£ f Y& Universiteit
Ll Leiden Master Computer Science

A Benchmark Study of Deep Reinforcement Learn-
ing Algorithms for Container Stowage Planning

Problem

Name: Yunqi Huang
Student ID: s3789918
Date: 27/08/2025

Specialisation: Data Science

1st supervisor: Yingjie Fan
2nd supervisor: Aske Plaat

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

ABSTRACT

Container stowage planning is an important component of maritime transportation and termi-
nal operations, directly impacting the efficiency of the supply chain. Because the problem is
complex, it heavily relies on the expertise of human planners. With the rise of artificial intelli-
gence, some studies have attempted to address container stowage planning problems (CSPP)
using reinforcement learning (RL) methods. However, there is still a lack of benchmark com-
parisons across different RL approaches. To fill this research gap regarding the performance
differences of DRL methods on CSPP, this study develops a Gym environment that abstracts
the fundamental features of CSPP. By incorporating crane scheduling, the study further ex-
tends this into two formulations, multi-agent and single agent, to jointly optimize CSPP and
crane scheduling. Based on this setup, the study designs multiple scenarios to conduct com-
parative experiments on five RL algorithms: DQN, QR-DQN, A2C, PPO, and TRPO. The
experimental results show that all five algorithms perform well in optimizing key metrics in
simple environments, while TRPO stands out in highly complex scenarios. Moreover, in com-
plex settings, the single-agent control method performs better in reducing shifters. Overall,
this study demonstrates how the performance of RL algorithms in solving CSPP is nuanced by
scenario complexity and problem formulation, emphasizing the importance of choosing appro-
priate approaches according to the specific characteristics and requirements of the problem in
practical applications.

ACKNOWLEDGEMENTS

This thesis was produced in collaboration with Loadmaster.ai and supervised by the Leiden
Institute of Advanced Computer Science (LIACS) at Leiden University, made possible using

the computational resources of the Academic Leiden Interdisciplinary Cluster Environment
(ALICE).

| would like to thank my supervisors, Yingjie Fan and Aske Plaat, for their guidance, support,
and encouragement throughout the writing of this thesis. | truly appreciate our meetings and
email exchanges, which have been very inspiring and gave me a lot of confidence.

| am also grateful to my colleagues at Loadmaster.ai for their help throughout the project,
from whom | learned a great deal both in research and engineering. Special thanks go to Alexis
Carras for providing various ideas, Nishith Chennakeshava for guiding me to think more deeply
about the problems, and Vladislav Neverov for his valuable feedback.

Finally, | would like to thank my friend Shuo Chen for the care and support during this time.

Completing this thesis would not have been possible without all of you, and | am sincerely
grateful.

11

Contents

(1__Introductionl

2 Container Ship Stowage Planning Problem|
[2.1 ~ Structure of Container Ship|
[2.2 Stowage Operation Process

[2.3.2 Objective of Optimization|
[2.3.3 Crane Schedulingl

3 Related Workl
[3.1 Study on Stowage Planning Problems|

[3.2 RL in Stowage Planning| L
[3.3 T'he Role of Environment Design in RL Methods|

[4 Reinforcement Learning Preliminaries|
[4.1 General Concepts and Markov Decision Process|.
[4.2 Elements of Reinforcement Learning|.
[4.3 Bellman Equation|o
[4.4 Value-based and Policy-based Methods|

b Methodology|
5.1 Stowage Planning Gym Environment|

1.2 TMEl . . .
5.1.3 SPGE-MC
1.4 SPAEC
(.2 Stable Baselines 31

5.5 Experimental Setup|
[5.5.1 Scenario Setup|
[5.5.2 Experimental Methodology|
[5.5.3 Experimental Infrastructurel

6 Results|
6.1 Basic SPGE|l
6.2 TMEl
[6.3 Single Agent vs. Multi-Agent| 0L
631 SPGE-MCO

111

[6.3.3 Evaluation Comparison|

7 D onl

8 Conclusionl

[A Hyper-parameters|
B Deiailed Evaluation Data

v

33
34
39

42

1 Introduction

Container ports are hubs connecting maritime and land transport and serve as an integral
component of the global supply chain. The allocation, coordination, and loading of contain-
ers directly impacts the efficiency of the terminals within the broader logistics network (He
et al., [2023)). In recent years, container terminals have been faced with increasing demand for
throughput and transportation volumes, resulting in the need for faster container handling and
turnaround times (Zhou et al., 2022). Vessel loading operations is particularly important for
the efficient terminal management, which involves an critical challenge: the container stowage
planning problem (CSPP), which is, to find the optimal approach for loading containers from
the yard to the vessel under a given set of constraints. CSPP is an NP-hard problem (Avriel
and Penn, |1993)), subject to various constraints including vessel structural characteristics, con-
tainer dimensions, stowage regulations, customer-specified requirements for containers, and
seaworthiness considerations.

In container terminal operations, stowage planning represents a critical and time-intensive
phase, and it relies heavily on the expertise of human planners (Jensen et al, [2018). Man-
ual planning has become a bottleneck for terminal automation, especially as vessel and yard
capacities continue to increase, leading to higher labor and time consumption (Shen et al.,
2017). The planning challenges call for smarter solutions: from Review of Maritime Transport
2024 by UN Trade and Development (UNCTAD), the number of containership port calls has
reached a historical high, while ports adopting Al and automation technologies reported less
waiting time and faster cargo turnover (Trade and Development, 2024).

Early research on CSPP solutions focused on the exact methods using mathematical models.
For example, |Li et al. (2008)) using a 0-1 linear programming model and branch-and-cut method
to maximize vessel load while minimizing container shiftings. However, no exact method or
mathematical model has yet proven efficient enough to solve real-world single-port CSPP large
instances (van Twiller et al., 2024). For more complex constraints and larger problem sizes,
some research shift to metaheuristics methods, such as neighborhood heuristics (Ambrosino
et al., 2010) and population heuristics (Hu et al., 2012).

Heuristic methods often build mixed integer programming models for specific cases and de-
signing algorithms to solve them accordingly, which may limit the performance over large-scale
instances and their generalization ability (Shen et al| [2017) . Recent studies have begun to
explore reinforcement learning (RL) approaches for CSPP (Jiang et al., 2021; \Wei et al., 2021)),
but most focus on the performance of a single algorithm in a specific environment. Due to data
scarcity in the CSPP domain (Jensen et al 2018), there is a lack of benchmark comparisons
across different algorithms solving the same optimization objective in a shared environment.

Another aspect to consider in CSPP research is joint optimization, such as including equipment
scheduling. Since terminal operations are tightly coupled across multiple stages, focusing on
a single stage may yield limited improvements or even negative effects for overall optimiza-
tion (Hsu et al| 2021). Given that crane operation on the quay side and container handling
on the yard side are both part of the container loading process, joint optimization of CSPP
and crane scheduling constitutes an important aspect of whole terminal operation. However,
research in this area is relatively scarce (Kizilay and Eliiyi, 2021)), and there is no exploratory
work using reinforcement learning to solve this problem.

In scenarios where multiple cranes load a single ship in parallel, the joint control problem of

CSPP and crane scheduling can be modeled as either a single-agent central control problem,
where one agent selects both containers and cranes, or a multi-agent problem where each
agent representing a crane makes container selection decisions respectively. The impact of
these two formulations on the performance of different RL algorithms remains to be studied.

To address the above challenges, this study explores the core question: Can reinforcement
learning be applied to solve the CSPP? On this basis, we break it down into the following
sub-questions:

1. How do different RL algorithms perform regarding the container stowage planning prob-
lem in the same environment?

2. How does problem scale affect the performance of RL algorithms?

3. When crane scheduling is considered together with CSPP, how do single-agent vs. multi-
agent formulations influence algorithm performance?

This thesis will elaborate on the complex aspects of the stowage planning problem in Section
2} including domain knowledge related to container ships, loading procedures, and problem
constraints. Section [3| provides an overview of existing work on solving CSPP, covering both
traditional methods and reinforcement learning approaches, as well as studies on the joint
optimization of CSPP and crane scheduling. Section (4] introduces the preliminaries of rein-
forcement learning. Section [5| presents the research methodology, including the construction
of the benchmarking environment, the algorithms compared, the use of action masks, also the
experimental setup. Section [6] presents the experimental results, and Section [7] discusses the
findings. Section [8| concludes the paper and outlines directions for future research.

2 Container Ship Stowage Planning Problem

This section provides a brief introduction to the structure of container ships and problem
constraints. For two types of container ships, Ro-Ro (Roll on-Roll off, which uses ramps or
ferry slips at the bow or stern for cargo handling) and Lo-Lo (lift on-lift off, which uses cranes
for loading and unloading) ((Garratt, |1980)), the optimization problem in a single-port scenario
for Lo-Lo will be focused on.

2.1 Structure of Container Ship

Consider a typical containership layout as shown in Figure [Il The smallest unit for loading
containers to a ship is a slot, with common dimensions of 20 feet long, 8 feet wide, and 8
feet high. The coordinates of a single slot on a container ship are given by a triplet (bay, row,
tier). The bay coordinate refers to the horizontal location in relation to the ship's side, usually
counted from the bow to the stern. The row coordinate represents the horizontal position in
relation to the front of the ship, counted from the center to the outer edge of the ship. The tier
coordinate represents the vertical position relative to the ship’s body, typically counted from
bottom to top. Additionally, the tiers of vessel slots can be divided into two main sections:
the portion located below the deck within the ship’s hull, and the portion located above the
deck. They are separated by hatches, and whether the hatch is open or closed determines the
accessibility of the tier levels above it.

u
2 s ou ow
2 T)]
— o I s s I |
b I I 1 ——] —1—]
« —— S I) s S s [—
= I [|| || —— ——
I I I [| —— | —— ——
1 I — —— — 4
i, 1] i pa I e |
o e I — ——— " =] s e s s
" o - —:— i - — =7
L WE 1 - - i | m— -
Tow No.
T 05 07 05 03 0100 02 04 06,08 10
o8 | 92
£ I —)
o4 —— — TierNo. &8
o —— 1 onDeck 86
Ao, oo ‘l‘ —— — o HeAE AT
—— —— MSE OF DOE OE O
: | I I BS =S =S 55 : i
o I Tier No. 20 <
o | boow % 3 =
Deck
g bridge e

Figure 1: Vessel structure (van Twiller et al.l 2024)).

2.2 Stowage Operation Process

The operation process of container stowage depends on the terminal layout, but can generally
be abstracted as shown in Figure 2] The key nodes are:

\ . '3
N Power Terminal Storage Gate .7

== QuayCrane -—== = % ——mmmm o

System Transport Yard System

Figure 2: Stowage operation process (Zhou et al., 2022)).

1. Storage Yard: This is where containers awaiting loading are stored, having a coordinate
system similar to container vessels, with the minimum unit being a slot of 20 feet length,
8 feet width, and 8 feet height. The coordinates of the slot are represented by a triplet
of bays, rows and tiers. The yard is typically divided into different areas, which is usually
reflected in the yard slot indices. After the completion of pre-stowage, containers in the
yard are typically placed in an orderly manner according to category, weight, and whether
they are designated for the upcoming vessel to be loaded.

2. Handling Equipment: Used for lifting containers and moving them between different
locations within the terminal. These movements include not only directly transporting
containers from yard to quay crane, but also repositioning containers within the yard,
which often occurs when the container to be loaded is not at the top of its yard stack
and cannot be directly accessed by the handling equipment. The operation of moving
other containers within the yard to access the currently needed container is called a
shifter or reshuffling.

Common handling equipment includes manually operated straddle carriers (SC), con-
tainer trucks (CT), as well as automated lifting vehicles (ALV), intelligent guided ve-
hicles (IGV) and autonomous trucks (AT) that don’t require manual operation. (Zhou
et al., 2022)

3. Quay Crane: Used for loading containers from the quay to the vessel at the seaside. For
a ship, there can be a single crane or multiple cranes performing loading operations at
the same time.

4. Vessel: The destination of an individual container within the stowage operation process.

For a single container awaiting transport, it needs to go through several steps: shifting, pickup
and transport to the quay crane area by handling equipment, waiting for crane availability, and
loading onto the ship by the crane.

2.3 Problem Model

The CSPP is about determining how to place m containers belonging to set C' into n available
ship slots belonging to set S (Ambrosino et al. 2004). We can iterate through S using a
sequencer, and for each element s € S, select the most suitable container ¢ € C, which
turns this into a sequential decision problem. That is, we need to find an ordered sequence of
selected containers (P = (py,pa,...,pm)) such that our objective of interest is maximized.
Here, p; € C represents the i-th container picked from the set of available containers C' to be
placed, corresponding to a discrete time step in the loading process, while p; # p; for any two
different positions ¢ # j in the sequence P.

2.3.1 Problem Constraints
There are a number of constraints that need to be considered in the stowage planning process:

1. Slot and container availability constraint: When the sequencer iterates through the vessel
slots, we need to ensure that the slot to be operated on is vacant and designated for
loading. Similarily, for container selection from the yard, we need to ensure that the
container exists in the yard and is included in the loading list.

2. Bay adjacency constraint: When loading containers into a designated slot, it is necessary
to check whether the adjacent bay of this slot is occupied. if so, then this slot is invalid.
It's because the vessel bays have such divisions: odd-numbered bays are 20-foot slots,
while even-numbered bays are 40-foot slots. For example, for two adjacent 20-foot bays
starting from the bow, the forward one is numbered 01, the aft one is numbered 03,
with these two combined as a 40-foot bay position numbered 02.

3. Hatch status constraint: When loading a container, the validity of the vessel slots depends
on the situation of related hatch in the bay: if the hatch is open, containers should be
placed in the cargo hold; if the hatch is closed, only slots above the deck are valid.

4. Sequence constraint: To ensure the stability and safety of the ship, loading should start
from slots with smaller bay, row and tier values, and the slots on the seaside should be
loaded before those on the land side.

5. Weight constraint: The combined weight of the containers loaded onto the vessel should
not exceed the upper limit of the ship’s weight limit (), while the loading weight of con-
tainers for each bay must also not exceed the bay’s individual weight limit. In container
loading, lighter containers should not be located below heavier containers.

2.3.2 Objective of Optimization

The optimization objectives of CSPP vary according to the actual conditions of terminal oper-
ations, but commonly focused goals are reducing shifters and the stowage operation duration.
In this study, we also focus on these two key performance indicators.

We denoted the stowage operation duration for a single container as t,,. According to section
2.2] it can be concluded that t,,, consists of the following components:

Lyob = tshift + IMove to Load (1)

where tspire represents the time spent on shifting, which can be 0, while tpove to Load FEPresents
the time spent on transporting the container from the yard to quay crane, waiting for the
crane to be available, and crane loading. tshis is directly related to ngpis.

2.3.3 Crane Scheduling

Containers are loaded onto the vessel using quay cranes according to the stowage plan. When
a vessel is handled by multiple cranes, the loading operations can be parallelized. However,
badly-planned loading sequence might lead to underutilization of cranes in parallelization.

We consider using k cranes to execute the loading plan for m containers. Let the set

C'R contain k crane elements, denoted as cr. Taking crane scheduling into account when
solving the CSPP, we need to consider not only the selection of the containers but also which
crane is assigned to perform the loading for each container. In this case, we seek to find
a sequence (P = ((p1,01), (p2,02), ..., (i, 0i), .., (Pm,0m))), Where each p; € C' denotes
the i-th container selected from C and each o; € C'R is the crane assigned to handle p; at
sequence position 7. Here, p; € C still adheres to the constraint p; # p; for any two different
positions ¢ # j in the sequence P, while o; € C'R does not need to satisfy a distinctness
constraint, but crane o; must be available at time step (or sequence position) 7.

3 Related Work

There has been considerable research on how to solve the stowage planning problem, and as
artificial intelligence becomes more prevalent, using reinforcement learning schemes to solve
this problem has been gaining attention from researchers during the past years. The following
section begins with a overview for some solutions to the stowage planning problem, with a
special focus on the application of reinforcement learning to this problem. Since the perfor-
mance of agents in reinforcement learning depends on environment design, we will also discuss
the impact of training environments on agents.

3.1 Study on Stowage Planning Problems

Container stowage planning problem is essentially an NP-hard combinatorial optimization prob-
lem. In terms of planning modeling, mainstream research divides it into two subproblems: the
Master Bay Planning Problem (MBPP, which is about assigning container groups to general
positions on the ship) and Slot Planning Problem (SPP, which is about assigning containers
to slots on the ship after MBPP). After Wilson and Roach| (2000) introduced this hierar-
chical decomposition method, Pacino et al.| (2011)) constructed models capable of balancing

5

ship stabilization with loading and unloading operations in their study based on this problem
decomposition approach.

In addition, the stowage planning problem can be categorized into single-port and multi-port
forms (van Twiller et al., [2024)). In the multi-port problem, it is necessary to consider the re-
stowage operations that may be caused by the unloading and loading of containers when the
ship reaches subsequent ports along the transport route. Meanwhile, the single-port problem
can be regarded as a subproblem of the multi-port problem, where the focus is on minimizing
the number of shifters and operation time during container loading at the current port.

To address the single-port stowage planning problem, research mainly focuses on exact and
metaheuristic methods. To minimize loading time, a heuristic approach was proposed by
Sciomachen and Tanfani| (2003)) that builds on the connection between MBPP and the three-
dimensional bin packing problem. This approach was successfully tested on a large scale, using
more than 1400 container instances.

Ambrosino et al.| (2004) provided a thorough description of the constraints involved in MBPP,
and proposed an exact 0-1 linear programming formulation to address the problem. However,
they found that this model was not applicable for large-scale real-world cases. Based on this,
they proposed the use of heuristic preprocessing and prestowing procedures, as well as relaxing
certain constraints for improvement.

Cruz-Reyes et al.[(2015) addressed the MBPP by developing strong upper and lower bounds to
define a feasible solution space. One of the lower bounds was obtained by relaxing the integer
programming model of MBPP, while the other three bounds were designed heuristically. The
lower bounds include LB1: Estimation of the minimal loading time, and LB2: LP relaxation
(relaxing the integer constraint x;; € {0,1} to continuous constraints). The upper bounds
include UB1: Estimation of the maximal loading time and UB2: Estimation based on a loading
procedure considering weight constraints. After testing on three groups of instances, they
concluded that LB1 and UB2 are the best combination.

Zhu et al.| (2020)) proposed a simplified CSPP model and gradually introduced real-world factors
into the model, solving it through integer programming. They considered four factors: whether
the container is empty, the state of hatch covers, container size, and container type. These
factors were incorporated separately to form four models. Performance was evaluated in each
of these four scenarios, and it was found that the model integrating all factors achieved the
highest solution quality, but the solution time increased as the problem became more complex.

Some studies have considered stowage planning with crane scheduling: |Zheng et al| (2010)
addressed the quay crane scheduling problem (QCSP) and yard crane scheduling problem
(YCSP) incorporating vessel stowage planning (VSP) and yard storage planning (YSP) by
proposing a heuristic method to schedule an automated container handling system using twin
40" cranes. Azevedo et al. (2018) employed a genetic algorithm along with simulation and
representation by rules to solve the integrated problem of 3D Stowage Planning and the
QCSP for container ship.

3.2 RL in Stowage Planning

Due to the sequential decision nature of CSPP, it is suitable to use reinforcement learning
as solutions, with an increasing number of recent studies focusing on how to obtain effective

decision policies through RL approaches.

Shen et al.|(2017) used Deep Q-Learning for CSPP, considered nine features including container
weight in the environmental state modeling, and designed reward functions based on the
generated stowage planning's feasibility, reshuffling, and yard crane movement frequency to
train the network. Xia et al. (2020) introduced Prioritized Experience Replay (PER) when
using DQN to solve the container Loading Sequencing Problem to address sparse reward
issues in dynamic environments. [Zhao et al. (2018) was the first to use Monte Carlo Tree
Search (MCTS) to solve CSPP, utilizing roulette wheel to design the simulation for stowage
to achieve loading objectives. van Twiller et al| (2023)) used Proximal Policy Optimization
(PPO) to solve the Master Bay Planning Problem (MBPP) subproblem within CSPP, designing
reward functions that consider factors such as hatch overstowage, restowing, and center of
gravity deviation to maximize vessel utilization and reduce hatch overloading. (Cho and Ku
(2024)) adopted PPO with a two-phase approach to handle CSPP, similarly considering center
of gravity deviation and bay weight in the reward function during the bay selection phase,
while minimizing rehandling in the row and tier placement phase.

Current research mainly focuses on minimizing container shifting and ensuring stowage plan
feasibility, but the duration of stowage operations has received limited attention. It is worth
noting that considering the duration of the stowage operation as a factor in the reward function
may render the agent's policy learning process dependent on the accuracy of the simulated
environment's time prediction.

3.3 The Role of Environment Design in RL Methods

Due to the limitations of real-world data in terms of sample inefficiency and high acquisition
cost, simulator-based training is widely used in the RL field to obtain an abundant source
of data. However, the discrepancies between simulated and real environments often impact
policy transfer performance (Zhao et al., 2020). This raises questions about how the training
environment affects training effectiveness and generalization.

Henderson et al.| (2018)) discovered in their research on RL experiment reproducibility that
environment characteristics can significantly affect RL algorithm performance. For instance,
DDPG performs notably better in environments with stable dynamics compared to dynam-
ically unstable environments (such as Hopper-vl). Padakandla (2021) pointed out that in
non-stationary environments, RL agents encounter challenges in sample efficiency when the
environment changes, and model-free RL algorithms have difficulty converging.

Reda et al.| (2020)) explored the effect of key environmental components on RL policy, con-
sidering TD3 algorithm performance variations across different Initial-state Distribution, State
Representation, Control Frequency, and Choice of Action Space. Their experiments with Py-
Bullet environment reward functions, particularly the Survival Bonus differences, demonstrated
that specific components in the reward function provide a critical form of reward shaping that
can significantly affect agent behavior.

Jayawardana et al.| (2022) placed more emphasis on the importance of evaluating RL policy
in more diverse environments. They explored the impact of task under specification on RL
methods, noting that a family of RL tasks typically corresponds to hundreds or thousands
of MDP instances with varying parameters rather than individual point MDPs, and found
experimentally that some DRL methods reported to be superior to traditional control methods

7

under the traffic signal control task performed significantly worse when evaluated across a range
of MDP environments rather than individual MDP environments. |Wolgast and NieBe (2024)
focused on the practical problem of optimal power flow, implementing 13 different design
variants of environments and comparing the performance of RL training in these environments.
When designing different environments based on data sampling distribution and evaluating
them, they found that training with realistic time-series data was significantly better than
training with randomly sampled data.

Bono et al.| (2025)) challenged the traditional assumption that RL methods perform optimally
when the training and testing environments are consistent. They created 60 environment
variants based on the ATARI game by means of noise injection or semantic modification and
found that the RL agent performs better in noisy environments if it is trained in a noiseless
“indoor” environment.

4 Reinforcement Learning Preliminaries

This section contains foundational knowledge and key concepts of reinforcement learning,
which is the basis for the research methodology in Section 5 General concepts, elements,
Bellman equation, and the deep reinforcement learning (DRL).

4.1 General Concepts and Markov Decision Process

Reinforcement learning represents a branch of machine learning that learns "what to do”
through trial and error, by evaluating rewards and improving actions taking based on those
evaluations (Sutton and Barto, 2018). Unlike supervised learning, which relies on labeled
datasets provided in advance to solve tasks such as classification, regression, or ranking, re-
inforcement learning generates training data through interaction between the agent and the
environment: As shown in Figure[3] at time step ¢, the agent is in state S;, takes action A;, ap-
plies it to the environment, and receives a reward R; from the environment. The environment
then changes to the next state S;, 1, the value-based method and the policy-based method.

Agent W

\ J

Yy

St Rt At

' 1

Environment J:

(.

Figure 3: Agent-environment Dynamics in RL. (Sutton and Barto, [2018)

The state S, action A;, and reward R; are key components of a Markov Decision Process
(MDP), which is used to model the environment. An MDP is defined as a 4-tuple (S, A, P, R),

8

where: (1) S is the set of possible states (state space). (2) A is the set of available actions in
the environment (action space). (3) P is the set of environmental dynamics p(s'|s, a), that is,
probability of transitioning from state s to state s’ given that action a is taken. In deterministic
environments, p(s'|s,a) = 1. (4) R represents the collection of immediate rewards 7(s'[(s, a))
received by the agent from taking action a from state s to the next state s'.

4.2 Elements of Reinforcement Learning

Reinforcement learning’s important elements include the agent's policy, the environment's
reward signal, and the value function of state-action pairs.

The policy 7 defines how the agent selects actions based on its observation (which may be
a subset of the environment's full state S that the agent can perceive). A policy can be
deterministic, meaning the agent always selects a certain action given a specific state; or
stochastic, meaning the agent chooses among possible actions with certain probabilities.

Reward signals are the feedback provided by the environment when an agent's specific state-
action pair acts upon it. The ultimate objective of reinforcement learning is to maximize the
sum of the rewards, rather than the reward at a single step, because an action yielding low
reward may lead to a set of highly rewarding states in the future. In this context, a value
function, Q-function, is used to describe the goodness of a certain state (or state-action pair),
that is, the expected sum of future rewards (discounted by) from that point until the end
of the episode. For a MDP starting at state s under policy 7, the value function is defined as
shown in Equation . Similarly, for the action value under a specific state-action pair, the
definition is given in Equation . How to accurately estimate the value function is a critical
aspect in reinforcement learning.

Ve(s) = Ea[Gy | Sy =] =Er | Y AR [Si=s|, forallses, (2)
k=0
qﬂ(s,a) = EW[Gt | S =84 = a] =E, Z’YthJrkH Si=s4=a (3)
k=0

During the training process, we generally encourage the agent to exploit its current knowledge
by choosing actions with higher values. However, to avoid falling into the local optimum, it's
also necessary for the agent to take unseen actions, in hopes of discovering better outcomes.
The goal is to strike a balance between exploitation and exploration to achieve a most effective
policy overall.

4.3 Bellman Equation

With the definition of the value function in Equation ({2):

Ur(8) = Ex[Gy | Sp = 8]
=E.[Ris1 +YRivo + V' Riyz+ -+ | Sy = 5]

x| Rip1 + 7G| Sp = 9]
2 Ris1 + 707 (Si41) | Se = s

|
ﬁﬁﬁﬁﬁ

(G
[
[Rip1r +Y(Ripo + YRy + -+) | Sp = s (4)
[
[

Equation is the basic form of the Bellman equation (Bellman| 1966). It reveals the rela-
tionship between the value of the current state and that of the next state, and also shows that
the value function can be computed through an iterative process.

4.4 Value-based and Policy-based Methods

One approach to determining the optimal policy is the value-based method, which involves
evaluating the Q-values of each action and then selecting actions maximizing these Q-values.
Q-learning (Watkins and Dayan|, [1992)) is a tabular value-based method based on the Bellman
equation, which maintains a Q-value table of state-action pairs and updates it through equation
until convergence. Here, « is the learning rate.

Q (S A) ¢ (1-0) - Q(S, A) +a- (R +7- maxQ(Spa)) (5)

However, tabular Q-learning is not practical when facing problems with large state or action
spaces, nor can it generalize to states that the agent has never encountered. To address,
deep reinforcement learning uses neural networks to approximate Q-values, which is known as
deep-Q learning (DQN) (Mnih et al., 2013).

However, DQN is only applicable to discrete action spaces. For continuous action spaces,
policy-based methods such as REINFORCE (Williams, [1992)) are used, which optimize the
policy directly through an objective function. For a policy my parameterized by 6, we can
define the objective function J(f) as the expected long-term return. Taking the gradient of
J(0) with respect to theta can obtain equation (@ then the optimal theta can be found by
maximizing this gradient through gradient ascent.

VoI() ~ 30 | S ValogmlAcn | i) 3 (7 Re) (6)

n=1 Lte0:T Tet:T

5 Methodology

This section describes the methodologies and tools used in this research, including the design
of a stowage planning environment compatible with the OpenAl Gym interface (Brockman
et al,, 2016) for training RL agents, the integration of the stable-baseline3 RL algorithm
library (Raffin et al., [2021]), employed algorithms, the application of action masks, and the
training procedures.

10

5.1 Stowage Planning Gym Environment

This research developed a stowage planning gym environment (SPGE) to address data scarcity
issues, as well as the challenge that stowage planning simulation environments are often highly
coupled with vessel structures and container types, resulting in excessive complexity. This
environment is a high-level abstraction of the terminal stowage process, representing the vessel
and yard as cubes, and treating individual container slots in the vessel and yard as operational
units. The attributes of these units (e.g., coordinates and occupancy status) is the basis for
both simplified constraint enforcement according to vessel planning rules and the construction
of the state space. These attributes include:

1. Slot Coordinates. These are (bay, row, tier) triplets indicating the position of a slot on
the vessel or yard. Each slot has a unique coordinate.

2. Occupancy. This indicates whether the slot contains containers or not. For a yard slot,
this value being set to 1 means it holds a container waiting to be loaded, while for a
vessel slot, 0 means it still needs to be filled.

3. Group. This value indicates either the expected container type for a vessel slot, or the
actual container type at a yard slot. It is used for abstracting vessel planning rules
that require certain containers to be stowed in specific vessel areas (e.g., refrigerated
containers need to be placed in powered sections of the ship). A slot on the vessel can
only be filled with container with the same group value.

SPGE allows problem scale control by a config dictionary during environment initialization.
The config dictionary will specify the number of bays, rows, and tiers for the ship and yard,
as well as the number of containers to be loaded and the number of groups. In addition to
the basic stowage planning gym environment, where the agent controls the container loading
sequence, this study also includes a variant where the agent jointly controls both containers
and cranes, the stowage planning gym environment with multiple cranes (SPGE-MC).

5.1.1 Basic SPGE

Based on a provided config dictionary, the environment will generate a vessel and yard of
specified sizes, along with containers to be loaded with specified numbers, and randomly
assign these containers to groups, ensuring that scenarios can be reproduced by setting a seed
in the environment configuration. For a vessel or yard of size (ngay, nRow; NTier), the state is
represented as a matrix with ngay X NRow X NTier FOWs and ngioeaer columns, where each row
corresponds to a unique slot and its associated attributes.

Figure [4a| shows the visualization of an example environment with 3 bays, 5 rows, 3 tiers in
both vessel and yard, and 45 containers. The corresponding vessel and yard state data can be
found in Table[Il

SPGE uses a sequencer to determine the order of vessel slot to be filled in order to satisfy
constraint 4 in Section [2.3.1] At each step, for the vessel slot specified by the sequencer, the
number of actions can be taken equals the total number of yard slots. The observation is
formed by concatenating and flattening the attribute values of the vessel state, yard state, and
the target vessel slot.

Therefore, for an environment having a vessel of size (nvgay, MvRow, vTier), @ yard of size

11

Vessel Bay 1 Bay 3 Bay 5 Vessel Bay 1 Bay 3 Bay 5

3|14 8 2 5 n 44 a8 32 38 M4 59 B3 47 50 656 3114 8 2 5 n 44 a8 32 a5 | N 59 B3 47 50 56
213 7 1 4 1o |43 a7 31 34 40 |58 52 46 43 55 2|13 7 1 4 1o |43 a7 31 |34 40|58 52 46 49 55
112 9 42 36 30 33 29 57T = 45 48 54 112 6 m 9 42 36 33 | 39 57 = E 48 54
5 3 1 5 3 1 2 4 5 3 1 2 a 5 3 1 2 4 5 3 1 2 4 5 3 1 2 a
Yard Yard

Bay 1
[|
=]

(a) SPGE (b) SPGE-MC

Figure 4: Visualization of SPGE and SPGE-MC. Cross-section views of vessel and yard
bays. The upper and lower parts of the figure represent the current states of the vessel
and yard slots, respectively. Each square represents a container slot, while different colors
indicate different groups. Light-color squares in vessel requires to be filled with contain-
ers with corresponding group, while white squares in yard are empty slots. Numbers on
squares are unique slot IDs, while numbers below and left indicate rows and tiers. In
(a)(b), outlined squares are target vessel slots to be filled. The difference is that in (b),
multiple sequencers correspond to the number of cranes, and a time mechanism is intro-
duced, which brings crane availability into consideration. A red highlight indicates that
the crane associated with the sequencer is idle and the vessel slot can be filled at this
step, while gray highlight indicates the slot cannot be filled due to unavailability of the
crane.

(MyBay, TYRow, Ty Tier), NGroup Kinds of containers with number of ncto be loaded, we define:

Ny = TvBay X MVRow X TWTier (7)

Ny = TyBay X MYRow X TYTier (8)
such that nc < ny.

The observation space of SPGE will be represented as a one-dimensional vector of size (ny +
ny + 1) X ngjotaeer, While the discrete action space has a size of ny.

For state transitions, there are two cases to consider. If the selected action is invalid, such as
selecting a yard slot with no container, or selecting a container whose group does not match
the target vessel slot, no changes occur in either the vessel or yard state. In this case, a large
negative reward (—100) is returned as a penalty, since the transition is not valid.

If the selected action is valid, the environment calculates the number of containers stacked
above the selected one in the yard as shifter, which will be returned as a negative reward. The
container's attribute information is then copied from the yard slot to the target vessel slot.
Meanwhile, all containers in the yard above the selected one (i.e., those in the same bay and
row but with higher tier values) are shifted down by one tier. For example, in Figure , if
container 33 in the yard is selected, then after the shift, containers 34 and 35 will have their
tier values changed from 2 and 3 to 1 and 2, respectively. The sequencer will also advance to

12

Table 1: Partial observation values of vessel and yard corresponding to Figure .

(a) Vessel State
Slot Number Bay Row Tier Occupancy Group

0 1 1 1 1 0
3 1 2 1 1 0
6 1 3 1 0 0
30 3 1 1 0 1

(b) Yard State
Slot Number Bay Row Tier Occupancy Group

0 1 1 1 1 1
1 1 1 2 1 1
4 1 2 2 1 0
5) 1 2 3 0 -1t

1 Since this yard slot has no container, the container attribute
group does not apply.

the next vessel slot that needs to be filled. When there's no container in the yard or all vessel
slots are filled, the environment terminates.

5.1.2 LME

We also use an industrial simulator and training environment from Loadmaster.ai'| to con-
duct experiments. This environment includes real-world yard and vessel data from Rotterdam
Shortsea Terminal (RST). The Loadmaster training environment (LME) operates on a similar
principle to the Basic SPGE described in Section [5.1.1] but its sequencer of the vessel in-
corporates more complex rules to satisfy the problem constraints mentioned in Section 2.3.1]
Furthermore, LME also has more complex slot attributes than Basic SPGE. In addition to
coordinates and occupancy status, these attributes also include information such as container
weight, ISO classification, dangerous goods (IMO) status, and Reefer status (requiring power
grid connection).

5.1.3 SPGE-MC

SPGE-MC is an extension of the basic SPGE that allows joint control over both container
selection and crane assignment, while basic SPGE can be regarded as a particular case of
SPGE-MC with only one single crane. In this environment, a single action is represented as
a (container, crane) pair, while action validity is determined based on a global clock and
estimated operation time.

To simplify the problem, SPGE-MC assumes that the stowage operation duration for each
container is independent. At environment initialization, SPGE-MC generate nc random values
as operation times for all containers, while also using seed for reproducing scenarios.

Thttps://loadmaster.ai/

13

Consider a stowage environment with a vessel and a yard of sizes ny and ny respectively
(as defined in Equations and (B))), involving nc containers to be loaded and ncg cranes
available for scheduling. To track the crane availability, SPGE-MC maintains a global clock ¢
and a vector T = [Ty, T2, ..., Tne). Here, t denotes the duration since the beginning of the
stowage operation, while each 7; denotes the time (relative to the start of operation) after
which crane i becomes available again. Therefore, we can get the feasible (container, crane)
pair at each step by inspecting the non-negative elements of 7 — ¢ and the valid containers
according to section [5.1.1] If there are no non-negative elements in 7 — ¢ after executing an
action at a certain step, t will be advanced to the earliest time at which any operating crane
becomes available.

SPGE-MC divides all vessel bays into ncr bay zones, each operated by an assigned crane with
a corresponding sequencer to prevent crane interference. When a crane completes its loading
task within a zone, it is scheduled to take over a bay that still requires loading but is not
currently operated by any crane. Figure [4b] shows an SPGE-MC environment with the same
yard and vessel sizes, number of containers, and group numbers as in Figure [4a] but with 3
cranes, which is shown by the 3 outlined squares in the vessel.

For the observation space, SPGE-MC contains richer information than SPGE. In addition to
the vessel state and yard state in Table , it also includes the crane availability state and the
crane operating state, which records which container each crane is currently handling at a
certain step. For example, for a given step in Figure [4b] the corresponding crane availability
state and crane operating state, as well as sequencer state are shown in Table [2}

Table 2: Crane status related observation values corresponding to Figure @ The three
highlighted squares from left to right correspond to Crane 1, 2, and 3. The size of the
state is determined by ncg.

(a) Crane Availability State
Crane 1 Crane 2 Crane 3
100! 0 0

(b) Crane Operating State
Crane 1l Crane?2 Crane 3
8 -1? -1

(c) Crane Sequencer State
Crane 1 Crane 2 Crane 3
3 30 45

I Indicates that the crane will be
available in 100 seconds.

2 Indicates crane not currently load-
ing a container.

The observation space of SPGE-MC is composed of the flattened concatenation of the basic
SPGE observation, the crane availability state, the crane operating state, and the crane se-
quencer state, which is a vector of size (ny + ny + 1) X ngieeater + cr X 3. The action space
is a discrete space of size nc X ncr.

For state transitions, if an invalid action is taken (either due to the same reasons as in the basic

14

SPGE or because the selected crane is unavailable), none of the vessel, yard, or crane-related
states are updated. If the action is valid, the yard and vessel states are updated to reflect the
stowage of the selected container, while the crane-related states are also changed accordingly,
such as updating the corresponding elements in 7, advancing t if necessary.

5.1.4 SPAEC

Another way to combine crane scheduling with container selection is to make container selec-
tion decisions in a multi-agent environment, with each agent modeled as an individual crane.
Due to the homogeneity of the decision making in this environment, we can consider using
a single policy network to act as multiple agents. To achieve this, we developed the SPAEC
(Stowage Planning Agent Environment Cycle) environment, compatible with the PettingZoo
interface (Terry et al., 2021)), to support training with a single policy in a multi-agent setting.

SPAEC has the same action space as the basic SPGE but adopts the same observation space
as SPGE-MC (as shown in Table [2)) and similar time advancement logic to ensure that each
crane can only perform container selection when available. Unlike SPGE-MC, SPAEC does not
couple the (container, crane) pairs into the action space. Instead, crane scheduling is implicitly
handled through agent selection. The availability of an agent at a given timestep still depends
on the current time ¢ and the availability array 7.

Additionally, when there are multiple cranes available at the same time ¢, SPGE-MC allows the
agent to freely choose any crane, while SPAEC has a fixed rotation order for agent selection.
For example, in the situation of Figure [4b] SPGE-MC allows agent to schedule either crane in
bay 3 or bay 5 first. But in SPAEC, only crane at bay 3 will be scheduled first.

5.2 Stable Baselines 3

This study uses algorithms implemented in the open source reinforcement learning framework
Stable-Baseline3 for comparative experiments. SB3 is an improved version of OpenAl Baselines,
built on the PyTorch (Paszke et al., [2019) backend, and integrates a variety of on-policy and
off-policy algorithms. It includes implementations of DRL algorithms such as A2C, DQN, and
PPO, supporting both discrete and continuous action spaces, focusing on simplicity, reliability,
and reproducibility of experiments.

SB3 offers comprehensive documentation, practical usage examples, and an easy-to-use API.
It also supports integration with Weights & Biases (wandb) (Biewald, 2020) for experiment
tracking and visualization. In addition, SB3 provides well-tuned default hyperparameters gen-
eralizing well across various environments, which helps fair comparison among algorithms.

5.3 Algorithms

In this study, we compare the performance of various reinforcement learning algorithms within
the SPGE-MC and SPAEC environments. We focus on algorithms that support discrete action
spaces, including the value-based method Deep Q-Network (DQN), distributional method
Quantile Regression Deep Q-Network (QR-DQN) and actor-critic family algorithms such as
Advantage Actor-Critic (A2C), Trust Region Policy Optimization (TRPO), and Proximal Policy
Optimization (PPO). This section will provide an overview of the underlying principles of these
algorithms.

15

5.3.1 DQN

Deep Q-Network (DQN) is an off-policy algorithm proposed by the DeepMind team as a
variant of Q-learning (Mnih et al [2013)). As a value-based method, it learns good policies
by encouraging the agent to select actions that could maximize future rewards, supporting
exploration-exploitation strategies such as e-greedy and Boltzmann exploration. DQN uses
neural networks, known as the " Q-network”, to approximate the action-value function. Q-
network can be trained by minimizing the loss function (as shown in equation (9)) at each
Iteration.

2
Li(0;) = Egamp() {(ES/% [r + 7 max Q(s',ad';0;1) | s,a| — Q(s,a;é’,}) } (9)

While learning the policy, DQN selects the action with the highest Q-value based on the
current parameters (i.e., a greedy policy), but actions taken in the environment are determined
according to the exploration strategy. To address data correlation and non-stationarity, DQN
uses an experience replay buffer which stores state transitions (s;, a¢, 7, s;11) at each timestep
and randomly samples them for training the Q-network.

To improve stability, DQN maintains two Q-networks: an evaluation network and a target net-
work. The target network is used to compute the maximum Q-value for the next state (i.e., the
ymax, Q(s',a’;0;—1) part), while the evaluation network calculates the Q-value of the current
action and is involved in gradient computation and real-time weight updates. Periodically, the
evaluation network’'s parameters are used to refresh those of the target network, which allows
a more stable learning target.

Algorithm 1 Deep Q-learning with Experience Replay (Mnih et al., 2013])

1: Initialize replay memory D to capacity N

2: Initialize action-value function () with random weights 6

3: Initialize target action-value function Q with random weights 6~ = 6
4: for episode = 1 to M do

5: fort=1to T do

6 if random number < ¢ then

7 Select a random action a;

8 else

9: Select a; = argmax, Q(s¢, a;)

10: end if

11: Execute action a; in emulator and observe reward r, and next state s;.1
12: Store transition (S, as, ¢, S¢41) in D
13: Sample random minibatch of transitions (s;, a;,7;, s;41) from D
” Set y; — {rj) . if episo.de terminates at step 7 + 1

r; +ymaxy Q(sj41,a’;07) otherwise
15: Perform a gradient descent step on (y; — Q(s;, aj; 0))* with respect to the net-
work parameter 6

16: Every C steps reset Q=0
17: end for
18: end for

16

5.3.2 QR-DQN

Quantile Regression Deep-Q Network (QR-DQN) is an algorithm proposed based on Categor-
ical DQN (C51)'s (Bellemare et al 2017) improvement over DQN, incorporating the idea of
quantile regression. (Dabney et al., 2018) Like C51, it predicts the value distribution corre-
sponding to the state-action pair rather than just predicting the expected value, applying the
approximate value distribution to the Bellman equation to address the inherent uncertainty in
reward outcomes.

It addresses a gap between the theory and practice of distributional reinforcement learning in
the Cb1 algorithm, which is unable to apply the Wasserstein distance, a desirable metric for
measuring distributional differences, in gradient descent and network training.

The general structure of QR-DQN is similar to DQN: it uses an evaluation network, a target
network, and experience replay for training. Unlike DQN, whose Q-network outputs a single
Q-value as the expected value for a state-action pair, QR-DQN outputs a set of quantiles to
approximate the full distribution of Q-values. In terms of the loss function, QR-DQN does not
use the pinball function (as shown in equation ((10))) commonly used in quantile regression,
because pinball function is not differentiable at zero. It adopts quantile Huber loss instead,
which is smooth and differentiable around zero.

TU, ifu>0
£rlu) = {(7’ —1Du, ifu<O (10)

L) = {%uz, if lul <k (11)

k (Jul — 4K), otherwise

pr(u) = |7 — dpu<oy| - Lu(u) (12)

The quantile Huber loss is shown in equation (12)), where 7 € (0,1) is the quantile, and &
is the smoothing parameter of the Huber loss. It controls the range around uw = 0 within
which the Huber loss is applied, and outside of which the standard quantile loss is used. d;,<0y
denotes an indicator function that equals 1 when u < 0, and 0 otherwise. By minimizing the
quantile Huber loss, QR-DQN aligns the predicted distribution from the evaluation network
with the target distribution from the target network in terms of the Wasserstein metric. When
selecting actions, the agent still chooses the action with the highest expected Q-value.

5.3.3 A2C

Advantage Actor-Critic (A2C) (Mnih et al., [2016) is a RL algorithm based on the actor-critic
architecture. The actor-critic architecture is a combination of the policy-based and value-based
methods described in Section [4.4] incorporating both a policy network (actor) and a state-value
network (critic).

A2C uses an N-step bootstrap approach to estimate the returns for each time step. During a sin-
gle episode, it samples N consecutive steps (¢, g, Tty St41)s -« 5 (St4N—1, Gt N—15 Tt N—1, St+N)
from the environment following its policy, and calculates the return at each step by summing
the rewards received from ¢ to t + N — 1, bootstrapping from the estimated value V' (s;;x)
provided by the critic network, to approximate the action-value function Q™(s;, a;). If the
episode terminated at sy, V(si1n) will be 0.

17

Algorithm 2 Advantage Actor-Critic (A2C) (Mnih et al., 2016)

1: Initialize global step counter 1"+ 0
2: Initialize global parameters 6, 6,

3: while T' < T}, do

4: Reset gradients: df < 0, df, < 0

5: Synchronize local parameters: ¢ < 6, 0, < 0,

6: Get initial state s;

7 totart < ©

8: repeat

9: Select action a; ~ m(a|s:;6)

10: Execute a; in environment

11: Observe reward r; and next state sy

12: t—t+1, T+ T+1

13: until terminal s; or t — teart == tmax

14: if terminal s, then

15: R+ 0

16: else

17: R+ V(s 0)) > Bootstrap from value function
18: end if

19: fori=t—1,... tgat do
20: R+<ri+9R
21: Accumulate gradients:
22: df < df + Vg logm(a;|s;0") - (R —V(s:;0.))
23: do, < db, + V@;%(R - V(Si; 9;))2

24: end for
25: Perform gradient update on 6 and 6, using df, dé,
26: end while

18

In addition, A2C introduces the advantage function A; = Q7 (s, a;) — V (s;), which measures
the relative benefit of an action over the expected value of a state. During training, A2C not
only maximizes the advantage-weighted policy gradient Lpgiicy = Eqs, a,) [log mo(as|s:) - Ay,
but also minimizes the temporal-difference (TD) loss between the N-step return R; and the
critic's estimate V' (s;) to reduce the training variance, defined as:

1

»Cvalue = 5 Z (Rt - V('St; Qv))z (13)

Where R; = Zk o V'riek + 7YYV (s4n). In the mean time, A2C introduces a policy entropy
regularization term Lentropy = —Es, [H(7g(s:))] to encourage agent exploration, where H is
the entropy of policy distribution.

Thus, the overall loss function is denoted as:

Etotal = _ﬁpolicy +a- ‘Cvalue =+ ﬂ ’ Eentropy (14)

where alpha and beta are weights of value loss term and entropy loss term respectively. Algo-
rithm [2| describes the training process of A2C.

5.3.4 TRPO

Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) is an application of nu-
merical optimization algorithms in reinforcement learning. As an on-policy algorithm, it differs
from traditional policy gradient methods, and uses a proximity-maximize loop based on the
idea of trust region optimization instead of stochastic gradient ascent to optimize the policy,
allowing for more stable policy updates and avoiding policy collapse.

The idea of trust region optimization is as follows: for an objective function .J(6) that is difficult
to evaluate or differentiate, to solve arg mélX J(0), we can start with an arbitrary value 4.

For 6,4, we can define a neighborhood N (6,4) and construct a simpler surrogate function
L(6) which approximates J(¢) well within that neighborhood. If such a neighborhood exists,
then N (6,14) is called the trust region of 4. We then solve arg mgmxﬁ(@) within N (0514),

and the resulting update improves J(6) compared to J(0o14). After updating 0,4, repeat the
surrogate construction and maximization, and iterate until convergence.

In reinforcement learning, we hope to solve the objective function E4[V,(s)], that is, optimize
the expected state value given the policy. Since V,.(s) depends on the policy parameter 6, we
can expand it as:

= Zﬂ(a|8;9)Qw<3>a>

= ™ a\s, (|8 9) S, a
Z | 90|d (CL|S 90Id>Q7T< s)

_ m(als;)
- EGNW('\S;HOM) {MQW(& a) (15>

19

Thus, to optimize J(#), we can use the surrogate function £(6):

1) =23 FOED 0 (5 a) (16

_— (a3 Oola)

where () (s,a) can be estimated using n-step discounted rewards from sampled trajectories.
In other words, after sampling n steps from the environment, we formulate the problem as:

Onew = arg max [:(9 | Oo1a)

_! Z | 5if) (ri +Aris +Vriga + - 9") (17)
n < m(a; | si; foia)

With the constraint that 6 stay within N'(64). This trust region can be enforced by measuring

the difference between the new policy my and old policy 7y ,, using the Kullback—Leibler

(KL) divergence (Kullback and Leibler, |1951)) as the distance metric since both policies are

parameterized distributions. The final constrained optimization becomes:

.] —
Onew — arg max L(0]0oq), st - 2; KL[mg,, (-|s:)||mo(-|s:)] < & (18)
which can be solved by numerical optimization techniques.

5.3.5 PPO

TRPO can achieve a stable convergence theoretically. However, since the constraint prob-
lem under KL divergence in equation involves complex quadratic programming, TRPO
computationally intensive and complex to implement. To address this, Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017)) was proposed as a simplified method that inherits
the core idea of TRPO, aiming to strike a balance between implementation complexity and
algorithmic stability. It transforms the trust region in the TRPO algorithm into a gradient
clipping mechanism to limit the step size of the policy update. It uses the surrogate loss func-
tion L(s, a,0,0) = mo(als) A" (s,a) to approximate the objective function J(#), and applies

oy, (als)

gradient updates to L(s,a, 0,) in the following way:

mo(a | s)

L(s,a,0;,0) = min
(5, 4,85, 9) (m(aIS)

A" (s,a), g(e, A% (s, a))) (19)
(1+eA fA>0
(1—-eA fA<O
single policy update. This clipping means that if the new policy increases the probability of
action a too much because it performs better, the agent will not receive a better reward if the

increase exceeds 1 + €. Conversely, if the advantage function is negative, the agent also won't
benefit from drastically decreasing the probability of the corresponding action.

where g(e, A) = . € is a hyperparameter that limits the step size of a

Algorithm [3| describes the training process of PPO, where the optimization objective is:
LEHPHVEES (9) = B, [LEYP(0) — ¢ LYF(0) + coS[mo](s1)] (20)

Here, c1, ¢y are coefficients, S denotes an entropy bonus term, and LYF(6) denotes the value
function loss.

20

Algorithm 3 PPO, Actor-Critic Style (Schulman et al., |2017)

1: for iteration =1,2,... do
for actor =1,2,..., N do
Run policy my,,, in environment for 7" timesteps

2

3

4 Compute advantage estimates 1211, oL Ar

5: end for

6 Optimize surrogate L w.r.t. #, with K epochs and minibatch size M < NT
7 Ooq < 0

8: end for

5.4 Action Masks

In the experimental environments, due to constraints such as the same group numbers, slot
occupancy, and crane availability, there are often a large number of invalid actions in the action
space at any given time. A straightforward way to prevent the agent from selecting invalid
actions is to make the environment state unchanged and return a large negative reward when
the agent selects an invalid action. However, in practice, this naive approach makes the training
process difficult to converge, especially when the action space is large and valid actions take
a small portion. The agent often gets trapped in invalid exploration most of the time, causing
the policy fail to improve.

Alternative approach is to use action masking, which filters out invalid actions at the policy
network level to prevent the agent from selecting them. In discrete action spaces, a common
way to apply action masks for policy-based methods is to set the logits of invalid actions
to negative infinity, which allows zero probability of those actions after applying softmax
function. Similarly, for value-based algorithms such as DQN, the Q-values of invalid actions in
the network are set to negative infinity, ensuring that the policy does not select invalid actions.

Huang and Ontafién| (2020) compared action masking and the naive reward penalty approach
in uRTS environments (Huang et al., 2021) of small size map and larger size map. Their
experiments showed that the naive reward penalty approach only converges in small-scale
problems, while action masking not only converges faster but also scales better as the problem
size grows.

This study has similar findings through the experiment shown in Figure B For a very simple
scenario with 4 containers, PPO without action masking still requires 28,000 timesteps to fit,
whereas PPO with action masking reaches optimal performance right after the first rollout
(note that the episode mean reward is only recorded after the first rollout is completed,
which is why data points only appear on the graph when timesteps > 0). In a slightly more
complex scenario with 64 containers, PPO with action masking starts fitting at around 80,000
timesteps. In contrast, training without action masking is significantly slower, and the episode
mean reward remains low, which is because the algorithm wastes a large portion of the training
budget exploring invalid actions.

For effective training, we modified algorithms in Stable-Baselines3 to apply action masking.
SB3 already provides an implementation of PPO with action masking and an actor-critic policy
network with built-in filter support. When modifying A2C and TRPO algorithms, we used the
actor-critic policy network with filter support from SB3, along with a rollout buffer capable
of storing action masks corresponding to states. For DQN, we added an action mask filtering

21

o

-1275

Episode Mean Reward
'I—I 1 1
~ o] N
o ul N
o o Ul

35
x103

o
~

14 21 28

Total Time Steps

(a) PPO without Action Mask (Small Scale: 2x2x1,

4C)
T x103
c -75
S
& 90
c
©
@ -105
s
B -120
S -
0
135
0 2 4 6 8 10
x104

Total Time Steps

(¢) PPO without Action Mask (Large Scale: 4x4x4,

64C)

— PPO without Action Mask

1
0
-1
-2
0 7 14 21 28 35
x103

Total Time Steps

(b) PPO with Action Mask (Small Scale: 2x2x1,
4C)

-24
-30
-36
-42
-48
0 2 4 6 8 10
X104

Total Time Steps

(d) PPO with Action Mask (Large Scale: 4x4x4,
64C)

— PPO with Action Mask

Figure 5: Training Curves of PPO with and without action masking across different prob-
lem scales. (a) and (b) illustrate performance on a small scale (Vessel/Yard: 2x2x1, 4
Containers, 3 Types). (c¢) and (d) illustrate performance on a larger scale (Vessel/Yard:
4x4x4, 64 Containers, 3 Types). Action masking is applied in (b) and (d).

22

layer on top of the Q-network and modified the replay buffer to store action mask information.

5.5 Experimental Setup

This section will describe the experimental setup covering setting up the environment config-
urations for various research subproblems, the setting of hyper-parameter tuning and training,
and the experimental infrastructure.

5.5.1 Scenario Setup

We designed a series of problem scenarios to address the three research questions proposed
in Section [I] gradually increasing the complexity of the problem in terms of vessel and yard
size, container types, and number of cranes. Corresponding experiments were conducted in
the Basic SPGE, SPGE-MC, and SPAEC. These scenarios include:

1. Both the vessel and yard have dimensions of 3 bays, 5 rows, and 3 tiers (totaling 45
slots), and 45 containers need to be stowed, with 3 container types. One single crane.

2. Same vessel and yard size as Scenario 1, with 45 containers to stow, but with 8 container
types. One single crane.

3. The vessel size is 3 bays, 5 rows, 3 tiers; the yard size is 8 bays, 5 rows, 5 tiers (200 yard
slots), and 45 containers need to be stowed, with 8 container types. One single crane.

4. The vessel size is 8 bays, 5 rows, 5 tiers; the yard is 3 bays, 5 rows, 3 tiers (200 vessel
slots), and 45 containers need to be stowed, with 8 container types. One single crane.

5. Both vessel and yard have 8 bays, 5 rows, 5 tiers (200 vessel slots), and 200 containers
need to be stowed, with 8 container types. One single crane.

6. Same vessel and yard sizes as Scenario 3, with 3 cranes.
7. Same vessel and yard sizes as Scenario 5, with 3 cranes.
8. Same vessel and yard sizes as Scenario 5, with 5 cranes.

Figure [6] shows the corresponding problem visualizations for these eight scenarios. Specifically,
Figure [6a] corresponds to Scenario 1, [6b|to Scenario 2, [bd to Scenarios 3 and 6, [6d| to Scenario
4, and [6€] to Scenarios 5, 7, and 8.

Scenarios 1-5 will be used for the SPGE experiment. Among them, Scenario 1 and Scenario
4 are relatively easier problems to solve. Scenario 1 has the fewest number of containers and
types to consider. In Scenario 4, due to the sequencer’s characteristic of filling bays in ascending
order, the container types in the stowage sequence are not interleaved as much as in Scenario
2. Furthermore, the smaller number of containers to be loaded means this scenario does not
require heavy reliance on long-term planning, unlike Scenario 5.

Scenario 6-8 will be used for SPGE-MC and SPAEC to conduct comparative experiments for
single agent and multi-agent formulation.

For the LME, we conducted experiments using the same vessel across three scenarios: A,
B, and C. These scenarios contain 100, 245, and 642 containers to be stowed, respectively,
simulating operations of different scales.

23

Vessel Bay 1 Bay 3 Bay 5 Vessel Bay 1 Bay 3 Bay 5
3|14 8 2 5 R 44 38 32 35 a1 59 53 47 50 56 3|14 8 2 5 " 44 38 32 35 a1 59 53 47 50 56
2|18 7 1 4 10 |43 37 31 34 40|58 52 46 43 55 2|18 7 1 4 10|43 a7 31 34 40 |58 52 46 49 55
1] 12 6 E 3 9 42 36 30 33 39 57 51 45 48 54 1] 12 6 m 3 9 42 36 30 | 33 | 39 | 57 | 51 45 48 54
5 3 1 2 4 5 3 1 2 4 5 3 41 2 4 5 3 1 2 4 5 3 1 2 4 5 3 1 2 4
Yard Yard

Bay 5
ol = = |
BEEE
I EIEIER

o

Bay 3 Bay 5 Bay 1
: o [== [oe o Pl o RS | =] - EDE TR
: o s foe [Jo | o [HEY = RN == S50 g O - |- S -
o |2 o0 [0 [[ERETREETR R

RO

(a) Scen. 1: V/Y 3x5x3 (45 slots ea.), 3 types (b) Scen. 2: V/Y 3x5x3 (45 slots ea.), 8 types

Vessel Bay 1 Bay 3 Bay 5

1|Zﬁmsnlzaexnsxasﬁ'lmlﬁlsﬁl

Yard

Vessel Bay 1 Bay 3 Bay 5 Bay 7 Bay 9 Bay 11 Bay 13 Bay 15
5|24 14 a 9 19 | 74 64 54 59 69 |99 89 79 84 94 [149 139 129 134 144 | 174 164 154 159 169 |224 214 204 209 219 | 249 239 229 234 244 |299 289 279 284 294

4|28 13 3 8 18 |73 63 53 58 68 [98 88 78 83 93 |148 138 128 133 143 |173 163 153 158 168 (223 213 203 208 218 |248 238 228 233 243 |298 288 278 283 293
3|22 12 2 7 17 |72 62 s2 57 67 |97 87 77 82 92 (147 137 127 132 142 |172 162 152 157 167 |222 212 202 207 217 |247 237 227 232 242 (297 287 277 282 292
2|21 11 1 6 16 |71 &1 51 56 66 |96 86 76 &1 91 |146 136 126 131 141 [171 161 151 156 | 166 (221 211 201 206 216 |246 236 226 231 241 |296 286 276 281 291

1]20 10 E 5 15 |70 |60 50 55 65|95 | 85| 75 80 90 (145 135 125 130 140|170 160 150 155 165 |220 210 200 205 215 |245 235 225 230 240 (295 285 275 280 290

5
w
»
.
o
w
»
5
a
w
o
.
o
w
»
.
a
w
o
.
@
w
»
.
a
w
»
.
o
w
.
s

Bay 1 Bay 3 Bay5

LT - o o o = |
B R
Qo b R
1 [1 2 3 4 5 1 2 3 4 5

2 3 4

(d) Scen. 4: V 8x5x5 (200), Y 3x5x3 (45), 8 types

Vessel Bay 1 Bay 3 Bay 5 Bay 7 Bay 9 Bay 11 Bay 13 Bay 15

5|26 14 9 19 |74 64 54 59 69 |99 |89 | 73 84 94 (149 139 129 134 144 | 174 164 154 159 | 169 | 224 214 204 209 213 |249 239 229 234 244 (299 289 279 284 294

4|23 13 8 18 |73 |63 53 58 68 |98 |88 | 78 83 93 (148 138 128 133 143 |173 163 153 158 168 [223 213 203 208 218 |248 238 228 233 243 |298 288 278 283 293
7 17 |72 62 | 52 57 67 |97 87 77 82 92 |147 137 127 132 142 |172 (162 152 157 | 167 (222 212 202 207 217 |247 237 227 232 242 |297 287 277 282 292

6 16 |71 |61 |51 56 66 |96 | 86 76 81 91 146 136 126 131 141|171 161 151 156 166 [221 21 201 206 216 |246 236 226 231 241 |296 286 276 281 291

a
3
2
1
1]20 10 E 5 15 |70 |60 50 55 65|95 | 85| 75 80 90 (145 135 125 130 140|170 160 150 155 165 |220 210 200 205 215 |245 235 225 230 240 (295 285 275 280 290
1

(e) Scen. 5, 7, 8: V/Y 8x5x5 (200 slots ea.), 8 types

Figure 6: Visualizations of the five Basic SPGE experimental scenarios.

24

Table 3: Details of the Fxperimental Scenarios. Sizes are Bays x Rows x Tiers.

Vessel Sizes Yard Sizes Containers Container

Scenario (Slots) (Slots) to Stow Types Cranes
3x5x3 (45) 3x5x3 (45) 45 3 1

2 3x5x3 (45) 3x5x3 (45) 45 8 1

3 3x5x3 (45) 8(>;g(>)<)5 45 8 1

4 8(>;g(>)<>5 3x5x3 (45) 45 8 1

g 8(23(?)5 8(23(?)5 200 8 L

6 3x5x3 (45) 8<>;85<)5 45 8 3

7 8(§8§>5 8(285)5 200 8 3

8 8(23(?)5 8(235)5 200 8 g

5.5.2 Experimental Methodology

Before the formal training, we performed hyperparameter tuning for each scenario—algorithm
pair. Specifically, we tuned the hyperparameters only in the Basic SPGE environment using
Scenarios 1-5. For Scenarios 6, 7, and 8, each algorithm reused the hyperparameters from
Scenarios 3, 5, and 5, respectively, as their problem settings are highly similar.

For tuning, we used the TPE sampler and Median pruner from the Optuna framework for
automated optimization. For the relatively simple Scenarios 1 and 4, we ran 50 trials per
algorithm, with each trial training for 10,000 timesteps (i.e., interactions between the agent
and environment). The hyperparameters corresponding to the trial that performed best under
deterministic evaluation were selected. For Scenarios 2, 3, and 5, the number of trials was
increased to 100, and each trial was trained for 15,000 timesteps. When an algorithm still
performs poorly under a certain scenario after automatic hyperparameter tuning, we attempt
to use the optimal hyperparameter configuration from another scenario instead.

Each algorithm was assigned the same training timestep budget, based on the complexity
of the scenario. Evaluation was conducted every 200 timesteps (or 500 timesteps for more
complex scenarios), with 10 repeated evaluations per checkpoint, and the average of the
evaluation metrics was recorded. To reduce the impact of randomness, we repeated the training
experiments multiple times. Specifically, we ran 10 repetitions per scenario—algorithm pair for
the Basic SPGE and LME environments, and 30 repetitions for SPGE-MC and SPAEC.

25

5.5.3 Experimental Infrastructure

For experimental facilities, we utilize the Academic Leiden Interdisciplinary Cluster Environment
(ALICE), the HPC cluster of Leiden University for training in the LME environment. For some
experiments, a laptop equipped with an Nvidia RTX 4050 (6GB VRAM), 32GB RAM, and an
i7-13700H processor is used.

6 Results

This section reports the experimental results under the scenarios described in Section [5.5.1]
Each group of experiments for a certain scenario was repeated multiple times. In the graphs,
the solid lines are the mean metrics of the repeated experiments, and the shaded area indicates
the variation across the repetitions.

6.1 Basic SPGE

Figures [7] and [8] show the training curves and the number of shifters during evaluation for five
algorithms under each scenario. The horizontal axis represents the total timesteps, i.e., the
count of interactions the agent experiences with the environment. The vertical axes show the
episode reward during training and the number of shifters caused in a complete episode during
evaluation, respectively. Here, we define the reward function to be the negative value of the
shifters’ count. During training, evaluation is performed every 200 timesteps.

It can be seen that the agents generally perform better during evaluation than during training.
This is because agents use exploratory policies during training, while deterministic policies are
used in evaluation: for value-based methods, the agent selects the action with the highest
Q-value; for actor-critic methods, the agent will take the most probable action instead of
sampling from the distribution.

By examining the evaluation curves in Figure[7} it can be seen that overall, the A2C algorithm
yields the worst-performing policy upon convergence during evaluation. Its performance is only
comparable to other algorithms in Scenario 4, a relatively simple problem where long-term
planning is not crucial.

The best-performing algorithm across all scenarios is TRPO. Even in the highly complex
Scenario 5, it maintains a low total number of shifters toward the end of training (after
30,000 timesteps), stabilizing at around 193. PPO shows overall performance similar to TRPO,
although it performs slightly worse in Scenario 5.

As for the value-based methods DQN and QR-DQN, they perform comparably to PPO and
TRPO in simpler scenarios like Scenario 1, 3, and 4, and even in the complex Scenario 5, they
still perform relatively well. Among the two, QR-DQN performs better than DQN.

However, as shown in Figures [7a] and [7b| when facing a small-scale problem with 45 vessel
slots and 45 yard slots, the increased complexity brought by a higher number of container
types negatively impacts the training performance of DQN and QR-DQN compared to TRPO
and PPO. This is further confirmed by the evaluation curves in Figures [8a] and [8b} for the
problem involving 8 container types, DQN, QR-DQN, and A2C all converge to policies that
underperform relative to TRPO and PPO.

26

-30

4
-55 |/
/

-80

Training Episode Reward:

—105

4 8 12 16 20 8 16 24 32 40 8 16 24 32 40
x103 x103 x103
Total Time Steps Total Time Steps Total Time Steps
(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

210 ~190
o
[}
H
@21 -198 -]
. .
'g —
823 -206
Q
2 —
2 55 -214 [
£ ;
£ oy 222

8 16 24 32 40 8 16 24 32 40

x10° x10°
Total Time Steps Total Time Steps
(d) Scenario 4 (e) Scenario 5

QR-DQN DQN A2C —PPO — TRPO

Figure 7: Training curves (episode reward vs. total timesteps) for five algorithms across
different scenarios. Subfigures (a)-(e) correspond to Scenarios 1-5 respectively. Higher
reward values indicate better performance. Curves represent averages over 10 runs.

6.2 LME

Figure [9] shows the training curves of the agents corresponding to each algorithm in the LME
environment for Scenario A, B, C described in section [5.5.1], while Figure[10] presents the mean
shifter curves during evaluation.

As shown in Figure[9] all algorithms were able to converge successfully. In terms of evaluation,
the A2C algorithm still performs relatively poorly on larger-scale problems, as shown in Figures
[10b] and [10d, From Figure[I0d, we can see that TRPO and DQN slightly outperform QR-DQN
and PPO during evaluation, although the differences in performance are minimal.

6.3 Single Agent vs. Multi-Agent
6.3.1 SPGE-MC

We use scenario 6, 7, 8 for experiments on SPGE-MC. For Scenario 6, evaluation was performed
every 200 training timesteps. For Scenarios 7 and 8, evaluation was conducted every 500
training timesteps.

Figure [11]| and [12| presents the curves for average episode operation time and average episode
total shifters under these scenarios.

Both shifters and operation duration got reduced effectively. Among them, A2C still performed
worse than the other algorithms in reducing shifters. Although DQN performed well in the

27

(2]
528 28
E 83
w24 24
H 64
(7]
E 20 20 45
[}
T16 \\ 16 M TRt ity 26
g T T 7 P i A O A
w12 12
4 8 12 16 20 8 16 24 32 40 8 16 24 32 40
x103 x103 x103
Total Time Steps Total Time Steps Total Time Steps
(a) Scenario 1 (b) Scenario 2 (¢) Scenario 3

027

2

&

= 222

%25 ‘

& 214

$23

c 206

L

£21

s 198

I

@19 st 190

8 16 24 32 40 8 16 24 32 40
x103 x103
Total Time Steps Total Time Steps
(d) Scenario 4 (e) Scenario 5

QR-DQN DQN — A2C —PPO — TRPO

Figure 8: Fvaluation performance (number of shifters vs. total timesteps) for five algo-
rithms across different scenarios. Subfigures (a)-(e) correspond to Scenarios 1-5. Lower
shifter counts indicate better performance. Data based on 10 evaluation trials and 10
training repetitions.

-50
—20 - g
—-11
—40 -100
-60 —-150

—200

Training Episode Rewards
|
-
~

1 2 3 4 5 1 2 3 4 8 2 4 6 8 12
x104 x10* x10*
Total Time Steps Total Time Steps Total Time Steps

(a) Scenario A (100 containers) (b) Scenario B (245 containers) (c¢) Scenario C (642 containers)
QR-DQN DQN = A2C =—=PPO = TRPO

Figure 9: Training curves (episode reward vs. total timesteps) for various algorithms in the
Loadmaster.ai (LME) environment. Subfigures (a), (b), and (c) correspond to scenarios
with 100, 245, and 642 containers to be loaded, respectively. The reward function is
based on the number of shifters (higher reward typically indicates fewer shifters), and the
observation space includes only shifter information.

28

n
@ 140
;5)4() 300
&
31 106 234
]
]
=22 72 168
c
L |
% 13] 38 102
3
[
K s . A
1 2 3 4 5 1 2 3 4 8 2 4 6 8 12
x104 x10% x10%
Total Time Steps Total Time Steps Total Time Steps

(a) Scenario A (100 containers) (b) Scenario B (245 containers) (c¢) Scenario C (642 containers)
QR-DQN DQN = A2C =—=PPO = TRPO

Figure 10: Evaluation performance (mean number of shifters vs. total timesteps) for var-
ious algorithms in the Loadmaster.ai (LME) environment. Subfigures (a), (b), and (c)
correspond to scenarios with 100, 245, and 654 containers. Evaluations were performed
every 500 training timesteps, averaging over 10 episodes. Lower shifter counts indicate
better performance.

- 3000 8000 5500
)
§2500 5000,
a
2000 4500
)
2
'_; 1500 4000
©
1000 3500
6 12 18 24 30 8 16 24 32 40 8 16 24 32 40
x103 x103 x103
Total Time Steps Total Time Steps Total Time Steps

(a) Scenario 6 (45 cont., 3 cranes) (b) Scenario 7 (200 cont., 3 cranes) (c) Scenario 8 (200 cont., 5 cranes)
QR-DQN DQN — A2C =—PPO = TRPO

Figure 11: Average episode operation time (vs. total timesteps) for various algorithms
in the SPGE-MC' environment. (a) Scenario 1: 45 containers, 3 cranes (eval. every 200
timesteps). (b) Scenario 2: 200 containers, 3 cranes (eval. every 500 timesteps, 30 training
runs). (c¢) Scenario 3: 200 containers, 5 cranes (eval. every 500 timesteps, 30 training runs).
Lower operation time indicates better performance.

29

g1 220
g 200
£ 80
u 200 175

60
g 180 150

40
s 125
® 160
g 20 100
(4]
@ 0 140 75

6 12 18 24 30 8 16 24 32 40 8 16 24 32 40
x103 x103 x103
Total Time Steps Total Time Steps Total Time Steps

(a) Scenario 6 (45 cont., 3 cranes) (b) Scenario 7 (200 cont., 3 cranes) (c) Scenario 8 (200 cont., 5 cranes)
QR-DQN DQN A2C =— PPO TRPO

Figure 12: Average episode total shifters (vs. total timesteps) for various algorithms in the
SPGE-MC environment. (a) Scenario 6: 45 containers, 3 cranes (eval. every 200 timesteps).
(b) Scenario 7: 200 containers, 3 cranes (eval. every 500 timesteps, 30 training runs). (c)
Scenario 8: 200 containers, 5 cranes (eval. every 500 timesteps, 30 training runs). Lower
shifter counts indicate better performance.

small-scale Scenario 6, its performance declined in the scenario with 200 containers, and its
effectiveness in reducing operation time was comparable to that of A2C.

QR-DQN and PPO showed similar performance in reducing both shifters and operation time,
outperforming A2C and DQN. TRPO performed the best overall, especially in the complex
scenario with 200 containers, where it achieved the greatest reduction in shifters, surpassing
the other algorithms.

6.3.2 SPAEC

For SPAEC, the same three scenarios (6, 7, 8) and training/evaluation methods as described
in Section [6.3.1] were used. Figure and Figure respectively show the mean operation
time curve and the mean shifters curve during evaluation in the SPAEC environment.

We can observe algorithm performance patterns similar to those in Section [6.3.1} TRPO still
performs generally the best in terms of complex scenarios (7 and 8), while A2C shows relatively
poor performance, especially on shifter reducing. A few differences are worth noting: (1)For
Scenario 7, in terms of reducing operation time, DQN performs worse than A2C. (2) In the
scenario with 45 containers, QR-DQN performs best for shift reducing, while PPO performs
best at minimizing operation time.

6.3.3 Evaluation Comparison

We summarize the evaluation KPls of each algorithm after multiple training sessions in sce-
narios 6, 7, and 8 under SPGE-MC and SPAEC environments in Table 4] to explore the impact
of single-agent versus multi-agent control approaches on agent performance. The evaluation
data used for the summary are shown in Tables [I0 and [II]in the appendix.

Table |4] contains the KPl mean values, standard deviations, and KPI differences caused by
environmental variations for each scenario-algorithm pair. For the KPI differences, we employed
Student's t-test and highlighted statistically significant differences (p < 0.05) with colors in

30

5500

2500 8000
o
% 7500 5000
52000
] 45001
< 7000
21500
5 4000
3 6500 N L
2 1000 3500
6 12 18 24 30 6000 8 16 24 32 40 8 16 24 32 40
x103 x103 X103
Total Time Steps Total Time Steps Total Time Steps

(a) Scenario 6 (45 cont., 3 cranes) (b) Scenario 7 (200 cont., 3 cranes) (c) Scenario 8 (200 cont., 5 cranes)
QR-DQN DQN =— A2C =—=PPO = TRPO

Figure 13: Average episode operation time (vs. total timesteps) for various algorithms
in the SPAEC environment. (a) Scenario 1: 45 containers, 3 cranes (eval. every 200
timesteps). (b) Scenario 2: 200 containers, 3 cranes (eval. every 500 timesteps). (c) Sce-
nario 3: 200 containers, 5 cranes (eval. every 500 timesteps). Lower operation time indi-
cates better performance.

@ 84 200
g 200
a64 175
§ a4 180 150
=]
]
224 160 125
@ 100

4 140

6 12 18 24 30 8 16 24 32 40 8 16 24 32 40
x103 x103 x103
Total Time Steps Total Time Steps Total Time Steps

(a) Scenario 6 (45 cont., 3 cranes) (b) Scenario 7 (200 cont., 3 cranes) (c¢) Scenario 8 (200 cont., 5 cranes)
QR-DQN DQN — A2C =—PPO = TRPO

Figure 14: Average episode total shifters (vs. total timesteps) for various algorithms in the
SPGE-MC environment. (a) Scenario 1: 45 containers, 3 cranes (eval. every 200 timesteps).
(b) Scenario 2: 200 containers, 3 cranes (eval. every 500 timesteps, 30 training runs). (c)
Scenario 3: 200 containers, 5 cranes (eval. every 500 timesteps, 30 training runs). Lower
shifter counts indicate better performance.

31

Table 4: Comparison of Final Evaluation Metrics (Shifters and Operation Time (s)) across
SPGE-MC and SPAEC Environments. Lower values are better for both KPIs. Values in
parentheses indicate standard deviation. Best value per scenario/KPI/environment in
green, worst in red. Difference (SMC-SPAEC): Blue if SPGE-MC is significantly better
(negative diff), Purple if SPAEC is significantly better (positive diff). Only differences
that are statistically significant based on t-tests are color-coded.

. . SPGE-MC SPAEC Diff.
Algorithm Scenario KPI Value Value (SMC-SPAEC)

Seenario ¢ Shifters 4.2 (2.25) 4.8 (2.82) 0.5

Op. Time 1025.9 (85.95) 983.8 (86.10) 42.1

TRPO Seonari 7 Shiffers 148.2 (2.82) 146.3 (1.86) 1.9

COHANO T Op. Time 6401.2 (52.76) 6283.7 (61.26) 117.6

Seenario g Shifters 87.7 (2.54) 89.3 (2.20) 1.6

Op. Time 3519.9 (47.36) 3431.0 (49.52) 88.9

Seonario ¢ Shifters 4.9 (1.84) 5.0 (1.85) 0.1

Op. Time 1003.8 (75.47) 949.9 (85.14) 54.0

PPO Seonario 7 Shifters 151.0 (3.07) 150.7 (2.80) 0.3

Op. Time 6405.7 (88.58) 6380.6 (83.50) 25.2

Seenario g Shifters 95.5 (3.73) 97.9 (3.52) 2.4

Op. Time 3616.5 (80.31) 3532.6 (70.03) 83.9

Seonario ¢ Shifters 6.4 (3.85) 5.3 (2.50) 1.0

Op. Time 1084.7 (143.37) 1049.0 (123.74) 35.7

A2C Seonario 7 Shifters 157.4 (3.09) 157.1 (3.22) 0.3

Op. Time 6518.2 (84.91) 6451.8 (86.30) 66.4

Seonario g Shifters 107.9 (6.03) 117.3 (6.32) 9.3

Op. Time 3699.7 (123.27) 3753.2 (162.01) _53.5

Seonario ¢ Shifters 4.4 (1.47) 4.3 (1.60) 0.1

Op. Time 1000.6 (61.30) 982.6 (62.53) 18.0

DQN Seenario 7 Shifters 156.7 (5.06) 157.6 (8.08) 0.9

Op. Time 6577.9 (153.82) 6592.8 (260.21) -14.9

Seonario g Shifters 104.4 (6.99) 100.9 (6.97) 3.5

Op. Time 3702.6 (131.09) 3603.4 (83.71) 99.3

Seenario ¢ Shifters 3.9 (1.24) 3.5 (1.14) 0.4

Op. Time 983.8 (60.57) 1001.0 (74.36) 17.2

QR-DQN . Shifters 150.4 (3.72) 152.3 (2.79) 1.8

Scenario Ty e 6412.4 (114.80) 6492.9 (155.58) -80.5

Seonario g Shifters 94.8 (4.11) 97.9 (4.11) 3.1

Op. Time 3607.2 (98.07) 3628.6 (126.93) 21.3

32

the Diff. column.

Consistent with our observations in sections [6.3.1] and [6.3.2] in the simple scenario (Scenario
6), QR-DQN demonstrates better mean metric values; for complex scenarios (Scenarios 7 and
8), TRPO shows superior mean values for both KPIs. A2C performs worst in reducing shifters,
while DQN shows poor performance in reducing operation time when facing complex scenarios.

The impact of single-agent versus multi-agent environments on agents exhibits high variability
depending on the algorithm and scenario. Significant metric differences brought about by
different formulations are more pronounced in complex scenarios, while for simple scenarios
(Scenario 6), these differences are mostly non-significant. For complex scenarios with 200
containers, the single-agent control approach in the SPGE-MC environment generally performs
significantly better in reducing shifters (with the exception of TRPO under Scenario 7); for
significantly reducing operation time, the multi-agent approach corresponding to SPAEC shows
better performance (such as TRPO, PPO, and A2C algorithms under Scenario 7, and TRPO,
PPO, and DQN algorithms under Scenario 8).

7 Discussion

From the experiments above, we observe that the performance of different reinforcement
learning algorithms on solving the CSPP is highly dependent on the complexity of the problem,
the optimization objectives, and the environment formulation.

For simpler scenarios and problem settings with a single optimization objective (as in Scenario 1
for the Basic SPGE), or when the representation of environment information is simplified (as in
LME), DQN, QR-DQN, PPO, A2C, and TRPO exhibit similar performance and are effective
in reducing shifters. However, as the problem becomes more complex, the performance of
A2C shows a noticeable decline. This may be related to the accuracy of the critic network
in estimating state values: in training A2C, we adopted the original paper’s choice of 5 for
the n-step parameter, but in complex problems, the true value of a single action may not
be reflected solely by the immediate shifter, whose long-term impact might only emerge far
beyond 5 steps. This may lead to significant bias in the advantage estimation based on 5-
step returns. Furthermore, unlike PPO and TRPO, A2C does not use Generalized Advantage
Estimation (GAE), which allows for a trade-off between bias and variance in value estimation,
and thus cannot benefit from the improved credit assignment that GAE provides.

When examining Scenario 2 of the Basic SPGE, we observe that value-based methods also
suffer from sub-optimality in more complex settings. Compared to scenarios with a larger
action space (e.g., those with 8 container types), Scenario 2, despite having a smaller action
space, contains more local optima traps due to the interleaved slot types on the vessel. These
traps represent seemingly feasible short-term decisions that hinder future optimization. DQN
and QR-DQN may fail to learn Q-values that capture such subtle distinctions. In contrast,
TRPO and PPO aim for monotonic policy improvement by constraining the magnitude of
policy updates, giving them an advantage over DQN and QR-DQN in avoiding sub-optimal
solutions.

In relatively simple scenarios, value-based methods, especially QR-DQN, perform best (Sce-
nario 6). This may be due the Q-function of the state (or action) is easy for the Q network
to learn, and QR-DQN'’s rich representation of Q value information can help it converge to a

33

high-quality solution faster.

In very complicated scenarios (Scenario 5 for Basic SPGE, Scenarios 7 and 8 for SPGE-MC and
SPAEC), TRPO shows the best performance. This may be due to TRPO solving a constrained
optimization problem at each iteration, which enforces stricter improvements in the policy.

For the two different formulations, single-agent and multi-agent, their impact becomes sig-
nificant only in more complex scenarios (Scenario 7 and 8) and with certain algorithms. This
impact cannot be generalized as one formulation being universally better. A trend we can
observe is that TRPO is the algorithm most likely to exhibit notable performance differences
between the two formulations in terms of both reducing shifters and operation time under
distinct scenario-algorithm combinations. Moreover, the single-agent formulation tends to be
more advantageous for optimizing shifters in most cases.

As discussed in Section 5.2, due to SPAEC's agent selection mechanism, the single-agent setup
in SPGE-MC has more flexibility in crane selection when multiple cranes are available at a given
step, which might be helpful for agent to learn a globally optimal policy for minimizing total
shifters. While minimizing shifters and minimizing total operation time can become conflicting
objectives beyond a certain optimization threshold, which requiring trade-offs, it might be
easier for agent to prioritize shifter reducing since shifter-based rewards are denser.

8 Conclusion

This thesis aims to explore the effectiveness of using reinforcement learning methods to solve
the container stowage planning problem (CSPP), examining differences based on algorithms
and problem scales, as well as the impact of single-agent versus multi-agent formulations on
RL algorithm performance when combining crane scheduling aspects with CSPP. When crane
scheduling is not considered, the objective is shifter minimization. Once crane scheduling is
included, the objective is extended to also minimize total operation time. We selected value-
based algorithms DQN and QR-DQN, as well as actor-critic architecture algorithms A2C,
TRPO, and PPO for experiments. The results show that all these algorithms can all achieve
promising outcomes in solving CSPP and optimizing the aforementioned objectives, although
their performance varies.

We proposed three research sub-questions in the Introduction section to explore the per-
formance differences, and address them through a series of comparative experiments across
multiple designed scenarios.

1. How do different RL algorithms perform on the container stowage planning problem in
the same environment?

This depends on the problem scale and the representation of environment informa-
tion. We observe that when the environment representation is simple or the problem
is relatively easy, the five aforementioned algorithms are able to achieve similarly good
performance in reducing the target metrics we care about.

2. How does problem scale affect the performance of RL algorithms?

As the problem complexity increases, the A2C algorithm shows a clear decline in per-
formance, particularly in reducing the number of shifters. The DQN algorithm also ex-

34

periences a similar issue, though it is more evident in its degradation in operation time
minimization. Moreover, when the scenario contains many suboptimal solution traps,
A2C, DQN, and QR-DQN are more likely to fall into these suboptimal solutions. The
impact of increasing problem complexity is relatively minimal for PPO and TRPO com-
pared to the other algorithms, while TRPO shows the best performance in the most
complex scenarios.

3. When crane scheduling is considered together with CSPP, how do single-agent vs. multi-
agent formulations influence algorithm performance?

The impact of these two formulations on algorithm performance is complex and hetero-
geneous across environments and algorithms. In scenarios with simpler problem scales,
the difference between single-agent and multi-agent formulations is not significant. In
more complex settings, they are more likely to produce noticeable effects, though not
necessarily in a consistent or directional manner. What we do observe is that, overall, the
single-agent formulation tends to perform better in reducing shifters during algorithm
training.

In summary, this study highlights the complex performance variations that arise when applying
RL methods to solve the container stowage planning problem, depending on the choice of
optimization objective, problem scale, and problem formulation. Among the evaluated methods
across experiments, TRPO is the most promising algorithm in complex scenarios. However,
in practical applications, the most suitable approach should be chosen based on the specific
needs of the problem.

Future Work

This thesis has covered a comprehensive comparison of various RL algorithms across differ-
ent CSPP scenarios, as well as the impact of single-agent versus multi-agent formulations.
However, there remains ample room for future exploration. Future work can focus on richer
scenario settings, simulation fidelity of the SPGE environment, and consideration of additional
aspects of CSPP.

For scenario design, future research could include more complex setups to further test the
potential of different algorithms, such as scenarios involving the stowage of more than 1,000
containers. Moreover, the scenarios in this study only involve 20-foot containers, each occu-
pying a single slot. Designing scenarios including 40-foot containers can increase complexity
and better reflect real-world operations.

Another area that can be improved is the simulation fidelity of SPGE. The SPGE in this
study has made certain simplifications, such as abstracting the vessel structure into a cubic
form, omitting the implementation of hatches, and modeling container stowage time using
container-specific random values. Future research can enhance the realism by implementing
ship hulls that better reflect actual vessel structures, adding hatches and certain zones (e.g.,
power grids), as well as adopting more sophisticated modeling for operation time.

Additionally, other complex aspects of CSPP can also be considered. This study only includes
two optimization objectives: minimizing shifter and operation time. Future scenarios could
incorporate containers’ port of discharge information to optimize for re-stowage minimization
during later port calls, or address the challenge of weight distribution on the vessel. Explor-

35

ing how different RL algorithms manage trade-offs between potentially conflicting objectives
presents a valuable direction for further investigation.

References

Ambrosino, D., Anghinolfi, D., Paolucci, M., and Sciomachen, A. (2010). An experimental
comparison of different heuristics for the master bay plan problem. In Experimental Algo-
rithms: 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22,
2010. Proceedings 9, pages 314-325. Springer.

Ambrosino, D., Sciomachen, A., and Tanfani, E. (2004). Stowing a containership: the master
bay plan problem. Transportation Research Part A: Policy and Practice, 38(2):81-99.

Avriel, M. and Penn, M. (1993). Exact and approximate solutions of the container ship stowage
problem. Computers & industrial engineering, 25(1-4):271-274.

Azevedo, A. T., de Salles Neto, L. L., Chaves, A. A., and Moretti, A. C. (2018). Solving
the 3d stowage planning problem integrated with the quay crane scheduling problem by
representation by rules and genetic algorithm. Applied Soft Computing, 65:495-516.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on rein-
forcement learning. In International conference on machine learning, pages 449-458. PMLR.

Bellman, R. (1966). Dynamic programming. science, 153(3731):34-37.

Biewald, L. (2020). Experiment tracking with weights and biases. Software available from
wandb.com.

Bono, S., Madan, S., Grover, |., Yasueda, M., Breazeal, C., Pfister, H., and Kreiman, G.
(2025). The indoor-training effect: unexpected gains from distribution shifts in the transition
function.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba,
W. (2016). Openai gym.

Cho, J. and Ku, N. (2024). Developing a container ship loading-planning program using
reinforcement learning. Journal of Marine Science and Engineering, 12(10):1832.

Cruz-Reyes, L., Hernandez Hernandez, P., Melin, P., Mar-Ortiz, J., Fraire Huacuja, H. J.,
Puga Soberanes, H. J., and Gonzalez Barbosa, J. J. (2015). Lower and upper bounds
for the master bay planning problem. International Journal of Combinatorial Optimization
Problems and Informatics, 6(1):42-52.

Dabney, W., Rowland, M., Bellemare, M., and Munos, R. (2018). Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI conference on artificial
intelligence, volume 32.

Garratt, M. G. (1980). Ro-ro versus lo-lo: a matter of scale. Maritime Policy & Management,
7(4):223-232.

36

He, J., Zhang, L., Deng, Y., Yu, H., Huang, M., and Tan, C. (2023). An allocation approach for
external truck tasks appointment in automated container terminal. Advanced Engineering
Informatics, 55:101864.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018). Deep
reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32.

Hsu, H.-P., Wang, C.-N., Fu, H.-P., and Dang, T.-T. (2021). Joint scheduling of yard crane,
yard truck, and quay crane for container terminal considering vessel stowage plan: An inte-
grated simulation-based optimization approach. Mathematics, 9(18):2236.

Hu, W., Hu, Z., Shi, L., Luo, P., and Song, W. (2012). Combinatorial optimization and strategy
for ship stowage and loading schedule of container terminal. J. Comput., 7(8):2078-2092.

Huang, S. and Ontafidn, S. (2020). A closer look at invalid action masking in policy gradient
algorithms. arXiv preprint arXiv:2006.14171.

Huang, S., Ontaiién, S., Bamford, C., and Grela, L. (2021). Gym-urts: Toward affordable full
game real-time strategy games research with deep reinforcement learning. In 2021 IEEE
Conference on Games (CoG), pages 1-8. IEEE.

Jayawardana, V., Tang, C., Li, S., Suo, D., and Wu, C. (2022). The impact of task un-
derspecification in evaluating deep reinforcement learning. Advances in Neural Information
Processing Systems, 35:23881-23893.

Jensen, R. M., Pacino, D., Ajspur, M. L., and Vesterdal, C. (2018). Container vessel stowage
planning. Weilbach.

Jiang, T., Zeng, B., Wang, Y., and Yan, W. (2021). A new heuristic reinforcement learning
for container relocation problem. In Journal of Physics: Conference Series, volume 1873,
page 012050. IOP Publishing.

Kizilay, D. and Eliiyi, D. T. (2021). A comprehensive review of quay crane scheduling, yard op-
erations and integrations thereof in container terminals. Flexible Services and Manufacturing
Journal, 33(1):1-42.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79-86.

Li, F., Tian, C., Cao, R., and Ding, W. (2008). An integer linear programming for con-
tainer stowage problem. In Computational Science—ICCS 2008: 8th International Conference,
Krakow, Poland, June 23-25, 2008, Proceedings, Part | 8, pages 853-862. Springer.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, pages 1928-1937. PmLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, |., Wierstra, D., and Riedmiller,
M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

37

Pacino, D., Delgado, A., Jensen, R. M., and Bebbington, T. (2011). Fast generation of near-
optimal plans for eco-efficient stowage of large container vessels. In International conference
on computational logistics, pages 286—301. Springer.

Padakandla, S. (2021). A survey of reinforcement learning algorithms for dynamically varying
environments. ACM Computing Surveys (CSUR), 54(6):1-25.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E. Z., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch:
An imperative style, high-performance deep learning library. CoRR, abs/1912.01703.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021). Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning
Research, 22(268):1-8.

Reda, D., Tao, T., and van de Panne, M. (2020). Learning to locomote: Understanding how
environment design matters for deep reinforcement learning. In Motion, Interaction and
Games, MIG '20. ACM.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In International conference on machine learning, pages 1889-1897. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Sciomachen, A. and Tanfani, E. (2003). The master bay plan problem: a solution method
based on its connection to the three-dimensional bin packing problem. IMA Journal of
Management Mathematics, 14(3):251-269.

Shen, Y., Zhao, N., Xia, M., and Du, X. (2017). A deep g-learning network for ship stowage
planning problem. Polish Maritime Research, 24(s3):102-109.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sullivan, R., Santos, L. S., Dief-
fendahl, C., Horsch, C., Perez-Vicente, R., et al. (2021). Pettingzoo: Gym for multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:15032-
15043.

Trade, U. and Development (2024). Review of Maritime Transport 2024. United Nations,
2024 edition.

van Twiller, J., Grbic, D., and Jensen, R. M. (2023). Towards a deep reinforcement learning
model of master bay stowage planning. In International Conference on Computational
Logistics, pages 105-121. Springer.

van Twiller, J., Sivertsen, A., Pacino, D., and Jensen, R. M. (2024). Literature survey
on the container stowage planning problem. European Journal of Operational Research,
317(3):841-857.

38

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8:279-292.

Wei, L., Wei, F., Schmitz, S., and Kunal, K. (2021). Optimization of container relocation
problem via reinforcement learning. Logistics Journal: Proceedings, 2021(17).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8:229-256.

Wilson, I. D. and Roach, P. A. (2000). Container stowage planning: a methodology for generat-
ing computerised solutions. Journal of the Operational Research Society, 51(11):1248-1255.

Wolgast, T. and NieBe, A. (2024). Learning the optimal power flow: Environment design
matters. Energy and Al, 17:100410.

Xia, M., Li, Y., Shen, Y., and Zhao, N. (2020). Loading sequencing problem in container
terminal with deep qg-learning. Journal of Coastal Research, 103(SI):817-821.

Zhao, N., Guo, Y., Xiang, T., Xia, M., Shen, Y., and Mi, C. (2018). Container ship stowage
based on monte carlo tree search. Journal of Coastal Research, (83):540-547.

Zhao, W., Queralta, J. P., and Westerlund, T. (2020). Sim-to-real transfer in deep reinforce-
ment learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pages 737-744. |EEE.

Zheng, K., Lu, Z., and Sun, X. (2010). An effective heuristic for the integrated scheduling
problem of automated container handling system using twin 40'cranes. In 2010 second

international conference on computer modeling and simulation, volume 1, pages 406-410.
IEEE.

Zhou, C., Zhu, S., Bell, M. G., Lee, L. H., and Chew, E. P. (2022). Emerging technology
and management research in the container terminals: Trends and the covid-19 pandemic
impacts. Ocean & Coastal Management, 230:106318.

Zhu, H., Ji, M., and Guo, W. (2020). Integer linear programming models for the containership
stowage problem. Mathematical Problems in Engineering, 2020(1):4382745.

A Hyper-parameters

This section contains the hyperparameter values used in the experiments of this thesis. All
unspecified hyperparameters use the default values from the algorithms provided in Stable-
Baselines3.

Regarding the network architecture, for all algorithms, the input to the neural network is the
same as the environment’s observation space, and the output corresponds to the environment's
action space (except for QR-DQN, whose output is the action space size multiplied by the
number of quantiles. In all our experiments, the number of quantiles is set to the default value
of 200 in SB3). All networks use hidden layers with 64 neurons.

All algorithms use the same hyperparameters as in Scenario 3 for Scenario 6, and the same
hyperparameters as in Scenario 5 for Scenarios 7 and 8.

39

Table 5: Hyperparameters for TRPO Algorithm across 8 Scenarios.

Hyperparameter Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. A Sc. B Sc. C

Learning Rate 2¢-4 2e-3 3e4 3e4d 5e-3 le-3 6e-4 6e-4
Gamma 0.26 088 0.72 0.72 0.53 0.30 0.33 0.57
GAE Lambda 0.81 0.89 096 096 0.93 0.85 0.84 0.88
N-steps 64 128 32 32 512 256 256 256
Hidden Layers 2 2 1 1 2 2 1 1
Activation Function ReLU Tanh ReLU ReLU ReLU Tanh ReLU Tanh
Target KL 8e-3 8e-3 9e-3 9e-3 Se-3 le-3 6e-3 8e-3
CG Damping 0.02 0.02 004 0.04 0.01 8e-3 2e-3 4e-3

Table 6: Hyperparameters for PPO Algorithm across 8 Scenarios.

Hyperparameter Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. A Sc. B Sc. C

Learning Rate 5e-4 le-3 4e-b 4de-d 3e-d 2e-4 2e-3 2e-3
Gamma 0.67 094 031 031 0.20 0.30 0.56 0.56
GAE Lambda 0.87 091 084 0.84 0.98 0.92 0.98 0.98
N-steps 32 256 64 64 1024 512 256 256
Hidden Layers 1 2 1 1 1 1 1 1

Activation Function Tanh Tanh ReLU ReLU ReLU Tanh Tanh Tanh
Entropy Coef 3e-3 Te-4d 6e-b Ge-d 3e-3 0 3e-6 3e-6
Max Grad. Norm. 1.11 0.83 438 438 494 0.5 3.32 3.32

Table 7: Hyperparameters for A2C Algorithm across 8 Scenarios.

Hyperparameter Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. A Sc. B Sc. C

Gamma 0.99 0.40 0.42 0.99 0.58 0.46 0.30 0.81
Hidden Layers 1 2 2 1 1 2 2 1
Activation Function Tanh ReLU Tanh Tanh Tanh Tanh Tanh Tanh

Table 8: Hyperparameters for DQN Algorithm across 8 Scenarios.

Hyperparameter Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. A Sc. B Sc. C

Learning Rate le-4 4e-4 8e-3 0.03 He4 8e-4 Te-4 Te-4
Gamma 099 065 048 0.55 0.25 0.21 0.40 0.40
Learning Starts 100 92 105 95 157 41 161 161
Exploration Fraction 0.1 0.2 0.32 043 040 0.1 0.1 0.1
Tau 1.0 2e-3 1.0 0.02 1le-3 0.03 4e-3 4e-3
Activation Function ReLU ReLU ReLU ReLU ReLU ReLU Tanh Tanh
Target Update Interval 1le4 — 2649 — — — — —

40

Table 9: Hyperparameters for QR-DQN Algorithm across 8 Scenarios.

Hyperparameter Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. A Sc. B Sc. C

Learning Rate 5e-5 le-4 9e-b bHe-d be4 5e-4 2e-3 2e-3
Gamma 099 033 036 099 0.60 0.99 0.30 0.30
Learning Starts 100 81 158 100 48 188 111 111
Exploration Fraction 5¢-3 0.29 0.29 5e-3 0.47 5e-3 5e-3 5e-3
Tau 1.0 1.0 0.008 1.0 1.0 0.04 1.0 1.0
Activation Function ReLU Tanh Tanh ReLU ReLU ReLU Tanh Tanh
Target Update Interval led — 4776 — led 8112 — 172 172

41

4%

B Detailed Evaluation Data

Table 10: Raw Shifter Values (Mean of 10 Evaluations per Training Run) for Each Algorithm, Scenario, and Environment. N=30 runs per
combination.

Algo. Scen. Env. R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R1l1 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30

MC 920 1049 1074 1010 996 1003 1027 1095 1051 1204 971 1030 992 915 1074 979 1245 1019 1081 931 1076 1020 1116 975 1013 982 970 801 1027 1132

TRPO Sec. 6 AEC 998 1027 1089 1030 942 815 925 1162 1184 997 865 970 990 964 947 1018 993 1125 955 1076 932 883 966 1054 918 933 1039 934 888 896

MC 6320 6359 6349 6260 6439 6340 6387 6416 6489 6409 6370 6466 6417 6465 6395 6446 6466 6445 6333 6375 6470 6373 6390 6453 6378 6415 6446 6423 6374 6369

Se. 7 AEC 6254 6194 6299 6340 6387 6338 6280 6266 6270 6326 6275 6347 6181 6298 6161 6341 6266 6297 6274 6303 6291 6405 6358 6260 6190 6244 6240 6335 6183 6307

Sec. 8 MC 3516 3601 3606 3516 3575 3529 3584 3481 3430 3496 3484 3511 3480 3503 3607 3517 3490 3510 3537 3596 3575 3495 3510 3531 3535 3503 3476 3456 3496 3451

: AEC 3480 3405 3351 3493 3441 3440 3504 3427 3379 3523 3415 3475 3424 3497 3424 3501 3378 3347 3461 3468 3425 3313 3428 3410 3419 3424 3391 3434 3450 3402

PPO Sec. 6 MC 1114 1014 962 1025 1009 1037 972 984 1058 925 850 1008 982 994 949 838 1072 900 1029 1033 949 1120 1008 1026 1145 1160 1046 954 965 987
¢ AEC 979 1082 1022 886 1062 978 1021 1114 919 897 936 839 871 977 942 832 909 900 1129 924 936 795 914 897 901 963 1094 1006 876 895

Se. 7 MC 6374 6471 6380 6595 6335 6503 6376 6557 6398 6476 6450 6284 6500 6472 6433 6322 6412 6288 6439 6467 6336 6444 6340 6224 6352 6399 6306 6356 6552 6331

¢ AEC 6415 6443 6250 6379 6421 6366 6297 6484 6274 6412 6446 6397 6257 6459 6401 6276 6376 6386 6481 6345 6344 6347 6558 6374 6438 6452 6372 6448 6152 6367

Se. 8 MC 3495 3628 3644 3570 3609 3666 3651 3653 3512 3604 3655 3559 3692 3586 3643 3662 3456 3710 3568 3741 3617 3494 3853 3645 3568 3573 3691 3617 3563 3570

: AEC 3447 3404 3472 3544 3600 3505 3608 3606 3594 3497 3516 3507 3644 3600 3513 3500 3522 3484 3443 3526 3475 3629 3555 3523 3631 3615 3594 3368 3491 3564

A2C Sec. 6 MC 1176 1035 1101 1063 1346 1100 1073 923 1100 1315 997 989 907 1277 1137 984 955 1101 926 1015 1180 1521 1112 1006 1028 936 1178 1180 939 942
: AEC 929 933 978 1358 909 992 1164 1033 1006 1462 1088 949 961 1014 1131 1046 988 979 1092 1016 1098 1092 1037 1064 917 879 1051 1054 1178 1072

Sc. 7 MC 6430 6589 6529 6409 6458 6626 6475 6461 6436 6566 6660 6681 6482 6518 6665 6434 6500 6572 6425 6644 6657 6558 6516 6424 6545 6446 6448 6438 6478 6475

: AEC 6360 6508 6330 6684 6374 6521 6345 6377 6457 6493 6576 6416 6454 6397 6416 6489 6480 6487 6296 6501 6469 6468 6411 6646 6434 6465 6336 6443 6482 6439

Sc. 8 MC 3566 3600 3725 3931 3636 3734 3667 3769 3707 3701 3581 3793 3605 3756 3724 3694 4170 3727 3563 3775 3629 3633 3670 3726 3619 3619 3801 3700 3534 3637

: AEC 3521 3831 3678 3874 3701 3946 3682 3888 3554 3598 3913 3706 3555 4103 4029 3634 3700 3825 3699 3666 3888 3514 3718 3701 3832 3570 3759 3646 3758 4107

DQN Sc. 6 MC 995 1004 916 990 955 1016 890 1054 1088 1048 1152 1073 966 1017 1068 944 1013 967 1012 983 885 947 1075 1003 969 953 1088 979 1012 956
: AEC 896 1023 1092 955 942 1032 951 977 920 1013 907 913 1084 982 1044 983 921 1016 938 920 1016 1087 943 1018 1048 936 882 949 1099 990

Se. 7 MC 6335 6638 6638 6613 6484 6615 6400 6429 6730 6744 6403 6562 6727 6746 6829 6402 6314 6480 6897 6588 6690 6488 6598 6688 6476 6423 6446 6743 6735 6475

: AEC 6405 6479 6404 6644 6500 6556 6517 6306 6376 6506 6535 6420 6479 6945 6525 7013 6503 6904 7132 6395 6904 6475 6263 6480 6472 6435 6387 7020 6548 7256

Sec. 8 MC 3829 3668 3614 3777 3633 3534 3882 3567 3627 3692 3666 3737 3960 3545 3712 3647 3546 3824 4086 3685 3581 3840 3822 3572 3653 3741 3698 3752 3593 3596

AEC 3581 3634 3588 3605 3505 3497 3618 3579 3408 3607 3439 3640 3620 3616 3571 3730 3678 3554 3540 3560 3720 3635 3728 3576 3662 3765 3611 3710 3505 3619

MC 1071 949 841 1145 989 1077 1003 962 892 958 989 953 1004 986 972 971 1050 967 980 984 962 949 1033 978 902 1063 1025 898 982 979

QR-DQN Sc. 6 AEC 1008 1060 1093 881 1033 960 1105 965 992 905 1016 1043 1122 999 1019 1057 1079 1068 947 1114 1015 939 1048 909 988 959 895 976 815 1021

MC 6447 6578 6462 6290 6827 6396 6347 6361 6349 6417 6360 6332 6506 6289 6458 6377 6339 6332 6373 6404 6485 6329 6428 6430 6276 6424 6360 6455 6297 6644

Se. 7 AEC 6599 6633 6501 6551 6321 6334 6638 6605 6390 6665 6582 6514 6390 6561 6490 6768 6542 6198 6573 6424 6214 6348 6382 6343 6537 6347 6362 6840 6437 6697

MC 3622 3629 3805 3469 3723 3515 3610 3696 3733 3525 3517 3754 3567 3614 3657 3433 3533 3627 3728 3529 3540 3833 3563 3587 3620 3585 3524 3579 3505 3595

Sc. 8 AEC 3690 3673 3527 3565 3500 3524 3500 3499 3537 3699 3684 3945 3657 3615 3556 3792 3522 3514 3691 3586 3455 3429 3770 3639 3923 3721 3772 3605 3642 3625

199%

Table 11: Raw Shifter Values (Mean of 10 Evaluations per Training Run) for Each Algorithm, Scenario, and Environment. N=30 runs per

combination.
Algo. Scen. Env. R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30
MC 1 6 4 3 6 1 5 7 4 5 6 6 3 2 4 4 11 2 5 6 6 4 7 4 1 2 4 1 2 5
TRPO Sc. 6 AEC 7 8 9 5 4 6 5 9 8 9 1 9 3 3 4 3 5 4 3 5 3 2 3 11 2 1 4 5 1 1
Se. 7 MC 147 150 144 146 149 141 148 151 151 148 153 151 149 151 147 147 149 145 149 150 149 150 145 151 143 150 151 150 146 145
: AEC 144 145 145 149 147 147 146 146 144 145 149 145 146 148 147 149 146 147 145 145 146 150 148 145 142 144 148 146 146 149
Sc. 8 MC 90 88 87 92 91 86 88 88 85 86 90 88 86 83 89 86 87 84 90 89 90 87 83 87 93 91 86 85 86 89
) AEC 95 90 88 91 94 88 88 86 89 89 89 89 85 89 87 91 88 91 91 88 89 86 93 88 90 88 90 89 90 90
PPO Sc. 6 MC 6 5 2 5 4 4 5 5 4 3 3 5 6 7 6 3 9 3 7 5 4 9 8 3 4 7 5 4 3 3
: AEC 6 2 6 4 9 4 6 4 6 6 6 4 3 5 5 5 3 3 5 6 9 6 4 1 6 4 6 7 6 2
Se. 7 MC 150 157 147 156 151 152 154 157 150 154 150 147 156 153 152 148 150 148 152 153 152 149 151 147 147 147 153 148 150 150
- AEC 147 155 149 154 152 150 155 152 150 148 153 152 148 155 150 149 151 150 154 149 146 148 157 153 148 152 150 148 149 148
Sc. 8 MC 96 90 98 91 94 92 94 91 94 93 92 94 96 100 103 98 96 98 96 97 98 90 105 100 92 91 97 96 99 95
- AEC 97 91 100 100 98 97 100 98 99 95 93 92 100 106 96 94 98 99 96 98 96 105 96 95 104 99 100 95 102 99
A2C Sc. 6 MC 13 6 4 6 9 6 4 4 6 15 6 3 4 4 9 6 5 9 3 4 8 19 6 3 2 2 9 8 4 4
- AEC 4 2 6 9 4 5 5 3 1 9 7 5 6 9 4 8 6 1 4 6 10 5 4 4 5 3 6 11 4 4
Se. 7 MC 157 159 156 156 162 165 156 155 154 158 156 158 163 159 157 159 154 157 155 160 162 157 162 156 156 156 156 152 158 152
! AEC 154 158 152 160 154 163 152 154 161 162 160 155 157 155 156 159 155 160 156 159 157 157 160 162 160 154 152 153 157 159
Sc. 8 MC 105 100 100 113 106 115 102 113 107 110 104 115 103 115 113 105 123 107 101 116 102 103 106 116 107 101 115 103 106 106
< AEC 108 122 113 123 118 125 114 120 108 110 122 117 108 129 125 110 120 129 119 115 119 108 116 117 126 112 119 110 115 121
DQN Sc. 6 MC 3 7 3 5 2 4 2 6 4 6 6 7 5 5 4 5 3 6 6 5 1 3 4 4 4 4 4 5 5 3
) AEC 2 4 5 4 4 4 6 4 3 4 2 4 4 7 9 5 4 5 6 3 6 4 3 6 6 3 4 2 4 2
Se. 7 MC 156 164 154 153 158 163 154 152 162 167 151 154 159 164 158 149 155 158 164 156 158 155 151 158 159 153 145 162 157 152
) AEC 148 154 150 156 156 155 155 149 151 162 158 152 158 175 157 169 155 166 170 150 169 153 143 157 154 158 152 170 153 173
Se. 8 MC 103 111 110 100 107 96 110 97 109 96 102 99 100 99 99 99 94 109 120 97 96 115 116 105 104 112 102 111 101 112
) AEC 103 103 106 99 103 93 99 96 88 89 94 97 101 105 97 109 102 92 101 103 91 106 115 100 115 114 105 103 100 98
MC 5 5 2 6 5 4 6 3 2 3 5 3 5 4 4 3 3 4 4 5 3 4 2 2 4 4 6 4 2 5
QR-DQN Sc. 6 AEC 3 3 6 3 4 2 4 3 2 5 4 4 4 2 4 2 5 4 3 5 6 4 4 2 3 3 4 3 2 3
Se. 7 MC 157 153 149 148 157 148 152 156 146 147 144 151 151 147 147 154 147 150 150 150 153 145 150 152 155 151 149 146 150 158
: AEC 153 154 156 152 150 152 152 153 152 156 154 156 148 156 150 155 155 149 154 153 147 150 152 149 153 148 151 157 148 153
Sc. 8 MC 97 99 100 86 97 95 97 92 96 97 97 92 102 91 95 91 93 94 96 91 101 101 94 96 90 97 94 95 84 94
: AEC 96 98 95 99 100 95 92 94 95 99 102 105 101 99 95 96 88 96 100 102 91 93 106 97 101 102 101 98 102 99

	Introduction
	Container Ship Stowage Planning Problem
	Structure of Container Ship
	Stowage Operation Process
	Problem Model
	Problem Constraints
	Objective of Optimization
	Crane Scheduling

	Related Work
	Study on Stowage Planning Problems
	RL in Stowage Planning
	The Role of Environment Design in RL Methods

	Reinforcement Learning Preliminaries
	General Concepts and Markov Decision Process
	Elements of Reinforcement Learning
	Bellman Equation
	Value-based and Policy-based Methods

	Methodology
	Stowage Planning Gym Environment
	Basic SPGE
	LME
	SPGE-MC
	SPAEC

	Stable Baselines 3
	Algorithms
	DQN
	QR-DQN
	A2C
	TRPO
	PPO

	Action Masks
	Experimental Setup
	Scenario Setup
	Experimental Methodology
	Experimental Infrastructure

	Results
	Basic SPGE
	LME
	Single Agent vs. Multi-Agent
	SPGE-MC
	SPAEC
	Evaluation Comparison

	Discussion
	Conclusion
	Hyper-parameters
	Detailed Evaluation Data

