1998; Krizhevsky, Sutskever, and Hinton, 2012). Furthermore, CNNs
are translational invariant. This means that a CNN can still identify an object in an
image, such as a chair, if its position is changed.

Key components of CNNs include convolutional layers, pooling layers for down-
sampling, and fully connected layers for classification. Max-pooling, for example, is
a permutation invariant operation which outputs the maximum value of a matrix
of arbitrary size, effectively reducing the dimensionality of the processed data. In
Figure 2.2, a basic CNN architecture with the aforementioned elements is depicted.
The network processes a 36 x 36 input image patch through successive layers of
convolution and max-pooling. The two hidden layers extract 4 and 8 feature maps,
respectively. The final fully connected layer outputs 4 class units, which could rep-
resent the different object classes on the processed image that the algorithm should
detect.

In financial applications, 1D CNNs are widely and successfully used to extract
temporal patterns from the time series of features (Jiang, Xu, and Liang, 2017; Ben-
hamou et al., 2021). Some also employ 2D or 3D convolutions, also capturing rela-
tionships between assets and financial features in the portfolio (Benhamou, 2023; Li
and Hai, 2024). However, it is crucial to ensure that there is an intuitive spatial hi-
erarchy in the data before applying a CNN. If the order of assets and features in the
input data can be changed without altering the fundamental meaning and dynamics
of the portfolio optimization task, then a spatial CNN might not be the most suitable
feature extractor.

There exist other architectures to extract temporal features from time series data.
Recurrent Neural Networks are specifically designed to do this. RNNs introduce
feedback loops, enabling information from previous time steps to influence the cur-
rent state. At each time step t, the hidden state /; is updated based on the current
input x; and the previous hidden state /1;_;. We can formally denote this as

hi = A(Wyhi—1 + Wyxt + b), (217)



22 Chapter 2. Background

where W), and W, are trainable weight matrices. This allows RNNs to effectively
model sequences of data, such as pricing series.

However, vanilla RNNs suffer from vanishing or exploding gradients when learn-
ing long-term dependencies. To address this, architectures such as Long Short-Term
Memory (LSTM) networks (Hochreiter, 1997) and Gated Recurrent Units (GRUs)
(Cho, 2014) introduce gating mechanisms to control the flow of information and
gradients more effectively.

Attention mechanisms, foundational to the Transformer architecture, have fur-
ther improved processing of sequential data (Vaswani, 2017). They enable models to
selectively focus on input parts. At its core, attention is a weighted sum, calculated
in Transformers via scaled dot-product attention:

T
Attention(Q, K, V) = softmax <QK> 14 (2.18)
Vg

Here, queries Q, keys K, and values V are input matrices. The part inside the
softmax function measures key-query similarity. The softmax function normalizes
these similarities into attention weights for value weighting.

Through the use of attention, Transformers are better at modeling sequential data
than RNNs. Their parallel nature also increases computational efficiency. Further-
more, the attention mechanism is permutation equivariant, which means that if we
change the order of inputs in Q, K, and V, the output will change in the same way.

2.3 Portfolio Allocation

In this section, we build on the introduction in Section 1.2 and introduce a mathe-
matical framework for the portfolio allocation task. The portfolio allocation prob-
lem, sometimes also called the portfolio management or optimization problem, is
a well-studied foundation of financial decision-making. It aims to find the optimal
capital distribution among a set of n assets. This formally means finding a vector
of weights, wy = (w},w?,...,w}'), where w! denotes the proportion of total wealth
allocated to asset i at time step t, with the goal of maximizing some defined objective
function.

We can specify this objective function through the utility function U(-). The util-
ity function is a function of the portfolio return R ; at time t and it can be customized
to the investor’s risk preferences. For example, as higher returns most often mean
higher volatility, some investors prefer more conservative risk adjusted utility func-
tions.

In the portfolio allocation problem, the goal is to maximize the expected utility
over a planning horizon T, discounted by a factor 1:

max [E

{wet, t=0

T
) ny(Rp,t)] , (2.19)

where {w¢}]_, denotes that we are optimizing the set of weights at each time step
over the horizon T. We can decompose the portfolio return R, ; in terms of the asset
returns ry = (r},7%,...,r") % as

Ry = wy ' 1v. (2.20)

2To avoid confusion on the meaning of r, we will be absolutely clear whether we are dealing with
financial returns or RL rewards in the rest of this thesis.
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Right now, we assume that the assets in the portfolio can be rebalanced at any
time without incurring any costs. However, in practice, optimization must take into
account transaction costs. If we adjust the portfolio weights from w¢_1 to w¢, we pay
a fee often proportional to the difference between these weights. Mathematically, let
c(wi_1, wy) be the transaction cost function. Then, the net portfolio return RW after
accounting for transaction costs is

Ryt = Ryt — c(We—1, Wy). (2.21)

After adding the transaction costs to the objective function, we then aim to maximize
the expected utility of the net portfolio returns

T
max E [Y 7'U(R,z)
{wet t=0
L 2.22
st. Y wp=1 (2.22)
i=1
wlt' >0

where we constrain the weights to sum to one and be nonnegative, i.e. we do not
allow for shortselling assets. There are many ways in which we can define the cost
function ¢(w¢_1, wt). We use a proportional transaction cost scheme, where trans-

action costs are a percentage of the amount transacted, as in Davis and Norman,
1990.
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Chapter 3

Methodology

In this section, we detail the methodology of this master thesis. We introduce the
deep reinforcement learning (DRL) algorithms used in the experiments, the base-
lines with which we compare our DRL algorithms, the performance metrics on which
they will be compared, the neural network architecture of the agents, and the port-
folio allocation environment with which they interact. We also introduce the data
on which we train our algorithms, stressing the importance of careful handling of
financial data to mitigate biases.

3.1 Continuous Deep Reinforcement Learning Algorithms

With our current understanding of reinforcement learning and deep learning, we
can turn to scrutinizing the three DRL algorithms that are used for experiments in
this thesis. Specifically, we use three of the most popular continuous-action DRL
algorithms in finance, namely Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2015), Proximal Policy Optimization (PPO) (Schulman et al., 2017), and Soft
Actor-Critic (SAC) (Haarnoja et al., 2018). We dive into the motivations behind each
of these algorithms, along with their strengths and weaknesses, to gain a deeper
understanding of the potential pitfalls in applying them to the portfolio allocation
task. For each algorithm, we use the implementations of stable baselines 3 (Raffin
etal., 2021).

We adopt continuous actions represented as direct portfolio weights for our port-
folio allocation task, despite the numerous alternatives. We deem discrete actions
impractical due to the combinatorial complexity arising from multiple stocks. Mul-
tidiscrete actions, where each stock allocation can be chosen independently, are un-
supported by most popular algorithms !, including DDPG and SAC. Although defin-
ing actions as weight changes could simplify minimizing asset turnover, which is
an important consideration in high-transaction-cost environments, representing ac-
tions as direct weights affords the agent greater control and precision over the port-
folio allocation, despite the additional complexity. Drawing on DRL’s proven suc-
cess in continuous-control domains like robotics and logistics (Arulkumaran et al.,
2017), where agents need to precisely control voltage on robot joints or the allocation
of inventory across warehouses, we opt for this approach to enable precise adjust-
ments. From a Markov Decision Process (MDP) perspective, where state and action
sequences must be non-random, and to equip the agent with a mechanism to man-
age turnover, incorporating the previous portfolio weights into the observation is
crucial when actions are defined as direct portfolio weights.

LAt the time of writing, DDPG and SAC only support Box (continuous) action spaces in Stable
Baselines 3 (Raffin et al., 2021).
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Now, we provide a discussion of DDPG, PPO, and SAC, explaining their archi-
tectures and key mechanisms. We also compare them, hypothesizing what features
might be beneficial in the portfolio allocation task.

3.1.1 Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) extends Deep Q-Learning (Mnih et al.,
2015) to continuous action spaces by using an actor-critic framework (Lillicrap et al.,
2015). The actor outputs continuous actions and the critic evaluates them. DDPG
is model-free and off-policy, as it draws transitions from a replay buffer. DDPG
performs well on many continuous-control physics tasks, such as the cartpole swing-
up (Lillicrap et al., 2015), dexterous manipulation (Gu, Lillicrap, and Levine, 2017),
and car driving (Jin et al., 2021).

The motivation behind DDPG lies in its ability to output continuous actions, as
many real-world tasks, such as robotic control or financial portfolio optimization, in-
volve continuous action spaces. Traditional value-based methods struggle in these
domains due to the need to discretize actions. Policy-based methods can output con-
tinuous actions, but often suffer from high variance in gradient estimates (Williams,
1992).

DDPG solves these issues by using a deterministic policy to reduce variance in
the gradient estimates and maintaining two neural networks, namely an actor net-
work 1(s|0") and a critic network Q(s,a|69). Additionally, DDPG uses two target
networks, 3’ and Q’, inspired by DQN:s, to stabilize learning. These target networks
are updated to reflect the parameters of the online actor and critic networks with a
soft-update rule.

In Algorithm 1, we show the DDPG algorithm in pseudocode, as it appears in
Lillicrap et al., 2015. Noteworthy is the use of N for exploration, which essentially
means that we add noise to the actions to induce exploration. This noise process
can take any form, but most commonly it is either random normally distributed or
Ornstein-Uhlenbeck noise, which is temporally correlated (Uhlenbeck and Ornstein,
1930). The addition of stochasticity on the level of the actions may be suboptimal in
highly dynamic environments.
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Algorithm 1 DDPG Algorithm (Lillicrap et al., 2015)

1: Randomly initialize critic network Q(s,a|0?) and actor u(s|6") with weights 0°
and 6¥.

2: Initialize target networks Q' and p’ with weights 9" «+ 62, 6 « 6.
3: Initialize replay buffer R.
4: for episode =1to M do
5. Initialize a random process A for action exploration.
6: Receive initial state s;.
7. fort=1toT do
8: Select action a; = u(s¢|0") + N; according to the current policy and explo-
ration noise.
9: Execute action a; and observe reward r; and new state s; 1.
10: Store transition (s¢, at, ¢, 5;+1) in R.
11: Sample a random minibatch of N transitions (s;, a;, 74, S;+1) from R.

12: Set y; = 1; + 1Q (sis1, 1 (si11/6")[69).
13: Update critic by minimizing the loss: L = & ¥ (v; — Q(s;, 4;|69))2.
14: Update the actor policy using the sampled policy gradient:

1
Vou] =~ N Zan(S/an) |s:si,a:y(s,~)v9?‘.u(5’9y)|Si'

15: Update the target networks:
09 «— 109 + (1 —1)69,

0" «— 10" 4 (1 —1)6".

16: end for
17: end for

To conclude, DDPG handles high-dimensional, continuous action spaces effec-
tively without discretization. The replay buffer facilitates off-policy learning, mak-
ing efficient use of past experiences. This can be particularly useful when sampling
random portfolios, where feature distributions may change at the start of every
episode. Using previous experience, the agent can improve stability and improve
generalization across stocks. However, DDPG does not account for the overestima-
tion bias, as later improved upon in the TD3 algorithm (Fujimoto, Hoof, and Meger,
2018). Also, in practice, DDPG’s performance can be highly sensitive to hyperpa-
rameter tuning, including learning rates, noise scaling, and the size of the replay
buffer. Most importantly, DDPG relies on action noise for exploration, which may
be suboptimal in highly dynamic environments.

DDPG is used frequently in the literature on portfolio optimization and will
serve as a useful baseline in this thesis. However, the Proximal Policy Optimiza-
tion and Soft Actor-Critic algorithms, discussed in the next chapters, use stochastic
policies, which make them likely more effective in financial tasks where the signal-
to-noise ratio in the data is low.

3.1.2 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a widely used reinforcement learning algo-
rithm that simplifies the complex trust region optimization in Trust Region Policy
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Optimization (TRPO) (Schulman et al., 2015) while retaining its key benefits. Intro-
duced by Schulman et al., 2017, PPO is an on-policy algorithm with a novel objective
function that enables multiple epochs of minibatch updates. Due to these improve-
ments, PPO is simple to implement, sample efficient, and shows great performance
on simulated robotic tasks and Atari games.

Schulman et al., 2017 recognize that vanilla policy gradient methods are not very
sample-efficient and not robust enough, and that TRPO is a relatively complicated
algorithm. Traditional policy gradient methods are unstable when the new policy
deviates too much from the old one. TRPO addresses this issue by constraining
the policy update with a trust region, but requires solving a complex optimization
problem. PPO simplifies this by replacing the trust region constraint with a clipped
objective function. Using this surrogate objective, PPO allows for larger updates
while ensuring that the new policy does not diverge excessively from the old policy.

In Algorithm 2, we present the basic pseudocode for PPO, as described in Schul-
man et al., 20172, Unlike off-policy algorithms such as DDPG, PPO is an on-policy
algorithm and uses fresh trajectories for each update, gathered by the current policy.
Additionally, PPO uses minibatches of sampled trajectories for multiple epochs of
optimization, further improving sample efficiency.

Algorithm 2 PPO Algorithm (Schulman et al., 2017)

1: Initialize policy network 7r4(a|s) and value function V(s) with random weights
6 and ¢.
2: for iteration =1 to M do

3:  Collect T timesteps of data by running the policy 77y in the environment.
4 Compute advantage estimates A; using the collected trajectories.
5. forepoch=1to K do
6: Sample a minibatch of trajectories.
7: Compute the PPO objective:
LHP(9) = E [min (r:(0) Ay, clip(r:(0), 1 — e, 1+ €)A;)] .
8: Update the policy network by maximizing LM (9).
9: Compute the value loss LVE(¢).
10: Update the value function by minimizing LVF(¢).
11:  end for
12: end for

To provide some intuition on the PPO objective, it essentially prevents excessive
policy updates. It does this by combining the unclipped surrogate loss (first term
in the min operator) with a clipped version that limits the probability ratio r;() to
the interval [1 — €,1 + €]. By taking the minimum of these two terms, the algorithm
ensures a pessimistic lower bound on the original objective. PPO selectively uses
the change in probability ratio, disregarding it when it improves the objective and
including it only when it worsens the objective (Schulman et al., 2017).

Unfortunately, PPO is quite sensitive to hyperparameter settings, requiring care-
ful implementation (Huang et al., 2022). Key parameters such as learning rate, clip-
ping range, batch size, and number of epochs significantly influence its performance.

2For deeper explanations of the terms such as L“MP(9) and LVF(¢) we refer to the original PPO
paper.
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To summarize, PPO aims to balance stability and simplicity, as it enables policy
updates without requiring the complex trust region constraints used in TRPO. Al-
though theoretically promising, it has also been shown to work practically in high-
variance environments, such as financial markets (Wen, Yuan, and Yang, 2021; Sood
et al., 2023). The use of advantage estimates A; helps reduce variance in gradient
updates, while the clipped surrogate objective ensures stable learning, which is im-
portant in the inherently uncertain and non-stationary financial markets. Because of
this, its ability to handle stochastic policies makes it a strong candidate for financial
portfolio optimization.

However, its on-policy reliance on fresh trajectories can limit sample efficiency,
potentially amplifying noise if sampled data is unrepresentative or volatile. To mit-
igate this, PPO may benefit from noise-reduction strategies, such as training on
longer intervals (Wen, Yuan, and Yang, 2021). In addition, PPO is quite sensitive
to the choice of hyperparameters (Huang et al., 2022).

3.1.3 Soft Actor-Critic (SAC)

The last algorithm we discuss is the Soft Actor-Critic (SAC) algorithm. SAC is an
off-policy algorithm that introduces entropy maximization into the policy objective
to encourage more exploratory behavior (Haarnoja et al., 2018). Just like PPO, it uses
a stochastic policy. It also incorporates a temperature parameter into the policy up-
date to balance the exploration-exploitation trade-off. SAC is particularly effective
in environments with high-dimensional, continuous action spaces and is therefore
widely applied in robotics and other continuous control tasks.

The key motivation behind SAC lies in improving sample efficiency and ro-
bustness. Unlike DDPG, SAC uses a stochastic policy, which tries to avoid over-
fitting to specific regions of the state-action space. SAC uses an actor-critic archi-
tecture with two critics to mitigate the overestimation bias often observed in Q-
learning methods, which is inspired by TD3. Additionally, SAC adds an entropy
term to the objective, such that we now maximize a trade-off between the expected
reward and the entropy of the policy. This is formulated as maximizing J(7r) =
E [¥ 7' (r(st,ar) + aH(7(-|s¢)))], where a is the temperature parameter, or entropy
coefficient, and H is the entropy. A higher entropy coefficient places more weight on
the entropy term in the objective, leading to more randomness in action selection.
This coefficient is learned by the algorithm and adapted to the specific dynamics of
the environment, as the algorithm tries to match a certain target entropy. The tar-
get entropy is normally set at the negative value of the size of the action space, to
introduce more exploratory behavior if the action space increases. Furthermore, the
algorithm uses a replay buffer for experience sampling, improving sample efficiency.

In Algorithm 3, we provide pseudocode for SAC, as outlined in Haarnoja et al.,
2018. Important to note is that SAC uses many networks, namely a value function
P, a target value function ¥, two Q-functions 61,6, and a policy network ¢.
In more recent implementations of SAC, however, the value function and the tar-
get value function are inferred from the Q functions and the policy network. This
stabilizes learning and reduces computational complexity.
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Algorithm 3 SAC Algorithm (Haarnoja et al., 2018)

1: Initialize parameter vectors ¢ (value function), {'@"&° (target value function),
61,62 (Q-functions), and ¢ (policy).

2: Initialize replay buffer D.

3: for each iteration do

4:  for each environment step do

5 Sample action a; ~ 71y (a¢|st).

6 Observe next state s;11 ~ p(s¢41|st, a¢) and reward ry = r(sy, a;).

7: Store transition (s, at, 1, S¢11) in D.

8

9

end for

for each gradient step do
10: Sample a minibatch of transitions (s, a;, 74, 5¢4+1) from D.
11: Update value function: ¢ <— ¢ — Ay Vy Jv ()
12: Update Q-functions: 6; < 0; — AoV Jo(0;), Vie {1,2}
13: Update policy: ¢ <— ¢ — A V] (¢)

14: Update target value function: %8t <— tip + (1 — 7)yptareet
15:  end for
16: end for

SAC appears to be well suited for financial portfolio optimization due to its sam-
ple efficiency, which is critical when working with limited data in financial markets.
Its stochastic policy is particularly advantageous in handling the inherent uncer-
tainty and non-stationarity of market environments, allowing the agent to explore
a more targeted range of actions compared to deterministic approaches like DDPG.
Furthermore, we expect that the entropy-augmented objective helps SAC outper-
form on tasks where balancing exploration and exploitation is crucial. As we are
working with a deterministic financial dataset, we do not necessarily expect explo-
ration to have a huge impact, although it is important for an algorithm to be exposed
to a wide variety of allocations to distinguish profitable assets.

The off-policy nature of SAC allows for more efficient data utilization compared
to PPO. We hypothesize that this is primarily important when sampling random
portfolios. Additionally, its stochastic policy and entropy-based exploration offer a
more sophisticated approach to handling uncertainty. However, this increased so-
phistication comes at the cost of higher complexity, which can make implementation
and debugging more challenging.

3.2 Data Acquisition and Preprocessing

In this section, we discuss the acquisition and pre-processing of data that is used to
train our DRL algorithms and compare them with traditional portfolio optimization
methods. We use a substantial data set of companies from the S&P1500 index, which
contains the large-cap stocks in the S&P500, mid-cap stocks from the S&P400 and the
small-cap stocks in the S&P600 of the United States of America. As the S&P1500 con-
tains about 90% of the market capitalization of the US, this index is often indicative
of the wider US equity market (S&P Dow Jones Indices, 1995).

We have data available for a wide variety of company fundamentals, analyst pre-
dictions and sentiment, pricing series, macroeconomic indicators, and data on which
companies were in the S&P1500 on a monthly basis, which we call the universe from
now on. Our data spans from 1995 until the beginning of 2024, but some features
are only available from 2010. Therefore, we train, validate, and test our algorithms
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FIGURE 3.1: Adjusted close price series of the S&P 1500, highlighting
the training, validation, and test periods, with annotations of signifi-
cant geopolitical events potentially impacting the U.S. market.

using data from 2010 to the middle of 2024. Specifically, our train set spans from
2010 until the end of 2019, our validation set is from 2020 until the end of 2021 and
our test set encompasses the years 2022, 2023 and 2024 until the end of June.

In Figure 3.1, we present the adjusted close price series of the S&P 1500 as a
reference, along with the time spans of the training, validation, and test sets. We
have also annotated key geopolitical events that may have influenced the U.S. mar-
ket. The validation set may be affected by these geopolitical events in particular.
This is because the COVID-19 crisis happens at the beginning of the validation pe-
riod (early 2020), which triggered extreme market volatility followed by substantial
market growth. The test set captures both periods of decline and upward trends,
influenced by uncertainties surrounding geopolitical developments, including the
U.S. presidential election, the Russia-Ukraine conflict, and other global tensions.

In Section 3.2.1, we start with a brief description of the most common biases that
can arise in financial data and methods we employ to mitigate them. Then, in Sec-
tion 3.2.2, we discuss the calculation of the return series, which is used to benchmark
our algorithms and traditional methods, and which serves as a basis for the reward
for the DRL agents. In Section 3.2.3, we briefly discuss the features that give the
algorithms a sense of the potential of an asset. In Section 3.2.4, we investigate what
constitutes the universe, and in Section 3.2.5, we detail the macroeconomic indica-
tors that will form the contextual state of the financial market.

3.2.1 Mitigating Biases

As handling big data in finance is so complex, it requires a careful approach to mit-
igate biases and other potential pitfalls that can arise within the data (Kousen et al.,
2023). Some of the most prominent biases are survivorship bias, look-ahead bias or
forward-looking bias, and data mining.

Survivorship bias arises when an investor backtests or trains their algorithms
using data exclusively from companies that remain listed in an index, neglecting to
incorporate data from companies that have been delisted. For example, consider
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training an algorithm on 10 years of data from the current S&P500 constituents, ex-
cluding companies that were delisted during that period despite being present at
the start. In that case, we train the algorithms on survivor data, which skews invest-
ment strategies and degrades performance in live situations where future survivors
remain unknown. To account for this bias, we always train, validate and test our
methods using the index universe at the start of each of these datasets. This means
that some companies in the resulting portfolios will be delisted. If this occurs, we
stop trading in that company and treat positive weights in that asset as if it were
invested in the cash position. We discuss this further in Section 3.2.4.

The second eminent bias is look-ahead bias, also referred to as forward-looking
bias, and it occurs when we use data for training that wasn’t available at that point
in time. For instance, this can happen if we use a company’s earnings data before it
was made publicly available. Using unavailable data leads to algorithms that learn
incorrect patterns, resulting in backtests that often perform deceptively better and
live trading that fails to meet expectations. In our feature calculations and prepro-
cessing, we take the utmost care in preventing data from spilling over to the future.

The last important bias is the data mining bias, which arises when investors go
through large amounts of data in search for profitable patterns. This can lead to
overfitting, where models identify spurious relationships that do not generalize to
new data. For example, an investor might employ an excessively complex deep
neural network, resulting in a model that captures noise rather than genuine market
signals. This overfitting produces an overly optimistic view of the model’s perfor-
mance, which often fails to translate to real-world trading scenarios. In our frame-
work, we employ early stopping, halting training our models once performance on
a validation set degrades. Furthermore, we use relatively small models with mini-
mal nodes and layers. These solutions are both more computationally efficient and
less prone to overfit. We then test the algorithms on a separate test set that has
not been used in either training or validation, which provides a reliable measure
of the model’s performance on unseen data. On top, as we use diverse portfolios
in our testing framework, we minimize the possibility of cherry-picking a single,
well-performing portfolio.

3.2.2 Return Series

To reward agents on the portfolio allocation task, we use the returns of the individual
assets. To ensure realistic and unbiased rewards, we have to carefully curate them.
The price of a financial asset can be measured at multiple times of a trading day;
often at the open, high, low, and close.

Denoting P, as the close price on day ¢, the close-to-close return on day t can be
formulated as

T P 1. (3.1)
We have to address the timing of rebalancing decisions before calculating the agents’
reward. Specifically, allocations made at the end of day ¢ can only rely on feature
data available up to that point. To avoid look-ahead bias, where some features may
incorporate information unavailable before market close, we have to consider only
feature data up to day ¢ — 1. Following Benhamou, 2023, this issue is resolved by
shifting the close-to-close return series by one day. Consequently, allocations for day
t are based on features from day t — 1, and the corresponding reward is calculated
using return 1, taking day t as the rebalancing day.
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However, we can also eliminate this bias if we use the open-to-open return series,
which assumes trades occur at the open price of the following day. As the market
prices in new information very quickly, taking one full rebalancing day might reduce
the informative value of the features. Although in practice it is not feasible to trade
directly at the open, this approach remains very realistic and is more powerful than
taking one day to rebalance.

In our final implementation, we also incorporate unadjusted dividend, payed
out at the ex-dividend day. We utilize unadjusted open prices, meaning these prices
do not account for stock splits, mergers, stock buybacks, or other corporate actions.
Then, the reconstructed return for day ¢ is calculated as follows:

_ CAlLiy1-OPryq | Dipg

- 2
"= TCAL - 0P, op,’ (3.2)

where CAlI; is the capital adjustment index, accounting for stock splits and other
adjustments, OP; is the unadjusted open price, and Dy is the unadjusted dividend
payout, all for day ¢.

Data availability for the open price series, dividends, and the capital adjustment
index is nearly complete, minimizing the need to impute missing values. However,
if they are encountered, we impute them with zero, effectively treating those days
as having no returns.

3.2.3 Features

Within our framework, the DRL agents can access 116 features per company, encom-
passing a broad range of information, including company fundamentals, technical
indicators, analyst predictions, and sentiment data. This section provides a con-
cise overview of each feature group, outlining the rationale for their inclusion in the
dataset.

Company fundamentals are derived from the financial statements of a company,
indicating its financial health. Examples include quarterly operating cashflow, divi-
dend yields, book-to-price ratio, debt-to-equity ratio, earnings yields, asset turnover,
and return on investment.

Technical indicators give insights into the movement of the stock price and vol-
ume, such as momentum indicators. In our dataset, we include the moving average
convergence/divergence (MACD) (Appel, 2005), the relative strength index (RSI)
(Wilder, 1978), the average daily volume (ADV), asset volatility, and multi-period
return series.

We also incorporate analyst predictions on a wide variety of stock attributes, as
advice from financial experts can have a substantial impact on price movements.
Predictions range from earnings (growth), sales (growth), dividends (growth), and
general recommendations. These features can also carry information about the gen-
eral sentiment towards these companies.

Finally, we add one more feature that indicates if that specific company is in the
universe, which is a simple dummy variable. This feature takes the value 1 if the
company is in the universe, and 0 otherwise. It should help the algorithms to divest
from this company, as no returns can be made after it has been delisted.

These K = 117 features exist for companies N on dates T, such that they form a
(T x K x N) matrix. To make this more intuitive, this structure is visualized in Figure
3.2. Note that not all x;; might be available, as some feature values are missing.
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FIGURE 3.2: Schematic overview of the features data, where K = 117
is the total number of features, N is the number of companies, and T
are the total number of dates in the feature data.

Feature Normalization

The deep neural networks in DRL algorithms benefit a lot from normalized data
(Patro, 2015). Asset prices, earnings, ratios, and analyst predictions often fall out-
side the zero-to-one range. Therefore, we have adopted a unique approach towards
normalization, where we rank feature data within predefined groups to ensure com-
parability across different scales.

First, we create group-specific subsets using the raw data and some normaliza-
tion attributes. Specifically, we group on the beta of an asset and the sector in which
the company operates, where the beta indicates how much a specific asset corre-
lates with the wider equity market. We use this grouping as we expect that the
features dynamics of an asset in different sectors and beta values can differ signifi-
cantly. Then, within these groups, features are ranked proportionally to their values,
transforming them into percentile scores. Finally, we ensure the normalized values
lie within the interval (0, 1).

Specifically, let the raw data be X and the neutralization attributes (sector and
beta) define the grouping variables G. The normalized feature Xporm for each group
g € G is computed in two steps.

First, each feature x; in group g is transformed into its percentile rank, as

_ rank(x;)

R(x;) = Tg, (3.3)

where rank(x;) is the rank of x; in group g, and 7, is the total number of elements in
. Second, the rank is adjusted to center the data on (0, 1), using

1
Xnorm = R(xi) - ﬁ (34)
8

Now, all features are normalized within the same scale, reducing potential biases
introduced by heterogeneous feature distributions.
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Missing Values and Data Cleaning

Cleaning, preprocessing and handling missing values in the feature data requires
a methodical approach to avoid biases. In most neural networks, in contrast to
bagging and boosting algorithms, for example, missing values either have to be re-
moved or imputed. In our analysis, missing values for each feature belong to one of
the following four cases:

1. The feature has no data for all companies on all dates (no data for the feature).
2. The feature has no data for some companies on some dates.

3. The feature has no data for all companies on some dates (the feature does not
exist on some dates).

4. The feature has no data for some companies on all dates (the feature does not
exist for some companies).

We take the following steps to remove the missing values, which belong to each
of the four classes described above.

1. Features with virtually no data are removed. This solves class 1.

2. We forward fill the features with a limit of 5 days (1 trading week) to fill any
gaps in feature availability. This will partially tackle class 2.

3. We fill dividend features with 0 (unless they are revision or growth), as missing
values for dividend features are likely companies that give no dividends, or
not yet on those dates. Missing dividends mostly belong to class 4, as some
companies don’t have dividends.

4. For each feature, we calculate the mean value grouped by date and fill the
remaining missing values with these means. This is intuitive, as we consider
these companies to be the market average. This procedure will mainly tackle
class 4 and long gaps in class 2, as some companies have to have data on a
specific date in order for a mean to be calculated.

5. We are now left with class 3. We fill these values with 0.5, as we expect all
companies to be the average of the market in that case.

After these steps, all missing values of the features of those companies that are in the
index are either dropped or filled with good proxies. There should be no remaining
missing values.

3.2.4 Universe

The universe is a mapping from each date in the history to the companies that are
in the S&P1500. This mapping happens on a monthly basis, but we forward filled
the entries to give us a daily mapping. To ensure the stability of our DLR algorithms
and maintain the integrity of our analysis, we excluded companies once their stock
prices fell below one dollar. Such low stock prices often indicate financial distress
and frequently lead to unusually high or low returns, potentially destabilizing the
learning process of our algorithms. After removing these companies, we are left
with 1469 securities at the start of the training set, 1464 securities at the start of the
validation set, and 1465 securities at the start of the test set.
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FIGURE 3.3: The size of the universe over the training horizon, i.e.
the number of stocks that are listed in the S&P1500, after removing
securities without feature data and with prices below one dollar.

Some of the initial companies in the universe are delisted during the training
period Tiain, validation period Ty, and testing period Tiest. Even though new com-
panies take their place, we couldn’t have known that at the start of the optimization
horizon. Therefore, as introduced in Section 3.2.1, we treat positive weights in these
companies as an investment in the cash position, which returns 0 at each step ¢ °.
Furthermore, features are forward filled over the entire horizon T as soon as a com-
pany has been delisted. To provide an intuition on how many of the initial compa-
nies remain in the universe over the training period, we include the universe size in
Figure 3.3.

3.2.5 Macroeconomic Indicators

In our study, we use macroeconomic indicators to gauge the state of the US equity
market. Specifically, we use 7 variables to help the algorithms in capturing market
dynamics.

¢ Weinclude 4 treasury bills, represented by the 3-month, 2-year, 10-year, and 30-
year benchmarks, which reflect the term structure of interest rates and provide
insights into expectations around economic growth and inflation.

¢ Additionally, we include the U.S. Dollar Index, often denoted as the DXY,
which highlights the relevance of currency strength in global trade and its im-
pact on multinational corporations and commodities.

* Another important indicator is the West Texas Intermediate (WTI), a bench-
mark for crude oil prices. This serves as a barometer for energy market condi-
tions and broader economic activity.

¢ Finally, the high-yield corporate bond spreads encapsulate credit market stress
and investor sentiment towards riskier asset classes.

3 An alternative approach could involve replacing delisted companies with their new counterparts.
However, this introduces a potential risk of destabilizing the learning process, as the distributional
change in returns and features data might disrupt the recursive relationships between states, rewards,
and actions defined by the Bellman equations. Therefore, we have chosen for this simpler approach.
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In the final states, we use the percentage change of these macroeconomic indica-
tors rather than their raw values, acting as a normalization step. Besides, the changes
in macroeconomic activity are assumed to carry more information than their abso-
lute values.

3.3 Environment Design

For the portfolio allocation task, we have designed an environment following the
Gymnasium API (Towers et al., 2024), which significantly facilitates the engineering
process. This environment provides the agents with states and rewards, following
an action.

A crucial aspect of our environment lies in the dynamic selection of portfolio as-
sets. Rather than optimizing for a fixed set of assets, we sample 7 stocks from a pool
of N available stocks in the data. This helps us address the problem of limited data
availability and allows us to build a framework that is not dependent on the specific
companies in the portfolio. Also, this approach allows us to build a statistically valid
framework, as we can compare algorithms and baselines across multiple portfolios.

In this section, we detail the specifics of the states, actions, and rewards. Specif-
ically, in Section 3.3.1, we introduce different types of observation (state) spaces, in
Section 3.3.2, we discuss the action space, and in Section 3.3.3, we list the reward
function used in the experiments of this thesis.

3.3.1 Observation Space

The observations o; € O in our environment can take three forms. Each type builds
on the next, adding more information.

1. The first type of observation only uses company-specific data. More specifi-
cally, the state encompasses feature data X for each asset in the n companies
in the portfolio. We can optionally incorporate a lookback window of size I,
which takes feature values from steps t — Iy, ..., t into account. Taking this all
together, this forms a (Ix x n X kx) matrix. To properly form this matrix ac-
cording to RL standards, we need a square matrix without missing values. This
means all companies will have data on all dates on the horizon T, also those
that are delisted. As noted previously, this is done by forward-filling the last
known feature values of those companies. Figure 3.4 illustrates the transfor-
mation process from raw feature data to a structured observation within our
environment.

2. The second observation type adds the previous weights w_1 to the state space.
This helps the agent to identify the impact of his actions, especially when deal-
ing with transaction costs. As noted previously, this element is vital when
using actions as direct portfolio weights. It also serves a theoretical purpose,
as agents can now directly influence the observation with their action, an im-
portant attribute of a Markov Decision Process.

3. The third and last type of observation incorporates contextual market data C.
This is a (I¢ X kc) matrix comprising k¢ macroeconomic indicators, with an
optional lookback window of size Ic.
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FIGURE 3.4: A schematic overview of the sampling process from the
pool of feature data to an actual observation at each step t in the en-
vironment, for an observation with [ = 2 and n = 10.

3.3.2 Action Space

The action vector a; determines the weights for each of the n assets in the portfolio
and a cash position. The cash position has 0 returns and offers the agent a way to
divest in times of market turbulence. The actions fall in the range [—1, 1], following
the advice from Stable Baselines 3 (Raffin et al., 2021) to normalize the action space.

To construct these actions into a weight vector w¢, we shift the actions to [0, 1]
and normalize them as follows:

Wy = i (3.5)

3.3.3 Reward Function

Our environment accommodates one primary reward function, namely the logarith-
mic return. In our setup, the reward at time ¢, denoted r4, is defined based on the
change in portfolio value resulting from action a; taken in state s;, leading to next
state s;11. Concretely, the reward is computed as:

r(st, at,5¢41) = log <Ut+1> , (3.6)

Ot

where v; and v, denote the portfolio values at time t and ¢ + 1, respectively.
This definition ensures compatibility with the Bellman recursion, which requires the
rewards to be additive over time. In financial applications, using arithmetic returns
directly violates this constraint due to their multiplicative nature over time. Loga-
rithmic returns, however, are additive and therefore align naturally with RL’s return
formulation G; = Y2, Y*r1k, as introduced in Chapter 2. Furthermore, using the
logarithmic return ensures proportional scaling and mitigates the influence of ex-
treme fluctuations. It is widely used in DRL applications in finance.

To promote stable learning, we apply reward scaling to bring the reward dis-
tribution closer to a standard normal distribution, which helps avoid vanishing or
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exploding gradients. Empirically, we scale the reward by a factor of 70 for a portfolio
of n = 10 stocks, yielding

7y = 70 - Tt. (37)

This choice is based on empirical observations of the distribution of rewards be-
tween training episodes.

Transaction Costs

To make our portfolio allocation environment more realistic, we use transaction
costs. In essence, we subtract a small fee from the total portfolio return, propor-
tional to the reallocated capital. Transaction costs can be calculated in a multitude of
ways, but we opt for a simple approach. Specifically, we formulate the transaction
cost on day t as

TCi =c- |wy — Wi 1| 041, (3.8)

where c is the level of the fee, w; are the portfolio weights on day t, and v;_; is the
value of the portfolio on the previous day. The level of c in a liquid market, such
as the US stock market, is often around 5 basis points, or 0.05 %. In chapter 4, we
experiment with this value to see how it impacts our DRL agents. The transaction
cost is subtracted from the reward, incentivizing agents to minimize asset turnover.

3.3.4 Transition Dynamics

At each time step ¢, the environment transitions according to the following proce-
dure. First, the agent selects an action a; € [—1,1]""!, which is mapped to a nor-
malized portfolio weight vector w; € A" The portfolio value v; is updated us-
ing asset returns observed between t — 1 and ¢, and transaction costs are subtracted
based on the change in allocation |w; — w;_1|. The immediate reward is computed
as the logarithmic return. The next state s;;1 is constructed from updated feature
data, optionally including a lookback window, contextual variables, and the portfo-
lio weights w;. In this design, 7; and s;,; depend only on s; and 4, satisfying the
Markov property. In our setting we do not model market impact, such that only
the portfolio weights are directly influenced by a; and the rest is determined by the
market.

We conclude these dynamics in Algorithm 4, where we show the general work-
flow of our portfolio environment.



40 Chapter 3. Methodology

Algorithm 4 Portfolio Environment Workflow

1: Define hyperparameters: number of securities in the portfolio 1, stock pool size
N, initial portfolio value vy, transaction cost percentage c, the reward function
R, reward scaling coefficient «, and the observation space O.

2: for episode =1 to M do

3:  Set portfolio value vy

4:  Randomly select n from N

5:  for environment step =1to T do

6 Select action a¢

7 Normalize actions to form portfolio weights wy:

1
Wi at ; (Normalize actions to [0,1] range)
Wi . .
Wi — (Normalize weights to sum to 1)
LWt
8: Compute delta weights, exluding the cash position: Awg <— w¢ — w1
9: Calculate transaction cost: TC; < ¢ - |Awy| - 041
10: Update portfolio value: vy <— v;_1 — TC;
11: Update portfolio allocation using the daily returns:

Xt < WO 1 - v (Hadamard product of portfolio weights and returns)

12: Update portfolio value: v; <— Y x;

13: Update weights: wy < Z’j—:

14: Compute reward: Ry < log(;™-)

15: Scale reward: R; < aR;

16: Get next observation: 0,11 € O

17: if v; <0 then

18: Break (terminate episode if portfolio value is negative)
19: end if

20:  end for

21: end for

3.4 Neural Network Architecture

In this section, we detail the neural network architecture which is used by the algo-
rithms. We employ one shared features extractor that handles the features of each of
the assets in the portfolio, similar to the approach of Jiang, Xu, and Liang, 2017. This
extractor is trained to identify valuable signals that can be applied throughout the
portfolio by uniformly analyzing the characteristics of each company. In Figure 3.5,
we show the general model architecture. The architecture changes depending on the
inclusion of a lookback window in the feature and contextual data, but we discuss
that later in this chapter.

As mentioned before, at each step ¢, we can use contextual data C;, the previous
weights w;_1, and feature data X}; for each company i in the portfolio. The feature
data is processed by a shared features extractor of multiple Linear, LayerNorm, and
ReLU layers. Layer normalization is used to tackle the vanishing or exploding gradi-
ent problem, as we input many different feature matrices which might have different
data distributions. ReLU is used to introduce non-linearity in the modeling process.
Each of the feature matrices is processed into an embedding vector f;, which is a
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FIGURE 3.5: The model architecture when only using data of the cur-
rent time step t. At each step t, the model processes contextual data
Ct, the previous weights w_1, and feature data X;; for each company
i in the portfolio. The feature data is processed by a shared features
extractor of multiple Linear, LayerNorm, and ReLU layers, and op-
tionally processed by an Attention layer for permutation equivari-
ance, producing embedding vectors f for each asset in the portfolio.
The consolidation layer consolidates all the information into an ac-
tion vector, which is used by the environment to produce portfolio
weights.

small vector that contains compressed information on company i. After the features
extractor, the embedding vectors are jointly passed through an optional one-head at-
tention layer, which should aid in recognizing different permutations of assets. We
also use a residual layer that circumvents the attention layer, an approach used to
stabilize training in relatively deep networks, such as the Transformer. The residual
layer ensures that the model can continue learning even if the attention mechanism
struggles to capture relevant patterns. Finally, all information is processed by the
consolidation layer, which is a small fully connected (Linear) layer that outputs the
actions, which become the weights of the assets in the portfolio.

In case a lookback window is employed, the extra time dimension needs to be
handled. This is done by incorporating a 1-dimensional convolutional layer, as
shown in Figure 3.6. * The convolutions are applied along the time dimension ¢
of the features (of size Ix) or contextual variables (of size I¢), seeking to extract tem-
poral patterns. Convolutions are not applied along the feature dimension k € K and
the security dimension n € N, as there is no underlying spatial structure in these
dimensions. The securities are shuffled, rendering spatial pattern extraction irrele-
vant, and the features are inputted without a predefined order. The feature matrices
of the different companies are treated as independent inputs to the feature extrac-
tor, with the individual features serving as channels in the convolutional process.
This approach avoids imposing any structural assumptions on the feature dimen-
sion, as the output of the different channels are ultimately summed, and summation

4Tn our experiments, we opt for short lookback windows to manage memory constraints, given that
our algorithms employ replay buffers holding 1 million observations, each encompassing 117 features
across 10 companies. For instance, storing a replay buffer of this size with a lookback window of 10
and 32-bit floating-point precision requires approximately 44 GB of RAM for the observations alone.
For algorithms that also store next states, this demand doubles to 88 GB, escalating rapidly beyond
practical limits. To address this, we restrict our experiments to a four-step look-back window, such
that a single convolutional layer with a kernel size of 3 suffices.
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FIGURE 3.6: The model architecture when using a lookback window

in the feature data and the contextual data. The feature data is again

processed by a shared features extractor. The Conv1D layer processes

the time dimension by extracting temporal patterns. The consolida-

tion layer consolidates all the information into an action vector, which
is used by the environment to produce portfolio weights.

is inherently permutation-invariant. The rest of the architecture remains the same.

Our implementation uses the DRL agents provided by Stable Baselines 3, ad-
hering to their default hyperparameters whenever possible (Raffin et al., 2021). We
have customized the feature extractors to align with the specific requirements of our
portfolio optimization task. Other hyperparameters are listed in Table 3.1

3.4.1 Permutation Equivariance

The random sampling of assets can be hard for the consolidation layer to process,
as it must handle diverse asset orderings and maintain representational consistency.
To handle this, the literature introduces several solutions.

One option is to expose the model to a diverse set of permutations and assume
that it will learn the inherent complexity itself. This approach can be useful, but
as the size of the portfolio increases, the number of different permutations grows
rapidly.

An alternative is to use Graph Neural Networks (GNNs). Here, nodes are often
treated as unordered sets, which do not take into account the random ordering of
the assets. However, due to their increased complexity and limited usage in DRL
tasks, we have opted against this approach.

A widely used architecture is the attention mechanism, which is inherently per-
mutation equivariant (Vaswani, 2017). This means that permuting the input se-
quence does not alter the overall output, only its ordering. Using the mathemati-
cal notation for attention in Equation 2.18 and permuting by a permutation ¢, the
attention mechanism computes the output as

T
Attention(Q, K, V) = softmax <?/IE<TZ) Ve (3.9)

Due to the invariance of the softmax function and matrix multiplication under per-
mutation, the output is simply the reordered version of the original; in other words,
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the mechanism is permutation equivariant. This property is valuable in the portfo-
lio allocation task, where the model must maintain consistency across different asset
orderings. The attention mechanism also inspired the Sensory Neuron (Tang and
Ha, 2021), where agents were successfully trained on different tasks using varying
permuted observations.

3.5 Baselines

To benchmark the performance of our DRL agents, we consider three widely recog-
nized methods for the portfolio allocation task, namely the Markowitz min-variance
portfolio, the equal-weighted portfolio, and the buy-and-hold strategy.

Remember that we try to find weights w; for each discrete step ¢ that maximize
the expected portfolio return. The Markowitz mean-variance portfolio formulates
this as a static optimization problem (Markowitz, 1952). It aims to maximize ex-
pected portfolio returns for a given level of risk, or, equivalently, minimize risk for
an expected target portfolio return. Risk is typically modeled as the variance of the
portfolio returns, while the expected return is assumed to be stationary and esti-
mated from historical data. Hence, mathematically, the Markowitz solution opti-

mizes

min  Var[w; ' r¢]

{wet, (3.10)
st. E[wy'r] =k,

where 1 are the individual asset returns on day t and k is the target return. If we do
not want to formulate k, we can use the global minimum variance portfolio, outlined
in Back, 2010. This is a subtype of the mean-variance portfolio where we remove the
target return constraint. Then, using covariance matrix ¥ and a vector of ones 1, the
global minimum variance portfolio weights are given by

R Yy |

The equal-weighted portfolio is another popular baseline, but it is much simpler
than the global minimum variance portfolio. At each time step t in the planning hori-
zon, we divide the total available wealth equally over each of the 1 assets. Therefore,
the weights become

we=", Vie{l,...T} (3.12)

again using the vector of ones 1. As prices of assets fluctuate, we need to rebalance
on every step t to maintain the equal weights. This portfolio is simple, yet effective,
as it effectively spreads out risk over the assets in the portfolio. In many cases it is
really hard to outperform such a strategy due to its simplicity (Clarke, De Silva, and
Thorley, 2011).

The buy-and-hold strategy offers another simple approach. In this method, the
investor initializes the portfolio with a vector of weights wo and holds these alloca-
tions constant throughout the investment horizon T, regardless of market dynamics
or portfolio performance. Formally,

wy=wy, Vte{l,..., T} (3.13)

This strategy avoids transaction costs entirely and is inherently passive, making it a
common benchmark for evaluating active strategies. However, it lacks adaptability



44 Chapter 3. Methodology

to changing market conditions, potentially leading to suboptimal performance in
volatile or evolving markets. Furthermore, volatility is expected to increase, as some
holdings might have disproportionally increased in value and take up a large part
of the portfolio approaching the end of the horizon T. In bullish markets, however,
this strategy is very hard to beat.

In our experiments, we also employ a random agent, or random policy, as a
baseline. This strategy simply outputs random allocations. This is done by drawing
a vector of 11 random numbers between 0 and 1 and normalizing these into a proper
weight vector.

3.6 Performance Metrics

To evaluate the performance of portfolio strategies, we use several widely recog-
nized metrics from quantitative finance.

First, we use the Sharpe ratio, which measures the risk-adjusted return of a port-
folio and is defined as

E[R, — R/]
SpR = ———, (3.14)
p

where Ry, is the portfolio return, Ry is the risk-free rate, and 0, is the portfolio’s stan-
dard deviation. A higher Sharpe ratio indicates better risk-adjusted performance. In
practice, we often set Ry to zero.

Second, we utilize the Sortino ratio, which is a refinement of the Sharpe ratio that
focuses on downside risk. It is given by

E[Ry — Ry]

Udown

StR = (3.15)

where 04own is the standard deviation of negative returns. This metric penalizes only
downside volatility.

The third performance metric is the Calmar ratio. This metric captures the return
per unit of maximum drawdown, and is defined as

E[R,]

CR = VDD’

(3.16)

where MDD is the maximum drawdown, which is the largest peak-to-trough decline
of the portfolio’s value over the evaluation period. Higher values indicate better
performance relative to drawdowns.

We also use the annual return and annual volatility to benchmark portfolio strate-
gies, providing standardized measures of performance and risk across different in-
vestment approaches. The annual return quantifies the annualized performance of
an investment based on a series of daily periodic returns, assuming 252 trading days
per year. It is defined as:

252

AR = (ﬁ(l +rt)) L, (3.17)

t=1

where 7; represents the daily asset return for each of n observations. This formula
compounds the returns over the sample period and scales them to an annual equiv-
alent. The annual volatility measures the risk of the investment strategy by scaling
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the standard deviation of daily portfolio returns, denoted ¢, to an annual basis:

AV = 0y, - V252, (3.18)
Here, 0}, is the sample standard deviation of the daily returns, and the factor /252
annualizes the volatility under the assumption of uncorrelated returns over time.
3.7 Experimental Setup

Our experiments systematically analyze different facets of applying DRL to the port-
folio allocation task. We conduct these experiments by adjusting the parameters out-
lined in Table 3.1 individually, while maintaining the remaining parameters at their
default values.

Hyperparameter Default Value(s)
Algorithm DDPG, PPO, SAC
Training Seed 12, 42,1234
Number of Training Securities N 100

Initial Cash 1,000,000
Number of Securities n 10

Lookback Window Length Features Ix 1

Lookback Window Step 1

Lookback Window Length Contextual Ic 1

Reward Function R log_return
Reward Scaling 70

Transaction Cost 0.05%
Observation Space O Features and previous weights
Replay Buffer Size (DDPG, SAC) 1,000,000
Warmup Steps Before Learning (DDPG, SAC) 10,000
Consolidation Layer Architecture Linear(64)
Embedding Vector Dimension 10

Use Attention Layer False

Hidden Layer Dimension 256

Conv1D Kernel Size 3

Learning rate (DDPG, SAC) 0.0003

Learning rate (PPO) 0.00025

TABLE 3.1: Hyperparameter Settings for Experiments.

We use warmup steps before learning starts for DDPG and SAC to prevent pre-
mature convergence to the first sampled portfolio.

In general, our experiments are run for 3 seeds. This is on the small end of the
spectrum, but as runs of 5M steps often take about 30 to 40 hours to complete, we
have to make some concessions. This work was performed using the ALICE com-
pute resources provided by Leiden University. We have trained our algorithms us-
ing an NVIDIA A100 GPU and 64 GB of RAM. To keep an organized overview of
all the different experiment results, tracked metrics, and trained models, we use
Weights and Biases (Biewald, 2020).

When plotting learning curves, the runs are averaged over the seeds and error
bars are plotted with them. Due to the noisy nature of financial returns, these error
bars constitute 0.1 times the standard deviation of the rewards.
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When we perform statistical tests, we use Bonferroni-corrected p-values. This
correction is a statistical technique used to address the problem of multiple hypoth-
esis testing, which becomes critical when evaluating numerous performance metrics
or comparisons simultaneously, which is something we do in our experiments. The
Bonferroni method adjusts the significance level a by dividing it by the number of
tests (k), such that the new threshold becomes a/k.
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Chapter 4

Experiments

In this chapter, we evaluate the performance of the DRL algorithms. First, we as-
sess their learning capabilities by training them on portfolios of varying sizes, us-
ing learning curves to examine training speed and stability in Section 4.1. Once
we establish the stability across different portfolio sizes, we explore the impact of
exploration when training using an environment built on top of a deterministic fi-
nancial dataset in Section 4.2. Next, we evaluate the out-of-sample performance of
the agents, comparing their results to various baseline strategies, and conduct an
in-depth analysis of their behavior in Section 4.3. In Section 4.4, we also investi-
gate the permutation equivariance of the current network, aiming to ensure that
different input permutations lead to similar portfolio allocations. In Section 4.5, we
investigate the effect of scaling the size of the training pool on model generalization.
In addition, in Section 4.6, we examine the performance and behavior of the algo-
rithms under different transaction cost regimes. Finally, in Section 4.7 and Section
4.8, we enhance the observations by incorporating contextual market information
and a lookback window in the feature set. Our goal is to offer a robust framework
for testing DRL agents and to provide a thorough understanding of the impact of
different DRL configurations in the portfolio optimization task.

4.1 Scaling Portfolio Size

This experiment serves as a test of the ability of DDPG, PPO, and SAC to learn the
dynamics of portfolio allocation on a pool of N = 100 stocks. We gradually scale
the size of the portfolio to see how these algorithms behave and cope with larger
observation and action spaces. Specifically, we analyze their performance on port-
folios of size 1, 4, 7, and 10, all including a cash position. For example, in the case
of a portfolio of size n = 1, the task is to determine the allocation among one stock
and a cash position. For DDPG and SAC, we also track how they perform on even
larger portfolios of size 20 and 50. Except for n, all other hyperparameters are fixed,
including those of the network architecture.

In Figure 4.1, we present learning curves of DDPG, PPO, and SAC for different
portfolio size (1) scenarios over T = 5M timesteps. Note that the scale of the y-axis
is logarithmic. The red dotted line approximates the performance of a random pol-
icy, where one would equally distribute its capital over the assets in the portfolio.
The gray line represents the optimal policy, which is a strategy where we invest all
capital in the best performing asset in the portfolio on each day. In essence, this
strategy has perfect knowledge of the future, and is very unrealistic. However, it
affords us an adequate intuition on how well our agents learn the mapping from
asset features to returns. Reaching the optimal policy would indicate perfect over-
fitting to the training data. Note that the value of the optimal policy goes up as the
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number of stocks in the portfolio increases, as there is a higher chance of sampling a
well-performing stock in a larger portfolio.

From the figures, we observe that PPO performs either worse than or comparable
to a random policy. While it demonstrates some learning at the start, there is no
evidence of overfitting to the training data. This suggests that PPO struggles to
effectively capture the underlying dynamics of the training data and identify which
stock features contribute to higher returns. This limitation may arise from PPO’s
on-policy nature, which requires fresh trajectories for each update. Lacking a replay
buffer, PPO may face difficulties with the random sampling of portfolios, hindering
its ability to generalize effectively across diverse portfolio configurations.

Its off-policy counterparts, DDPG and SAC, achieve higher rewards. Their ca-
pacity to fit well to the training data indicates their ability to find patterns between
the features of the companies in the portfolio and their profitability. Unlike PPO,
their off-policy nature allows them to reuse past experiences, enabling better explo-
ration of the feature space and effectively generalizing across portfolios. Although
they do not converge to the optimal policy, the portfolios developed by the end of
the training period prove highly profitable, transforming an initial investment of 1
million into a range of 50 million to 1 billion over only 10 years.

For a portfolio size of n = 10, both DDPG and SAC are able to learn the under-
lying dynamics, where DDPG slightly outperforms SAC toward the end of training.
PPO, however, shows initial promise but quickly plateaus, achieving rewards com-
parable to a random policy for most of the training period. This shows an inability
to learn the attributes of a 10-stock portfolio.

As the portfolio size increases to 20 and 50 stocks, the performance of DDPG and
SAC begins to deteriorate. When portfolios grow, the attribution of a single stock
return on the total return declines, making it harder for algorithms to pinpoint valu-
able stocks within a portfolio. By n = 50, both DDPG and SAC struggle to learn
meaningful dynamics, leading to performance around the random policy. While the
dilution of individual stock signals is a significant challenge, designing a more infor-
mative reward function, such as a risk-adjusted one, could enhance the algorithms’
ability to discern valuable patterns. Another potential explanation is that the con-
solidation layer, comprising 64 nodes, may lack sufficient capacity to handle the
growing complexity of larger portfolios, which produce a total output of 500 values
(10 per stock). Enhancing the capacity of this layer could improve the algorithms’
learning performance.
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FIGURE 4.1: Learning curves for DDPG, PPO, and SAC for n €
[1,4,7,10,20,50], trained on N = 100 stocks, with three different
seeds each (s € [12,42,1234]). The scale of the y-axis is logarith-
mic. We also show the average performance of a random agent that
would invest an equal amount in each of the assets in the portfolio,
and an optimal policy, which invests in the best performing stock in
the portfolio on each day. We can see that PPO performs poorly and
that DDPG and SAC perform equally well. None of the algorithms
reaches the optimal policy.

To investigate the problematic learning of PPO a little further, we present Figure
4.2. For this experiment, we have trained PPO on a highly simplified portfolio of
size n = 1, selecting stocks from a pool of size N € [1,10], over a training period
of T = 1M timesteps. By stripping the task down to its bare essentials, we hope to
pinpoint the root causes of PPO’s suboptimal performance.

When we sample from N = 1 stocks, PPO learns very steadily. The decline after
400K steps is an interesting phenomenon, possibly indicating a search for stochas-
ticity in the policy while PPO is overfitting to this particular stock. When the stock
pool is expanded to N = 10, PPO’s performance deteriorates dramatically from the
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outset. We can conclude that it fails to generalize across portfolios, likely due to the
lack of a replay buffer, as found in DDPG and SAC. In other words, an on-policy
algorithm likely fails to provide the diverse data needed to develop a robust, stock-
agnostic strategy.

Since PPO learns on N = 1, the underlying neural network architecture does not
appear to be the primary issue. The ability to learn a valid policy suggests that the
model’s structure is sufficient for a simple environment. Of course, this conclusion
assumes that the architecture remains equally suitable as the task scales, but we have
observed that this is the case for DDPG and SAC. Given PPO’s inability to generalize
across a modest pool of 10 stocks, coupled with its sensitivity to hyperparameters,
we opt to exclude it from further experiments. While tuning hyperparameters might
yield improvements, the fundamental algorithmic challenges of PPO suggest that
DDPG and SAC may offer greater promise, especially when experiments grow more
complex.

Learning curve for PPO
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FIGURE 4.2: Learning curves for PPO for a portfolio of n = 1, trained

on N € [1,10] stocks, with only one seed (12). The scale of the y-axis is

logarithmic. We can see that PPO fails to generalize across portfolios
when the number of stocks we sample from increases.

In Figure 4.3, we show the distribution of the 11 actions that DDPG, PPO, and
SAC perform at intervals of 10000 for the portfolio of size n = 10 over the training
period of T = 5M. It serves as a guide for the behavior and exploration strategies of
these algorithms during training.

DDPG'’s reliance on action noise for exploration is evident in the relatively un-
changing distribution of actions over time. It also tends to take the extreme actions
(-1, and 1). The noise introduces a normal distribution-like spread near the action
boundaries, indicating that deviations from the policy’s preferences are noise-driven
rather than learned. PPO remains stochastic over the full training period, as it is tak-
ing actions over the full range, with a slight preference for extreme actions. This
sustained diversity reflects PPO’s inherent exploration mechanism, where actions
are sampled from a probability distribution. It also highlights the failure of PPO
to converge to a more exploitative policy. SAC similarly explores the full range of
actions, using the bucket from -0.9 to -1.0 more towards the end of the training pe-
riod. This trend might indicate that SAC is learning to divest from assets yielding
negative returns, clarifying its strength towards the end of the training period.

To conclude, DDPG relies on external noise for exploration, resulting in a rigid
yet consistent action distribution. PPO and SAC leverage stochastic policies, where
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we observe that PPO seems incapable of converging to a more rewarding policy
and SAC divests from suboptimal assets. The shared preference for extreme actions
across all three may reflect the reward function, which prioritizes significant adjust-
ments, as more weight in the best performing asset directly and linearly translates to
a higher reward. To put this into perspective: If we were to employ a risk-adjusted
reward function, allocating more weight to a single asset would not inherently yield
a higher reward. This is because concentrating weight in one asset increases the
portfolio’s volatility and risk.
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FIGURE 4.3: Distribution of actions of DDPG, PPO, and SAC for n =
10, trained on N = 100 stocks, and s = 42. The frequency is shown as
a scale on the right side of the plot.

Now that we have seen that off-policy algorithms are able to learn from the inher-
ently complex feature distributions in finance across varying portfolio sizes, we turn
to investigate the impact of exploration in an environment built on a deterministic
financial dataset.

4.2 Varying Exploration Parameters

An important aspect of any RL algorithm is its strategy to explore the environment.
In a fixed dataset, such as the financial dataset we are using, exploration is not as in-
tuitive as in a game, for example, where the agent fails to see a part of the state space
without proper exploration. When using a fixed dataset, we will serve the agent with
the complete set of states, regardless of his actions, except for some action-dependent
state components, like the agent’s previous weights or its available capital.

This experiment aims to investigate the role of exploration in RL when applied
to a deterministic dataset. We hypothesize that the agent fundamentally requires a
minimal degree of exploration to construct a reliable mapping from states to actions
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FIGURE 4.4: Learning curves for DDPG and SAC for different explo-

ration parameters, trained on N = 100 stocks, with three different

seeds each (s € [12,42,1234]). We have again included a random pol-

icy. We observe that exploration influences algorithm performance
minimally.

and that the specific exploration strategy employed will have a limited impact on
the agent’s performance. A comprehensive exposure to a diverse set of portfolio
allocations is sufficient to develop this mapping.

For each algorithm, we tune distinct exploration parameters to evaluate their im-
pact. In the case of DDPG, exploration is done by introducing noise to its determinis-
tic actions. We experiment with two widely used noise processes, namely Gaussian
noise and Ornstein-Uhlenbeck noise, the latter being temporally correlated. For both
noise types, we adjust the ¢ parameter, which controls the magnitude of variability
in the noise. We anticipate that Ornstein-Uhlenbeck noise will be more effective for
the portfolio optimization task, as it helps prevent excessive fluctuations in weights
between timesteps, which reduces the risk of incurring high transaction costs and
chasing illusive, short-lived patterns.

SAC uses stochastic policies to balance exploration and exploitation. We tune
both the initial entropy coefficient and the target entropy, the latter defining the en-
tropy level the algorithm seeks to maintain during training. Over time, SAC learns
the optimal value for the entropy coefficient, so we do not expect this parameter to
substantially influence learning.

All parameter settings are informed by established practices in the RL field and
tailored to the specific action space used in our experiments. In particular, we select
o values that align with the [-1, 1] range of the action space. For SAC, we have found
that entropy coefficients are often chosen between 0 and 1, and the target entropy is
set around the size of the action space, which is 11 in our case.

We observe that learning is influenced marginally by exploration, which is in line
with our hypothesis. For SAC, learning is slightly improved in higher exploratory
settings. For DDPG, higher exploration leads to lower rewards, possibly because
random noise leads to higher transaction costs. There is no clear difference between
Gaussian noise and Ornstein-Uhlenbeck noise. This shows that the type of noise
does not contribute significantly in the process of forming a rewarding policy. In
both settings, exploration doesn’t seem to accelerate learning significantly.

For SAC, the entropy coefficient seems to have little influence on learning per-
formance, with slightly higher rewards when using the entropy coefficient of 1.0,
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where “auto’ simply means that SAC optimizes the coefficient to achieve the target
entropy. The target entropy does influence the learning process, where higher (more
negative) values tend to improve rewards. In this case, the agent has likely seen
more diverse state-action pairs and has learned which actions contribute to higher
rewards.

Further investigation into the relationship between the entropy coefficient and
the target entropy of SAC shows us that the entropy coefficient rapidly diminishes to
values between 0.0001 and 0.001, which are much lower than its initial settings of 0.5
and 1.0. This is probably due to noisy financial rewards and a high inherent entropy
in the rewards. This partly explains why the initial setting has little influence on the
learning process.

In the rest of the experiments, we use the settings corresponding to the most
stable learning process and the least complexity. For DDPG, we continue to use
Gaussian noise with ¢ = 0.1. Although initial entropy does not influence learning a
lot for SAC, we opt for a value of 1.0. We set the target entropy as the default for an
action space of dimension 11, namely at -11.

Even though we have excluded PPO from the analysis, we have run some ex-
periments where we tune the entropy coefficient, analyzing whether this parameter
could help PPO generalize better across sampled portfolios. The entropy coefficient
is a regularizer that encourages entropy in the policy and prevents premature con-
vergence to a deterministic policy. It should help with choosing more stochastic poli-
cies (Ahmed et al., 2019), possibly policies that generalize better. We have included
this analysis in Appendix B.

4.3 Out Of Sample Performance

So far, we have analyzed the in sample learning performance of DDPG, PPO, and
SAC in our portfolio optimization task. Our findings indicate that DDPG and SAC
effectively leverage company features to develop well-performing investment strate-
gies, achieving high logarithmic returns. PPO, being an on-policy algorithm, strug-
gles with the random portfolio sampling and encounters difficulties when the to-
tal training pool modestly increases to N = 10. DDPG and SAC demonstrate the
ability to generalize across diverse portfolios, establishing a stock-agnostic mapping
from company features to portfolio returns. This in-sample validation using learn-
ing curves, often omitted in the existing literature, is essential before we assess the
out-of-sample performance of these algorithms.

In most RL tasks, agents are trained, validated and tested on the same task. There
is no need to partition the data into separate sets, as game engines, for example,
maintain consistent dynamics. In finance, however, it is crucial to validate model
performance on a separate piece of data. As markets evolve constantly, the train-
ing, validation, and test sets can exhibit substantial differences, placing significant
stress on the algorithms. Achieving robust out of sample performance requires algo-
rithms that generalize well, and avoid overfitting to unique dynamics of the training
set. Therefore, this experiment serves both as a gauge of the performance of our al-
gorithms when they would be deployed in the live market, and as a metric of the
generalizability to new market dynamics and stocks.

In this experiment, we continue to train on a pool of N = 100 stocks, as this
choice balances computational complexity by reducing the number of stocks com-
pared to larger sets, while preliminary findings suggest it supports robust perfor-
mance. In the following sections, we experiment with training on larger pools. In



54 Chapter 4. Experiments

Figure 4.5, we show the performance of DDPG and SAC on a separate evaluation
set, for three runs with seeds s € [12,42,1234]. To improve generalizability of the al-
gorithms, we sample portfolios from the full universe of 1464 stocks available at the
start of the validation period, such that the algorithms could be assessed on more
than 1,300 previously unseen stocks, in theory. Due to computational constraints,
we evaluate performance on 100 portfolios, every 2520 training steps I The sample
of portfolios is always the same across steps to maintain comparability. To avoid
overfitting, we have implemented an early stopping mechanism with a patience of
20 evaluation steps.

From the figure, we can make two primary observations. First, the randomly
initialized model, which is evaluated at step 0, performs really well. Further investi-
gation shows that this model behaves like an equally-weighted portfolio, allocating
capital equally over assets. As the general stock market has increased significantly
over the evaluation period, as we observed in Figure 3.1, this strategy is really good.
Second, we see that SAC achieves higher episodic rewards than DDPG, and also
surpasses the initial setting. This shows that SAC not only learns from the company
features in the training data, but also succeeds in generalizing to new and previously
unseen stocks. DDPG exhibits more erratic behavior, especially around 800K steps.
On average, it doesn’t seem to surpass the initial evaluation, which shows that it
faces difficulties in generalizing to the evaluation data.
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FIGURE 4.5: The performance of DDPG and SAC on 100 evaluation
portfolios per evaluation step, sampled from a pool of size Ny, =
1464 stocks, trained on Ni,in = 100 stocks, and run for 3 seeds (s €
[12,42,1234]). Note that the y-axis shows the episodic reward, which
is the sum of all the step rewards within an episode and the x-axis
are the training steps. We can see that a randomly initialized model
already performs really well and that SAC achieves higher evaluation
rewards than DDPG.

For all three seeds, we take the model that achieves the highest evaluation re-
ward and test it on a separate test set, averaging per algorithm to improve statistical
validity. As we are interested in the generalizability, we sample 200 portfolios from
the full universe of size Niest = 1465 2. In this experiment, we use the first six months
of data for the estimation of the covariance matrix for the global minimum variance

1As we only sample 100 portfolios, we do not see every stock in the evaluation. Specifically, the

100
expected percentage of sampled stocksis { 1 — (1 - %) ) - 1464 /1464 - 100% ~ 50%.

200
2We expect to sample (1 — (1 - %) ) - 1465/1465 - 100% ~ 75% of the total pool of stocks.
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portfolio (MinVar). Later, we also use offsets for lookback windows. Hence, we start
testing from July 2022 to facilitate a fair comparison between algorithms.

The results of the testing phase are presented in Table 4.1 and Figure 4.6. Specif-
ically, we present the average Sharpe, Sortino, and Calmar ratios, and the annual
return and volatility. We also include the total rewards, which constitute the sum
of the step rewards over the testing period. In the figure, we show the cumulative
portfolio returns averaged over the 200 portfolios. In essence, the cumulative re-
turns indicate the portfolio value at each timestep as a fraction of the initial value.
In Table A.1 in Appendix A, we present Bonferroni-corrected p-values to provide a
statistical assessment of the results in Table 4.1.

TABLE 4.1: Mean and standard error of the mean (SEM) of metrics
for different algorithms and baselines, trained on a pool of N = 100
stocks. The best configuration is shown in bold.

DDPG SAC BuyAndHold EqualWeighted MinVar Random
Sharpe 0.470 £ 0.020 0.501 £ 0.019 0.627 4 0.028 0.561 4 0.028 0.552 £ 0.027 0.136 4 0.030
Sortino 0.714 £ 0.031 0.755 £ 0.029 0.937 £ 0.044 0.843 £ 0.042 0.827 £ 0.042 0.210 £ 0.044
Calmar 0.387 4 0.020 0.421 £ 0.020 0.545 4 0.033 0.477 4 0.031 0.468 + 0.031 0.093 & 0.025
Annual Return 8.40% =+ 0.49% 8.88% =+ 0.44% 11.68% =+ 0.70% 9.81% =+ 0.62% 9.32% =+ 0.59% 1.05% =+ 0.59%
Annual Volatility 21.87% + 0.14% 21.05% + 0.12% 20.09% + 0.16% 20.01% + 0.17% 19.32% =+ 0.16% 18.87% =+ 0.16%
Total Rewards 10.347 + 0.623 11.130 £ 0.550 14.797 + 0.834 12.543 + 0.766 11.963 £ 0.734 0.996 4 0.790
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FIGURE 4.6: The cumulative returns of DDPG, SAC, and the baselines

averaged over 200 test portfolios sampled from a pool of size Niest =

1465 stocks. The error bounds are based on the standard error of the

mean (SEM). We can see that the Buy and Hold strategy outperforms
all other strategies and that the Random agent performs worst.

From the figure, we notice that the BuyAndHold strategy stands out with a
steady climb to approximately 0.25 by mid-2024, outpacing all others, especially
from the start of 2024. The EqualWeighted and MinVar strategies, and DDPG and
SAC all seem to perform equally well, with marginal deviations. The Random strat-
egy languishes near or below zero, underscoring its ineffectiveness, probably due to
high transaction costs with frequent reallocation of capital.

The table underscores BuyAndHold’s superior performance across all metrics,
with the exception of annual volatility, where the Random strategy exhibits the low-
est value due to its consistently poor performance. As BuyAndHold does not re-
balance, its notable surge in performance could be attributed to the significant gains
of a few high-performing stocks, which other strategies fail to fully capture due to
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their periodic rebalancing. This is partially evidenced by BuyAndHold’s marginally
higher volatility compared to EqualWeighted, MinVar, and Random, suggesting
a potential overexposure to these outperformers. Statistical significance tests re-
veal that BuyAndHold significantly outperforms DDPG and SAC on most met-
rics. BuyAndHold does not significantly outperform MinVar and EqualWeighted.
Among the actively managed strategies (DDPG, SAC, and MinVar), no significant
differences emerge, except for annual volatility, where the Minimum Variance (Min-
Var) portfolio justifies its name by achieving the lowest risk. Market volatility dur-
ing the test period (2022-2024), which is characterized by geopolitical conflicts, is
likely to favor the passive approach of BuyAndHold, while RL algorithms struggle
to adapt to these dynamic conditions. In a bullish market, a straightforward passive
strategy could leverage broad trends more effectively than RL models trained using
DDPG and SAC. These algorithms might overcomplicate decision-making or falter
in noisy, non-stationary environments.

Figure 4.7 illustrates the sector allocations for SAC, DDPG, and baseline strate-
gies, defined as the ratio of weight allocated to stocks in various sectors. It pro-
vides insights into the investment behavior of the strategies and contextualizes pre-
viously presented performance metrics. For instance, the Random strategy’s low
volatility can be attributed to its consistently high allocation to cash, an inherently
stable asset. Using the sector allocations, we can also analyze the outperformance
of the BuyAndHold strategy. As detailed in Table 4.2, BuyAndHold’s allocation to
Industrials increases by 19% over the test period, while other strategies maintain
or slightly reduce their exposure. This surge in performance, as BuyAndHold is a
passive strategy, reflects the relative appreciation of the Industrials sector compared
to other sectors. The other algorithms do not capitalize on this trend by increasing
their exposure to this sector, potentially explaining their inferior performance. An-
other notable trend not mirrored by the other algorithms is the increased exposure
to the Consumer Cyclicals sector, which represents a substantial proportion of assets
within the U.S. market.

A potential reason why DDPG and SAC didn’t fully capitalize on these trends
could be a change in feature distributions over time. Markets evolve and features
that were important previously may diminish in relevance. This stresses the im-
portance of more frequent retraining, possibly on a monthly basis. We defer this
investigation to future research.
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FIGURE 4.7: Time-series allocation of capital over sectors and a cash
position for DDPG, SAC, and baseline strategies, evaluated and aver-
aged over 200 portfolios over the test period (July 2022 to July 2024).
Each strategy’s capital allocation is represented as a stacked area plot.
The plot illustrates the behavior of active strategies (DDPG, SAC,
MinVar, Random) compared to the static allocations of BuyAndHold
and EqualWeighted, and their potential preference for different sec-
tors. We observe minimal changes, possibly due to the averaging out
of idiosyncrasies of the different strategies.

TABLE 4.2: Percentage changes in sector allocations over the test pe-

riod.
DDPG SAC BuyAndHold  EqualWeighted =~ MinVar ~ Random
Academic & Educational Services -8.62% -18.86% 8.96% 0.00% -7.07% 28.18%
Basic Materials 3.11% 0.99% 2.58% 4.13% 6.34% 11.56%
Cash -6.32% -29.08% -15.61% 0.00% -36.47% 1.25%
Consumer Cyclicals -3.67% -3.02% 6.05% -3.61% 1.43% -2.59%
Consumer Non-Cyclicals 0.98% 2.64% -12.68% -1.87% -3.69% 0.53%
Energy 12.62% 1.56% 18.97% 3.33% 10.21% -3.47%
Financials 0.38% 3.26% -5.35% 0.37% -4.19% 4.45%
Healthcare 2.55% 1.48% -17.42% 0.44% 0.68% -0.78%
Industrials -1.83% -1.84% 16.89% -1.74% 0.19% -6.13%
Real Estate -4.13% -6.66% -16.31% 0.00% -0.79% -3.08%
Technology 1.27% 7.33% 9.40% 3.02% 4.14% 0.54%
Utilities 4.10% 4.56% -25.86% 0.00% -8.34% 8.45%

2022-07 2022-10 2023-01 2023-04 2023-07 2023-10 2024-01 2024-04 2024-07
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To further illustrate the variability in performance and highlight the pitfalls of
limited benchmarking, we examine the distribution of annual returns across mul-
tiple portfolios. Figure 4.8 showcases the risks associated with presenting results
from a single model applied to a single portfolio. In the figure, we see a box plot
of annual returns for each algorithm across 200 sampled portfolios. This analysis
reveals that DDPG achieves both the highest and lowest annual returns among all
strategies, indicating that reporting only one portfolio could misleadingly position
DDPG as the superior performer across all strategies. For example, benchmarking
only the best-performing DDPG portfolio could lead to the mistaken conclusion that
it outperforms SAC and other baselines, potentially even on risk-adjusted metrics.
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FIGURE 4.8: A boxplot displaying the annual return distributions for

DDPG, SAC, and baseline strategies, evaluated across 200 portfolios

sampled from a pool of Niest = 1465 stocks. The results reveal that

DDPG and SAC exhibit both lower and higher annual returns com-

pared to the baselines, reflecting the inherent variability when evalu-
ating financial strategies.

In conclusion, this experiment reveals that, despite the superior generalization
and stability of SAC over DDPG when tested on 1,465 unseen stocks after training
onjust 100, both fall short of the passive BuyAndHold strategy in the volatile market
of 2022-2024. BuyAndHold delivers high returns, manages downside risk, and ex-
ceeds other strategies in mitigating drawdowns. Other strategies do not effectively
capitalize on the growing prominence of the Industrials sector, which contributes to
BuyAndHold’s superior performance.

In the following experiments, we aim to identify the precise reasons for this ob-
servation. Specifically, since BuyAndHold does not incur transaction costs, we will
investigate whether transaction costs contribute to the suboptimal performance of
the RL algorithms. Another option is that training on a pool of N = 100 stocks does
not suffice and that the algorithms would benefit from learning on a larger pool. In
addition, integrating contextual data, such as macroeconomic variables, could en-
hance performance in volatile markets, adding an additional layer of knowledge
about the context of the wider market. Finally, incorporating a lookback window
may enable the algorithms to develop a more stable policy by providing additional
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historical information on companies, which helps with more deliberate and longer-
term portfolio reallocations, addressing the long-term dependency problem in fi-
nance.

Before proceeding there, we first investigate the network architecture. Specifi-
cally, we aim to determine whether the current network is permutation equivariant,
meaning that different permutations of stock inputs should result in the same allo-
cations.

4.4 Permutation Equivariance

In this experiment, we investigate the properties of the algorithm architecture con-
cerning input order. When sampling random portfolios, each stock is assigned to an
input node of the network. Given the use of shared weights across stocks, the feature
extraction process remains stock-agnostic, and we ensure its proper functioning by
incorporating layer normalization, which effectively handles varying distributions
of company features across the network.

However, following feature extraction, we concatenate the embedding vectors
for each stock. This concatenation operation introduces order dependency. In port-
folio management, stock order should ideally be inconsequential; the weights should
remain consistent regardless of input order. Given the narrow profit margins typi-
cal in finance, such aberrations can substantially impair overall performance. Cur-
rently, the consolidation layer lacks input agnosticism, or more precisely, permuta-
tion equivariance. When stocks A and B are swapped, the corresponding actions or
weights are not similarly rearranged, indicating that the consolidation layer inad-
vertently learns from the input order, despite its irrelevance. This limitation arises
as a drawback of employing a linear layer.

This experiment investigates architectural modifications aimed at enhancing the
permutation equivariance of the network. Since a linear layer cannot achieve full
permutation equivariance, our focus is on facilitating this property within the con-
solidation layer. Specifically, we explore two architectural adjustments: varying the
dimensionality of embedding vectors and incorporating an attention layer follow-
ing the feature extraction stage. With smaller embedding vectors, it may become
more challenging to encode order information, potentially reducing the consolida-
tion layer’s sensitivity to input sequence post-extraction. Furthermore, we explore
the use of an attention mechanism as a potential remedy, leveraging its theoretical
permutation equivariance to potentially manage input order complexity and facili-
tate learning in the consolidation layer.

In Figure 4.9, we present a box plot illustrating the weight differences between
the original weights on a trading day and those obtained after permuting the input
stocks, based on 100 distinct permutations and evaluated across 504 trading days for
the different network architectures aimed at improving permutation equivariance.
These differences are computed as the absolute difference in weight between the
original and the permuted weights. The labels indicate the embedding dimension
and a boolean value specifying whether the attention layer is used. A limitation is
that we have trained only one model per configuration due to computational con-
straints. The results clearly indicate substantial variations in weights when the input
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order is altered, a behavior that is undesirable. Notably, weight differences occasion-
ally exceed those of a random agent, suggesting that the algorithms may be overfit-
ting to the specific order of inputs. Regarding architectural design, smaller embed-
ding dimensions are associated with greater weight differences, likely due to an in-
creased propensity for the consolidation layer to overfit when using smaller embed-
ding vectors. Furthermore, the inclusion of an attention layer markedly enhances
permutation equivariance, as evidenced by reduced weight differences across all
embedding dimensions.
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FIGURE 4.9: A box plot illustrating the distributions of weight dif-

ferences between 100 permutations and the original configuration for

various SAC architectures, evaluated for 504 trading days. The ar-

chitecture names indicate the embedding dimension and a boolean

value specifying whether the attention layer is used. We observe that

the incorporation of an attention layer and larger embedding dimen-
sions effectively reduce these weight differences.

We now examine the influence of greater weight differences on out-of-sample
performance, presenting performance metrics for various SAC architectures eval-
uated across 200 sampled portfolios from a pool of size Nist = 1465. Learning
curves assessing training stability across these configurations are provided in Ap-
pendix B. The test results for different SAC network architectures are detailed in
Table 4.3, accompanied by statistical significance tests in Appendix A.2. In particu-
lar, the configuration with an embedding dimension of 10 and an attention mecha-
nism outperforms the other configurations on most metrics; however, the statistical
significance tests in the appendix indicate that these findings are not statistically
significant. Nonetheless, we can see a correlation between high performance and
reduced weight differences, underscoring our hypothesis. Interestingly, the model
with an embedding dimension of 1 achieves the highest annual returns. Using mul-
tiple models in this experiment may contribute to more robust results.
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TABLE 4.3: Mean and standard error of the mean (SEM) of metrics
for different network architectures for SAC. The best configuration is
shown in bold.

SAC_1_False SAC_3_False SAC_3_True SAC_10_False SAC_10_True Random
Sharpe 0.533 £ 0.035 0.460 =+ 0.032 0.469 + 0.033 0.522 + 0.032 0.557 £ 0.032 0.136 £ 0.030
Sortino 0.807 4 0.054 0.692 + 0.049 0.708 =+ 0.050 0.785 £ 0.049 0.840 =+ 0.049 0.210 + 0.044
Calmar 0.458 £ 0.037 0.374 £ 0.033 0.398 + 0.034 0.438 + 0.033 0.483 =+ 0.035 0.093 + 0.025
Annual Return 9.93% + 0.87% 7.98% =+ 0.75% 8.17% =+ 0.76% 9.14% =+ 0.73% 9.90% =+ 0.72% 1.05% + 0.59%
Annual Volatility 21.77% =+ 0.23% 20.78% + 0.19% 20.85% =+ 0.20% 20.58% + 0.20% 20.48% =+ 0.20% 18.87% =+ 0.16%
Total Rewards 12.275 + 1.080 9.998 + 0.941 10.209 + 0.963 11.513 4+ 0.921 12.502 + 0.899 0.996 £ 0.790

In conclusion, we observe that weight changes decrease with the incorporation of
an attention mechanism and by maintaining a higher embedding dimension. Out-
of-sample performance decreases with additional variability, but not on a statisti-
cally significant level. To fully address the issue of weight changes resulting from
input permutation, we can consider several architectural and training modifications.
One approach to achieve complete weight consistency involves extending weight
sharing throughout the network architecture, by that means eliminating the need
for a consolidation layer. With this approach, we would design actor and critic
networks that process each stock individually via shared parameters, incorporat-
ing contextual information and previous weights, and directly mapping to actions,
possibly through a softmax function to ensure action space constraints. This would
mean that we do not model interactions between assets anymore, which is some-
thing that we hypothesize is important in portfolio optimization. Further research is
needed to evaluate this architecture.

Alternatively, a Set Transformer could be used (Lee et al., 2019). This architec-
ture offers an inherently permutation-equivariant solution. By employing atten-
tion mechanisms to model all pairwise interactions within the input set of stocks,
Set Transformers naturally produce order-agnostic per-element features that can di-
rectly be translated into weights. This mechanism would replace the consolidation
layer. Another option is the Graph Neural Network (GNN) (Scarselli et al., 2008),
such as the Graph Convolutional Network (Kipf and Welling, 2017). While stock
data is often represented as a set of independent time series, a GNN can exploit
relationships between stocks to improve learning. However, using complex archi-
tectures such as the Set Transformer and GNNs requires careful implementation and
validation, which we leave for further investigation.

Beyond architectural changes, we can also change the training methodology to
improve permutation robustness. For example, we could permute actions and ob-
servations within the replay buffer, which would expose the model to a wider range
of input orders, potentially forcing it to learn order-invariant representations. How-
ever, whether this would fit within the RL methodology is questionable. Upon first
impression, this would not break the Bellman equations or other RL fundamentals,
as long as the permutations are consistent across the experience tuples. Another, po-
tentially simpler option would be to decrease the training frequency in SAC, which
could promote the sampling of more diverse portfolios across training iterations, as
we simply sample more portfolios over time. This would mitigate overfitting to spe-
cific input sequences observed early in training and implicitly enhance robustness
to input permutations. This does bring more computational complexity.

In the next few experiments, we hope to gain a deeper understanding on what
impacts the performance of our DRL algorithms. Particularly, we vary the training
pool size and transaction costs, and we change the observation space by including
contextual market information and a lookback window.
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4.5 Scaling Training Pool Size

This experiment serves as a measure for how the total pool of stocks influences the
performance of DRL algorithms. Our hypothesis is that with a larger Niin, algo-
rithms become better at generalization and achieve a higher performance as a result,
simply because they are exposed to a wider variety of feature distributions. There-
fore, we gradually increase the number of stocks in the training pool from 100 to 500
to 1469.

In Figure 4.13, we present the learning curves for SAC across various pool sizes
N. The analysis reveals that training on a larger pool of stocks introduces increased
complexity, necessitating effective learning of a greater number of features and en-
hanced generalization capabilities. Specifically, SAC fails to establish a stable policy
when trained on N = 1469 stocks, potentially due to technical challenges such as an
insufficiently large network to accommodate the wider variation in feature distribu-
tions, excessive conflicting signals within the state, or inadequate training duration.
In Appendix B, we explore the network size as a potential factor, but as this was not
the cause, we continue to hypothesize about the underlying reason for this learning
limitation. Although we do not investigate the issue of conflicting states, a look-
back window might address this effectively. For the present study, we proceed with
N = 500, as this size effectively demonstrates the point of this experiment while
remaining computationally feasible.
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FIGURE 4.10: Learning curves for SAC, trained on different pool

sizes N € [100,500,1469] stocks, with three different seeds each

(s € [12,42,1234]). We observe that an increased pool size brings

more complexity in learning a feasible policy, leading to prolonged

or even failed learning. The green spike at the beginning is caused

by the moving average having insufficient data early on, leading to
delayed smoothing.

In Figure 4.11, we present the performance of DDPG and SAC on a distinct evalu-
ation set. The evaluation interval has been extended to 12,600 steps to accommodate
the prolonged training times associated with a larger stock pool. The results indi-
cate that DDPG shows a notable improvement from training on a larger number of
stocks compared to the N = 100 case, although it remains somewhat more erratic
compared to SAC. SAC, on the other hand, achieves slightly higher evaluation re-
wards and consistently outperforms the randomly initialized model, attaining its
peak performance around 2.5 million steps.
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FIGURE 4.11: The performance of DDPG and SAC on 100 evalu-

ation portfolios per evaluation step, sampled from a pool of size

Nya = 1464 stocks, trained on Nian = 500 stocks, and run for 3

seeds (s € [12,42,1234]). We can see that SAC achieves higher evalu-

ation rewards than DDPG and that these rewards are slightly higher

than the N = 100 case. DDPG particularly seems to improve from
training on more stocks.

In Table 4.4, we present the usual performance metrics, but now for models
trained on a pool of N = 500 stocks, accompanied by statistical significance test
results in Table A.3 in Appendix A. The values for the baseline strategies remain
unchanged. An interesting observation emerges from the table: both DDPG and
SAC show degraded performance compared to the N = 100 scenario, which is
unexpected given that training on a larger stock pool should theoretically enhance
generalization and performance. To understand this phenomenon, we must first ac-
knowledge the increased complexity associated with a larger pool. With a broader
range of stocks, more diverse portfolios can be sampled, reinforcing the issue of as-
set permutation sensitivity compared to training on N = 100. Limited exposure to
permutations may lead the network to incorrectly learn that order matters, despite
its irrelevance. Another possibility is that the network struggles to accommodate a
wider variety of feature distributions, particularly if the consolidation layer is of in-
sufficient size. The size of the feature extractor probably is not the underlying issue,
as scaling the hidden layer dimension for N = 1469 proved ineffective.

The other issues that we discussed for the N = 1469 case might also surface here,
albeit in a milder form. For instance, the state space may become more conflicted,
causing the network to learn noise rather than meaningful signals. In addition, with
a larger dataset, the model might overfit more easily to the evaluation set’s dynam-
ics, which may not align with those of the test set. To put it more broadly, the height-
ened heterogeneity of the training data could disrupt learning of generalizable pat-
terns, as the statistical properties of stock features, their correlations, and their mar-
ket dynamics might become more diverse and less consistent for a 500-stock pool
compared to 100. This increased diversity, potentially worsened by outlier stocks
exhibiting unusual feature distributions or behaviors, may skew the learning pro-
cess, particularly if the model is overly sensitive to such anomalies. In the final anal-
ysis, the increased search space introduced by a larger pool likely complicates the
model’s ability to identify stable, generalizable policies, favoring noise over mean-
ingful patterns. Implementing a lookback window could provide additional context
on company features, mitigating issues of data heterogeneity and conflicting states
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TABLE 4.4: Mean and standard error of the mean (SEM) of metrics
for different algorithms and baselines, trained on a pool of N = 500
stocks. The best configuration is shown in bold.

DDPG SAC BuyAndHold EqualWeighted MinVar Random
Sharpe 0.447 £ 0.020 0.466 + 0.019 0.627 + 0.028 0.561 + 0.028 0.552 + 0.027 0.136 + 0.030
Sortino 0.679 £ 0.031 0.705 + 0.029 0.937 + 0.044 0.843 4 0.042 0.827 + 0.042 0.210 + 0.044
Calmar 0.370 £ 0.020 0.380 + 0.019 0.545 + 0.033 0.477 £ 0.031 0.468 + 0.031 0.093 + 0.025
Annual Return 7.76% =+ 0.50% 8.34% + 0.46% 11.68% =+ 0.70%  9.81% =+ 0.62% 9.32% + 0.59% 1.05% =+ 0.59%
Annual Volatility ~ 22.72% £ 0.18%  21.78% £ 0.12%  20.09% =+ 0.16% 20.01% £ 0.17%  19.32% £ 0.16%  18.87% =+ 0.16%
Total Rewards 9.435 + 0.661 10.352 + 0.586 14.797 + 0.834 12.543 £ 0.766 11.963 + 0.734 0.996 + 0.790

to make a more robust, general policy. However, enhancing the network architecture
or training methodology to address permutation equivariance appears to be a more
pressing priority.

In the following experiments, we focus exclusively on SAC, as we have observed
that DDPG and SAC perform similarly, with SAC showing a slight advantage. In the
next experiment, we train SAC under various transaction cost regimes to examine
its adaptability to different settings.

4.6 Varying Transaction Costs

In this experiment, we analyze the impact of different transaction cost schemes on
the performance and behavior of SAC and the baselines. Transaction costs increase
with the turnover of an investment strategy, thereby constraining an investor’s abil-
ity to frequently reallocate their portfolio. Hence, frequently reallocated strategies,
such as the Random strategy, are expected to degrade rapidly under higher transac-
tion costs. Agents must adopt a longer-horizon strategy, as short-term gains become
less attainable. In this study, we vary the level of transaction costs on the reallo-
cated capital between 0, 5, 15, 25, and 35 basis points (0.01 %). In a liquid market,
a level around 5 basis points is considered standard, and levels around 25 to 35 are
considered very high. We train and evaluate 3 models from SAC per transaction
cost scheme, trained on N = 100 stocks, with the expectation that it will learn to re-
balance more conservatively under higher transaction costs, given that these reduce
overall rewards. In Table 4.5, we show the usual metrics for the different algorithms
at several transaction cost (TC) basis points (bps).

The table reveals that BuyAndHold consistently achieves the highest perfor-
mance across most transaction cost regimes, which is to be expected given its pas-
sive nature as it only incurs transaction costs on the first trading day of an episode.
In the absence of transaction costs, SAC demonstrates higher annual returns than
MinVar and Random, highlighting its capability to identify profitable assets based
on company features. However, its risk-adjusted metrics lag, potentially because
the reward function lacks a risk component. The lack of incorporating risk par-
tially accounts for its lower annual return compared to MinVar at 5 basis points,
where excessive volatility and associated transaction costs reduce annual returns.
As transaction costs increase to 15-35 basis points, SAC adapts by reducing its re-
balancing frequency, resulting in the lowest volatility among all algorithms. Further
analysis of the weight allocations indicates that SAC’s behavior mirrors that of the
EqualWeighted strategy, except for its utilization of a cash position, unlike Equal-
Weighted. This explains the near-identical performance metrics between SAC and
EqualWeighted at 15, 25, and 35 basis points.
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TABLE 4.5: Mean and standard error of the mean (SEM) of metrics
for different algorithms at various transaction cost (TC) basis points
(bps). The best configuration is shown in bold.

SAC BuyAndHold EqualWeighted MinVar Random
TC (bps) Metric
Sharpe 0.539 4 0.019 0.628 + 0.028 0.570 + 0.028 0.562 + 0.027 0.543 4 0.029
Sortino 0.816 & 0.030 0.939 + 0.044 0.857 + 0.042 0.842 + 0.042 0.818 & 0.045
0 Calmar 0.457 4 0.020 0.546 + 0.033 0.486 + 0.031 0.479 + 0.031 0.465 = 0.032
Annual Return 9.90% =+ 0.47% 11.71% =+ 0.70% 10.01% = 0.62% 9.54% + 0.59% 9.02% + 0.61%
Annual Volatility 21.83% % 0.15% 20.09% % 0.16% 20.01% £ 0.17% 19.32% 4 0.16% 18.93% =+ 0.16%
Total Rewards 12.321 4+ 0.598 14.832 + 0.834 12.794 + 0.766 12.234 £+ 0.734 11.530 + 0.774
Sharpe 0.501 4 0.019 0.627 =+ 0.028 0.561 + 0.028 0.552 + 0.027 0.136 4 0.030
Sortino 0.755 + 0.029 0.937 + 0.044 0.843 + 0.042 0.827 + 0.042 0.210 + 0.044
5 Calmar 0.421 + 0.020 0.545 + 0.033 0.477 £ 0.031 0.468 + 0.031 0.093 + 0.025
Annual Return 8.88% =+ 0.44% 11.68% =+ 0.70% 9.81% =+ 0.62% 9.32% =+ 0.59% 1.05% £ 0.59%
Annual Volatility 21.05% % 0.12% 20.09% % 0.16% 20.01% £ 0.17% 19.32% 4 0.16% 18.87% =+ 0.16%
Total Rewards 11.130 & 0.550 14.797 + 0.834 12.543 + 0.766 11.963 £+ 0.734 0.996 + 0.790
Sharpe 0.543 £ 0.016 0.624 + 0.028 0.543 £ 0.028 0.531 £ 0.027 -0.656 & 0.029
Sortino 0.815 + 0.024 0.933 + 0.044 0.815 £ 0.042 0.796 £ 0.042 -0.902 + 0.038
15 Calmar 0.468 £ 0.018 0.543 + 0.033 0.459 £ 0.031 0.448 £ 0.030 -0.330 = 0.010
Annual Return 8.70% =+ 0.32% 11.62% =+ 0.70% 9.41% =+ 0.61% 8.90% £ 0.59% -12.85% £ 0.47%
Annual Volatility 18.24% =+ 0.09% 20.08% =+ 0.16% 20.01% £ 0.17% 19.32% =+ 0.16% 18.85% =+ 0.15%
Total Rewards 11.204 + 0.403 14.727 + 0.834 12.041 + 0.766 11.422 4 0.734 -19.475 + 0.753
Sharpe 0.524 £ 0.016 0.622 + 0.028 0.525 £ 0.028 0.511 £ 0.027 -1.474 £+ 0.033
Sortino 0.787 £ 0.024 0.930 + 0.044 0.788 4= 0.042 0.765 =+ 0.042 -1.960 £ 0.041
25 Calmar 0.451 +0.018 0.541 + 0.033 0.441 4+ 0.031 0.429 + 0.030 -0.685 + 0.025
Annual Return 8.31% £ 0.32% 11.57% =+ 0.70% 9.02% =+ 0.61% 8.47% % 0.58% -25.10% =+ 0.44%
Annual Volatility 18.20% =+ 0.09% 20.08% = 0.16% 20.01% £ 0.17% 19.31% + 0.16% 18.88% =+ 0.16%
Total Rewards 10.715 + 0.402 14.657 + 0.834 11.538 + 0.766 10.880 + 0.734 -40.531 + 0.803
Sharpe 0.506 + 0.016 0.619 + 0.028 0.507 + 0.028 0.491 + 0.027 -2.306 + 0.036
Sortino 0.759 £ 0.024 0.926 + 0.044 0.760 =4 0.042 0.734 £ 0.041 -2.946 £ 0.041
35 Calmar 0.433 £ 0.018 0.539 + 0.033 0.423 + 0.030 0.408 + 0.030 -0.554 + 0.003
Annual Return 7.96% =+ 0.32% 11.51% =+ 0.69% 8.62% 4 0.61% 8.05% =+ 0.58% -35.93% + 0.37%
Annual Volatility ~ 18.21% = 0.09% 20.08% + 0.16% 20.01% £ 0.17%  19.31% £ 0.16% 18.91% + 0.16%
Total Rewards 10.265 + 0.403 14.587 + 0.834 11.036 + 0.767 10.339 + 0.735 -62.168 + 0.798

While SAC’s strategy under higher transaction costs is not inherently ineffective,
it is not very dynamic. The higher transaction costs appear to outweigh potential
gains from rebalancing, making an equal-weight allocation the optimal policy, or
the easiest to converge to. It seems that long-term dependencies are hard to find
with the current feature set, and the reward function plays a big role in this. Again,
incorporating a more informative reward function, possibly one that includes a risk
term, could enable SAC to devise more profitable, diversified and dynamic alloca-
tions.

In Figure 4.12, we show a bar plot of the average transaction cost per step in-
curred by SAC and the baselines, under the same transaction cost regimes. We do
not include the Random strategy, as it incurred extremely high transaction costs at
each step, distorting the plot. Most notably, we see that the transaction costs per
step scale linearly with the imposed transaction cost for the baselines, as these al-
gorithms are unaware of of the imposed transaction costs. SAC, however, directly
incorporates transaction costs into its reward function, allowing it to adapt dynam-
ically. As we have seen previously, under higher transaction costs, SAC mirrors the
EqualWeighted strategy with a cash position. This is also evident from the aver-
age transaction costs. Interestingly, at 5 basis points, SAC follows a more volatile
policy that incurs transaction costs similar to those at 35 basis points. This behav-
ior could suggest model misalignment or overfitting, but it may also indicate that a
more volatile policy is advantageous under lower transaction costs.
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FIGURE 4.12: The average transaction cost per step for different algo-
rithms under various transaction cost schemes (bp € [0, 5, 15, 25, 35]).
We exclude the Random strategy, as its transaction costs are exces-
sively high (around $1500 per step), which would distort the plot.
For the baseline models, transaction costs per step scale linearly with
the imposed transaction cost. SAC exhibits distinct behavior at 5 basis
points, demonstrating its dynamic adaptability to the environment.

In the final set of experiments, we will vary the observation space to assess its
impact on SAC’s learning behavior and performance in the portfolio optimization
task.

4.7 Contextual Market Information

This experiment modifies the observation space by incorporating contextual mar-
ket information into the environment’s state. These contextual variables include
macroeconomic indicators such as the WTI Crude price, various Treasury bill rates,
the Dollar Index (DXY), and the credit spread. We hypothesize that these variables
will provide agents with a broader market context, helping them identify which
company features are most relevant under different market conditions. Specifically,
we expect SAC to exhibit lower volatility, as it may learn to shift allocations toward
cash during periods of market turmoil.

Figure 4.13 presents the learning curves for two observation settings: the original
setup (including company features and previous weights, denoted as prevweights)
and the extended setup incorporating contextual information (denoted as context).
We observe that SAC demonstrates stable learning behavior in both configurations.
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FIGURE 4.13: Learning curves for SAC, trained using two different

observation spaces (previous weights and context), with three differ-

ent seeds each (s € [12,42,1234]). We observe that SAC learns stably
with both observation types.

Figure 4.14 presents the evaluation performance of the two observation settings.
SAC with contextual information appears to underperform slightly compared to
SAC without context. Additionally, it exhibits greater instability, as indicated by
the larger downward spikes in the error bounds.
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FIGURE 4.14: The performance of SAC across two observation set-
tings, evaluated on 100 evaluation portfolios per evaluation step,
sampled from a pool of size Ny, = 1464 stocks, trained on Nigain =
100 stocks, and run for 3 seeds (s € [12,42,1234]). Note that the y-
axis shows the episodic reward, which is the sum of all the step re-
wards within an episode and the x-axis are the training steps. We can
see that SAC with context appears to achieve lower rewards than the
original setting on average.

Table 4.6 highlights this instability, showing that SAC with context performs
slightly worse than SAC without context across most metrics. Notably, SAC trained
with contextual market information exhibits marginally lower annual volatility, though
the difference is statistically insignificant. Given the minimal variations across other
metrics, it remains unclear whether the observed differences stem from the change
in the observation space or natural model variability.

Adding contextual market information does not appear to meaningfully improve
SAC’s decision-making in this setup. It introduces slightly more instability without
a clear benefit. This suggests that SAC may not effectively utilize macroeconomic
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TABLE 4.6: Mean and standard error of the mean (SEM) of metrics for
different algorithms. The best configuration is shown in bold.

SAC SAC_context BuyAndHold EqualWeighted MinVar Random
Sharpe 0.501 4 0.019 0.491 + 0.018 0.627 + 0.028 0.561 4 0.028 0.552 + 0.027 0.136 + 0.030
Sortino 0.755 £ 0.029 0.740 4 0.028 0.937 + 0.044 0.843 £ 0.042 0.827 4 0.042 0.210 £ 0.044
Calmar 0.421 + 0.020 0.407 £ 0.019 0.545 + 0.033 0.477 £ 0.031 0.468 + 0.031 0.093 + 0.025
Annual Return 8.88% =+ 0.44% 8.61% =+ 0.42% 11.68% =+ 0.70% 9.81% =+ 0.62% 9.32% =+ 0.59% 1.05% =+ 0.59%
Annual Volatility 21.05% =+ 0.12% 20.93% + 0.12% 20.09% =+ 0.16% 20.01% £ 0.17% 19.32% 4 0.16% 18.87% =+ 0.16%
Total Rewards 11.130 £ 0.550 10.838 4 0.529 14.797 + 0.834 12.543 £ 0.766 11.963 + 0.734 0.996 £ 0.790

indicators in its learning process, possibly because these variables do not directly
translate into actionable signals within the portfolio optimization task. This suggests
the need for feature engineering in the indicators as well, to facilitate information ex-
traction by the algorithms. For instance, we can use growth rates or momentum indi-
cators in the macroeconomic variables. Furthermore, contextual market signals may
be highly noisy, as shifting market regimes can obscure meaningful patterns, mak-
ing it challenging for SAC to extract useful information. Incorporating a lookback
window in the macroeconomic variables could provide additional context about the
current market conditions and help clarify conflicting signals. The current environ-
ment is already designed to accommodate this, making further research straightfor-
ward. On top, a feature extractor for the contextual market variables could facilitate
learning in the consolidation layer. Finally, the current reward function may not ef-
fectively encourage the utilization of macroeconomic indicators, as it is not designed
to account for volatility. In its current form, these indicators are unlikely to enhance
logarithmic returns, they might even introduce unnecessary complexity. However,
their value may become more apparent in reducing risk when paired with a risk-
adjusted reward function. We will leave this for further investigation.

In the last experiment, we investigate whether incorporating a lookback window
in the company features helps improve the performance of SAC.

4.8 Lookback Window

In this section, we experiment with a lookback window in the features in the obser-
vation space. Including a lookback window can be useful because it gives the agent
more context about what happened in previous steps. In essence, the agent has a
sequence of past observations of the company features to its disposal, aiding in de-
tecting patterns or trends that might not be obvious from only the most recent state.
Including a lookback window can lead to improved learning and more robust per-
formance, especially when delayed effects are at play, which is the case in financial
markets.

We also hypothesize that a lookback window can help disambiguate observa-
tions by providing the agent with more context about a particular portfolio config-
uration. This becomes particularly relevant as the number of stocks in the training
pool increases. While the enhanced robustness of a lookback window may be bene-
ficial in this scenario, we do not explicitly test for this in our experiments and leave
it for future research.

However, lookback windows become less useful when the state already includes
well-designed features, such as financial returns or momentum, which naturally
capture time-dependent patterns. In these cases, the added computational cost of
a lookback window may not be justified, as the agent’s neural network can already
rely on concise and informative inputs to make decisions without needing to recon-
struct past trends from raw data. Since our dataset includes high-quality features,
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the primary benefit of a lookback window may be improved stability and reduced
ambiguity for the agent.

Due to computational constraints, as discussed in Chapter 3, we use relatively
short lookback windows of length 4. While including more steps is probably ben-
eficial, it requires more computational resources than we have at our disposal. To
further investigate the effect of a lookback window, we vary the step size between
consecutive observations, using step sizes of 1, 5, and 21, corresponding to a trading
day, week, and month, respectively. A larger step size exposes the agent to a longer
time frame in the market, potentially enhancing its robustness to short-term fluc-
tuations. In addition, longer-term dependencies should become easier to identify,
helping to address one of the fundamental challenges of applying DRL in finance
through the use of a lookback window.

Figure 4.15 presents the evaluation performance across the three lookback win-
dow step sizes. In all cases, we observe an improvement over the initial model,
though the effect is more pronounced for step sizes 1 and 21. The performance for
step size 21 is erratic and declines after 300K training steps, suggesting high training
variability for this setting.
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(A) SAC with a lookback window with a step size (B) SAC with a lookback window with a step size
of 1 (one trading day). of 5 (one trading week).
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(c) SAC with a lookback window with a step size
of 21 (one trading month).

FIGURE 4.15: The performance of SAC across three lookback win-
dow step sizes, evaluated on 100 evaluation portfolios per evalua-
tion step, sampled from a pool of size Ny, = 1464 stocks, trained
on Niain = 100 stocks, and run for 3 seeds (s € [12,42,1234]). Note
that the y-axis shows the episodic reward, which is the sum of all the
step rewards within an episode and the x-axis are the training steps,
and is not equal between the plots. We can not directly compare the
level of the curves, as the lookback window influences the start of the
evaluation period (as we have to incorporate a window in the obser-
vations) and hence the average performance. We can see that each
setting shows an improvement over the training period. A step size
of 21 leads to more fluctuations and a downward trend around 300K
steps, indicating training variability.

In Table 4.7, we show the standard performance metrics for four different ob-
servation spaces in SAC: the baseline setting without a lookback window and three
settings with a lookback window using different step sizes. The results indicate
that incorporating a lookback window leads to slightly lower annual volatility, and
according to Table A.8, this difference is statistically significant between SAC and
SAC_1. Among the evaluated models, SAC_5 achieves the highest Sharpe, Sortino,
and Calmar ratios, suggesting that incorporating information from previous weeks
helps in learning a more profitable and risk-aware policy. However, most observed
differences are not statistically significant. This could be due to several factors, in-
cluding the relatively short length of the lookback window. With longer lookback
windows, and additional convolutional layers to process them, the agent might have
extracted more useful information from past states, potentially improving its trad-
ing strategy. While the marginal improvements observed for SAC_5 are promising,
the challenge of permutation sensitivity may be limiting further gains and we prob-
ably need a more suitable architecture before exploring more advanced observation
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spaces. An alternative explanation is that lookback windows only start to make
sense when training on a larger pool of stocks or with a different reward mecha-

nism.

TABLE 4.7: Mean and standard error of the mean (SEM) of metrics
for different lookback window step sizes. The best configuration is

shown in bold.

SAC SAC_1 SAC_5 SAC_21
Sharpe 0.501 £ 0.019 0.496 £+ 0.018 0.516 £ 0.019 0.501 £ 0.019
Sortino 0.755 £ 0.029 0.747 £ 0.028 0.779 £ 0.028 0.757 £ 0.029
Calmar 0.421 £ 0.020 0.416 £ 0.019 0.442 £ 0.020 0.411 £0.019
Annual Return 8.88% =+ 0.44% 8.63% =+ 0.42% 9.11% £ 0.43% 8.97% =+ 0.45%

Annual Volatility 21.05% £ 0.12% 20.57% %+ 0.11% 20.66% £ 0.12%
Total Rewards 11.130 £ 0.550 10.875 £ 0.523 11.460 + 0.536

20.90% £ 0.12%
11.222 £ 0.558
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Chapter 5

Conclusion

This thesis explores the application of Deep Reinforcement Learning (DRL) algo-
rithms to the complex task of portfolio allocation. Our primary goal is to evaluate
the performance of several state-of-the-art DRL agents, namely DDPG, PPO, and
SAC, under various conditions and to identify key factors influencing their ability
to learn effective investment strategies. Rather than seeking a single optimal config-
uration or portfolio, we offer a comprehensive analysis of the elements that can en-
hance DRL agents in this context, including the incorporation of lookback windows,
contextual information, feature engineering, and different exploration strategies.

We have designed our experiments to cover key challenges in DRL for finance,
including high-dimensional state spaces, long-term dependencies, limited data avail-
ability, sample efficiency, training instability, and generalization, with the goal of
understanding the effectiveness and current standing of DRL in portfolio allocation.
We focus on validating the stability and generalizability of these models in a sta-
tistically robust framework, prioritizing these aspects over mere raw performance.
Through this investigation, we have identified core challenges inherent to DRL, par-
ticularly applied to finance, such as the importance of out-of-sample generalization,
the need to mitigate permutation sensitivity in network architectures when handling
data that can be structured as sets, the maintenance of model stability, and the influ-
ence of transaction costs.

To address the issue of limited data, we have engineered 116 features from raw
financial pricing, fundamentals and sentiment data (Chakraborty, 2019). On top, we
sample portfolios from a pool of 1,500 stocks in the S&P 1500, enhancing general-
ization across portfolios and assets while improving data efficiency (Wang, 2019).
To further refine the models, we designed a shared feature extractor for each com-
pany, incorporating an optional attention layer to improve permutation equivari-
ance in a dense network (Tang and Ha, 2021). Finally, a consolidation layer inte-
grates these company-specific features with contextual market data and previous
portfolio weights, offering a comprehensive representation of portfolio potential.

In this chapter, we first provide a brief conclusion of the main findings. Then, we
put these findings into perspective, discussing their implications for the field and
outlining potential directions for future research.

5.1 Main Findings
The experiments carried out in this thesis yield several important insights.

1. When scaling the portfolio size, off-policy algorithms like DDPG and SAC
demonstrate a greater capacity to learn profitable strategies compared to the
on-policy PPO. We conclude that a replay buffer is essential when sampling
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diverse portfolios and when generalization to diverse assets is desired. How-
ever, the performance of DDPG and SAC deteriorates as the portfolio size in-
creases significantly, suggesting limitations in handling very high-dimensional
action spaces, primarily due to the dilution of signals to the reward function.

2. The impact of varying exploration parameters in a deterministic financial dataset
is marginal, indicating that sufficient exposure to the state space might be more
critical than extensive exploration of novel actions. However, this can also
originate from the reward function, as using logarithmic portfolio returns pro-
motes extreme actions and more complex reward functions possibly require
more exploration.

3. The out-of-sample evaluation reveal that while SAC shows better generaliza-
tion capabilities than DDPG, both algorithms underperform the simple Buy And-
Hold strategy during the testing period. Analysis of sector allocations suggests
that the passive BuyAndHold strategy benefits from the appreciation of spe-
cific sectors, a trend not fully captured by the actively managed DRL agents.

4. The network architecture exhibits sensitivity to the order of input stocks, high-
lighting a lack of permutation equivariance which negatively impacts perfor-
mance. Although incorporating an attention layer helps, it does not fully mit-
igate the problem. The issue of asset orderings is even more evident when
increasing the size of the training pool. Training on larger stock pools, DDPG
and SAC show less generalization and more instability, highlighting the need
for a robust network architecture and training methodology.

5. Examining the influence of transaction costs demonstrates that SAC can adapt
its trading strategy to the environment, mirroring a low-turnover strategy sim-
ilar to EqualWeighted under high transaction costs. However, BuyAndHold
consistently outperforms across most transaction cost regimes due to its inher-
ently low turnover.

6. Incorporating contextual market information into the observation space does
not lead to significant performance improvements, suggesting that these macroe-
conomic indicators, in their current form, may not be directly beneficial with-
out further processing or a more tailored reward function.

7. A lookback window in the features does not directly lead to statistically sig-
nificant performance gains, except for volatility, which is lower than without a
lookback window.

5.2 Future Work

In this thesis, we have explored various aspects of developing a robust investment
strategy using DRL. Key design choices include the state space, action space, reward
function, network architecture, and learning algorithms. While we have addressed
several of these areas, many promising directions remain open for future research.
Through the development of our robust statistical framework for evaluating DRL
agents, we empower researchers to systematically explore and refine these design
choices within the portfolio allocation task.

Using our framework, we have found that while DRL algorithms, particularly
off-policy methods, show promise in learning complex financial dynamics, they face
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significant challenges in outperforming simple, well-established baseline strategies
like BuyAndHold, especially in volatile market conditions. We hypothesize that the
primary issue is the sensitivity to input order (lack of permutation equivariance) in
standard network architectures, an issue that needs to be addressed for better and
more robust performance. We have identified several solutions, both architectural
and methodological. The most promising avenue would be the adoption of a fully
permutation equivariant network, such as a Graph Neural Network (Scarselli et al.,
2008), which also models asset interactions. Simpler approaches would be to reduce
the training frequency in SAC and DDPG or to permute asset and action ordering
directly in the replay buffer such that the algorithms are exposed to more diverse
portfolio configurations.

Another important research direction constitutes the design of the reward func-
tion, as it plays a crucial role in shaping the agent’s investment behavior. The pop-
ular logarithmic return used in this thesis might not properly incentivize desirable
characteristics such as more dynamic allocations in high transaction cost regimes or
adaption to contextual market information. Alternative reward functions, such as
the differential Sharpe ratio, the value at risk, or the Kelly criterion, could promote
more dynamic behavior and can be seamlessly integrated into our framework. These
reward functions can also help the agent focus on longer-term patterns rather than
short-lived and elusive gains, leading to more stable investment behavior.

With respect to the action space, we have found that using actions as direct port-
folio weights allows DRL agents to make more targeted allocations, but it also in-
troduces extra complexity. An interesting direction for future research is to explore
whether defining actions as weight changes could be effective, particularly in market
environments with high transaction costs, where this structure might lead to more
efficient trading.

Although we have experimented with different observation spaces, including
contextual information and a lookback window, an important next step is to analyze
the impact of individual features on the agent’s decisions. A feature sensitivity anal-
ysis can help identify the most influential inputs, improving the interpretability of
DRL models. One approach is to compute the partial derivatives of the action vec-
tor with respect to each input feature, revealing how changes in features affect the
agent’s decisions (Benhamou, 2023). Furthermore, Shapley values provide a model-
agnostic method to quantify the contribution of each feature to the agent’s output
(Shapley, 1953).

Apart from diverse portfolios, it would also be valuable to train on a more di-
verse set of date ranges than those used in this thesis. Benhamou, 2023 and Sood
et al., 2023 employ a sliding training window, gradually sliding the evaluation and
test sets forward in time. This approach enables researchers to assess DRL algo-
rithms across a broader range of market conditions, improving the robustness of
experiments.

Finally, while we have explored various aspects individually, integrating these
elements could lead to even better performance and training stability. For example,
a lookback window coupled with contextual information, and training on a larger
pool of assets could create synergies between these design choices. The extent of
these synergies remains an open question and requires further empirical validation,
a process which is greatly facilitated by our robust framework.






Appendix A

Significance Tests

A.1 Out of Sample Performance

TABLE A.1: Bonferroni-corrected p-values from Student’s t-tests com-
paring algorithms across various metrics, based on training with a
pool of N = 100 stocks. Statistically significant p-values at the 5%
level are highlighted in bold.

DDPG SAC BuyAndHold EqualWeighted MinVar Random
Metric Algorithm
Sharpe DDPG - 0.263 0.000* 0.008 0.017 0.000*
SAC 0.263 - 0.000* 0.072 0.127 0.000*
BuyAndHold 0.000* 0.000* - 0.098 0.056 0.000*
EqualWeighted ~ 0.008 0.072 0.098 - 0.802 0.000*
MinVar 0.017 0.127 0.056 0.802 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Sortino DDPG - 0.323 0.000% 0.014 0.029 0.000%
SAC 0.323 - 0.001* 0.088 0.157 0.000*
BuyAndHold 0.000* 0.001* - 0.122 0.069 0.000*
EqualWeighted ~ 0.014 0.088 0.122 - 0.790 0.000*
MinVar 0.029 0.157 0.069 0.790 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Calmar DDPG - 0.216 0.000% 0.015 0.026 0.000%
SAC 0.216 - 0.001* 0.130 0.194 0.000*
BuyAndHold 0.000* 0.001* - 0.134 0.089 0.000*
EqualWeighted 0.015 0.130 0.134 - 0.843 0.000*
MinVar 0.026 0.194 0.089 0.843 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Annual Return DDPG - 0.469 0.000* 0.075 0.229 0.000*
SAC 0.469 - 0.001* 0.219 0.544 0.000*
BuyAndHold 0.000* 0.001* - 0.045 0.010 0.000*
EqualWeighted ~ 0.075 0.219 0.045 - 0.569 0.000*
MinVar 0.229 0.544 0.010 0.569 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Annual Volatility DDPG - 0.000* 0.000* 0.000* 0.000* 0.000*
SAC 0.000* - 0.000* 0.000* 0.000* 0.000*
BuyAndHold 0.000* 0.000* - 0.752 0.001* 0.000*
EqualWeighted 0.000* 0.000* 0.752 - 0.003* 0.000*
MinVar 0.000* 0.000* 0.001* 0.003* - 0.046
Random 0.000* 0.000* 0.000* 0.000* 0.046 -
Total Rewards DDPG - 0.346 0.000% 0.027 0.094 0.000%
SAC 0.346 - 0.000* 0.136 0.365 0.000*
BuyAndHold 0.000* 0.000* - 0.048 0.011 0.000*
EqualWeighted 0.027 0.136 0.048 - 0.586 0.000*
MinVar 0.094 0.365 0.011 0.586 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
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A.2 Permutation Equivariance

TABLE A.2: Bonferroni-corrected p-values from Student’s t-tests com-

paring different SAC architectures across various metrics, based on

training with a pool of N = 100 stocks. Statistically significant p-
values at the 5% level are highlighted in bold.

SAC_1_False SAC_3_False SAC_3_True SAC_10_False SAC_10_True Random

Metric Algorithm
Sharpe SAC_1_False - 0.128 0.189 0.820 0.611 0.000*
SAC_3_False 0.128 - 0.841 0.173 0.033 0.000*
SAC_3_True 0.189 0.841 - 0.252 0.057 0.000*
SAC_10_False 0.820 0.173 0.252 - 0.438 0.000*
SAC_10_True 0.611 0.033 0.057 0.438 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Sortino SAC_T_False - 0.115 0.176 0.760 0.653 0.000%
SAC_3_False 0.115 - 0.826 0.180 0.034 0.000*
SAC_3_True 0.176 0.826 - 0.268 0.060 0.000*
SAC_10_False 0.760 0.180 0.268 - 0.427 0.000*
SAC_10_True 0.653 0.034 0.060 0.427 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Calmar SAC_1_False - 0.092 0.234 0.690 0.620 0.000*
SAC_3_False 0.092 - 0.617 0.174 0.026 0.000*
SAC_3_True 0.234 0.617 - 0.401 0.085 0.000*
SAC_10_False 0.690 0.174 0.401 - 0.354 0.000*
SAC_10_True 0.620 0.026 0.085 0.354 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Annual Return SAC_T_False - 0.091 0.128 0.489 0.980 0.000%
SAC_3_False 0.091 - 0.862 0.267 0.065 0.000*
SAC_3_True 0.128 0.862 - 0.355 0.098 0.000*
SAC_10_False 0.489 0.267 0.355 - 0.460 0.000*
SAC_10_True 0.980 0.065 0.098 0.460 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Annual Volatility SAC_T_False - 0.001* 0.003* 0.000* 0.000* 0.000%
SAC_3_False 0.001* - 0.805 0.471 0.274 0.000*
SAC_3_True 0.003* 0.805 - 0.347 0.191 0.000*
SAC_10_False 0.000* 0.471 0.347 - 0.728 0.000*
SAC_10_True 0.000* 0.274 0.191 0.728 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Total Rewards SAC_1_False - 0.114 0.155 0.593 0.872 0.000*
SAC_3_False 0.114 - 0.876 0.252 0.056 0.000*
SAC_3_True 0.155 0.876 - 0.330 0.083 0.000*
SAC_10_False 0.593 0.252 0.330 - 0.444 0.000*
SAC_10_True 0.872 0.056 0.083 0.444 - 0.000*

Random 0.000* 0.000* 0.000* 0.000* 0.000* -
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A.3 Scaling Training Pool Size

TABLE A.3: Bonferroni-corrected p-values from Student’s t-tests com-
paring algorithms across various metrics, based on training with a
pool of N = 500 stocks. Statistically significant p-values at the 5%
level are highlighted in bold.

DDPG SAC BuyAndHold EqualWeighted MinVar Random
Metric Algorithm
Sharpe DDPG - 0.484 0.000* 0.001* 0.002* 0.000*
SAC 0.484 - 0.000* 0.005 0.011 0.000*
BuyAndHold 0.000* 0.000* - 0.098 0.056 0.000*
EqualWeighted 0.001* 0.005 0.098 - 0.802 0.000*
MinVar 0.002* 0.011 0.056 0.802 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Sortino DDPG - 0.532 0.000% 0.002% 0.004 0.000%
SAC 0.532 - 0.000* 0.008 0.017 0.000*
BuyAndHold 0.000* 0.000* - 0.122 0.069 0.000*
EqualWeighted 0.002* 0.008 0.122 - 0.790 0.000*
MinVar 0.004 0.017 0.069 0.790 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Calmar DDPG - 0.697 0.000* 0.004 0.007 0.000*
SAC 0.697 - 0.000* 0.009 0.015 0.000*
BuyAndHold 0.000* 0.000* - 0.134 0.089 0.000*
EqualWeighted 0.004 0.009 0.134 - 0.843 0.000*
MinVar 0.007 0.015 0.089 0.843 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Annual Return DDPG - 0.401 0.000* 0.010 0.044 0.000*
SAC 0.401 - 0.000* 0.057 0.189 0.000*
BuyAndHold 0.000* 0.000* - 0.045 0.010 0.000*
EqualWeighted 0.010 0.057 0.045 - 0.569 0.000*
MinVar 0.044 0.189 0.010 0.569 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Annual Volatility DDPG - 0.000* 0.000% 0.000% 0.000% 0.000%
SAC 0.000* - 0.000* 0.000* 0.000* 0.000*
BuyAndHold 0.000* 0.000* - 0.752 0.001* 0.000*
EqualWeighted 0.000* 0.000* 0.752 - 0.003* 0.000*
MinVar 0.000* 0.000* 0.001* 0.003* - 0.046
Random 0.000* 0.000* 0.000* 0.000* 0.046 -
Total Rewards DDPG - 0.300 0.000* 0.002* 0.011 0.000*
SAC 0.300 - 0.000* 0.024 0.088 0.000*
BuyAndHold 0.000* 0.000* - 0.048 0.011 0.000*
EqualWeighted 0.002* 0.024 0.048 - 0.586 0.000*
MinVar 0.011 0.088 0.011 0.586 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
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A4

Varying Transaction Costs

TABLE A.4: Bonferroni-corrected p-values from Student’s t-tests com-

paring algorithms across various metrics, based on training with a

pool of N = 100 stocks and evaluated in an environment with a trans-

action cost level of 0 basis points. Statistically significant p-values at
the 5% level are highlighted in bold.

SAC BuyAndHold EqualWeighted MinVar Random

Metric Algorithm
Sharpe SAC - 0.009 0.346 0.488 0.897
BuyAndHold 0.009 - 0.145 0.092 0.038
EqualWeighted 0.346 0.145 - 0.823 0.499
MinVar 0.488 0.092 0.823 - 0.643
Random 0.897 0.038 0.499 0.643 -
Sortino SAC - 0.020 0.430 0.603 0971
BuyAndHold 0.020 - 0.177 0.111 0.054
EqualWeighted 0.430 0.177 - 0.811 0.530
MinVar 0.603 0.111 0.811 - 0.688
Random 0.971 0.054 0.530 0.688 -
Calmar SAC - 0.021 0.428 0.551 0.827
BuyAndHold 0.021 - 0.188 0.135 0.078
EqualWeighted 0.428 0.188 - 0.862 0.635
MinVar 0.551 0.135 0.862 - 0.758
Random 0.827 0.078 0.635 0.758 -
Annual Return SAC - 0.033 0.894 0.626 0.253
BuyAndHold 0.033 - 0.069 0.018 0.004*
EqualWeighted 0.894 0.069 - 0.581 0.256
MinVar 0.626 0.018 0.581 - 0.542
Random 0.253 0.004* 0.256 0.542 -
Annual Volatility SAC - 0.000* 0.000* 0.000* 0.000*
BuyAndHold 0.000* - 0.753 0.001* 0.000*
EqualWeighted 0.000* 0.753 - 0.003* 0.000*
MinVar 0.000* 0.001* 0.003* - 0.087
Random 0.000* 0.000* 0.000* 0.087 -
Total Rewards SAC - 0.015 0.627 0.927 0.420
BuyAndHold 0.015 - 0.073 0.020 0.004*
EqualWeighted 0.627 0.073 - 0.598 0.247
MinVar 0.927 0.020 0.598 - 0.511
Random 0.420 0.004* 0.247 0.511 -

TABLE A.5: Bonferroni-corrected p-values from Student’s t-tests com-

paring algorithms across various metrics, based on training with a

pool of N = 100 stocks and evaluated in an environment with a trans-

action cost level of 15 basis points. Statistically significant p-values at
the 5% level are highlighted in bold.

SAC BuyAndHold EqualWeighted MinVar Random

Metric Algorithm

Sharpe SAC - 0.013 0.996 0.702 0.000*
BuyAndHold 0.013 - 0.041 0.018 0.000*
EqualWeighted 0.996 0.041 - 0.759 0.000*
MinVar 0.702 0.018 0.759 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* -

Sortino SAC - 0.019 0.997 0.689 0.000%
BuyAndHold 0.019 0.053 0.023 0.000*

EqualWeighted 0.997 0.053

- 0.748 0.000*
MinVar 0.689 0.023 0.748 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* N
Calmar SAC - 0.047 0.791 0.568 0.000%
BuyAndHold 0.047 - 0.063 0.035 0.000*
EqualWeighted 0.791 0.063 - 0.806 0.000*
MinVar 0.568 0.035 0.806 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* -
Annual Return SAC - 0.000% 0.304 0.765 0.000%
BuyAndHold 0.000* - 0.018 0.003* 0.000*
EqualWeighted 0.304 0.018 - 0.545 0.000*
MinVar 0.765 0.003* 0.545 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* -
Annual Volatility SAC - 0.000* 0.000* 0.000* 0.001*
BuyAndHold 0.000* - 0.750 0.001* 0.000*
EqualWeighted ~ 0.000*  0.750 - 0.003* 0.000*
MinVar 0.000* 0.001* 0.003* - 0.038
Random 0.001* 0.000* 0.000* 0.038 -
Total Rewards SAC - 0.000* 0.336 0.796 0.000*
BuyAndHold 0.000* N 0.018 0.003* 0.000*
EqualWeighted 0.336 0.018 - 0.561 0.000*
MinVar 0.796 0.003* 0.561 - 0.000*

Random 0.000* 0.000* 0.000* 0.000* -
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TABLE A.6: Bonferroni-corrected p-values from Student’s t-tests com-
paring algorithms across various metrics, based on training with a
pool of N = 100 stocks and evaluated in an environment with a trans-
action cost level of 25 basis points. Statistically significant p-values at

the 5% level are highlighted in bold.

SAC BuyAndHold EqualWeighted MinVar Random
Metric Algorithm
Sharpe SAC - 0.003* 0.988 0.667 0.000*
BuyAndHold 0.003* - 0.015 0.005* 0.000*
EqualWeighted ~ 0.988 0.015 - 0.717 0.000*
MinVar 0.667 0.005* 0.717 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* -
Sortino SAC - 0.005% 0.988 0.654 0.000%
BuyAndHold 0.005* - 0.020 0.007 0.000*
EqualWeighted ~ 0.988 0.020 - 0.706 0.000*
MinVar 0.654 0.007 0.706 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* -
Calmar SAC - 0.016 0.784 0.523 0.000%
BuyAndHold 0.016 - 0.026 0.012 0.000*
EqualWeighted 0.784 0.026 - 0.769 0.000*
MinVar 0.523 0.012 0.769 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* -
Annual Return SAC - 0.000* 0.310 0.810 0.000*
BuyAndHold 0.000* - 0.006 0.001* 0.000*
EqualWeighted 0.310 0.006 - 0.521 0.000*
MinVar 0.810 0.001* 0.521 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* -
Annual Volatility SAC - 0.000* 0.000* 0.000* 0.000*
BuyAndHold 0.000* - 0.748 0.001* 0.000*
EqualWeighted 0.000*  0.748 - 0.003* 0.000*
MinVar 0.000* 0.001* 0.003* - 0.056
Random 0.000* 0.000* 0.000* 0.056 -
Total Rewards SAC - 0.000% 0.343 0.844 0.000%
BuyAndHold 0.000* - 0.006 0.001* 0.000*
EqualWeighted 0.343 0.006 - 0.537 0.000*
MinVar 0.844 0.001* 0.537 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* -

A.5 Contextual Market Information

TABLE A.7: Bonferroni-corrected p-values from Student’s t-tests com-
paring different SAC architectures across various metrics, based on
training with a pool of N = 100 stocks. Statistically significant p-
values at the 5% level are highlighted in bold.

SAC SAC_context BuyAndHold EqualWeighted MinVar Random
Metric Algorithm
Sharpe SAC - 0.699 0.000* 0.072 0.127 0.000*
SAC_context 0.699 - 0.000* 0.034 0.065 0.000*
BuyAndHold 0.000*  0.000* - 0.098 0.056 0.000*
EqualWeighted ~ 0.072 0.034 0.098 - 0.802 0.000*
MinVar 0.127 0.065 0.056 0.802 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Sortino SAC - 0.706 0.001* 0.088 0.157 0.000*
SAC_context 0.706 - 0.000* 0.044 0.085 0.000*
BuyAndHold 0.001* 0.000* - 0.122 0.069 0.000*
EqualWeighted 0.088 0.044 0.122 - 0.790 0.000*
MinVar 0.157 0.085 0.069 0.790 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Calmar SAC - 0.606 0.001% 0.130 0.194 0.000%
SAC_context 0.606 - 0.000* 0.057 0.090 0.000*
BuyAndHold 0.001* 0.000* - 0.134 0.089 0.000*
EqualWeighted ~ 0.130 0.057 0.134 - 0.843 0.000*
MinVar 0.194 0.090 0.089 0.843 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Annual Return SAC - 0.656 0.001% 0.219 0.544 0.000*
SAC_context 0.656 - 0.000* 0.108 0.322 0.000*
BuyAndHold 0.001*  0.000* - 0.045 0.010 0.000*
EqualWeighted 0.219 0.108 0.045 - 0.569 0.000*
MinVar 0.544 0.322 0.010 0.569 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
Annual Volatility SAC - 0.454 0.000* 0.000* 0.000* 0.000*
SAC_context 0.454 - 0.000* 0.000* 0.000* 0.000*
BuyAndHold 0.000* 0.000* - 0.752 0.001* 0.000*
EqualWeighted 0.000* 0.000* 0.752 - 0.003* 0.000*
MinVar 0.000* 0.000* 0.001* 0.003* - 0.046
Random 0.000* 0.000* 0.000* 0.000* 0.046 -
Total Rewards SAC - 0.702 0.000% 0.136 0.365 0.000%
SAC_context 0.702 - 0.000* 0.068 0.215 0.000*
BuyAndHold 0.000* 0.000* - 0.048 0.011 0.000*
EqualWeighted ~ 0.136 0.068 0.048 - 0.586 0.000*
MinVar 0.365 0.215 0.011 0.586 - 0.000*
Random 0.000* 0.000* 0.000* 0.000* 0.000* -
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A.6 Lookback Window

TABLE A.8: Bonferroni-corrected p-values from Student’s t-tests com-

paring different lookback window step sizes of SAC across various

metrics, based on training with a pool of N = 100 stocks. Statistically
significant p-values at the 5% level are highlighted in bold.

SAC SAC_1 SAC_5 SAC_21

Metric Algorithm
Sharpe SAC - 0.842 0.570 0.991
SAC_1 0.842 - 0.438 0.833
SAC_5 0.570 0.438 - 0.578
SAC_21 0.991 0.833 0.578 -
Sortino SAC - 0.836 0.560 0.966
SAC_1 0.836 - 0.426 0.803
SAC_5 0.560 0.426 - 0.590
SAC_21 0.966 0.803 0.590 -
Calmar SAC - 0.840 0.463 0.715
SAC_1 0.840 - 0.346 0.869
SAC_5 0.463 0.346 - 0.268
SAC_21 0.715 0.869 0.268 -
Annual Return SAC - 0.679 0.701 0.886
SAC_1 0.679 - 0.417 0.578
SAC_5 0.701 0.417 - 0.815
SAC_21 0.886 0.578 0.815 -
Annual Volatility — SAC - 0.003* 0.016 0.360
SAC_1 0.003* - 0.568 0.041
SAC_5 0.016 0.568 - 0.145
SAC_21 0.360 0.041 0.145 -
Total Rewards SAC - 0.737 0.668 0.907
SAC_1 0.737 - 0.435 0.650
SAC_5 0.668 0.435 - 0.758

SAC_21 0.907 0.650 0.758 -
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Appendix B

Supplementary Plots

B.1 PPO Investigation

In Figure B.1, we include learning curves for PPO with varying levels of the en-
tropy coefficient. The levels of the entropy coefficient for PPO are chosen based on
commonly accepted values, typically ranging between 0 and 0.01. A higher entropy
coefficient might help PPO generalize better across different portfolios, aiding in
converging to a more general policy. On the contrary, we see lower rewards with
higher values for the entropy coefficient. Apparently, PPO is not able to find a sta-
ble policy under higher entropy, and the decrease in rewards could be due to an
increase in transaction costs. Entropy seems to hinder PPO’s learning more than it
generalizes it.

PPO

—— Entropy Coef=0.001

—— Entropy Coef=0.005

—— Entropy Coef=0.01 | oA
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FIGURE B.1: Learning curves for PPO for different exploration set-

tings, trained on N = 100 stocks, with three different seeds each

(s € [12,42,1234]). Specifically, we have varied the entropy coeffi-

cient between 0.001, 0.005, 0.01 and 0.05. Darker colors are higher

values for the entropy coefficient. We observe that higher values for

the entropy lead to lower rewards, possibly because of higher trans-
action costs resulting from more stochastic behavior.
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B.2 Permutation Equivariance

0.200
—— Embedding Dim=1, Attention=0
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FIGURE B.2: Learning curves for SAC for different network archi-
tectures aimed at improving permutation equivariance, trained on

N = 100 stocks, on one seed s

12. Specifically, we vary the em-

bedding dimension and the use of an attention layer. We observe that
attention improves learning speed and that an embedding dimension
of one appears too small for stable learning.

B.3 Scaling Hidden Layer Dimension

Scale Features Extractor Size for SAC
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FIGURE B.3: Learning curves for SAC for different hidden layer di-

mensions in the features extractor, trained on N = 1469 stocks, on

one seed s = 12. We observe that the dimensionality of the hidden
layers does not help in learning a stable policy.
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