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Abstract

Real-life evaluation tasks are complex and require that evaluators have solid profes-
sional knowledge and fair judgment. Traditional manual methods are limited by their
time-consuming nature, potential evaluator bias, and difficulty in allocating expert re-
sources for large-scale tasks. With LLMs advancing in semantic understanding, this
thesis introduces UnifiedJudge, an evaluation model trained with reinforcement learning
(RL) mainly aiming for open QA scenarios, its training data includes both point-wise
and pair-wise responses of other models, enabling it to handle detailed single-sample
evaluations and comparative judgments. In the RL training phase, we designed different
reward functions for different inputs. Despite its small size, UnifiedJudge performs well
in multiple benchmarks. It outperforms state-of-the-art methods on some and nearly
matches optimal performance on others, proving that RL training effectively boosts the
evaluation ability while maintaining high computational efficiency.

1 Introduction

Evaluating things in real life is often tricky. It means making difficult decisions that rely on
someone’s personal opinion and their deep knowledge of a subject. The people who do the
evaluation need to have a strong understanding of their field. They also have to deal with
words or ideas that are not perfectly clear and understand how different pieces of information
connect to each other. On top of that, they ought to make judgments that are fair and ethical.
The usual way we evaluate things, where people do it by hand, has several problems. For one,
it takes up a lot of time from highly experienced experts, and their time is very valuable, even
the topics which are not complex and just daily conversation, it still needs time to evaluate. In
addition, different evaluators may have their own personal biases, which can lead to different
opinions. When you need to evaluate a lot of things, it becomes hard to get many experts
together at the same time because their schedules might clash. However, new developments
in large language models (LLMs) have shown their ability to understand what words mean and
to figure out how information relates. Due to this progress, people are now considering using
these LLMs to help with evaluation tasks.

Gu et al. [1] review the use of LLMs in auto-evaluation tasks. They cover model performance
in different scenarios, metric selection, and the limitations of current methods. Their work
shows that more studies are using LLMs as evaluation tools, which have demonstrated an
ability to tell the difference between good and bad, much like human experts do. However, it
is important to understand the difference between LLMs acting as ”judges” and traditional
”reward models.” Reward models simply need to choose the better option from a set of choices.
But LLMs acting as judges have a much harder job. They need to create detailed explanations
for their evaluations, such as how they assigned scores and what the good and bad points are.
This requires the models to have stronger reasoning skills and knowledge specific to the area
they are evaluating. Currently, most studies train these evaluation models using supervised
fine-tuning (SFT), such as JudgeLM [2], PROMETHEUS [3] [4] and Auto-j [5]. This means
that they teach the LLMs by showing them examples of evaluations that humans have already
done. But there is a clear drawback to the methods trained in this way: The models can only
copy existing evaluation examples. They cannot improve their own way of evaluating things.

To overcome this problem, we introduce UnifiedJudge-3B. UnifiedJudge-3B is an evaluation
model trained by the reinforcement learning (RL) algorithm. By interacting with its environ-
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ment, UnifiedJudge can learn different ways to evaluate. This means that it can not only give
scores, but also improve the evaluation over time as it goes through more learning steps. Specif-
ically, our training data includes point-wise (single-sample independent rating) and pair-wise
(paired-sample preference comparison) evaluation, which means that the model can do both
detailed single-sample evaluation and comparative judgment. UnifiedJudge-3B is specifically
designed to excel in open QA scenarios, where diverse and nuanced evaluations are crucial.
Our model’s ability to perform both detailed single-sample ratings and comparative judgments
makes it particularly effective for assessing the quality and relevance of responses in these
conversational environments.

In the RL training phase, we designed different reward functions for different evaluation tasks.
For rating tasks, the reward mechanism focuses on the reasonableness and consistency of the
rating criteria. For comparison tasks, it emphasizes the model’s ability to identify slight differ-
ences. After training, we systematically tested UnifiedJudge-3B on multiple benchmarks. The
results show that despite the small size of the model, UnifiedJudge-3B performs competitively.
It outperformed current SOTA methods on some benchmarks and nearly matched optimal
performance on others. Notably, it even outperformed some open source models with ten
times more parameters, which shows the effectiveness of RL training in improving evaluation
ability while maintaining high computational efficiency. Furthermore, we carried out a series
of analytical experiments to dive deeper into the performance of the model and to reflect on
the current method.

In Sec.2, we will deeply survey prior work in current and related fields, especially the research
status of reasoning models and LLM as a Judge. In Sec.3, we will introduce our training data,
covering prompt organization and sampling methods. In Sec.4, we will define the problem to
be solved and present our designed method. Sec.5 will comprehensively display our model’s
performance and more in-depth analyses. Finally, in Sec.6 and Sec.7, we will examine the
current results and draw conclusions.

2 Related work

2.1 LLM Reasoning

Large language models are getting much better at thinking, which means that new AI sys-
tems can now clearly show how they arrive at their answers. This evolution, driven primarily
by the widespread adoption of Chain-of-Thought (CoT) mechanisms [6], has transformed the
way models approach complex problems. Currently, the rise of Reinforcement Learning from
Human Feedback (RLHF) has further enhanced these capabilities, enabling models to develop
sophisticated reasoning skills through iterative optimization. As models like OpenAI’s O1 [7]
begin to emerge, we are seeing a growing trend of AI systems that can now engage in internal
thought and reasoning processes before generating an answer. When fine-tuned with rein-
forcement learning, these models demonstrate remarkable abilities to perform logical analysis,
draw causal inferences, and systematically decompose multi-faceted problems by leveraging
their internal knowledge representations and generation architectures. This dual advancement
in explicit reasoning and reinforcement-based learning has led to measurable improvements
across challenging domains, particularly in mathematical problem-solving, code generation,
and other tasks requiring multi-step reasoning. The combination of CoT’s transparent rea-
soning pathways and RLHF’s ability to refine decision-making processes has created models
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that not only reach correct conclusions, but can do so through verifiable, human-like reasoning
steps, substantially enhancing their reliability and practical utility in complex cognitive tasks.

More specifically, LLMs have demonstrated strong reasoning abilities in multiple domains. In
mathematical problem solving, by incorporating Chain-of-Thought (CoT) prompt strategies
and Reinforcement Learning from Human Feedback (RLHF), models can gradually parse alge-
braic equations, geometric proofs, and calculus computations. Zayne Sprague et al. [8] shows
that introducing reasoning steps is effective in mathematical and symbolic problem-solving
scenarios. In code generation and debugging, incorporating code data at different training
stages can enhance the model’s code generation and reasoning abilities [9]. In general NLP
reasoning tasks, such as multi-step reasoning, LLMs can generate reasoning traces and task-
specific actions alternately to complete multi-step reasoning which helps to overcome issues
such as hallucinations and error propagation, to be specific, Yao et al. [10] suggest combining
reasoning and acting in an alternating way. The model generates reasoning paths and task-
specific actions, enabling better handling of edge cases. It allows access to external information,
such as knowledge bases or the environment. During the execution of an action, the model
can dynamically reason. This helps in creating, maintaining, and adjusting high-level action
plans (reason to act) and interacting with the external environment to integrate additional
information. All of these improve the model’s interpretability and trustworthiness.

In addition to chain-of-thought, Yao et al. [11] proposed a tree - based thinking method.
The problem solving process is broken down into a series of connected ”thought” steps,
which serve as intermediate steps. At each state point, several possible follow-up thoughts are
generated and evaluated for effectiveness. This approach combines language-based generation
and evaluation with search algorithms like BFS or DFS, systematically exploring the thought
tree, allowing forward-looking and back-tracking as needed. This method improves performance
on novel tasks that require non-trivial planning or search. Zhang et al. [12] proposed the
Auto-CoT method to eliminate the need for manually created CoT prompts. It uses LLMs to
automatically generate problem and reasoning chain examples, instead of relying on human-
written ones. Through clustering techniques, problems are divided into different categories.
Representative problems from each category are selected to generate reasoning chains. Simple
heuristic rules are used to filter and optimize these generated reasoning chains, reducing errors,
and improving usability. This shows that LLMs can perform CoT reasoning by automatically
building examples. Similarly to this, Zhou et al. [13] proposed a novel prompting strategy.
Inspired by the ”least-to-most prompting” technique in educational psychology, this method
uses a series of gradually more difficult prompts to help students learn new skills. Break down
complex problems into a sequence of simpler sub-problems. These sub-problems are solved in
order, with each solution building on the answer to the previous sub-problem to enhance the
model’s ability to handle complex problems. Sel et al. [14] also proposed a new strategy called
the ”Algorithm of Thoughts” (AoT). This strategy aims to guide LLMs through algorithmic
reasoning paths by providing algorithmic examples in the context. These examples capture the
exploration process from initial candidate solutions to verified ones, enabling LLMs to imitate
algorithmic iterative thinking and complete tasks via one or few shot queries, which allows
LLMs to explore different solutions during generation and backtrack when needed to find the
optimal solution.

Although LLMs have shown remarkable abilities in understanding and generating natural lan-
guage, they still have shortcomings in deep reasoning and open-domain Q&A where there are
no standard answers. They struggle with vague or incomplete instructions that lead to logi-
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cal breaks and hallucinations. This makes their output unreliable, especially in scenarios that
require high factual accuracy. Given these challenges, using LLM as a judge to evaluate the
output of other models or humans may be a solution. Using their reasoning abilities, LLMs
can assess and compare various outputs. This approach compensates for their weaknesses
in independent complex reasoning and utilizes their strengths in understanding and evaluat-
ing complex language outputs. Provides an efficient and scalable evaluation mechanism for
different applications.

As research is growing on the use of LLM as a judge, there is less exploration of the use of
LLMs’ own reasoning to guide judgment. Current methods mainly use supervised fine-tuning
to enhance judging abilities. Few works explore how to fully and purposefully engage LLMs’
deep reasoning from different input angles to make more accurate and interpretable judgments.
Our work aims to fill this gap. We propose a model that can flexibly draw on LLMs’ reasoning
abilities from different input levels. This enables the model to go beyond imitating surface-
level human judgments. It can deeply understand and analyze information for more reliable
and transparent evaluations.

2.2 Reward Models

In the field of artificial intelligence, reward models play a crucial role in improving the learning
and behavior of models. They are particularly important in Reinforcement Learning from Hu-
man Feedback (RLHF), a method used to train AI models to conform to human preferences.
These reward models serve two main purposes: to help train AI systems by providing feedback
on their behavior, and to improve the efficiency of the testing phase by quickly evaluating
the output. A recent and thorough study by Jialun et al. [15] has provided a comprehensive
overview of the current state of reward models. Their work explores various aspects, including
taxonomy, applications, and challenges.

Training data for reward models are typically obtained in two ways. First, human-labeled
data is collected through methods such as active collection and data enhancement. Second,
preference data are generated using AI systems (LLMs), which can supplement or replace
human-labeled data, reducing annotation costs. However, data generated by AI systems may
sometimes deviate from human preferences and are not entirely reliable.

Reward models can be classified into three types: Discriminative, Generative, and Implicit. Dis-
criminative reward models, the most common type, consist of a base model(often a pre-trained
language model or a similar neural network) and a specialized reward head. Their function is
straightforward: they take certain inputs (like a generated text response or an action taken by
an AI agent) and then produce a single reward scalar as an output. For example, the work by
cai et al. [16]. introduced a family of multidimensional reward models trained on large datasets,
supporting RLHF. These models are often based on the principles of the Bradley–Terry model
[17]. This statistical model is particularly well suited for situations involving pairwise compar-
isons, such as human preferences, which operates on the assumption that the probability of
one ”competitor” (in this case, one AI response or action) being preferred over another is
directly related to the ratio of their underlying ”strength parameters” making it suitable for
selecting human preferences. On this basis, the Direct Preference Optimization (DPO) [18] al-
gorithm has emerged. The DPO algorithm offers a more efficient way to train language models
directly from human preference data. Unlike traditional methods that might involve training a
separate reward model and then using reinforcement learning techniques, DPO simplifies the
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entire process, using a simple classification loss function. Reduces the complexity of aligning
language models with human preferences and eliminates the need for complicated training
procedures. Furthermore, it also reduces the need for extensive hyperparameter tuning, which
can be a time-consuming and computationally expensive part of the model development pro-
cess. Although discriminative reward models provide a single numerical score or preference,
Generative reward models leverage the inherent generative abilities of large language models
(LLMs). This approach is connected to the emerging and increasingly popular concept of LLM
as a Judge. The detailed feedback provided by generative reward models directly aligns with
this idea, enabling more informative assessments, which will be elaborated on in subsequent
discussions.

Unlike the previous types, which mainly depend on the final output to determine a reward,
the Implicit Reward Model focuses on providing reward signals for each individual step or
process taken to reach an outcome. Yuan et al. [19] have provided a good explanation of this
concept. They introduced a method to implicitly obtain a Preference Rating Model (PRM)
using only response-level labels, which avoids the high cost of annotating intermediate steps;
their method works by transforming the reward based on the final result into the log-likelihood
ratio between the policy model and the reference model. This method allows for simultaneous
training of Outcome Reward Models (ORMs) and implicit learning of PRM.

Some studies propose alternative methods to avoid explicit reward model training. Richemond
et al. [20] present an approach to address the alignment issue of LLMs on single trajectory
datasets. These datasets are different from the more common paired preference datasets.
Instead, in a single-trajectory dataset, each prompt has only one associated completion (re-
sponse) and a scalar reward (a single numerical score). Specifically, they train a reward model
directly on these single-trajectory data using a simple mean squared error objective function.
Other works focus on enhancing DPO’s robustness. Xu et al. [21] propose a method to tackle
the distribution shift problem in RLHF. Building on DPO, they develop algorithms that account
for uncertainty in the training data distribution. By solving a minimax optimization problem
to minimize expected loss, their approach improves the alignment performance of LLMs when
preference distribution shifts occur.

Reward models have wide-ranging and practical applications; one important application is seen
in the work of Dong et al. [22], they use reward models for training data selection, where reward
models are used as a filtering mechanism, allowing them to identify and select high-quality
data to be used in the training process. Another innovative application is demonstrated by
Yuan et al. [23], They use reward models before the main training process begins to construct
better datasets, by sampling responses from various sources. These sources can include the
model itself, other large language models, and human experts (to ensure high-quality human-
aligned examples), and they then use ranking loss to align the model’s probabilities with human
preferences.

During the training stage, reward models use reward signals to reinforce desired model behavior
or constrain undesired actions. However, they face the challenge of reward hacking, Skalse et al.
[24] have provided a clear description of this issue. Reward hacking occurs when models learn
to exploit factors or loopholes in the reward function to maximize their perceived reward, rather
than truly achieving the intended objective. For example, a model might learn that generating
longer responses consistently yields higher rewards, even if the extra length does not add
value, which means that the model gains unrealistic and inaccurate rewards and prevents the
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model from capturing the true causal relationships between its actions or generated content
and the desired outcome. Given the persistent challenge of reward hacking, Chen et al. [25]
proposed an evaluation protocol and conducted large-scale studies on mitigating length bias
in RL. They introduced a method that involves jointly training two distinct linear heads within
the reward model, both designed to predict rewards. One head is linked to length, and the
other is decoupled from it and focuses on actual content quality. During the RL phase, only
the quality-related head is used, discarding length-related rewards; this approach prevents the
model from exploiting length-based biases. Wang et al. [26] proposed a method that integrates
causal inference to mitigate spurious correlations. By applying counterfactual invariance, it
ensures that the reward model predictions remain consistent when intervening on input aspects
unrelated to outcomes. Similarly, Liu et al. [27] presented a causal framework to differentiate
between genuine quality signals from prompts and artifacts from responses. This approach
improves the robustness of reward models.

In the inference stage, reward models can rank multiple outputs to identify the one that best
aligns with human preferences. Ma et al. [28] proposed a heuristic greedy search algorithm
based on Process-Supervised Reward Models (PRMs). This approach enhances model perfor-
mance in the inference path search by providing real-time feedback on each reasoning step
through PRMs. Jiang et al. [29] proposed a reward-guided tree search framework. Integrates
policy models, reward models, and search algorithms to enhance the reasoning capabilities of
LLMs.

2.3 LLM as a Judge

The concept of LLM as a Judge can be traced back to Ouyang’s work [30]. Letting LLMs follow
instructions to produce desired output is the basic paradigm of LLM as a Judge. The work
of Wei et al. [31]. formally established this field. They innovatively used LLMs for evaluation
and introduced benchmarks like MT-Bench and the Chatbot Arena platform. For the first
time, they showed that LLMs can effectively evaluate other LLMs’ outputs on a large scale,
especially in judging the quality, relevance, and usefulness of generated text. The results align
well with human assessments, proving that LLMs can be a feasible alternative for automated
evaluation.

Building on this, using LLMs as judges requires evaluating multiple aspects of the output.
Helpfulness, which evaluates the usefulness and informativeness of responses in addressing
user queries or tasks, is one such aspect. A helpful response should provide accurate and
comprehensive information that clearly answers the question. Auto-J [5] offers a thorough
evaluation in this regard, taking helpfulness into full account. Harmlessness is another key
criterion in LLM evaluation. It assesses whether the generated content is safe, moral, and free
from bias, toxicity, or harmful stereotypes. LLM Guard [32] addresses this by creating an LLM-
based input-output protection model. It evaluates safety risks in prompts and responses during
human-AI conversations. However, safety risks can not be fully covered in one go. Managing
newly emerging risk content remains a major challenge. Reliability is crucial for assessing the
factual accuracy and consistency of a model’s information. A reliable response must be based
on verifiable facts and avoid presenting speculative or incorrect information as truth. RAIN
[33] introduces a method where the model self-assesses its outputs during generation to ensure
they align with human preferences. If misalignment occurs, the model retraces and attempts
different outputs. This approach offers significant insights into verifying model reliability.
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Relevance in LLM outputs measures how directly the generated text relates to the user’s
prompt or question. This concept also extends to using LLMs to judge the relevance between
two pieces of input content, such as assessing the connection between two legal cases. Such
a task demands high-level domain expertise, including a deep understanding of legal facts
and their application. To address this challenge, Ma et al. [34] proposed a few-shot workflow
that mimics how human experts perform relevance judgments. This method breaks down the
annotation process into several stages, with each stage offering detailed explanations of expert
reasoning as guidance. This stepwise guidance, requiring minimal expert input, helps activate
the LLM’s internal domain-specific knowledge, enabling it to conduct relevance annotation
using the same standards as human experts. This approach has been proven effective and
achieves high consistency with expert annotations. Regarding the feasibility of LLM outputs,
this dimension assesses whether a model can provide a practical decision or workable solution.
This is especially crucial when using LLMs for tasks involving strategic foresight or initial
decision-making, where the ability to propose actionable plans is paramount. Yao et al. [11]
enhanced LLMs’ decision-making capabilities by conceptualizing the problem-solving process
as a search through a Tree of Thoughts (ToT). In this framework, each node represents a
partial solution, and each branch signifies a modification to that solution. Specifically, the
problem-solving is broken down into a series of coherent ”thought” steps. At each tree node,
multiple potential subsequent thoughts are generated using specific prompts. A state evaluator
is then designed to assess the progress of different states toward solving the problem, thereby
enabling the exploration of multiple reasoning paths and facilitating self-evaluation of choices.
In the end, the overall quality of model outputs should be evaluated. This is a comprehensive
assessment covering coherence, fluency, conciseness, and style appropriateness. High-quality
responses should be well-written, easy to understand, and convey information effectively. Jain’s
work [35] proposes a context-learning-based evaluation framework for multi-dimensional NLG
assessment. It uses a few input - output examples, designs prompts for different dimensions,
and samples context examples to assess model outputs. Tom Kocmi’s work [36] presents an
evaluation method using different prompt templates to leverage LLMs in assessing translation
quality, revealing the potential of LLMs as evaluators.

At the time of writing, several studies have started to integrate LLMs’ reasoning abilities into
judging tasks, and these works were mostly published in 2025, indicating that LLM as a judge
still has great potential to be explored. JudgeLRM [37] defines an evaluation task at the pair-
wise level. It is trained with reinforcement learning (RL) to enhance the model’s reasoning
ability and devises a reward function that combines structure and content. This ensures the
model’s outputs include structured reasoning processes and accurate scores. Evaluation on
benchmark datasets shows JudgeLRM [37] can effectively learn structured and credible rea-
soning paths, achieving better performance in evaluation tasks. J1 [38] also uses RL training. It
mainly constructs synthetic data to transform judging tasks into verifiable ones and uses online
RL algorithms for training, thus utilizing training data more efficiently. Both works propose
model families where models of different sizes perform well in evaluation tasks.

2.4 Rule-based reward in LLM

The concept of rule-based reward (RBR) in LLMs traces back to work proposed by OpenAI [39],
marking a significant evolution from prior alignment methods. Unlike earlier approaches that
heavily relied on extensive human annotation or undifferentiated AI feedback, RBR directly
leverages fine-grained, composable, and LLM-scored few-shot prompts to generate reward
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signals during Reinforcement Learning (RL) training. This innovative approach enables greater
control, accuracy, and ease of updates by ranking model completions based on their adherence
to predefined rules, which are then used to assign rewards. By doing so, RBR provides an
efficient and controllable pathway for aligning LLMs, particularly excelling in scenarios with
clear, formalizable rules, such as detecting hate speech, ensuring specific output formats, or
verifying the correctness of mathematical solutions. This inherent adaptability and efficiency
explain why RBR has been swiftly adopted in modern RL algorithms like GRPO [40] and
integrated into the reward models of widely used algorithms such as PPO, signifying its growing
role as a key component in contemporary LLM development and safety alignment efforts.

2.5 User Simulation for Evaluating

User Simulation for Evaluating Information Access Systems is a technology for assessing the
overall effectiveness of systems in interactively supporting users to accomplish tasks. It deter-
mines whether content meets human preferences by creating user simulators.User Simulation
for Evaluating Information Access Systems assesses how effectively a system interactively aids
users in task completion. It checks if content aligns with human preferences via user simulators.
Balog et al. [41] offer a comprehensive description of evaluating information access systems.
As user simulation is a broad concept with diverse applications, using simulators to mimic
human behavior is one effective evaluation method.

Owoicho et al. [42] proposed a user simulator based framework. Given information-need de-
scriptions, it can provide feedback on system responses. Its natural language responses are
LLM-generated, helping maintain contextual coherence in multi-turn dialogues and mimicking
real user behavior. Zhang et al. [43] developed a user simulator that generates realistic user-
like reactions. This enabled an automated evaluation of conversational recommender systems.
Unlike LLM-based methods, it uses personal knowledge graphs to represent user preferences.
This ensures that all preference statements align with the user’s historical behavior. Li et al.
[44] proposed adversarial evaluation, training a discriminator to distinguish human-generated
from machine-generated dialogues, assessing dialogue quality.The generator aims to produce
human-like responses, while the discriminator seeks to tell human- and machine-dialogues
apart. They are jointly optimized via adversarial training: the generator tries to fool the dis-
criminator with its responses, and the discriminator strives to accurately identify the source of
the responses. This method is insightful. If the discriminator can precisely determine whether
the content is human-generated, it indicates a high alignment with human preferences. Thus,
the discriminator can be used in the subsequent task training for fine-grained input evaluation.

Although user simulation can assess content, it mainly focuses on simulating human behavior
for responses rather than specialized multidimensional evaluation and judgment. However,
these studies show that content evaluation does not rely solely on generative or reward models;
human-like simulation can also work. However, fully replicating human thinking remains a
challenge.

3 Data

In order to train and evaluate a unified judge and enable it to provide corresponding feedback
and ratings from both a point-wise and pair-wise perspective, we have looked at the datasets
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mentioned or used in papers from the past 1-2 years and also searched for relevant open–source
datasets. Although many papers do not clearly specify their training sets and only a few are
open–sourced, we have still been able to find some high–quality datasets, some of which have
become industry standards. To balance the quantity of datasets, we sampled different datasets
and adapted them according to their different data structures. The specific methods will be
elaborated below.

3.1 Point-wise dataset

For the point-wise dimension, we first collected the Feedback-Collection dataset used in the
current SOTA model paper [3]. The dataset offers a complete rating standard for model
evaluation, which mainly consists of five parts, and the size of the dataset is 100k. The
structure example is as follows:

• Instruction: An instruction that users would prompt the LLM.

• Response to Evaluate: The response generated by the model based on the instruction.

• Customized Score Rubric: Scoring criteria proposed by users, which should be com-
prehensively considered when evaluating the model’s output, which includes a general
guideline for evaluating and scoring, along with specific decisions where scores from 1
to 5 should be assigned.

• Reference Answer: A response that can achieve a score of 5, by providing such re-
sponses, the model can understand the characteristics of a good answer and learn to
develop its evaluation capabilities.

• Score: An integer score for the provided response that ranges from 1 to 5.

It should be especially noted that the score is a crucial part of our training data. It will serve
as the basis for the reward information in the RL algorithm. By integrating the above data
structures, we have organized the training prompt shown in the Fig.1

In addition to the above data, we have incorporated the dataset used by Auto–J [5], which
encompasses a variety of real-world scenarios. It is primarily sourced from the chatbot-arena-
conversations dataset [31]. The structure is as follows:

• usermsg: The raw input text for the model before being wrapped in a specific prompt
or template. It includes the query, response, and instructions.

• target output: The target output for the given usermsg, which serves as the judgment
to evaluate the response.

• pred score: The rating of the response given by GPT-4.

• scenario: The real-world scenario to which the query of this sample belongs.

• source dataset: The origin dataset of this sample.

During actual training, we did not use the target output field. We want the model to reason
out the output on its own. Instead, the pred score, is a key basis for calculating rewards.
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3.2 Pair-wise dataset

For the pair-wise dimension, we have also conducted a thorough investigation. Currently, many
open–source training sets are designed or more suitable for DPO training, which usually only
provide outputs from two different models and a preference choice. However, we prefer train-
ing sets with ratings. After careful evaluation, we selected the Preference–Collection [4] and
JudgeLM–100K [2] datasets, sized at 200k and 100k respectively. The Preference-Collection
dataset [4] contains 8 sections:

• orig instruction: The instruction that would be prompt to the LLM

• orig response A/B: Responses from models A and B.

• orig reference answer: A reference answer to the orig instruction.

• orig criteria: The scoring criteria for evaluating the orig response.

• orig preference: The selected model.

• orig score A/B: The score of response A or B.

Similarly, the orig criteria field offers a general scoring guideline, but it is important to note
that the criteria vary across different data entries, the training prompt is shown in the Fig.1
For the JudgeLM–100K [2] dataset, we primarily use the following structure:

• question body: The text of the initial questions, which serve as instructions input into
the model.

• answer1 body / answer2 body: Responses from different models.

• score: A list representing GPT-4’s ratings for the two responses.

Given the large size of the two datasets and the potential training burden, we first performed
cluster sampling on the instructions’ embeddings to reduce computational costs while preserv-
ing data quality. To ensure data diversity, we carefully sampled from each cluster rather than
taking random samples from the whole dataset. This approach allowed us to maintain a final
dataset size of 100K without losing important patterns in the data.

More specifically, we first sorted all the clusters by their size to understand their distribution.
Then, we assigned smaller sampling weights to relatively larger clusters and higher weights to
smaller clusters. This weighting strategy ensures that smaller clusters are adequately repre-
sented, enhancing data diversity while maintaining a balanced overall distribution. If the final
sample size is short of 100K after cluster-based sampling, we supplemented it with additional
random samples from the remaining data to reach the desired size. This two-step sampling
process helped us achieve a more representative and diverse dataset for training.

4 Method

In this section, we begin by formalizing the problem setting, clearly defining the task objec-
tives, input-output spaces. With the problem structure established, we then introduce the core
algorithmic components, focusing on the Proximal Policy Optimization (PPO) method as our
baseline approach. We outline its standard optimization objectives and policy update mecha-
nisms, while noting key adaptations made to suit our specific task. The central contribution of
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(a) Prompt for preference-collection dataset (b) Prompt for point wise training

Figure 1: When presenting prompts for point-wise and pair-wise training, we didn’t force
them to be identical to enhance the model’s generalization. The prompts for other datasets
are in the Appendix.

our work lies in the redesign of the reward function, where we depart from conventional reward
model in favor of a rule-based reward. We dedicate the final part to reward design, detailing
the rule formulation process, its alignment with desired policy behaviors, and the practical
considerations involved in its integration with PPO’s training process.

4.1 Problem setup

We propose a unified large language model (LLM) capable of serving as an automated judge for
both point-wise and pair-wise evaluation tasks. This dual–capability design allows the model
to handle two distinct evaluation paradigms within a single system.

In the point-wise evaluation mode, when presented with a single instruction x and a model
response r, the model performs two key operations: (1) it assigns a scalar quality score s
and (2) it generates a textual judgement J that provides explanatory feedback justifying the
given score. For pair-wise comparisons, the model extends its functionality to evaluate two
competing model responses. It produces: (1) individual scores (s1 and s) for each item in
the pair, and (2) a comparative judgement J that not only declares a preference but also
explains the relative strengths and weaknesses between the two options. This dual-scoring
approach ensures backward compatibility with point-wise evaluation while enabling relative
quality comparisons. An overview of the problem and format is provided in Fig.2

4.2 RL training algorithm

We use the Proximal Policy Optimization (PPO) algorithm for training. Unlike traditional re-
ward model methods, we use a rule-based reward approach. This has two advantages. First,
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Figure 2: The models responds differently to the distinct inputs of point-wise and pair-
wise data.

it eliminates the cost of a reward model (in terms of time, money, and equipment). Second,
by integrating dataset labels, it allows for better control of reward granularity and better per-
ception of the model’s learning ability.The Eq.1 shows the PPO loss function. It optimizes the
policy using advantage values while preventing large policy updates via a “clipping” mecha-
nism. This ensures training stability. The advantage estimate At indicates how much better
an action at is than the average in state st, determined by rewards from the reward model.

LCLIP (θ) = Et

[
min

(
πθ(at|st)
πθold(at|st)

At, clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
At

)]
(1)

PPO aims to maximize this loss function (or minimize its negative value). Its goals are:

• If a token has a high advantage value At > 0, PPO tries to moderately increase its
generation probability in the current policy.

• If a token has a low advantage value At < 0, PPO tries to moderately decrease its
generation probability.

The scalar reward measures how well the response aligns with human preferences. This reward
is used to calculate the advantage estimate At for each timestep (each generated token). A
value function is often used alongside to reduce variance and stabilize the advantage estimate.
In simple terms, a higher reward tends to result in a higher advantage value At for the
corresponding action (generating that token). Thus rewaro plays an important role in the
training process.
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4.3 Reward design

Our rule-based reward approach requires careful preparation from the data construction phase
onward, as described in Sec.3. The core process involves decoding the model’s generated out-
put and comparing it against pre-defined standard answers to calculate precise reward signals.
Since our system handles both point-wise and pair-wise evaluation tasks, we’ve developed
distinct reward mechanisms for each mode. For point-wise inputs, the reward is computed
through direct comparison with a single reference answer, assessing absolute quality across
multiple dimensions. The pair-wise evaluation, on the other hand, requires comparing two
model outputs against each other and against reference standards to determine relative qual-
ity differences. This dual reward scheme allows us to maintain evaluation consistency while
adapting to different assessment needs. The rule-based design eliminates the need for training
separate reward models, instead relying on transparent, pre-defined criteria that offer better
control over reward granularity and more interpretable training signals.

4.3.1 Point-wise reward

To ensure consistent reward scaling across different evaluation prompts with varying score
ranges, we implement a linear normalization procedure that processes the raw scores into a
standardized [0, 1] range. This normalization begins by calculating the absolute discrepancy
between the model’s predicted score (extracted through regular expression pattern matching)
and the ground truth reference score. We then apply a linear transformation that proportionally
maps these error values onto our target reward scale, where 0 represents the maximum observed
error (lowest reward) and 1 indicates perfect alignment with the ground truth (highest reward).
Importantly, this normalization maintains the ordinal relationships between different quality
levels while making the reward magnitudes directly comparable across all training data, and
the formula is:

Rfinal = max

(
0.0,min

(
1.0, 1.0− |P − T |

Smax − Smin

))
(2)

In Eq.2, P is the predicted score, T is the ground truth, we chose Smax = 5, Smin = 1 to
keep the reward into the [0,1] range.

4.3.2 Pair-wise reward

For pair-wise evaluation, we implement a graduated reward system that combines strict ranking
requirements with continuous quality assessment. The core mechanism first verifies the relative
ordering between the two predictions compared to the ground truth - completely reversing the
correct order results in zero reward, while perfect matches receive the maximum reward of 1.0.
In intermediate cases where the ordering is correct but predictions aren’t perfect, we calculate
a quality-adjusted reward through a multi-step process. For each prediction, we compute its
closeness to the ground truth using the formula

R = max

(
0.0, 1.0− |difference|

τ

)
(3)

where tau serves as our tolerance parameter set to 1.0. The final reward then combines
a base score of 0.6 for correct ordering with a weighted quality component (40% of the
average closeness between the two predictions), yielding values smoothly distributed between
0.6 and 1.0. This design ensures models must first satisfy the basic ranking requirement
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before fine-tuning their predictions for higher rewards through improved numerical accuracy.
More specifically, we categorize different situations: Let (P1, P2) be prediction score 1 and 2,
(T1, T2) be truth 1 and 2, we denote the ranking order with an indicator, as shown in the Eq.4
and Eq.5:

OP =

{
1 if P1 ≥ P2,

0 if P1 < P2.
(4)

OT =

{
1 if T1 ≥ T2,

0 if T1 < T2.
(5)

As shown in Eq.6, our pair-wise reward mechanism employs a composite structure consisting
of a base reward and an accuracy-based bonus. The base reward of 0.6 serves as the minimum
guaranteed reward when the relative ranking is correct but predictions are not perfect, ensuring
the model receives substantial feedback even for partially correct responses. The additional re-
ward component is determined by the absolute error between the predicted score difference and
the true difference, we create a smooth reward gradient that proportionally reflects prediction
accuracy while maintaining the 0.6 baseline for correct rankings. The total reward combines
these two components, with the base reward ensuring fundamental ranking correctness and
the accuracy-based bonus refining the model’s scoring precision. The reward is capped at 1.0
for cases where predictions exactly match the ground truth, establishing a clear upper bound
for perfect performance.

R =


1 if P1 = T1 and P2 = T2,

0 if OP ̸= OT ,

0.6 + 0.4 ·max
(
0.0, 1.0− |(P1−P2)−(T1−T2)|

τ

)
otherwise.

(6)

5 Experiments

5.1 Experimental Setup

For training, we train our model on top of verl [45], which is a flexible and efficient RL training
library for LLMs, to be more specific, we use Torch FSDP [46] for parallel training and employed
vllm [47] as the model inference engine. All the training data and the data preparation method
are as described in Sec.3. We implement our method by creating a file of custom functions.
For evaluation, we collect and self-source some highly popular and widely used benchmarks
from current SOTA papers, as listed below:

• Feedback-Bench [3] is a point-wise dataset, which has 1k samples and its structure is
consistent with the Feedback-Collection described in Sec.3

• JudgeLM-Bench [2] is a pair-wise dataset consisting of 5,000 judge samples, where all
judge samples contain high-quality judgements made by GPT-4, and its data structure
is consistent with the JudgeLM–100K [2] described in Sec.3.

• Auto-J Eval [5] is a pair-wise dataset with 1,392 samples, covering 58 different real-
world scenarios. Hence, it serves as a solid platform for evaluating the abilities of different
assessors. In the original dataset, the labels are categorized as 0 (the first response is
selected), 1 (the second response is selected), and 2 (a tie). To enhance interpretability,
we excluded tie data in practice.
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• Judge-Bench [48] is a pair-wise benchmark for evaluating LLM-based judges on chal-
lenging response pairs, which has 620 samples in total, and these pairs span knowledge,
reasoning, math, and coding. It is highly challenging. All responses were generated by
GPT-4o and Claude-3.5-Sonnet. Many strong models, such as GPT-4o, perform only
slightly better than random guessing.

• PandaLM Eval [49] is a human-labeled test dataset that is reliable and aligns with
human preference for text, where the data are generated and sampled from the human
evaluation data of Self-Instruct [50]

• Reward-Bench [51] is a dataset evaluates capabilities of reward models over the mul-
tiple categories and sampled from several popular bench.

To compare performance of our model, we collected various baseline models: (1) Zero-shot
LLMs as judges, such as the Llama series, GPT-3.5 [52], and GPT-4 [53]. (2) State-of-the-art
reward models such as Auto-J [5]. (3) State-of-the-art generative models fine-tuned for judge
tasks, including models trained with supervised fine-tuning and RL, such as JudgeLRM [37].

5.2 Judge Performance

5.2.1 Point-wise

To directly assess our model’s performance on a point-wise basis, we conduct an evaluation
using the relevant benchmark dataset. The primary metric employed for this comparison is
the Pearson correlation coefficient. This coefficient is computed by comparing our model’s
outputs against the ground-truth annotations provided by GPT-4. A higher Pearson correlation
coefficient consistently indicates superior performance, demonstrating a stronger alignment
between our model’s predictions and the established golden standard.

Dataset Feedback-Bench (GPT-4 as ground truth)
Criteria Pearson Spearman Kendall-Tau
Existing Baseline. (* from original paper)
LLAMA2-CHAT 7B* 0.485 0.478 0.422
LLAMA2-CHAT 13B* 0.441 0.452 0.387
LLAMA2-CHAT 70B 0.572 0.564 0.491
GPT-3.5-TURBO* 0.636 0.617 0.536
AUTO-J (13B)* 0.637 - -
MISTRAL-INSTRUCT-7B* 0.586 - -
Base Models.
PROMETHEUS-1-7B 0.893 0.890 0.813
PROMETHEUS-2-7B 0.826 0.819 0.743
Ours.
UnifiedJudge-3B 0.914 0.914 0.852

Table 1: Pearson, Kendall-Tau, Spearman correlation with data generated by GPT-4-0613,
the data marked with * are from the original paper, and we tested the models from the
Base Models and used each model’s corresponding prompt template during evaluation.

In Table.1, it clearly shows that un-fine-tuned models, when used as zero-shot judges, deliver
only mediocre performance. Interestingly, Llama2-13B performs worse than its smaller coun-
terpart, Llama2-7B, which is an unexpected outcome. GPT-3.5-TURBO and AUTO-J (13B)
exhibit similar performance levels, suggesting that they have comparable capabilities in this
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zero-shot setting,in contrast, PROMETHEUS-1-7B and PROMETHEUS-2-7B, which were
trained using supervised fine-tuning, show a noticeable improvement over the un-fine-tuned
models. This highlights the significant benefit of fine-tuning for this task. However, it should
be noted that PROMETHEUS-2-7B unexpectedly underperforms PROMETHEUS-1-7B, in-
dicating that more parameters or a different fine-tuning approach do not always guarantee
better results. Finally, our model slightly outperforms PROMETHEUS-1-7B, achieving a gain
of +0.02, demonstrating a marginal but positive improvement in performance.

5.2.2 Pair-wise

For a comprehensive pair-wise performance comparison, we rigorously evaluated our model
using the Auto-J Eval benchmark. The crucial metric for this assessment was the accuracy of
preference predictions, where GPT-4’s established preferences are served as ground truth. This
specific metric allowed us to precisely measure how well our model’s selections of preferred
responses aligned with those determined by GPT-4, thus providing a direct indication of its
ability to replicate human-like judgment in comparative scenarios.

Dataset Auto-J Eval (GPT-4 as ground truth)
Criteria Accuracy Precision Recall
Existing Baseline. (* from original paper)
LLAMA2-CHAT 7B* 0.457 - -
LLAMA2-CHAT 13B* 0.433 - -
LLAMA2-CHAT 70B 0.506 - -
GPT-3.5-TURBO* 0.711 - -
AUTO-J (13B)* 0.766 - -
GPT-4-1106-PREVIEW* 0.83 - -
ULTRA-RM (13B)* 0.598 - -
PAIR RM (0.4B)* 0.590 - -
Base Models.
JudgeLRM-3B 0.723 0.778 0.675
PROMETHEUS-2-7B 0.771 0.797 0.715
Ours.
UnifiedJudge-3B 0.713 0.731 0.748

Table 2: The data marked with * are from the original paper, which does not provide
Precision and Recall. ULTRA-RM [54] is a reward model trained on preference datasets.
PAIR RM [55] is a smaller model trained on mixed data.

As Table 2 illustrates, the LLAMA2 models struggled in this evaluation, with both the 7B
and 13B versions even performing worse than random guessing. This suggests that without
specific fine-tuning for preference prediction, these models are not effective as judges. In
contrast, GPT-3.5 showed a significant improvement in performance, indicating its superior
capability in understanding and predicting preferences. AUTO-J (13B), a leading model in
this domain, also performed well. It is particularly insightful to note that even GPT-4, despite
being the source of our ground truth labels, did not achieve a perfect self-assessment score.
This highlights an inherent uncertainty within even the most advanced models, underscoring
the complexity of preference judgment.

Among all the models we tested, PROMETHEUS-2-7B notably stands out with its strong
performance. Our model, UnifiedJudge-3B, is basically the same as JudgeLRM-3B, which
substantially demonstrates that our model can match the performance of sota models within

17



the 3B parameter class. Furthermore, the performance gap between our 3B model and the
leading 7B models is not substantial, which strongly suggesting the considerable potential of
3B models to achieve high levels of performance with efficient resource utilization.

Dataset JudgeLM-bench (GPT-4 as ground truth)
Criteria Accuracy Precision Recall
Existing Baseline. (* from original paper)
Qwen2.5-3B-Instruct* 0.723 - -
Qwen2.5-7B-Instruct* 0.768 - -
JudgeLM-7B* 0.811 - -
JudgeLM-13B* 0.843 - -
AUTO-J (13B)* 0.749 - -
PandaLM-7B* 0.686 - -
Base Models.
JudgeLRM-3B 0.823 0.865 0.815
PROMETHEUS-2-7B 0.746 0.791 0.714
Ours.
UnifiedJudge-3B 0.839 0.824 0.826

Table 3: The performance comparison of various models on the JudgeLM-bench, in which
the PandaLM [49], a generative evaluation model, can efficiently assess responses from
different models.

Table 3 shows that our model achieves excellent performance on the JudgeLM-bench. Specifi-
cally, its performance is second only to JudgeLM-13B, indicating its near-state-of-the-art capa-
bilities. Furthermore, our model exhibits a slight but notable improvement over JudgeLRM-3B,
highlighting its competitive edge within its parameter class.

In contrast, PROMETHEUS-2-7B performs below this benchmark, aligning more closely with
the performance of AUTO-J (13B). This is a crucial observation as it indicates that our
model surpasses current state-of-the-art (SOTA) models on this specific benchmark, effectively
outperforming other 7B models and even larger models in this evaluation. This underscores
the efficiency and effectiveness of the design and training of our model.

Dataset PandaLM Eval
Criteria Accuracy Precision Recall
Existing Baseline. (* from original paper)
Qwen2.5-3B-Instruct* 0.685 0.509 0.561
Qwen2.5-7B-Instruct* 0.639 0.619 0.676
JudgeLM-7B* 0.651 0.669 0.719
JudgeLM-13B* 0.689 0.682 0.741
PandaLM-7B* 0.593 0.573 0.592
Base Models.
JudgeLRM-3B 0.768 0.818 0.847
PROMETHEUS-2-7B 0.728 0.771 0.687
Ours.
UnifiedJudge-3B 0.729 0.798 0.784

Table 4: The performance comparison of various models on the PandaLM Eval.

Table 4 shows the performance of various models in PandaLM Eval, where all labels are manu-
ally annotated by humans, better reflecting whether the models align with human preferences.
Both JudgeLM-7B and PandaLM-7B perform moderately. Specifically, PandaLM-7B has a
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low accuracy of 0.593, underperforming even the Qwen2.5 series models without fine-tuning.
In contrast, our model performs well, matching PROMETHEUS-2-7B and nearly reaching
JudgeLRM-3B levels. This indicates that our model better meets the human preference re-
quirements in this evaluation.

Dataset Judge-bench (GPT-4o and claude-3.5-Sonnet as ground truth)
Criteria Accuracy Precision Recall
Existing Baseline. (* from original paper)
J1-Llama-8B (random single-order data)* 0.483 - -
J1-Llama-8B (both-order data)* 0.631 - -
J1-Llama-8B (verdict consistency reward)* 0.523 - -
EvalPlanner-Llama-8B* 0.382 - -
Base Models.
JudgeLRM-3B 0.577 0.537 0.645
PROMETHEUS-2-7B 0.555 0.514 0.500
Ours.
UnifiedJudge-3B 0.530 0.532 0.604

Table 5: The performance comparison of various models on the Judge bench, in which the
EvalPlanner [56], a thinking generative evaluation model.

Finally, we evaluated our model on the challenging Judge-bench. As Table 5 shows, none of
the models, including our own, achieved remarkably high performance on this benchmark.
This outcome is directly attributable to the inherently high difficulty of the Judge bench,
primarily because it has multiple diverse fields and presents questions that demand specialized
knowledge. This broad scope and specific knowledge requirement pose a significant challenge
for all models.

Despite these considerable difficulties, our model still shows a relatively good performance. It
notably outperformed EvalPlanner, another 3B model, indicating its superior capability within
the same parameter class. The performance gap between our model and JudgeLRM-3B was
observed to be small, further highlighting our model’s competitive standing. Moreover, our
model also approached the performance level of PROMETHEUS-2-7B. In a broader comparison
with the J1-Llama-8B series, our model performed relatively well.

As shown in all tables, our model consistently shows strong overall performance on various
benchmarks. Remarkably, it surpasses numerous larger models, including GPT-3.5, Llama2-
70B, and even fine-tuned state-of-the-art models within the 7B to 13B parameter range, illus-
trating its exceptional capabilities despite its smaller size. Across multiple evaluation benches,
our model proves its superiority.

Compared to the absolute optimal models on each specific benchmark, our model consistently
either closely approaches or nearly matches their top performance. This highly competitive
showing is significant as it highlights the strong competitiveness of our lightweight model. The
maintains excellent performance while simultaneously offering higher efficiency and substantial
resource savings.
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5.3 Reward Curve, Loss and Score Analysis

5.3.1 Reward Curve

Fig.3 shows the clear trend of the reward curve throughout the training process. A higher
reward value signifies that the model’s outputs are better aligned with human preferences.
During the initial phase of training, specifically within the first 200 steps, the curve exhibited
a steep upward trajectory. This sharp increase indicates highly effective early learning and a
significant improvement in the model’s ability to generate preferred outputs.

Following this initial rapid ascent, the reward curve transitioned into a steady upward trend,
demonstrating continued learning and refinement. The final average reward achieved was 0.823,
which serves as strong evidence that the model not only learned effectively in its early stages,
but also improved consistently throughout the duration of training.

Figure 3: Mean reward over 1179 training steps

5.3.2 Loss Curve

Fig.4 shows the actor’s loss of entropy during the training process. Initially, the high entropy loss
indicates that the model’s policy was highly random, signifying an active phase of exploration.
This is crucial in early training, allowing the model to discover a wide range of possible actions
and their outcomes.

As training progresses, the loss of entropy begins to gradually decline. This reduction signals
that the policy is becoming more deterministic, meaning that the model is increasingly con-
fident in its chosen actions. Essentially, the model started to exploit the effective actions it
had learned, thus reducing its need for extensive exploration. In the later stages of training,
the entropy loss eventually stabilized. This stabilization indicates that the model had found a
beneficial balance between exploration and exploitation.

Fig.5 shows the Policy Gradient Loss of the actor throughout the training process. In the early
stages, the loss is notably high and exhibits significant fluctuations, ranging between 0.1 and
0.3. This behavior is consistent with the initial high entropy loss we observed, which indicates
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Figure 4: Actor’s entropy loss over training steps

that the model is in an active phase of exploring diverse actions. High loss in this phase is
expected as the policy is still far from optimal.

Moving into the middle stage of training, the average loss begins to decrease, although it still
fluctuates. However, the amplitude of these fluctuations becomes smaller, suggesting that the
model is gradually converging towards a more stable policy. The occasional sharp peaks seen
during this period could be attributed to sudden shifts in the environment’s feedback, perhaps
due to a particularly challenging batch of data.

Finally, in the late stage of training, the loss stabilizes remarkably and fluctuates minimally,
mostly staying between 0.1 and 0.2. At this point, the actor has successfully learned a fairly
stable and effective policy.

Figure 5: Actor’s policy gradient loss over training steps

By looking at the reward curve and the policy gradient loss curve together, we gain a more
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complete understanding of the model’s training process. In fact, we can observe that the
model continued to learn throughout the training process, as evidenced by the rewards that
consistently increased and eventually reached a plateau. This indicates that the model was
successfully optimizing its actions to align better with the desired outcomes. However, a closer
look at the policy gradient loss curve, particularly its spikes, reveals that the policy sometimes
updated too aggressively on certain batches of data. These spikes suggest moments where the
model might have taken a large step in its policy updates, potentially driven by challenging
data within a batch.

5.3.3 Score Distribution

Here we selected three different pair-wise benches and one point-wise bench to analyze the
scores given by our model.

Figure 6: Score distribution on JudgeLM-Bench

Fig.6 illustrates the distribution of scores given by our model in JudgeLM-Bench. ”Absolute
score” indicates the direct scores assigned by the model to each of the two responses. ”Score
Difference” is calculated by subtracting the score of the rejected response from that of the
chosen one. A negative difference signifies an incorrect judgment by the model, whereas a
positive value indicates a correct one, from which the distribution of absolute scores given
by our model on JudgeLM-Bench, with most scores clustering in the 1-2 and 7-9 ranges,
and the highest frequency at 8. For score differences (chosen score minus rejected score),
negative values are less common, indicating mostly correct model predictions. Among positive
score differences, the range 0-2.5 is significant, and the range 6-8 is the most prevalent. This
suggests that either the model perceives the responses as very similar or quite distinct in
quality.

Fig.7 shows the reliability diagram of our model in JudgeLM-Bench. The model’s original
pred scores([score A, score B]) are not probabilities. To convert them into the probability of
”A being better than B”, we use the Sigmoid function. First, compute the difference between
the two prediction scores: score dif = score A − score B. This difference represents the
model’s ”confidence strength” in its preference for A over B (log-odds). Then, pass score dif
through the Sigmoid function to get a probability between 0 and 1. We also calculate the Brier
score, which measures the mean squared error between prediction probabilities and actual
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Figure 7: Reliability Analysis on JudgeLM-Bench

binary outcomes. A Brier score closer to 0 indicates more accurate predictions and better
calibration.

The x-axis in the figure shows the model’s average predicted probability that response A is
better than response B. The y-axis indicates the actual proportion of times response A is better
than response B within a certain predicted probability range. The red dotted line represents
perfect calibration, where predicted probabilities match actual probabilities. For example, if
the model predicts a probability of 0.6 that A is better than B, then in all cases where the
model predicts 0.6, A should actually be better than B in 60% of instances. The blue line
reflects the model’s true calibration performance across different predicted probability ranges.
In low predicted probability ranges, the blue line lies above the red dotted line. This means
that when the model predicts a low probability (0.0 to 0.25) that A is better than B, the actual
proportion of A being better than B is higher. This suggests that the model is underconfident in
this low probability range; it thinks that the probability of A being better than B is low, yet the
actual occurrence is more frequent than its prediction. In the medium probability range (X-axis
0.25-0.45), the blue line is slightly above the red dotted line, showing slight underconfidence.
Between the X-axis values of 0.45 and 0.8, the blue line gradually moves below the red dotted
line, especially around 0.5, indicating overconfidence in this range. The model predictions here
are more confident than those justified by reality. In the high probability range, when the X-axis
is about 0.88, the blue line is close to the red dotted line, indicating good calibration when
the model is highly confident. However, as the predicted probability approaches 1.0, the blue
line again falls below the red dotted line, suggesting overconfidence in cases where the model
is certain that A is better than B.

23



Figure 8: Score distribution on Autoj Eval

Fig.8 shows the score distribution of our model in Autoj Eval. Unlike the case in JudgeLM-
Bench, the absolute scores given by the model are overwhelmingly in the 7 to 9 range, with 8
being the most frequent. In terms of score differences, the 1–2 range is the most common. In
addition, negative values make up a relatively small proportion. This indicates that the model
has a high overall accuracy on this benchmark and that in most cases it considers the quality
of the two responses to be fairly similar.

Figure 9: Reliability Analysis on Autoj Eval

Fig.9 shows the reliability diagram of our model in Autoj Eval. In the low probability range (X-
axis at 0.15), the blue line is at Y=0.27. This means that when the model predicts a low 0.15
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probability that A is better than B, the actual probability is higher, indicating underconfidence.
In the low to medium probability range (X-axis at 0.25), the blue line aligns with the red dotted
line at Y=0.25, showing good calibration here. In the medium probability range (X-axis 0.35 -
0.7), the calibration is mixed. With a predicted probability of 0.5 , the model is underconfident,
but at 0.7, it is well calibrated. In the high probability range, the blue line is below the red
dotted line. This means that when the model is highly confident (predicting a high probability),
the actual probability is lower, showing overconfidence. The Brier score of 0.197 also indicates
that the model has calibration deviations.

Figure 10: Score distribution on PandaLM Eval

Fig.10 shows the score distribution of our model in PandaLM Eval. The absolute scores also
show two polar distributions. For the distribution of score differences, the interval of 0-2 takes
the largest proportion, followed by the interval of 6-7, which indicates that the model views
the two responses as more evenly matched on this dataset.

Fig.11 shows the reliability diagram of our model in PandaLM Eval. In the low probability range
(X-axis at 0.15), the blue line is at Y = 0. Here, the predicted probability of the model is 15%
that A is better than B is overconfident, since the actual probability is 0%. In the medium to
high probability range (X-axis 0.75 - 0.9), the blue line is below the red dotted line. At predicted
probabilities of 0.75 and 0.9, the actual probability of around 0.65 indicates overconfidence.
The Brier score of 0.169 also suggests calibration deviations. Overall, the reliability diagram
indicates that the model has mixed calibration issues in different predicted probability ranges
in the PandaLM Eval.

Fig.12 shows the score distribution of our model in Feedback-Bench, where the score difference
is the predicted score minus the ground truth score. The absolute scores are evenly distributed,
with 2 points being the most frequent. Most score differences fall within 0-1, and other ranges
account for only a small proportion. This indicates that the model’s predicted and actual values
are very close on point-wise data, reflecting good model performance.

Fig.13 shows the model calibration in Feedback-Bench. The red dotted line represents the ideal
diagonal for perfect calibration. If the model were perfectly calibrated, its predicted average
score would equal the true score. In low score ranges, when the true score is 1.0, the average
predicted score of the model is about 1.3, indicating an overestimation. In mid-score ranges,
the blue line closely follows the red dotted line, indicating good calibration where confidence
matches accuracy. In high score ranges, when the true score is 5.0, the average predicted
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Figure 11: Reliability Analysis on PandaLM Eval

Figure 12: Score distribution on Feedback-Bench
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Figure 13: Reliability Analysis on Feedback-Bench

score is around 4.8, showing underestimation and slight underconfidence. Overall, the model
demonstrates good calibration.

5.4 Position Bias

To thoroughly investigate the influence of response position order on our model’s performance,
we conducted an additional series of tests on two different benchmarks. Specifically, we used
the first 200 data from the JudgeLM-bench and all available data from the Auto-J Eval. For
each data, we swapped the positions of the responses within the prompts. For instance, if the
original prompt presented ”ResponseA and ResponseB,” we modified it to present ”ResponseB
and ResponseA.” The results of these tests, performed on this position-swapped data, are
detailed in Table 6 provided below.

Dataset/Criteria JudgeLM-bench Auto-J Eval
Consistency Consistency

Base Models.
JudgeLRM-3B 0.830 0.711
PROMETHEUS-2-7B 0.756 0.758
Ours.
UnifiedJudge-3B 0.827 0.722

Table 6: Assessment of position bias on JudgeLM-bench and Auto-J Eval, consistency
measures the consistency of the model’s evaluation results in response to positional ex-
change.
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As shown in the table, our model’s performance on the position-swapped data for both the
JudgeLM-bench and Auto-J Eval datasets remained largely consistent with its performance
before the swap. This indicates a high degree of stability. Similarly, the other two base models
also showed comparable performance stability when faced with altered response positions.

This consistency among models suggests that changing the order in which responses are
presented did not affect their performance, indicating that our model does not make guesses
or arbitrary decisions based on the simple position of responses within a prompt. Instead, its
steady performance reflects the reliability of the model’s outputs in these specific scenarios.
In addition, this robustness is likely due in part to the inherent nature of the evaluation tasks
themselves, which may not be highly sensitive to the sequential order of responses.

5.5 Length Bias

To thoroughly examine whether differences in the length of responses impact our model’s
preferences, we performed a specific length-difference analysis experiment. This analysis was
performed using the existing test results from the JudgeLM-bench. For this experiment, we
filtered the samples to include only those where GPT-4 had determined that the shorter
response was better. This allowed us to specifically investigate how our model behaves when
the ”correct” answer has fewer words. The difference in length between the two responses in
each pair is quantified using a metric gap ratio. A higher gap ratio value indicates a greater
length discrepancy between the two responses, which means that one response is shorter
relative to the other.

Figure 14: The model’s accuracy in cases where the shorter response is better under
different gap ratios.

Fig.14 shows the model’s accuracy in cases where the shorter response is better under different
gap ratios. When the length difference between responses is less than approximately 37%, the
performance of our model remains stable. This means small differences in length don’t really

28



throw it off. However, as the gap ratio grows, specifically between 0.37 and 0.41, we start to
see a continuous drop in performance. It hits its lowest point here before it begins to recover.
It is worth pointing out that around a gap ratio of 0.8, we again see some pretty big ups and
downs in performance.

From the data shown in Fig.14, we see in fact that our model has a tendency to be influenced
by the length of responses, which we call the length bias. This bias becomes stronger as the
difference in length between responses increases. When the length difference is small, the model
seems to handle this bias pretty well. However, when we looked more closely at the cases when
the model wrongly picked the shorter response as better, we found something interesting: the
standard scores given by GPT-4 for these responses were often very close to each other, like
a 2 compared to a 3. This tells us that when the ”right” answers are already quite similar in
quality, the model might have a harder time correctly picking out the shorter response as the
better one. Of course, Fig.15 also shows that there were other times when there was a clear
difference in quality between the responses, which means that one was much better than the
other, regardless of length.

In Fig.15, the question presented is a straightforward math problem. The short response pro-
vided is correct and concise and directly addresses the question. In contrast, the long response
is kind of off-topic and fails to answer the question or provide a solution. Despite its con-
siderable length, the information offered in the longer response is unhelpful and serves as a
distraction. The fact that our model made an incorrect prediction in this specific case, serves
as confirmation of the existence of a length bias within the model’s judgment process.

5.6 Stability Analysis

To explore the stability of the model output during inference, we conducted analytical experi-
ments by generating responses to the same prompt three times under different hyperparame-
ters (for pair-wise dataset). This approach allowed us to assess the consistency of the model
performance and the impact of hyperparameter variations on the output stability.

Sampling Parameters (temp, top p) Average Accuracy Standard Deviation
(0.0, 1.0) 0.8407 0.3659
(0.2, 0.8) 0.8367 0.3604
(0.5, 0.5) 0.8417 0.3625
(0.8, 0.2) 0.8390 0.3675
Overall 0.8395 0.3641

Table 7: Accuracy statistics of UnifiedJudge-3B under different sampling parameter com-
binations for JudgeLM-bench

Table 7 presents the experimental results. The accuracy is shown to be relatively low when
the temperature is 0.2 and the top p is 0.8. The highest accuracy occurs at a temperature
of 0.5 and a top p of 0.5. Although there are slight performance variations across the four
different sets of hyperparameters, overall stability is maintained. This shows that our model
has consistent stability. It can perform well with different inference parameter settings. Unlike
general voting or Best of N sampling methods, our model can stably output results without
extra or complex inference methods.
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Figure 15: A case when shorter response is better
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5.7 Performance of different task types

In our previous experiments, we evaluated the overall performance of the model. In this section,
we conducted a more in-depth analysis of its performance across different tasks in pair-wise
scenarios. To achieve this, we used the widely used Reward-bench (an evaluation dataset),
which encompasses a variety of tasks with varying levels of difficulty.

Reward-bench is categorized into four main categories.

• Chat involves straightforward conversational data.

• Chat Hard features more complex and challenging conversational data.

• Safety focuses on data related to safety aspects.

• Reasoning includes data related to mathematical and code reasoning tasks, where the
data are out of domain for our model.

By using Reward-Bench, we aim to gain a more detailed understanding of the model’s ca-
pabilities and limitations across these diverse task categories. It is important to state that
the data for the other models in the following tables in this subsection come directly from
Reward-bench.

5.7.1 Chat

Model / Dataset Accuracy
UnifiedJudge-3B (Chat Category - Detailed)
alpacaeval-easy 0.97
mt-bench-easy 0.893
alpacaeval-length 0.937
alpacaeval-hard 0.958

Model Comparison (Average)
Llama-3-70B-Instruct 0.976
tulu-2-dpo-13b 0.958
Eurus-RM-7b 0.98
PROMETHEUS-7b-v2.0 0.855
UnifiedJudge-3B 0.939

Table 8: Performance comparison on Chat category

As shown in Table 8, the performance of our model in multiple subsets within the Chat cat-
egory is presented, as well as its overall average performance. Since a single category can
encompass various subsets, only a selection of these subsets are displayed. The Chat cate-
gory is relatively simple, with its subsets mainly consisting of data from comparisons between
powerful models and foundational or lower ones, such as GPT4-Turbo versus Alpaca-7b. Con-
sequently, our model demonstrates strong performance in this category. Specifically, it achieves
the highest accuracy in the alpacaeval-easy subset while it is relatively lower on the mt-bench-
easy subset. In terms of overall performance, our model is highly competitive. It outperforms
PROMETHEUS-7b-v2.0 and nearly matches tulu-2-dpo-13b [57]. It should be noted that tulu-
2-dpo-13b [57] and Eurus-RM-7b [58] are reward models, which means that they cannot output
specific evaluation content. Additionally, Llama-3-70B-Instruct shows decent performance but
still falls slightly short of Eurus-RM-7b. This indicates that extremely large models without
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fine-tuning on downstream tasks may underperform compared to relatively smaller models that
have been carefully fine-tuned.

5.7.2 Chat Hard

Model / Dataset Accuracy
UnifiedJudge-3B (Chat Hard Category - Detailed)
mt-bench-hard 0.784
llmbar-natural 0.827
llmbar-adver-GPTInst 0.511

Model Comparison (Average)
Llama-3-70B-Instruct 0.589
tulu-2-dpo-13b 0.583
Eurus-RM-7b 0.656
PROMETHEUS-7b-v2.0 0.491
UnifiedJudge-3B 0.599

Table 9: Performance comparison on Chat Hard category

Table 9 shows a decrease in our model accuracy in the Chat Hard category. This drop is not
surprising, as the data in this category are exceptionally difficult. For instance, some examples
might include responses from two advanced models where one is only slightly irrelevant or
off topic, or a straightforward math problem where the incorrect answer simply has an extra
decimal point. Even human evaluators can struggle with these subtle distinctions. This suggests
that our model needs to develop an even deeper understanding of the instructions to excel in
such situations. A case for this category is shown in Fig.16.

Despite these challenges, our model generally outperforms PROMETHEUS-7b-v2.0. However,
it currently lags behind Eurus-RM-7b. Interestingly, Llama-3-70B-Instruct is quite comparable
to our model. This comparison is significant because it demonstrates that a 3B model, like
ours, can achieve strong results when it is well trained.

5.7.3 Safety

In this category, models need to evaluate the safety of an instruction considering factors such
as its potential danger and harmfulness. If the instruction involves potential dangers, the model
should refuse to respond. When assessing responses, it is crucial to prioritize the response that
appropriately refuses to answer, rather than blindly following the instruction. For example, if
an instruction involves harmful or violent actions, the model should recognize the potential
dangers and refuse to provide a response that could lead to harm. This approach ensures that
the models are aligned with safety considerations and ethical guidelines. Fig.17 is an example
of such a scenario.

Table 10 shows how our model performs in terms of safety. The safety category includes not
only topics where the model should not respond or generate content but also topics where it
should. Our model has the highest accuracy on the xtest-should-respond subset. In this subset,
when instructions are given, the model is expected to respond. For example, if the question
is about how to terminate a Python process, the response that answers the question should
be selected. However, our model has lower accuracy on the refusals-offensive and refusals-
dangerous subsets. In these subsets, the data correspond to cases where the model should
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Figure 16: A case of Char Hard
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Figure 17: A case of Safety
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Model / Dataset Accuracy
UnifiedJudge-3B (Safety Category - Detailed)
refusals-dangerous 0.505
refusals-offensive 0.633
xstest-should-respond 0.9

Model Comparison (Average)
Llama-3-70B-Instruct 0.692
tulu-2-dpo-13b 0.782
Eurus-RM-7b 0.812
PROMETHEUS-7b-v2.0 0.787
UnifiedJudge-3B 0.679

Table 10: Performance comparison on Safety category

not provide a detailed response. The selected responses are those where the model refuses to
answer.

Overall, our model’s performance is quite close to Llama-3-70B-Instruct. However, it does
not quite reach the level of other models in the table, with Eurus-RM-7b leading the pack
at 0.812. We have noticed that our model’s accuracy varies a lot depending on the type of
data it is handling, and its overall performance is still relatively low. This variability points
to a key issue: our model sometimes prefers the response even when the instructions are
dangerous. It also struggles to figure out which responses the models simply should not provide.
Interestingly, it does a bit better with instructions that are just ”offensive”, but performs worse
with ”dangerous” ones. This underscores the need to incorporate safety-related data in the
training process to align the model with human preferences and address safety concerns.

5.7.4 Reasoning

The reasoning category consists mainly of mathematical calculations (which come from Light-
man et al. [59]) and code generation. Mathematical calculations involve algebraic and geomet-
ric operations, while code generation requires the creation of code using common programming
languages. For models not trained on such data, this represents out of domain knowledge. It
is important to note that in all math-related data, the selected responses are manually written
by humans, while the rejected responses are generated by GPT-4. In terms of code generation
data, both responses are written by humans.

Model / Dataset Accuracy
UnifiedJudge-3B (Reasoning Category - Detailed)
math-prm 0.702
hep-cpp 0.993
hep-python 0.993

Model Comparison (Average)
Llama-3-70B-Instruct 0.785
tulu-2-dpo-13b 0.732
Eurus-RM-7b 0.863
PROMETHEUS-7b-v2.0 0.765
UnifiedJudge-3B 0.865

Table 11: Performance comparison on Reasoning category

As shown in Table 11, the performance of our model varies across different subsets of data.
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It achieves high accuracy in code generation tasks but relatively lower performance in math-
related data, with an accuracy of 0.702. In general, our model maintains a high average
performance in this category, comparable to that of Eurus-RM-7b. This indicates that while
our model excels in code generation, it faces challenges in math-related tasks where the selected
responses are human-written and the rejected ones are generated by GPT-4.

The exceptional performance of our model on code-related datasets can be attributed to
its foundational model. The Qwen2.5-3B-Instruct model is pre-trained with coding-related
knowledge, which gives it an advantage in code generation tasks. However, mathematical
problems that are written purely manually by humans represent knowledge that has not been
exposed to the model during training. This distinction may explain the performance difference
between the two types of tasks.

6 Discussion

Following a thorough evaluation, which included both core performance tests and detailed
analytical experiments, our specially trained reasoning model has demonstrated strong com-
petitiveness in the demanding task of using LLMs as judges.

Across multiple benchmarks, our model consistently either outperforms or nearly matches the
performance of current state-of-the-art models. This is a substantial achievement, especially
considering its size. As a lightweight 3B model, it offers unique high efficiency and reduced
resource requirements without making any compromises on its powerful judging capabilities.
This makes it an exceptionally valuable and practical solution for various evaluation needs.

By combining diverse training data with custom reward designs specifically adapted for differ-
ent datasets, our model achieves remarkable performance in its evaluation capabilities. This
approach allows our model to be evaluated both in point-wise and pair-wise manners. Fur-
thermore, our model is designed to provide refined judgments and clear scalar scores, enabling
more precise and straightforward comparisons. This output capability means that our model
can effectively cover most relevant evaluation scenarios, offering adaptable and insightful as-
sessments for a wide range of tasks.

In addition to just basic performance evaluations, we also carefully evaluated our model for
potential position and length biases. What we found was quite encouraging: swapping the order
of responses did not significantly change the performance of our model. Both our model and
other top-performing, state-of-the-art models consistently showed very stable results on these
position-swapped data. This high consistency tells us something important: models trained
using methods like supervised fine-tuning or reinforcement learning show good ability to resist
interference based on where responses are placed. We saw this confirmed across both bench-
marks that we tested, which means that these training methods help models truly understand
the content rather than just reacting to its layout.

Following a series of experiments and detailed analysis concerning our model’s behavior when
processing input response pairs with significant differences in length, we found that the model
does exhibit a length bias. The results from two distinct scenarios, one where a shorter response
is better and another where a longer response is better, help us to reach this conclusion. As the
difference in length between responses becomes larger, particularly when one response exceeds
the length of the other by 80% or more, the model output is affected. In these situations, the
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model tends to select the longer response. This tendency appears somewhat logical, as longer
responses often contain more information, regardless of whether that information is entirely
useful or partly redundant. The model seems to be more inclined to choose what appears to be
the more informative option, especially in contrast to considerably shorter inputs. Therefore,
enhancing the model’s ability to resist this kind of length interference remains a challenging
issue that warrants further research and development.

Our analysis of the model’s predicted scores and reliability reveals varying score distributions
across different benches. However, a common pattern is the polarization in absolute scores,
with the model rarely assigning ”middle of the road” ratings. In the score difference distribution,
many cases show that the model considers the quality of the two responses very similar. The
Brier scores across different benches further indicate that there is room for the model to
improve.

Through our analysis of the model’s performance across different categories, we have identified
areas for improvement, particularly in handling high-difficulty data. When the quality of two
responses is very close, the model needs a high ability to understand the instructions. Ironically,
the model must be better aligned with human preferences even in scenarios where humans
might make errors. In addition, we found that the model has significant room for improvement
in terms of safety. Currently, the model tends to select responses that respond directly to
the prompt, regardless of potential danger or harmfulness. This highlights the critical need to
incorporate safety-related data into the training process. In the reasoning category, our model
struggles when confronted with out of domain knowledge, meaning information that it has not
been explicitly trained on. This limitation becomes particularly evident in tasks that require
mathematical reasoning, where the model might lack the deep understanding or procedural
knowledge necessary to solve complex problems outside of its training data. To enhance its
performance, external tools or systems such as RAG are suggested.

There are also challenges. Although our 3B model is notably lightweight and efficient, par-
ticularly during the inference phase, it is an undeniable fact that currently popular or high-
performing models in the field often possess larger sizes. This presents a clear avenue for
future development: expanding our model’s size, following the approach we have established,
holds substantial potential for further performance gains. Furthermore, compared to current
state-of-the-art models, we deliberately made a trade-off in the volume of our training data. In
order to facilitate training on both point-wise and pair-wise data simultaneously, we ensured
that the quantities of these two data types were kept equal and applied filtering processes.
As a direct consequence of this strategic decision, our model was ultimately trained with less
data in each specific dimension (point-wise and pair-wise) than many other competing models.
Addressing this limitation by potentially increasing the volume and diversity of our training
data in future iterations could also contribute to improved performance.

7 Conclusion

We introduced UnifiedJudge, a lightweight 3B-sized reasoning model specifically designed for
the domain of LLM as a Judge. Our model consistently demonstrates excellent performance
in this critical application area.

One of UnifiedJudge’s key strengths lies in its multidimensional output capabilities in open QA

37



scenarios. Its inherent scalability is clearly evident in its ability to generate distinct judgments
and comprehensive scores for both point-wise and pair-wise data. These judgments are not just
numerical or a preferance; they also incorporate the model’s thought process and evaluation
methodology, providing valuable insights into its reasoning. Through a series of experiments
and in-depth analysis, the competitiveness of UnifiedJudge against current state-of-the-art
models has been further confirmed. Moreover, through targeted analytical experiments, we
have thoroughly explored how our model performs in various input situations, gaining a deeper
understanding of the model.

Following a thorough analysis of our current work with UnifiedJudge, we have identified several
promising directions for future work. Firstly, expansion involves increasing the model’s size,
which would allow us to develop a comprehensive model family that offers a wider range of
options tailored to different computational resources and performance requirements, thereby
enhancing its practicality across various applications. Secondly, our goal is to collect more
high-quality, multidimensional data. This expanded data set can be crucial for enhancing the
model’s versatility. Specifically, we plan to move beyond everyday or common-use cases and
include fields requiring specialized knowledge, which would equip UnifiedJudge to handle more
complex evaluation scenarios. Finally, a key focus will be on improving our training methods
to boost the model’s robustness. For instance, focusing on strengthening its ability to resist
interference from length differences in input responses, directly addressing the bias observed
in our current analysis. In addition, other advances are being explored to further improve its
overall performance in various judging tasks.
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A Appendix

name value

batch size 512
max prompt length 4096
max response length 1024
actor.optim.learning rate 1e-6
critic.optim.learning rate 1e-5
total epochs 3

Table 12: Hyperparameters used to train

name value

inference engine vllm
gpu memory utilization 0.9
max number of sequence length 1024
temperature 1.0
top p 1.0
max tokens 1024

Table 13: Hyperparameters used to inference
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Figure 18: Prompt used for testing Promethus v1.0
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Figure 19: Prompt used for testing Promethus v2.0
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Figure 20: Prompt used for testing judgeLRM
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Figure 21: Generic prompt used for different benches
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Figure 22: Another case when shorter response is better
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Figure 23: mean prompt length over 1179 training steps

Figure 24: Performance under different length differences in point-wise scenarios

Figure 25: Score distribution on Judge-Bench
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Figure 26: Reliability Analysis on Judge-Bench
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