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Abstract

Fire risk assessment remains challenging, as many existing models are
data-intensive, computationally costly, or function as ’black boxes’. This
thesis presents a framework that integrates a spatiotemporal network (Chron-
net) with a Susceptible-Infected-Susceptible (SIS) epidemic model to re-
produce the complex spatiotemporal dynamics of fire spread. Using Colom-
bia as a case study with 12 years of VIIRS satellite data, the framework first
transforms thermal anomaly detections into a directed, weighted network
of sequential ignition events. The SIS model is then applied to compute
steady-state burning probabilities, which we use as an indicator of fire
risk. In the evaluation framework, a key contribution is the distinction be-
tween spontaneous ignitions and network-driven spread, ensuring evalu-
ation focuses on dynamics the model is designed to capture. The results
demonstrate that the Chronnet-SIS framework effectively captures these
spatiotemporal patterns, consistently outperforming a PageRank central-
ity baseline in identifying high-risk areas, as measured by Average Re-
call (AR) and Normalized Discounted Cumulative Gain (nDCG). An abla-
tion study confirms the model’s robustness, showing that its explanatory
power stems from modeling inter-cell contagion rather than just fire per-
sistence. This research validates epidemic modeling as an interpretable
tool for understanding complex fire dynamics, offering a valuable data-
driven method for risk assessment.
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1 INTRODUCTION

1 Introduction

Fires are a growing global concern, with increasing frequency and inten-
sity driven by climate change and human activity. Over long periods, fire has
been a fundamental ecological and evolutionary process, regulating vegetation
regeneration, nutrient cycling, biodiversity patterns and other ecosystem func-
tions [1]. However, the ability of fires to spread across wide regions remains a
serious risk. These fires cause immense environmental destruction, contribut-
ing to carbon emissions, soil degradation, and biodiversity loss. Hence under-
standing and assessing the risk of the complex spatiotemporal spread of these
fires is important for developing effective prevention and mitigation strategies.

Existing fire spread models, such as physics-based [2], semi-empirical mod-
els [3] and simulation models [4]. These method often demand precise envi-
ronmental data, such as wind speed and detailed geographic and vegetation
data (i.e, fuel type), which makes them making them challenging to apply
in practice. More advanced graph-based deep learning models [5] [6] can be
computationally intensive and difficult to interpret due to their ’black-box’ na-
ture. A promising alternative is to investigate whether a simple network-based
spreading process, such as the Susceptible-Infected-Susceptible (SIS) model
from epidemiology, can reproduce the complex spatiotemporal dynamics of
fire spread. Although previous research [7] [8] has explored the theoretical use
of epidemic-based models for fire dynamics, their application to real-world, re-
current fire data for risk assessment has been limited. This research addresses
this critical gap by developing a data-driven modeling approach that can ex-
tract dynamic spread patterns from historical observations.

Specifically, we combine two methodologies to estimate fire risk. We first
employ Chronnet [9], a method that constructs a spatiotemporal network from
historical data to model how fires spread between locations over time. It in-
volves linking spatial grid cells in the chronological order of their occurrences.
This network then provides the structure for a Susceptible-Infected-Susceptible
(SIS) model [10], an epidemic framework where each grid cell (or node) transi-
tions between a burning (infected) state and a non-burning (susceptible) state.
Using this combined approach, we estimate fire risk, which is defined as the
probability of a grid cell being burning state. This allow us to identify critical
regions for intervention.

To demonstrate and validate this framework, we apply it to a case study in
Colombia, a nation where understanding fire spread is vital for its ecological
health and safety. The country presents a challenge for fire management, its
wide range of ecosystems and high biological diversity make nationwide fire
monitoring difficult. This challenge is worsened by consistently high fire activ-
ity, with occurrences concentrated in the Orinoquia, Amazon, and Caribbean
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1 INTRODUCTION

regions [11]. In recent years, satellite-based thermal anomaly detection data
from MODIS and VIIRS have become essential for locating ignition points and
identifying high-density fire regions [12]. However, most methods using these
datasets primarily focus on visualizing current fire activity rather than model-
ing how fires spread dynamically across space and time. This limits their utility
for fire risk assessment and preventive management strategies. Our modeling
approach can overcome this limitation by capturing the dynamics of fire prop-
agation over time. To evaluate our model’s effectiveness, we benchmark its
performance against PageRank [13], a well-known graph centrality algorithm
that measures the importance of nodes within a network.

This thesis aims to address the following research questions:

1. To what extent can a Chronnet-based network, constructed from histor-
ical satellite data, capture the spatiotemporal dynamics of fire spread in
Colombia?

2. How can a network-based Susceptible-Infected-Susceptible (SIS) model
be effectively applied to this network to assess fire risk?

3. How does the SIS model compare to a baseline like PageRank in ranking
high-risk areas?

This thesis makes the following key contributions. It presents a modeling
framework that combines Chronnet and a network-based SIS model to analyze
the spatiotemporal spread of fires, and demonstrates its application to real-
world fire data from Colombia. A major contribution is the important distinc-
tion between spontaneous fires and network-driven ones, which is a necessary
step for correctly evaluating any propagation-focused model. The reason for
this separation is to align the evaluation with the model’s actual capabilities.
Spontaneous fire represent new ignitions, while network-driven fires capture
propagation within the system. In this framework, network-driven dynamics
include both inter-cell spread (between neighboring cells) and intra-cell per-
sistence (self-loops, continued burning within the same cell). By adopting this
definition, model evaluation focuses on the propagation dynamics that Chron-
net–SIS is designed to capture. We also show through ablation study that SIS
model’s performance primarily stems from its ability to capture the inter-cell
fire spread pattern, rather the intra-cell persistence (self-loops). Furthermore,
the thesis also includes a systematic analysis of how different grid sizes affect
network structure and model results, helping to find a suitable resolution for
fire modeling. Finally, the proposed model shows a clear advantage over the
PageRank baseline in identifying high-risk areas task. This result validates the
approach of modeling fire as a dynamic contagion process.
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2 RELATED WORK

This thesis is organized as follows. Section 2, Related Work, reviews exist-
ing fire spread models, with a focus on graph-based and epidemic-inspired
approaches that inform our method. Section 3, Dataset, introduces the dataset
and describes key preprocessing steps, including hexagonal grid generation
and temporal aggregation. Section 4, Method and Experimental Design, presents
the proposed modeling framework, which combines Chronnet with a network
based SIS model, and explains the experimental design and evaluation metrics.
Section 5, Results and Analysis, reports the experimental results and provides
analysis. Section 6, Conclusion, concludes the thesis by summarizing the con-
tributions, discussing the findings, and outlining possible directions for future
work.

2 Related Work

In this part, we review how other works have modeled fire spread, with
a particular focus on graph-based approaches. First we discuss methods for
graph construction, and then turn to models of the spreading dynamics, focus-
ing especially on epidemic based models. The papers included were selected
because they either inform our own methodological choices or highlight gaps
that our work seeks to address.

Fire spread are complex spatiotemporal phenomena influenced by weather,
land features, vegetation, and human activities [14]. Conventional fire model
include statistical models [15], physics-based models [2] , semi-empirical mod-
els [3], simulation models [4] and machine learning model. Among these,
graph-based model, ranging from traditional network simulations to modern
graph-based machine learning, have emerged as a prominent approach for its
effectiveness in capturing the spatial and temporal dynamics of fire spread.

Graph-based model often represent complex fire spread process in a net-
work form. The graph construction method plays an important role in fire
spread modeling. One major method is to represent the physical landscape
as a network of nodes connected by edges that represent potential fire trans-
mission pathway. One early but influential example is Finney’s study [16]. In
his work, the terrain is divided into regularly spaced nodes ( square grids )
with edges weighted by the time it takes fire to travel between nodes. Fire
spread simulation then can be treated to find minimum travel time paths on
this graph from the ignition point. This method is computationally efficient
and can capture directional effects like winds. Encinas’ work [17] additionally
shows that using hexagonal grids could help overcome the limitations of using
square grids as spatial representation elements. Later studies build to improve
spatial graph representation by using irregular mesh or graph that better match
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terrain and fuel heterogeneity. For example, Johnston [18] introduced an irreg-
ular grid to minimize the error introduced by the regular grid-based model.
Stepanov and Smith [19] use the Delaunay triangulation to represent the land-
scape and then applying shortest-path algorithms to propagate fire across the
mesh. Hajian [20] further employed Delaunay triangulation in their network
construction and treated fire spread as a stochastic shortest-path problem on
a graph. While these methods are good at integrating fire physics via edge
weights by adjusting the spatial representation method, they suffer from the
increasing complexity of constructing and validating of the graph. For exam-
ple, Jiang [5] mention that triangulating the landscape and calibrating edge
travel times require careful preprocessing. Alternatively, Ferreira [9] proposed
Chronnet model which focus on extracting fire spread patterns directly from
spatiotemporal fire detection data, without assumption about physical fuel or
terrain properties. It offers a computationally efficient way to construct a di-
rected weighted network where nodes represent spatial grid cells and edges
represent the consecutive occurrences of fire events between nodes. This ap-
proach can capture actual patterns of fire propagation across space and time,
providing a more robust framework for fire spread modeling. We build on this
work to further validate the use of Chronnet in fire spread studies and assess
its modeling capability.

Building on the graph representations introduced above, a key challenge
lies in how to model the actual fire spread dynamics over these structures.
Traditional physics-based models often rely on precise parameters (like wind
speed, slope, and humidity) to simulate fire behavior, but they’re usually hard
to apply in areas with limited data. Latest graph-based deep learning models
[5] [6] might perform well in fire simulation, but their interoperability is low,
and they require a lot of training data and computational resources (and may
also lack physical transparency). Alternatively, fire spreading can be modeled
using epidemic models, which are originally designed to simulate the trans-
mission of diseases. The idea is that fire spread is like disease transmission,
which follows a process of local interactions across a network. Given the sim-
ilarity between fire spread and disease transmission, it is natural to consider
using epidemic model to describe fire dynamics. Indeed, because epidemic
models are well-suited for modeling such network-based spreading processes,
they have been adopted in a wide range of domains beyond epidemiology,
such as modeling information spread on social networks [21], contagion in fi-
nancial systems [22], and traffic congestion in air transportation networks [23].
This also inspired the use of epidemic models to simulate fire spread. More
importantly, epidemic models have advantages in simplicity, computational
efficiency, and interoperability compared to others.

The work presented in [10] introduces the two most general epidemic mod-
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els and their variants: the Susceptible-Infected-Susceptible (SIS) and Susceptible-
Infected-Removed (SIR) models. It then further extends these models to net-
worked scenarios using mean-field approximations. In the SIS model, individ-
uals can transition from the infected state back to the susceptible state, allow-
ing repeated infections over time. In contrast, the SIR model assumes that once
infected individuals recover, they gain permanent immunity. These models
serve as the foundation for analyzing contagion dynamics in various systems.
Building on this epidemic framework, researcher have explored on identifying
influential nodes in the network based epidemic system to help in hindering
epidemics. Methods can be grouped into three types. The first group focuses
on global structural features, such as K-shell index [24] and its variants[25].
The second use local information like node degree or clustering coefficient [26]
to estimate a node’s influence. The third group considers the actual spreading
process, including centrality metrics obtained from the steady state of some
dynamics, such as random walk centrality [27] . In the context for our study,
we follow the third approach, as it enables us to better capture the interplay
between fire recurrence, spatial connectively and dynamic contagion patterns.

While the identification of influential nodes has been well studied in gen-
eral epidemic spreading processes, relatively few works have focused on ap-
plying epidemic-based frameworks to model and analyze real-world fire dy-
namics, and most of them remain theoretical. Generally, SIS-based frameworks
are typically used to explore recurrent fire dynamic or to design control prob-
lems rather than to simulate a single fire event’s spread. For example, Somers
and Manchester [7] introduce a fire management approach inspired by the SIS
(Susceptible-Infected-Susceptible) model. They treated a landscape as a graph,
where each node represent a location that can transition between burning and
non-burning stats, like a SIS cycle. They develop an algorithm to generate ”pri-
ority maps” for surveillance using positive system theory. In their work, the
infection rate models the fire spread between connected cells, while the recov-
ery rate refers to the rate at which burning areas become non-burning again.
They use the SIS model’s analytical properties to rank areas by how critical
they are to overall fire spread. While their work shows that SIS model dy-
namic can effectively model fire spread for prioritization tasks, the approach is
quite theoretical and is evaluated only on synthetic data. In contrast, SIR-based
models are more suited for modeling fire spreading process. In SIR framework,
once a location burns it transition to a removed state that no longer burn, while
it can be re-ignited in SIS framework. Bosters et al.[8] introduce a stochastic
compartmental model inspired by SIR framework. In their approach, each grid
cell transitions among three discrete states: unburned (susceptible), burning
(infected), and burned-out (removed). Their model extends traditional lattice
spread rules by using a wind-weighted and probabilistic neighborhood struc-
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ture and can estimate the probability of each cell being in a given state at every
time step. They demonstrate that SIR-based model can replicate know spread
patterns. While both SIS and SIR models offer valuable insights into fire dy-
namics, existing applications remain mostly theoretical. There is a clear need
for studies that bridge this gap by applying epidemic models to real-world fire
data for risk assessment, particularly for those capable of modeling recurrent
fire patterns. In our case, the SIS framework is more suitable than SIR because
the spatial resolution we are working with is quite coarse and the temporal
scale is 12 years, so a cell can experience multiple burning status within the
study period.

3 Dataset

This section introduces the VIIRS 375m Active Fire dataset used for this
study, covering thermal anomaly detection data in Colombia from 2012 to 2024,
and describes the key preprocessing steps for network construction. These
steps include splitting the study area with a hexagonal grid for spatial struc-
ture and aggregating fire events into 12-hour time windows. This temporal
aggregation is crucial for addressing data sparsity and satellite observational
biases.

3.1 Data Sources

We used the VIIRS 375m Active Fire product. This product provides global
active fire detection with geographic location, date, confidence, additional in-
formation for each fire at 375m resolution. It comes from a satellite sensor
called VIIRS, which is on the Suomi NPP and NOAA-20 satellites, managed
by NASA and NOAA. It detects heat and fires on Earth using thermal imaging.
This product works well with another fire detection tool called MODIS. Both
tools are good at identifying hotspots, but VIIRS has better image resolution,
meaning it can detect smaller fires more accurately and provides a clearer pic-
ture of large fires. Because of this, the 375m data is useful for fire management,
such as real-time alerts, and for scientific research that requires detailed fire
maps. It is one of the datasets widely used in fire spread research. The user
guide can be found at this link: VIIRS C2 AF-375m User Guide. The dataset
can be downloaded here: NASA FIRMS Download Page.

In our study, we only use the fire event data across Colombia from 2012
to 2024. We removed the low confidence fire events (keeping 94% of the fire
events) to improve the accuracy of the dataset and to reduce potential false
positives. The following are some key attributes we use in our study.
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Table 1: Description of VIIRS 375m Active Fire Product Attributes

Attribute Description
Latitude Center of nominal 375 m fire pixel.
Longitude Center of nominal 375 m fire pixel.
Acq Time Time of acquisition/overpass of the satellite (in UTC).
Confidence An indicator of the quality of individual hotspot/fire

pixels, assigned as low, nominal, or high. This value is
based on several algorithm criteria including temper-
ature anomalies, sun glint effects, and regional data
quality. Low confidence pixels may be affected by sun
glint (daytime) or South Atlantic Magnetic Anomaly
(nighttime). High confidence pixels correspond to
strong thermal anomalies.

3.2 Preliminary Data Exploration

Figure 1 and 2 show the monthly and quarterly fire count in Colombia
respectively. We can observe that fires mostly occur in Quarter 1, revealing a
strong seasonal trend in fire occurrences. Although our current model does not
account for seasonality, the seasonal patterns suggest we could improve it in
the future.
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Figure 1: Monthly fire counts in Colombia (2012–2024).

Figure 3 shows the hourly fire counts. The peak hours are concentrated
in two periods: morning (5–7 am) and evening (5–7 pm). This happens be-
cause the VIIRS satellite passes over Colombia (near the equator) twice a day.
This phenomenon might suggest that the acquisition time (acq time) is more
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Figure 2: Quarterly Fire Counts in Colombia (2012–2024).
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Figure 3: Hourly Fire Counts in Colombia (2012–2024).

influenced by the satellite observation schedule than by the actual temporal
sequence of fire events.

3.3 Spatial and Temporal Preprocessing

3.3.1 Hexagonal Grid Generation

We use a hexagonal grid to divide the study area into spatial units. This
helps build the Chronnet network. Hexagonal grids have advantages over
traditional rectangular grids. They are more evenly spaced, providing more
uniform coverage and reducing distortions. The side length of the hexagon is
denoted by r, it determines the size of each hexagon, which helps to adjust the
spatial resolution of ChronNet.
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We create the hexagonal grid in five steps:

1. Boundary Extraction

We first get the bounding box of the study area from the GeoDataFrame.
This box has the minimum and maximum x and y coordinates.

2. Grid Spacing

We use flat-topped hexagons. Each hexagon has a side length called
hex size r (in meters). The horizontal spacing is 1.5× hex size. The ver-
tical spacing is

√
3× hex size. These values make sure the hexagons fit

together neatly.

3. Center Point Generation

We create x and y coordinates for the hexagon centers. We offset every
other column by half the vertical spacing. This offset creates the staggered
layout of the grid.

4. Hexagon Construction

We calculate the six vertices for each center using polar coordinates. We
connect the vertices to create the hexagon shape.

5. Grid Assembly and Identification

We save all hexagons in a GeoDataFrame. Each hexagon has the same
coordinate reference system as the input data. We give each hexagon a
unique ID (cell ID).

This hexagonal grid covers the study area completely. Figure 4 is an exam-
ple of these flat-topped hexagons. It provides the spatial structure for building
the Chronnet network.

Figure 4: Flat-topped hexagons
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4 METHOD AND EXPERIMENTAL DESIGN

3.3.2 Time Aggregation

To deal with the sparsity problem in Chronnet graphs, and based on the
fact that satellites pass over Colombia twice a day and that fire detections are
concentrated in a few hours as shown in Section 3.2, we aggregated the fire
detection data into 12-hour intervals. This means that all observation times
(acq time) are grouped into two half-day periods: one from 00:00 to 11:59 and
the other from 12:00 to 23:59. This grouping not only matches the satellite’s
observation frequency but also helps maintain the correct temporal sequence
of fire detections.

From the perspective of Chronnet construction, this grouping strategy is im-
portant. Chronnet builds links between fire events in temporal order to form
a spatio-temporal network. Without this temporal aggregation, the fire events
in Colombia would be scattered across many narrow time slices, resulting in a
very sparse graph. In such cases, many cells would have no neighbors to con-
nect, making it difficult to construct meaningful edges. This sparsity severely
limits the ability to extract spread patterns or perform further network-based
analysis. For example, when using a grid size of 5000 meters without time ag-
gregation to construct a chronnet graph, the largest strongly connected compo-
nent (SCC) contains only about 2% of all nodes . In addition, temporal aggre-
gation helps to reduce the time bias introduced by the satellite’s observation
schedule. Fires detected in the same pass often have similar timestamps be-
cause the satellite scans large areas sequentially within a short time window.
However, these timestamps reflect the observation time not the actual ignition
time of each fire, this could lead to temporal bias in the data. By grouping
fire detection events into 12-hour window, we group nearby events together
regardless of slight difference in observation time, so that the resulting graph
have better approximates the real fire spread dynamics.

4 Method and Experimental Design

This section introduces the core methodology and experimental framework
of the study, designed to construct a model that effectively simulates fire spread
dynamics in Colombia and assesses its long-term risk. It begins by explain-
ing the construction of the Chronnet network, an event-chronological, directed,
and weighted graph. This network captures fire propagation patterns by map-
ping spatiotemporal fire event data onto a hexagonal grid and connecting fires
that are sequential in time and adjacent in space. Building on this network,
the study introduces a network-based Susceptible-Infected-Susceptible (SIS)
epidemic model. This model treats fire spread as a contagion process on the

10



4 METHOD AND EXPERIMENTAL DESIGN

Chronnet network, where each grid cell (node) can be in either a ”susceptible”
or an ”infected” (burning) state. By solving for the model’s steady-state solu-
tion, the fire risk for each cell can be estimated. Finally, the section outlines the
experimental design, including how an appropriate spatial resolution was se-
lected through sensitivity analysis and how the resulting network’s topological
properties were characterized. A comprehensive evaluation framework is also
defined. We first define the ground truth for the fire risk. Then we includes
metrics like Average Recall (AR) [23] and Normalized Discounted Cumulative
Gain (nDCG) [28] to assess the model’s ranking performance, while also using
Jensen-Shannon Divergence (JSD) [29] as a calibration metric for distributional
similarity. The model’s performance is benchmarked against PageRank [13] to
validate the effectiveness and potential advantages of the SIS model in assess-
ing fire risk.

4.1 Chronnet Construction

In this section, we describe how we build Chronnet from spatial-temporal
fire event data. Chronnet is an event-chronological, directed, and weighted
graph. We start by introducing the notation and then explain each step of the
process. These steps include data preparation and gridding, grouping events
by time, linking events in space and time, and calculating edge weights.

Let
E =

{
ei = (ℓi, ti) | i = 1, . . . , M

}
be our dataset of fire events. Each event ei is recorded at a geographic location
ℓi ∈ R2 and a time ti ∈ R>0. We start by assigning these events to a fixed
hexagonal grid. Then we connect hexagon cells in chronological order when
successive events occur close enough in space.

Formally, let
H = { h1, . . . , hN}

be the set of hexagon cells, each with side length L. Each cell hc has a unique
index c and a geometry Geom(hc). We use a spatial assignment function:

c : E → H, ei 7→ c(ei) ∈ H.

We assign each event ei to cell c(ei) if ℓi is inside Geom
(
c(ei)

)
.

Next, we divide time into intervals of length ∆t (for example, 12 hours). For
each event ei, we compute its time bin:

t∗i =
⌊
ti/∆t

⌋
∆t.

Sorting events by t∗i gives us groups:

G =
{
(hi, t∗i )

}
.

11
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We now build a directed graph G = (V, E, W). Let {ei}M
i=1 be our fire-event

observations, each assigned to hexagon cell ci = c(ei) and binned into time
slots

t∗i = ki ∆t, ki ∈ Z>0.

For each integer k, define the sets of fire event in successive bins:

Ek = { ei | t∗i = k ∆t}, Ek+1 = { ej | t∗j = (k + 1)∆t}.

Let xei , xej ∈ R2 be the centroid coordinates of fire events ei and ej, respec-
tively, dmax is defined as a threshold parameter that can be used to limit the
maximum distance between links. To restrict connections to only geographi-
cally neighboring nodes, we set the distance threshold dmax to the maximum
distance between two adjacent hexagonal cells, which is 2

√
3 · r.

If
∥xei − xej∥ ≤ dmax,

and i ∈ Ek, j ∈ Ek+1, then let ci and cj be the grid cells containing events ei
and ej. we then add a directed edge from cell c(ei) to c(ei) , if this edge already
exists, we increment its weight wij by one.

Repeating this for all k yields the full Chronnet graph. In addition, to re-
move noise and emphasize significant spatio-temporal patterns, we prune all
edges with weight less than or equal to w0. This helps to retain only the strongest
and most relevant connections between nodes. The algorithm 1 shows the
Chronnet construction in algorithmic form.

In our implementation, the sliding window parameter h is set to 1, as our fo-
cus is on capturing consecutive fire events to better model the temporal spread
of fires. The pruning threshold w0 is set to 2 to remove weak temporal connec-
tions. The spatial distance threshold dmax is set to 2

√
3 · r, which corresponds to

the maximum possible distance between two adjacent hexagonal cells of side
length r.

4.2 Network Based SIS Model for Fire Spread

This section explains how the Susceptible-Infected-Susceptible (SIS) epi-
demic model is adapted to a network framework to simulate fire spread dy-
namics. The model is applied to the constructed Chronnet graph, and the
computationally efficient N-Intertwined Mean-Field Approximation (NIMFA)
is used to estimate the burning probability of each node. The analysis focuses
on two key aspects: deriving the steady-state solution, which represents long-
term fire risk , and defining the epidemic threshold τ, a critical value based on
the network’s topology that determines if fire spread can be sustained.
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Algorithm 1 Chronnet Construction with Temporal Aggregation

Require: Fire-events {ei}M
i=1, binned time t∗i = ki∆t, cell assignment ci = σ(ei),

centroids xei , distance threshold dmax, pruning threshold w0
1: V ← ∅, E← ∅, W ← {}
2: for each integer k do
3: Ek ← { ei : t∗i = k ∆t}
4: Ek+1 ← { ej : t∗j = (k + 1)∆t}
5: for all (ei, ej) ∈ Ek × Ek+1 do
6: if ∥xei − xej∥ ≤ dmax then
7: u← cei , v← cej
8: if u /∈ V then
9: V ← V ∪ {u}

10: end if
11: if v /∈ V then
12: V ← V ∪ {v}
13: end if
14: if (u, v) /∈ E then
15: E← E ∪ {(u, v)}, Wuv ← 1
16: else
17: Wuv ←Wuv + 1
18: end if
19: end if
20: end for
21: end for
22: ▷ Prune weak edges
23: for all (u, v) ∈ E with Wuv ≤ w0 do
24: remove edge (u, v) from E and W
25: end for
26: return G = (V, E, W)
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4.2.1 Overview of the SIS Framework

The classical SIS model is developed to capture the dynamic behavior of epi-
demic processes. It describes a contagion process in which each node changes
between two states: susceptible (S) and infected (I). In a well-mixed population
of fixed size N, the dynamics can be written as follows, as described by Paré et
al. (2020) [10].

Ṡ(t) = −β S(t) I(t) + γ I(t), (1)

İ(t) = β S(t) I(t)− γ I(t), (2)

where β is the infection rate (contacts per unit time leading to transmission)
and γ is the recovery rate (return to susceptibility) .

This model captures simple contagion dynamics but assumes every unit
interacts equally with all others. However, real-world processes, such as fire
spread, often happen on complex networks instead of assuming uniform mix-
ing. In such cases, the spread dynamics depend on the specific connections
among spatial units.

To account for these interactions, we adopt a network-based SIS modeling
framework in which the spread of contagion is represented over a network
topology. In our study, we use the Chronnet graph to represent the spatiotem-
poral structure of fire spread. Each node i refers to a hexagonal grid cell, and
the directed edge weight wij refers to the pruned occurrence count of fire spread
from cell j to cell i, derived from the Chronnet construction based on consecu-
tive fire events.

For computational efficiency and tractability, we assume homogeneous in-
fection and recovery rates across the entire network, denoted by β and γ re-
spectively. Let vi(t) ∈ [0, 1] denote the probability that cell i is burning at time
t. Here, a node is defined as burning at time slot t if there is at least one fire
detection within this hexagon cell.

We estimate node infection probabilities using the mean-field approach rather
than simulating the full stochastic SIS process, which improves computational
efficiency. The N-Intertwined Mean-Field Approximation (NIMFA) is one of
the most accurate node-level mean-field approximations for network-based SIS
models. It assumes that the infection probability of a node is independent of its
neighbors, as shown in Van Mieghem’ work [30]. Under NIMFA, the homoge-
neous network-based SIS dynamics are expressed as:

dvi

dt
= (1− vi)β ∑

j
wijvj − γvi, i = 1, . . . , n (3)

where:
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• β > 0 is the global infection rate, representing the average tendency of a
burning cell ignites a neighboring unburned cell;

• γ > 0 is the global recovery rate, representing the tendency of a burning
cell to extinguish the fire;

• wi,j is the weight from cell i to cell j.

In matrix form:

v̇ = β(I − diag(v))Wv− γv, v = (v1, . . . , vn)
⊤

where:

• β > 0 is the global infection rate;

• γ > 0 is the global recovery rate;

• W is the adjacency matrix.

This homogeneous network-based SIS model enables us to capture the key
spatiotemporal dynamics of fire spread while maintaining a balance between
model complexity and computational efficiency.

4.2.2 Steady–State Solution of the SIS Model

In the SIS model, the steady-state infection probability v∗ can be used as a
reliable indicator for assessing fire risk. At steady state, dV(t)

dt = 0, It can be
obtained from Eq 3:

v̇i = (1− vi)β ∑
j

wijvj − γ vi = 0, (4)

In this work, the steady-state solution of the continuous-time N-intertwined
SIS model is found by solving a non-linear system of equations. This system
can be written as F(v) = 0, where the i-th component is given by:

fi(v) = β(1− vi)(Wv)i − γvi = 0 (5)

Here, (Wv)i = ∑n
j=1 Wijvj, β is the infection rate, and γ is the recovery rate.

To solve this system, we use a numerical root-finding algorithm, specifically
the hybr method from SciPy’s optimize.root function, which is a variant of the
Newton-Raphson method [31]. The core of Newton-like methods is an iterative
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process that refines an initial guess v(k) to find a better approximation v(k+1).
This update step is calculated by solving the linear system:

J(v(k))∆v = −F(v(k)) (6)

where ∆v = v(k+1) − v(k) is the update step and J(v(k)) is the Jacobian matrix
of the function F evaluated at the current point v(k).

The Jacobian matrix, which contains all first-order partial derivatives of the
system, is crucial for the efficiency and reliability of the solver. It provides the
best linear approximation of the function at a given point, essentially creating
a ”map” of the function’s local gradient that guides the solver to the root. By
providing Jacobian matrix, it avoids the slow and computationally expensive
process of numerically approximating the derivatives at every step.

The Jacobian matrix J for our system is an n× n matrix where each element
Jik is the partial derivative of the i-th function fi with respect to the k-th variable
vk. We derive it by differentiating Equation 5 with respect to vk:

Jik =
∂ fi

∂vk
=

∂

∂vk

[
β(1− vi)

(
n

∑
j=1

Wijvj

)]
− ∂

∂vk
(γvi) (7)

Applying the product rule to the first term gives:

∂

∂vk

[
β(1− vi)

(
n

∑
j=1

Wijvj

)]
= β(1− vi)Wik − βδik

(
n

∑
j=1

Wijvj

)
(8)

where δik is the Kronecker delta. The derivative of the second term is −γδik.
Combining these tow parts gives the complete expression for the Jacobian ele-
ment:

Jik = β(1− vi)Wik − βδik(Wv)i − γδik (9)

This can be expressed more compactly in matrix form. Letting u = Wv, the full
Jacobian matrix J is given by:

J = β ·
(
diag(1− v) ·W − diag(u)

)
− γ · In (10)

where diag(x) denotes a diagonal matrix with the elements of vector x on its
diagonal, and In is the n × n identity matrix. This is the precise formula im-
plemented in our code to ensure an efficient and robust computation of the SIS
model’s steady-state solution.

The following algorithm 2 shows the procedure for computing the steady-
state infection rate:
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Algorithm 2 Steady-State Solution of Continuous-Time N-Intertwined SIS
Model

1: function COMPUTE SIS STEADY STATE(W, β, γ)
2: n← number of rows of W
3: p(0) ← (1, . . . , 1)⊤ ▷ initial guess
4: function F(p)
5: u←W p
6: return β ·

(
(1− p)⊙ u

)
− γ p

7: end function
8: function J(p) ▷ J is the Jacobian of F
9: u←W p

10: return β
(
diag(1− p)W − diag(u)

)
− γ In

11: end function
12: v ← RootSolve

(
F, J, p(0), method = hybr, tol = 10−8, maxfev =

1000
)

13: if not Converged(v) then
14: v← (0, . . . , 0)⊤

15: end if
16: return v
17: end function

4.2.3 Fire Spread Threshold

In the stability analysis of the classic SIS model under homogeneous mixing,
the basic reproduction number R0, defined as

R0 =
β

γ
,

captures the potential severity of the viral spread. The corresponding epidemic
threshold is R0 = 1, meaning:

• If R0 > 1, the infection can spread and lead to an epidemic outbreak.

• If R0 ≤ 1, the infection dies out and the system converges to a disease-free
state.

In contrast, in the N-intertwined mean-field approximation (NIMFA) of the
network-based SIS model, the epidemic threshold depends on the underlying
topology. It is given by [30]

τc =
1

λmax(W)
,
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where λmax(W) is the largest eigenvalue (i.e., spectral radius) of the adjacency
matrix W of the network.

In this context, the effective infection rate is defined as τ = β/γ, where β is
the global infection (fire spread) rate and γ is the global recovery (extinguish-
ing) rate, then the condition for epidemic persistence becomes:

• If τ > τc, or equivalently β
γ > 1

λmax(W)
, the infection can persist in the

network and may reach a non-zero steady state.

• If τ ≤ τc, or equivalently β
γ ≤

1
λmax(W)

, the infection dies out and the
system tends to a disease-free equilibrium.

4.3 Experiment Design

This section introduces the experimental procedure, starting with the setup
and characterization of the network, then then moving on to the implementa-
tion, calibration, and evaluation of the SIS model.

4.3.1 Experimental Setup and Network Characterization

This part outlines the preparatory stages of our experiment, from selecting
the appropriate spatial resolution to characterizing the resulting network struc-
tures.

First, to understand how spatial resolution impacts the structure and spread
dynamics of the chronnet graph, we performed a grid resolution sensitivity
analysis. Specifically, we test a wide range of hexagonal cell sizes: 1000, 2000,
2375, 2750, 3000, 4000, 5000, 6000, and 7000 meters. For each resolution, we
built a Chronnet and computed two metrics: (1) the percentage of nodes con-
tained in the largest strongly connected component (SCC), and (2) the percent-
age of network-driven fire events occurring within that SCC. The first metric re-
flects the structural connectivity of the network at a given resolution, while the
second captures the strength of potential spread dynamics inferred from event
sequences. These metrics help identify grid sizes that balance network con-
nectivity and meaningful fire propagation patterns. Here, we compute metrics
focusing on SCC because it show good convergency quality for the following
SIS modeling and will be studied independently. The results of this sensitiv-
ity analysis are discussed in Section 5.1.1. After the grid resolution sensitivity
analysis, we select the 2000m, 3000m, and 5000m as representative cases for
all subsequent modeling, as they correspond to high, medium, and low spatial
resolution scenarios.
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For these three selected grid size, we then performed a detailed characteri-
zation of the Chronnet’s structural properties, with a focus on the two largest
SCCs. Specifically, we compute a set of structural metrics for each SCC:

• The number of nodes and edges

• The percentage of nodes and edges relative to the full graph

• The average shortest path length (L)

• The clustering coefficient (C)

• The small-worldness index S

The small-worldness index is designed to assess the extent to which each
SCC exhibits small-world properties:

S =
C/Crand

L/Lrand
,

where C and L are the clustering coefficient and average shortest path length
of the observed graph, and Crand and Lrand are the corresponding values com-
puted from a random graph with the same number of nodes and edges. A net-
work is typically considered small-world if S > 1. Since NetworkX, a Python
package for network analysis, does not provide a built-in small-worldness func-
tion, we implemented this computation by generating 10 random directed graphs
(with fixed edge count) using the nx.gnm random graph function and comput-
ing its average clustering and path length.

In addition, we explore the relationship between basic node metrics and the
ground truth burning probability vnet. This analysis aims to identify whether
structural positions in the network can serve as naive indicators of fire vulner-
ability, and to what extent they correlate with actual fire occurrence patterns.
These node metrics include the following:

• Degree (ki): The degree of a node i is the number of direct connections
(edges) it has to other nodes.

ki = ∑
j

Aij

where A is the adjacency matrix of the network. A higher degree may
suggest greater potential for fire spread due to more neighboring nodes.
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• Strength (si): In a weighted network, the strength of a node is the sum of
the weights of its connected edges.

si = ∑
j

wij

where wij is the weight of the edge between nodes i and j. Strength cap-
tures both the number and intensity of connections.

• PageRank (PRi): PageRank measures the importance of a node based on
the idea that connections from high-importance nodes contribute more.
It is computed iteratively as:

PRi = α ∑
j∈Ni

PRj

kout
j

+ (1− α)
1
N

whereNi is the set of in-neighbors of node i, kout
j is the out-degree of node

j, N is the total number of nodes, and α is the damping factor (commonly
0.85).

• Eigenvector Centrality (ECi): This metric assigns relative scores to nodes
based on the concept that connections to high-scoring nodes contribute
more to the score of the node.

ECi =
1
λ ∑

j
AijECj

where λ is a constant (the largest eigenvalue of the adjacency matrix A).
Nodes connected to influential nodes receive higher scores.

• Betweenness Centrality (BCi): Betweenness centrality measures how of-
ten a node lies on the shortest paths between other pairs of nodes.

BCi = ∑
s ̸=i ̸=t

σst(i)
σst

where σst is the total number of shortest paths from node s to node t, and
σst(i) is the number of those paths that pass through i. High betweenness
may indicate a bottleneck node in fire propagation.

• Closeness Centrality (CCi): Closeness centrality of a node i is the recipro-
cal of the average shortest-path distance to all other nodes that are reach-
able from i. This metric reflects how efficiently a node can access other
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parts of the network. A higher value indicates that a node is, on average,
closer to all other nodes, allowing it to spread influence (or fire) more
rapidly.

CCi =
ni − 1

∑j∈Ri,j ̸=i d(i, j)

where Ri is the set of nodes reachable from node i, and ni = |Ri| is the
number of reachable nodes. If a node is isolated (ni = 1), its closeness
centrality is defined as 0. The term d(i, j) represents the shortest-path
distance from i to j.

• Clustering Coefficient (Ci): This metric quantifies how close the neigh-
bors of a node are to being a complete clique (i.e., fully connected among
themselves):

Ci =
2Ti

ki(ki − 1)

where Ti is the number of triangles (fully connected triplets) involving
node i, and ki is the degree of node i. A high clustering coefficient may
imply more localized spread potential.

4.3.2 Modeling and Evaluation Framework

This part introduces our framework for modeling fire risk using the SIS
model and for evaluating its performance.

A core component of our evaluation is a well-defined ground truth. Based
on the observation that network-driven fires show distinct spatio-temporal pat-
terns compared to spontaneous fires ( see 5.1.2 ), and given that Chronnet in-
herently captures only network-driven fire propagation, we label fire events as
either spontaneous or network-driven (self-loops are considered as network-
driven). Then we define the overall burning probability as a hybrid target:

vhybrid = vsf + (1− vsf)vnet,

where

• vhybrid is the overall burning probability of each cell,

• vsf is the spontaneous fire probability, and

• vnet is the conditional probability of a network-driven fire, given no spon-
taneous fire.
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Here, a cell is considered to be burning if at least one fire event occurs within
it. Specifically, cell i is labeled as having a spontaneous fire at time t if none of
its neighbors had a fire event at time t− 12h. Similarly , a network-driven fire
at cell i and time t is defined as a fire event where at least one neighboring cell
was burning at t− 12h. This condition aligns with the criteria for link creation
in the Chronnet construction method.

We estimate the probabilities of these events from historical fire records. Let
Nburn,i be the total number of burning occurrences in cell i, Ns f ,i the number of
spontaneous burning events, and Nobs,i the total number of observations (i.e.,
time bins). The overall burning probability (vhybrid,i) and the spontaneous fire
probability (vs f ,i) are:

vhybrid,i =
Nburn,i

Nobs,i

vs f ,i =
Ns f ,i

Nobs,i

Since the SIS model is designed to simulate the spread dynamics within the
network, its estimated steady-state infection probability should correspond to
the empirical probability of network-driven fires. We define this as our ground
truth, vnet, and derive it as follows:

vnet,i =
Nburn,i − Ns f ,i

Nobs,i − Ns f ,i

This value, vnet,i, represents the conditional probability of a fire occurring in
cell i due to network spread, given that it was not a spontaneous ignition. It
will serve as the target for evaluating our model’s performance. This definition
includes both fire persistence (self-loops) and inter-cell spread, since initial data
exploration in Section 5.1.3 showed that fire persistence with the same cell is
an important part of fire activity. To check that this choice does not bias the
evaluation, we also conduct a validation analysis in Section 5.1.3 to confirm
that the cell risk rankings are highly correlated with or without self-loops. This
supports using the broader definition of vnet as a stable ground truth for the
main evaluation.

To measure the model’s performance, we use three evaluation metrics, each
capturing a different aspect of performance:

• Average Recall (AR): This metric evaluates the ranking quality of the
model’s estimation. It measures how well the estimated ranking of burn-
ing probability aligns with the ground truth ranking. It is defined as:

AR =
1
N

N

∑
k=1

|Top− kpred ∩ Top− ktrue|
k
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where Top− kpred and Top− ktrue are the sets of top-k ranked cells accord-
ing to the estimated scores and the true vnet values, respectively. A higher
AR indicates better overall ranking agreement.

• Jensen-Shannon Divergence (JSD): This metric serves as a calibration
metric. It measures the similarity between the distribution of estimated
steady-state probabilities and the distribution of the ground-truth vnet
values. Both distributions are estimated using histograms with B = 100
bins over the overlapping range of positive values. Before computing the
JSD, we scale the values to the [0,1] interval using min-max normaliza-
tion. This normalization is crucial because the two distribution operate
on different scales. The empirical ground truth probabilities are very
low (in the [0, 0.1] range), while the SIS model’s estimation can span
to a much wider range that can close to 1.0, particularly when using a
high effective infection rate τ. The experiments with high τ are nec-
essary because our objective is to optimize the model’s ranking perfor-
mance, rather than achieving precise probabilistic estimation. However,
a good ranking metric alone doesn’t guarantee that the assigned scores
carry real-world meaning. For example, when the τ becomes high, the
SIS model tends to saturate: most nodes end up with similar value near 1,
making the estimation nearly uniform. This setting can still achieve high
Recall (AR) scores, but the output loses its ability to differentiate between
high and low risk areas. Given this setting, it is important to ensure that
the estimated probability distribution still preserves meaningful relative
differences and is not saturated. So we use JSD as a calibration metrics to
make that the distribution of estimated probabilities should resemble the
observed distribution of network-driven burning probability.

• Normalized Discounted Cumulative Gain (nDCG): To more evaluate
the model’s ability to prioritize the most critical high-risk cells, we use
nDCG. Unlike AR, nDCG places more weight on the correct ranking of
top-tier items, which is crucial for practical applications like resource al-
location in fire prevention. The nDCG at rank k is calculated as:

nDCG@k =
DCG@k
IDCG@k

where DCG@k =
k

∑
i=1

reli
log2(i + 1)

Here, reli is the relevance score of the item at position i (in our case, the
vnet value), and IDCG is the DCG score of a perfect ranking. We will
compare the nDCG@k scores of the SIS model and PageRank for different
values of k (e.g., 100, 300, 500, 1000).
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Regarding the SIS implementation part, our goal is to compute the steady-
state infection probability, which we use as a proxy for the estimated burning
probability of each node. For each grid size, we apply the SIS model to the two
largest strongly connected components (SCCs) respectively obtained from the
Chronnet graph. In our experiments, we first normalize the adjacency matrix
W by dividing it by its largest eigenvalue λmax(W). This transforms the epi-
demic threshold for each SCC from 1/λmax(W) to 1, allowing us to test various
values of τ = β/γ across different graphs under the same threshold scale. We
fix the recovery rate γ = 1, without losing generality, the infection rate β is
inferred as β = τ · γ. To compute the steady-state infection probabilities, we
solve the equations using the scipy.optimize.root.

The performance of the SIS model is highly dependent on the effective in-
fection rate, τ = β/γ. To select the optimal τ for each SCC obtained from
chronnet graph, we perform a parameter sweep and evaluate the model’s out-
put against the ground truth vnet using two distinct metrics: Average Recall
(AR) and Jensen-Shannon Divergence (JSD). In our experiment, we conducting
a parameter sweep over 100 values ranging from 1.1 to 100. The steady-state
infection probabilities are computed for each τ using scipy.optimize.root.
The optimal τ is then selected using a systematic procedure that aims to find a
trade-off point that minimizes JSD while maximizing a high and stable AR, so
that the optimal τ ensure both strong ranking performance and interpretable
risk scores. In practice, for each (grid size, SCC rank) combination, we selected
the τ value at the first turning point where JSD changes from decreasing to
increasing, and AR has already stabilized, which we define as the first point
where AR changes by less than 0.002 across two successive τ values. This turn-
ing point captures the trade-off between ranking stability and distribution fi-
delity. In cases where no such turning point was observed, we selected the τ
with the lowest JSD among those on the≥ 95% AR plateau, ensuring both high
ranking performance and low divergence. Finally, we applied a post-selection
check: if any other τ yielded both a lower JSD and a higher AR than the initially
selected one, we replaced it with the τ that achieved the highest AR among
these strictly better alternatives. This final step ensures that no dominated so-
lution is retained as optimal.

Once the optimal τ is determined, we conduct the final performance evalu-
ation. The calibrated SIS model’s estimation are compared against a PageRank
baseline. This comparison helps determine if the explicit modeling of epidemic
dynamics provides additional explanatory power. The final comparison uses
all three metrics (AR, JSD, and nDCG) to provide a comprehensive assessment
of whether the dynamic, non-linear SIS model offers an advantage over a static,
centrality-based approach in identifying fire risk. By using these three met-
rics, we evaluate not only its overall ranking performance but also its specific
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effectiveness in identifying top-priority areas and its ability to reproduce the
observed spatial risk distribution.

Here, we chose PageRank as the baseline because it offers a good balance be-
tween theoretical comparability and practical interpretability. Both PageRank
and the SIS model describe a kind of steady-state behavior. PageRank reflects
the long-term visit probability in a damped random walk, while the SIS model
captures the long-term infection probability under a mean-field approximation.
This makes them conceptually comparable. Besides, PageRank accounts for
the influence of high-risk neighbors, which better aligns with how fire spreads
through vulnerable areas. It’s also computationally efficient and easy to repro-
duce, which is useful for large-scale evaluations. More importantly, if the SIS
model consistently outperforms PageRank, it suggest incorporating actual epi-
demic dynamics provides additional explanatory power beyond what static
graph structure can offer. Other baselines like degree and strength were ex-
cluded. We did not select degree as a baseline because it lacks sufficient dis-
criminative ability in our network. As shown in Figure 7, the degree distribu-
tions are highly left-skewed, with over 80% of nodes having a degree less than
10. This lead to frequent overlap among node degrees, making it difficult to
distinguish node importance effectively. Strength was also excluded because
it directly reflects the frequency of network-driven fire events, which are al-
ready used in the construction of our ground truth, so using strength would
lead to a circular evaluation and cannot provide a fair comparison for model
performance.

Finally, to separate the effects of inter-cell spread from intra-cell persistence,
we conduct an ablation study to assess the impact of self-loops in the SIS model.
In this study, the SIS model was establish on a modified Chronnet graph where
all self-loop edges were removed. By comparing the performance of full net-
work against the no-self-loop network, we can determine whether the model’s
explanatory power stems from capturing the spread between cells or if it re-
lies heavily on the signal from fire persistence. This analysis provides deeper
insight into the robustness of the modeling framework and the nature of the
dynamics it captures.

5 Results and Analysis

This section presents a comprehensive analysis of the experimental results,
beginning with a validation of the modeling approach. We first investigate how
spatial resolution influences the inferred fire spread patterns in the Chronnet,
a step that justifies the selection of 2000m, 3000m, and 5000m as representative
grid sizes for subsequent analysis. Next, we validate the ground truth defi-
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nition, showing that it is reasonable to distinguish between spontaneous and
network-driven fires, and that it is robust to including self-loops. Then the
section characterizes the topological properties of these networks, examining
their degree and strength distributions, small-world characteristics, and the re-
lationship between various node metrics and observed fire behavior. The core
of the section evaluates the performance of the network-based SIS model. We
systematically compare its ability of ranking high-risk cells against a PageRank
baseline using three metrics:Average Recall (AR), Jensen-Shannon Divergence
(JSD), and nDCG. In addition, a qualitative assessment is provided by compar-
ing the spatial distribution of the model’s estimated long-term fire risk with
the ground truth patterns, confirming the model’s utility in identifying high-
priority regions. Finally, we conduct an ablation study to assess the impact of
self-loops on performance.

5.1 Method Validation

5.1.1 Chronnet Resolution Effects on fire Spread Patterns

In order to understand how spatial resolution influences the inferred spread
of fire in Chronnet, and to justify the selection of representative grid sizes for
subsequent analysis, we performed a sensitivity analysis by varying the grid
cell size between 1000 m and 7000 m. For each grid size, we built a Chron-
net graph. Each node represents a grid cell. Directed edges link consecutive
events in adjacent cells within a fixed time window of 12 hours. We then com-
puted two metrics: (1) the percentage of nodes contained in the largest strongly
connected component (SCC), and (2) the percentage of “network-driven” fire
events in that SCC. The percentage of nodes in the largest SCC reflects the struc-
tural connectivity of the spatial network at a given grid size, and the percentage
of network-driven fires in that SCC indicates the strength of spread dynamics
at that resolution.

Here, “Network-driven” fire events for node i are defined as events occur-
ring at time t that had at least one neighboring node burning at time t-12h. This
enable us to distinguish between spontaneous and network-driven fires. Since
Chronnet is built from event sequences, it can only capture network-driven
spread.

Fig 5 show the result. The figure shows a clear U-shaped, resolution-dependent
pattern. At high resolution (1,000–2,375 m), the largest SCC covers less than
25% of all active cells. As grid size increases, the largest-SCC node percentage
rises, but the network-driven fire events percentage falls, reaching a minimum
at around 3,000 m. This suggests that, as grid size increases, the largest SCC be-
gins to absorb many sparsely active nodes with with few network-driven fire
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events, reducing the density of network-driven fire events. However, when
grid size exceeds 3,000 m, the largest-SCC percentage increase more slowly ,
indicating that further increases in grid size gives smaller connectivity gains;
In particular, at low resolution ( grid size > 5,000 m) , the largest-SCC percent-
age remains almost constant, but the network-driven event percentage increase
sharply. This means more and more fire events have at least one “neighbor”
burning within the previous 12 hours. Because the grid is so large, cells that
are physically too far apart are treated as adjacent. As a result, many truly in-
dependent fires mistakenly are counted as network-driven, leading to a higher
density of network-driven fires than in the ground truth.

In addition, even at the largest grid size, fewer than one-third of the events
are actually connected through fire spread, indicating that the raw dataset are
dominated by spontaneous fire. Since spontaneous fires cannot be learned by
Chronnet or the SIS model, we should distinguish between network-driven
and spontaneous fire events when evaluating model performance.

Based on this sensitivity analysis, we selected three representative grid sizes
for our main experiments: 2000 m, 3000 m, and 5000 m. This selection was not
arbitrary but was made to capture the distinct network topologies observed
across the resolution spectrum. The 2000 m grid represents a high-resolution,
fragmented network ideal for studying local dynamics. The 3000 m grid of-
fers a balanced middle ground between the high and low resolutions. Finally,
the 5000 m grid is a low-resolution, highly aggregated network. It allows us
to evaluate the model’s performance on large-scale patterns, even with some
potential noise. Analyzing these three distinct cases ensures a comprehensive
evaluation of how network structure, as influenced by spatial scale, affects the
SIS model’s performance and outcomes
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5.1.2 Distinguishing Spontaneous and Network-Driven Fire Patterns

Since previous section showed that many fires in Colombia are isolated
events, not part of a clear spreading chain, it is essential to distinguish spon-
taneous and network-Driven fire types. The distinction is important because
chronnet and SIS model is designed to simulate spread dynamics within the
network, not the spontaneous ignitions. To investigate the relationship be-
tween these two fire types, we calculated the Spearman correlation between
the historical occurrence counts of spontaneous and network-driven fires for
each cell.

The results, presented in the table 2, show a weak to moderate correlation.
This correlation becomes weaker as the grid size gets smaller. At a small grid
size like 2000m, the high precision shows a very weak correlation (ρ=0.188),
indicating the locations of spontaneous fire are largely different from the areas
where fires persistently spread through the network. As the grid size increases
to 5000m, an aggregation effect slightly increases this correlation to a moderate
level (ρ=0.526).

To visually complement this finding, we also plot the geographic distribu-
tions of the actual risk for both fire types, as shown in Figure 6. For this vi-
sualization, we only use the 5000m grid size because it offers a clear balance
between spatial detail and readability.

In summary, because the correlation is never strong, the analysis confirms
that spontaneous and network-driven fires tend to occur in different areas, and
this difference is most obvious at smaller grid sizes. This finding validates
our methodological choice to evaluate the SIS model’s performance specifically
against the probability of network-driven fires vnet.

Grid Size Spearman’s ρ
2000 0.188
3000 0.318
5000 0.526

Table 2: Spearman correlation coefficients between Spontaneous and Network-
Driven Fire Occurrence for different grid sizes (all p values < 0.001).

5.1.3 Robustness of the Ground Truth Definition

Our choice to use a broader definition of vnet that includes self-loops is
driven by the high frequency of fire persistence observed in the data. As shown
in Table 3, the proportion of fires persisting within the same cell (self-loop fires)
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Figure 6: Spatial Distribution Comparison between Spontaneous and Network-
Driven Fire Risk at 5000m Grid Size

is often comparable to that of fires spreading between adjacent cells (inter-cell
fires).

One might question the inclusion of self loops (representing fire persistence)
in the definition of ’network-driven’ fire, as this term often implies spread to
neighbor cells, and this inclusion could distort the risk ranking obtained purely
from inter-cell spread. To address this, we computed the network driven burn-
ing probability twice: once including self loops (vnetw, sel f loops) and once exclud-
ing them (vnetwo, sel f loops), and then computed the spearman correlation between
them.

Table 3 showed that there is very high spearman’s ρ between these two met-
rics. This high correlation shows that the ranking of locations by their network-
driven risk remains highly stable, regardless of whether fire persistence (self-
loops) is included in the calculation. This suggest that cells with high suscep-
tibility to inter-cell spread also tend to show high persistence (self-loops). This
finding validates our choice to use the broader definition of vnet for evaluation,
as it represents a measure of a cell’s overall non-spontaneous fire activity.
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Grid Size Spearman’s ρ
(with vs. without self-loops)

Spontaneous
fire %

Self-loop
fire %

Network
(inter-cell fire) %

2000 0.83 84.9% 8.3% 6.7%
3000 0.89 84.2% 7.7% 8.1%
5000 0.96 79.4% 7.8% 12.8%

Table 3: Fire event composition and spearman’s ρ between vnet computed with
and without self-loops

5.2 Chronnet Network Characterization

This section introduces structural properties of the Chronnet graphs gener-
ated at the three selected resolutions.

5.2.1 Degree and Strength Distributions of Chronnet

Figure 7 shows the degree distributions for the entire chronnet network and
its two largest (SCC 1 and SCC 2) at three grid resolutions (hexagon side length
r = 2000, 3000, 5000). Each subplot shows the percentage of nodes at a given
degree k. The entire chronnet network is shown on the left, SCC 1 in the cen-
ter, and SCC 2 on the right. Figure 8 shows the same distributions on log–log
scatter plots. These plots helps to understand the distribution of the fire events
and how the tail of the distribution behaves.

At all resolution, the degree distribution show heavy tail pattern in the en-
tire chronnet graph. This means that that most nodes have less degree and only
a few nodes have high degree. These high-degree hubs is highly responsible
for spreading the fire across distant areas. In SCC 1 and SCC 2, the degree val-
ues are more balanced, this is expected because SCC are more connected than
the full network. When the grid size increases from 2000 to 5000, the tail in all
plots become heavier, this suggest that more nodes are linked and the network
tend to become more dense.

When comparing SCC 1 with SCC 2, Figure 7 shows that SCC 1 has a broader
peak, particularly at larger gird size. In the 3000 and 5000 cases, SCC 1 show
a shoulder or secondary peak, while SCC 2 is mostly unimodal. This suggests
that SCC 1 has a more dispersed degree distribution and greater structural het-
ergeneity.

Figure 9 shows the log-log strength distribution for the entire chronnet net-
work and its two largest (SCC 1 and SCC 2) at three grid resolutions (hexagon
side length r = 2000, 3000, 5000). In the entire chronnet network, the linear
trend suggests an underlying power-law pattern.
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5.2.2 Topological Metrics of Top 2 SCCs

Table 4 shows the topological metrics for the two largest SCCs in Chronnet
at different grid sizes. As the hexagon side length r increases from 2,000 to
5,000 meters, both of the two largest strongly connected components (SCCs)
in Chronnet grow in terms of size and density. For SCC 1, the proportion of
nodes increases from 11.6% to 42.7%, and edges from 20.6% to 62.2%. SCC
2 also grows from 5.4% to 21.9% of nodes and from 9.2% to 26.3% of edges.
The average degree rises steadily as well (SCC 1: 7.16→ 8.43→ 11.75; SCC 2:
6.92→ 8.38→ 9.68), which shows that the networks become denser with larger
grid sizes. This might be because more fire events fall into each cell, creating
more links between them.

All SCCs have high clustering coefficients C (around 0.43–0.46), which means
that the nodes tend to form tight local clusters, this is expected since nearby re-
gions typically share similar climate condition and land use. At the same time,
the networks also have small average path lengths (L from about 14.9 to 43.2),
the presence of hubs play a significant role in reducing the average path length.
As a result, the small-worldness values (between 12 and 29) indicate that these
SCCs are small-world networks [32] [33].

Compared with SCC 2, SCC 1 contains more nodes, a denser edge structure
and consistently higher small-worldness at all resolution.
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Grid Size SCC Rank nodes edges nodes (%) edges (%) avg deg L C small worldness

2,000 1 2,617 18,725 11.6 20.6 7.16 28.29 0.44 23.68
2 1,217 8,422 5.4 9.2 6.92 21.69 0.43 13.26

3,000 1 5,595 47,155 37.8 60.9 8.43 43.16 0.43 28.66
2 1,656 13,869 11.2 17.9 8.38 26.99 0.44 12.18

5,000 1 3,369 39,570 42.7 62.2 11.75 23.09 0.46 20.23
2 1,725 16,709 21.9 26.3 9.68 14.90 0.44 18.43

Table 4: Network metrics for the two largest SCCs in Chronnet across different
grid sizes

5.2.3 Relation between node metrics and fire behavior

Before we implement the SIS model to simulate fire spread dynamics, we
explore how network topology relates to fire behavior, we measured the core-
lation between basic metrics and the ground truth burning probability. The
ground truth here refers to the network-driven fire probability vnet described
Section 4.3.2. This analysis aims to identify whether structural positions in the
network can serve as naive indicators of fire vulnerability, and to what extent
they correlate with actual fire occurrence patterns.

In graph theory, centrality measures are commonly used to quantify the
importance or influence of nodes based on specific structural criteria. In our
case, we focus on the following node-level metrics: degree, strength, PageRank,
eigenvector centrality, betweenness centrality, closeness centrality and cluster-
ing coefficient. We compute the Spearman correlation between each metric and
the ground truth burning probability for each SCC across three grid sizes: 2000
m, 3000 m, and 5000 m. To calculate node metrics, we used standard centrality
measures. Specifically, we calculate clustering based on an undirected version
of the subgraph. PageRank was calculated with a damping factor of 0.85.

Figure 14 shows the scatter plots, and the table 5 presents the corresponding
Spearman correlation coefficients. Degree and strength are highly correlated
with the observed fire probabilities across all grid size SCCs across all SCCs
and all grid sizes, with Spearman coefficients ranging from 0.7 to 0.9. This is
expected as both metrics reflect how often a node is involved in fire transi-
tions. Since Chronnet is constructed based on sequential fire events between
spatial cells, these two metrics naturally capture the intensity and frequency of
network-driven fire activity.

PageRank shows a a moderate to strong correlation with vnet, with Spear-
man coefficients ranging from 0.5 to 0.7. This is reasonable because PageRank
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considers both the quantity and importance of incoming connections. Nodes
that frequently receive fire flows from influential neighbors are assigned higher
PageRank scores, which naturally aligh with a higher long-term likelihood of
burning.

We can observe that most centrality metrics that consider the impact of far-
away nodes, such as eigenvector, closeness, and betweenness, are not effec-
tive for estimating the network-driven fire probability, this is shown by their
low corelation with the ground truth values. It suggests that fire dynamics in
Chronnet are mainly governed by local, short-range interactions rather than by
global network position. In other words, a cell’s risk depends more on the fre-
quency of direct inflows from its neighbors, rather than its accessibility from
distant parts of the graph.

Clustering coefficient also shows weak correlation with network driven burn-
ing probability. This is expected because clustering measures how well a node’s
neighbors are connected to each other, while fire risk in Chronnet is driven
mainly by the incoming weighted flow to the node and by the direction and
temporal order of spread. In our computation, the clustering coefficient is
based on an undirected version of the graph, so it ignores both edge direction
and weights. Many high-risk cells receive strong incoming influence from mul-
tiple sources that are not connected to each other, which yields low clustering
but high risk.

Grid Size SCC Rank degree strength pagerank eigenvector betweenness closeness clustering

2,000 1 0.74 0.69 0.54 0.25 0.43 0.19 -0.12
2 0.86 0.83 0.62 0.43 0.43 0.43 -0.02

3,000 1 0.88 0.80 0.63 0.34 0.49 0.02 0.02
2 0.89 0.89 0.70 0.36 0.52 0.16 0.02

5,000 1 0.92 0.85 0.62 0.41 0.52 0.28 0.09
2 0.90 0.91 0.66 0.49 0.46 0.32 0.09

Table 5: Spearman correlation (r) between Node Centrality and vnet for different
grid sizes SCC

5.3 SIS Model Performance Analysis

This section presents the core evaluation of the network-based SIS model’s
ability to assess fire risk.
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5.3.1 Experimental Results Across Different τ

We evaluates the performance of the SIS model compared to PageRank
across different grid sizes and SCC ranks, focusing on how the choice of the
effective infection rate τ influences results. The experimental results are sum-
marized in Figure 10 and Table 6.

Figure 10 shows the experimental results across different values of τ, rang-
ing from 1.1 to 100. Each subplot shows the performance of SIS-based node
ranking under varying infection rate τ, evaluated using Average Recall (AR)
and Jensen-Shannon Divergence (JSD). Points represent different τ values, col-
ored by τ magnitude. The red star in Figure 10 marks the automatically se-
lected optimal τ, balancing high and stable AR with low JSD. Dashed lines indi-
cate the baseline performance using PageRank. If we aim to improve the rank-
ing probability of the SIS model, the maximal AR achieved by the SIS model is
higher than that of the PageRank baseline. This suggests that the SIS model has
better ranking capability than PageRank. However, if we aim to reproduce the
distribution of vnet, the situation is quite different. SIS achieves lower JSD than
PageRank in only two cases, at grid sizes 3000 and 5000, both corresponding
to the second-largest SCC. This indicates that the SIS model is not consistently
good at reproducing the overall distribution. In addition, lower JSD values
do not necessarily correspond to higher AR. This suggests a trade-off between
accurately approximating the steady-state distribution and maximizing node
ranking performance.

Across all subplots, we observe a consistent pattern: as τ increases, Average
Recall (AR) rise rapidly at first and then tend to plateau beyond a certain point,
while JSD improves (decreases) initially but later starts to get worse. This pat-
tern indicate that in the moderate τ region, the steady state infection rate vsis
distribution becomes polarized, which improves the ranking quality captured
by AR. However, when τ becomes very large, further increase bring very little
change to the ranking , but the steady state infected rates of all nodes become
saturated (close to 1), this mismatch with the ground truth causes JSD to dete-
riorate.

To select a suitable τ, we aim to find a balance point where AR already high
and stable, and JSD remain low. From the Figure 10, we can see that this usually
happen near the turning point where AR starts to plateau and JSD state to rise
again. These observations validate our τ-selection strategy, which identifies
the trade-off point where AR stabilizes and JSD begins to deteriorate. While
the actual selection is performed automatically (see Section 4.3.2), the turning
points correspond well to visually observable transitions in all SCCs across grid
sizes, suggesting that the selection is robust, consistent, and interpretable.

Moreover, we observe that as the grid size increases, the maximum AR

35



5 RESULTS AND ANALYSIS

achieved by the SIS model also improves. Because larger grid cells aggregate
more individual fire events, leading to a denser and more connected graph.
This increased connectivity can provide more robust and continuous pathways
for the SIS model to learn the spread dynamics. In addition, across all grid size,
the SIS model’s best Average Recall (AR) on the second-largest SCC (SCC 2)
consistently exceeds that on the largest SCC 1. This performance gap is likely
stems from SCC 2 reflecting more consistent fire spread patterns, which the SIS
model is better at capturing. In contrast, SCC 1, although larger, contains more
varied and potentially noisy dynamics, as indicated by the degree distribution
in Figure 8, which make it harder to model accurately. SCC 2 tends to repre-
sent clearer and more stable spatiotemporal pathways, which are more easily
picked up by the Chronnet edges and thus offer a cleaner signal for the SIS
model to learn from.

The optimal τ are showed in Table 6, it reveal that the optimal τ value is not
constant but varies across different grid sizes and strongly connected compo-
nents (SCCs). A notable finding for SCC 1 is the clear inverse pattern between
the proportion of network-driven events and the optimal τ across grid sizes.
The proportion of network-driven events (in descending order) is highest at
grid size = 2000, then 5000, and lowest at 3000. In contrast, the optimal τ for
SCC 1 is highest at grid size = 3000, then 5000, and lowest at 2000. This pat-
tern suggests that τ adapts to the strength of the fire spread signals captured
by Chronnet at different resolutions. When the proportion of network-driven
events is low (e.g., grid size = 3000), implying weaker or less distinct spread
signals, a larger τ is needed. This higher effective infection rate pushes the
SIS model to spread more aggressively, helping it overcome sparse or less co-
herent connectivity and better identify high-risk cells. When the proportion is
high (e.g., grid size = 2000), meaning the spread dynamics are captured more
efficiently, a smaller τ is enough to reach good performance without oversat-
urating the network. Overall, the optimal τ is not fixed but adjusts to balance
propagation and differentiation depending on the network structure.

After fixing optimal τ, we compare the SIS model with PageRank across
different grid sizes and SCC ranks. As shown in Table 6, the SIS model con-
sistently achieves higher Average Recall (AR), especially in the second-largest
SCCs. This suggests that the SIS model is more effective at capturing dynami-
cally influential nodes. The superiority of the SIS also suggest incorporating ac-
tual epidemic dynamics provides additional explanatory power beyond what
static graph structure can offer. However, when comparing the JSD, the SIS
does not consistently outperform PageRank in approximating the distribution
of fire occurrence. It achieves lower JSD than PageRank only in two cases. This
supports our earlier observation: a lower JSD does not always align with higher
Average Recall. It highlights a trade-off between reproducing the steady-state
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Figure 10: Trade-off between ranking accuracy and distribution similarity
across τ values for different grid sizes and SCC ranks.
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distribution and accurately ranking nodes by their importance. One possible
reason is that we use the same β and γ for all nodes, which may limit the
model’s ability to fully match the spatial heterogeneity in the empirical fire
patterns.

Grid Size SCC Rank Optimal τ Average Recall (AR) JSD

SIS PageRank ∆ SIS PageRank ∆

2000 1 16 0.67 0.65 +0.02 0.62 0.56 +0.06
2000 2 25 0.75 0.67 +0.08 0.53 0.49 +0.04
3000 1 48 0.74 0.68 +0.06 0.38 0.19 +0.19
3000 2 17 0.77 0.71 +0.06 0.16 0.35 -0.19
5000 1 29 0.76 0.67 +0.09 0.22 0.04 +0.18
5000 2 23 0.82 0.69 +0.13 0.18 0.32 -0.14

Table 6: Comparison of Average Recall (AR) and JSD between SIS and PageR-
ank with Optimal τ across different grid sizes and SCC ranks

5.3.2 Ranking Performance Evaluation using nDCG

To evaluate the ability of the SIS model to identify high-risk cells, we com-
pare its ranking performance against the PageRank baseline using the normal-
ized discounted cumulative gain (nDCG) metric. As shown in Figure 11, the
SIS model with the optimal τ consistently outperforms PageRank in most cases.
The improvement is especially clear in the top 300 and top 500 ranked cells.
This indicates that SIS is more effective at prioritizing nodes with high risk,
which are often the most critical for fire prevention. One possible reason is
that the SIS model incorporates contagion dynamics, where frequent influence
from burning neighbors increase the steady-state risk of high risk areas. The
optimal τ values in our results (around 16–50) are much higher than the epi-
demic threshold, which means the spreading is strong. In this situation, high
risk areas are pushed to very high steady-state probabilities. This helps SIS
bring the true high-risk cells to the top of the ranking. In contrast, weighted
PageRank relies on linear aggregation of edge weights, making it less effective
at distinguishing the high risk cells from less active ones.

As we extend the ranking window into the long-tail region, the performance
gap between SIS and PageRank becomes smaller. For example, in SCC 2, the
top 1000 ranks can cover a significant portion of its nodes (e.g., 60–80 percent).
While these nodes remain part of a strongly connected component, they typ-
ically exhibit similarly low fire activity and contribute less significantly to the
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Figure 11: nDCG Performance of SIS and PageRank at Different Top-k Thresh-
olds

core spread dynamics. These ”tail nodes” thus form a functionally homoge-
neous structure where meaningful distinctions in risk are difficult to establish.
Under such conditions, both SIS and PageRank tend to assign nearly uniform
and low scores to these nodes, making it difficult to distinguish high-priority
targets. While SIS‘s dynamics amplify risk through repeated exposure, which
are more meaningful in the densely connected core, these advantages become
less relevant in the tail, where fire events are sparse and irregular. As a result,
the advantage of SIS becomes smaller in these long-tail regions.

Specifically, at the 5000m grid size, we observe that in SCC 2, the SIS model
shows a reduced advantage in nDCG compared to PageRank, even though it
maintains a much higher Average Recall (AR) than in other cases. This per-
formance gap highlights a trade-off between recall and ranking precision. The
high AR in SCC 2 suggests that the SIS model is good at identifying a broad
set of high-risk cells, especially those prone to repeated fire events. However,
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its lower nDCG advantage implies that the model is less precise in ranking
the top-risk cells. One possible explanation is that with a coarse grid, multi-
ple fire events may be grouped into the same or neighboring cells, which blurs
the distinction between the most critical and second-most critical nodes. In this
case, the dynamic process in the SIS model may smooth out fine-grained differ-
ences between top nodes, while PageRank, relying on structural centrality, can
provide a more accurate ranking of key nodes. This shows the importance of
using multiple evaluation metrics and considering how spatial resolution and
network structure together affect model’s ability to differentiate fire risks.

5.3.3 Spatial Distribution of Fire Risk

Figure 12 and Figure 13 show the spatial distribution of actual fire risk vnet
(left) and the steady-state fire risk assessed by the SIS model (right) with the
optimal τ for grid size = 5000 m, in SCC 1 and SCC 2 respectively. These plots
are used to qualitatively compare whether the SIS model can capture the spatial
fire patterns at this resolution. We only show the results for grid size = 5000
m here because smaller grid sizes (e.g., 2000 m or 3000 m) contain too many
cells, making the visualizations cluttered and harder to interpret. The 5000 m
resolution provides a better visual balance between spatial detail and clarity.
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Figure 12: Grid Size = 5000, SCC 1: Spatial Distribution Comparison between
Actual Fire Risk and SIS Model Risk Assessment
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Figure 13: Grid Size = 5000, SCC 2: Spatial Distribution Comparison between
Actual Fire Risk and SIS Risk Assessment

For both SCC 1 and SCC 2 at grid size=5000m, we observe a strong visual
alignment between between the high-activity regions in the actual fire distri-
bution and the high-risk areas estimated by the SIS model. The model suc-
cessfully identifies key fire hotspots, concentrating assessed risk in regions that
historically experience frequent network-driven fire events. This spatial cor-
respondence reinforces the SIS model’s capability to effectively rank and pri-
oritize cells based on their long-term susceptibility to fire spread within the
constructed Chronnet.

A notable difference lies in the scale and intensity of the values represented
by the colorbars. The actual fire distribution displays relatively low proba-
bilities, reflecting the sparse nature of fire occurrences over time. In contrast,
the SIS model’s steady-state risk values are much higher, indicating a normal-
ized or relative risk measure rather than a direct empirical probability. This
distinction is consistent with our earlier findings regarding the trade-off be-
tween minimizing Jensen-Shannon Divergence (JSD) for distribution similar-
ity and maximizing Average Recall (AR) for ranking performance. The SIS
model tends to polarize risk scores, amplifying the distinction between highly
active and less active nodes, which is beneficial for ranking purposes, even if it
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does not precisely replicate the empirical probability distribution. Future work
could focus on improving the model, perhaps by incorporating heterogeneous
infection and recovery rates, to produce more accurate probabilistic forecasts
without sacrificing its strong ranking performance.

Furthermore, the estimated steady-state distribution often appears more
continuous and stronger in high-risk zones compared to the actual distribu-
tion. This is partly due to the relatively large τ values used which push many
cells toward higher steady-state probabilities. As a result, the SIS model high-
lights recurrent fire pathways more clearly, while the observed fire events are
discrete and tend to form more fragmented spatial patterns.

Comparing the two plots (SCC 1 vs. SCC 2) at grid size=5000m, we observe
that SCC 2, although smaller in size, often exhibits a more spatially coherent
high-risk region in the SIS estimation. In SCC 2, the steady state infection
rate tend to cluster within a contiguous area rather than being scattered across
the network. This spatial clarity likely contributes to its higher Average Recall
performance, indicating that at this coarser resolution, SCC 2 captures a more
structured and less noisy subset of fire spread patterns that the SIS model is
better able to represent.

Overall, while some discrepancies exist, such as minor over or under es-
timation in certain localized areas, the overall alignment between estimated
and observed patterns suggests that the SIS model provides a valuable tool for
identifying high-priority regions for fire prevention and management efforts.

5.3.4 Impact of Self-Loops on SIS Model Performance

Section 5.1.3 showed that there is a high spearman correlation between the
network-driven fire probability calculated with and without self-loops. The
high correlation suggests that fire persistence and inter-cell spread are closely
related phenomena. This raises the question of whether self-loops should be
included in the SIS model’s network structure. Since the model is designed to
capture propagation, adding self-loops, which represent persistence over time
rather than spread to neighboring nodes, might bias the estimation. To address
this, we conduct a ablation study to assess the impact of self-loop edges on the
SIS model’s performance.

We created a modified version of the Chronnet graph by removing all self-
loop edges. On these ”no-self-loop” networks, we ran the same SIS model
calibration and evaluation procedure as described in Section 4.3.2. We then
compared the steady-state risk estimation from this modified model against
the original ground truth.

The result of ablation study, presented in Table 7, show the robustness of
the SIS modeling framework. The main finding is that removing self-loops
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Grid Size SCC Rank Model Optimal τ AR JSD nDCG@100 nDCG@300 nDCG@500 nDCG@1000

2000

1
Original SIS 16 0.67 0.62 0.52 0.66 0.73 0.80

No-Self-Loop SIS 18 0.66 0.65 0.49 0.63 0.71 0.79
PageRank – 0.65 0.56 0.45 0.56 0.63 0.71

2
Original SIS 25 0.75 0.53 0.81 0.84 0.88 0.92

No-Self-Loop SIS 29 0.74 0.54 0.78 0.81 0.86 0.91
PageRank – 0.67 0.49 0.58 0.69 0.75 0.88

3000

1
Original SIS 48 0.74 0.38 0.57 0.68 0.73 0.79

No-Self-Loop SIS 46 0.74 0.37 0.57 0.67 0.73 0.79
PageRank – 0.68 0.19 0.56 0.59 0.62 0.68

2
Original SIS 17 0.77 0.16 0.74 0.77 0.79 0.81

No-Self-Loop SIS 13 0.77 0.20 0.53 0.60 0.63 0.66
PageRank – 0.71 0.35 0.66 0.72 0.77 0.86

5000

1
Original SIS 29 0.76 0.22 0.66 0.75 0.78 0.83

No-Self-Loop SIS 27 0.77 0.23 0.69 0.75 0.79 0.83
PageRank – 0.67 0.04 0.62 0.64 0.66 0.72

2
Original SIS 23 0.82 0.18 0.63 0.73 0.75 0.77

No-Self-Loop SIS 27 0.81 0.21 0.66 0.75 0.77 0.78
PageRank – 0.69 0.32 0.65 0.70 0.73 0.82

Table 7: Ablation study on the impact of self-loops.

edges from the Chronnet graph has a negligible impact on the model’s overall
ranking performance. A comparison between the ”Original SIS” and ”No-Self-
Loop SIS” models shows that the Average Recall (AR) scores remain very stable
across all grid sizes and SCCs, with differences less than 0.01. This indicates
that the model’s overall ranking capability is not dependent on information
about fire persistence (self-loops) .

In addition, the performance in ranking the most critical high-risk nodes,
as measured by nDCG, is mostly stable. At the 2,000m and 5,000m resolutions,
the model’s performance changes only slightly when self-loops are removed.
However, an unusual case occurs at the 3000m resolution for the second-largest
SCC (SCC 2). In this case, the nDCG performance of the No-Self-Loop SIS
model drops sharply. This outcome likely reflects a structural sensitivity: in this
moderately connected SCC, self-loops provide the additional signal needed to
distinguish top nodes.

More importantly, both SIS model outperform the PageRank baseline in
most cases, particularly on the ranking metrics. This shows that the advantage
of the SIS model is not due to self-loops but to its ability to capture the inter-cell
spread. Overall, this ablation study validates our modeling approach. While
the initial decision to include self-loops is justified because they represent a
real-world fire persistence phenomenon, this study confirms that the model’s
primary strength is its robustness. The main source of the model’s performance
is its ability to simulate fire spread across the network, which remains strong
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whether or not intra-cell persistence is included.

6 Conclusion

In this thesis, we developed and evaluated a data-driven framework to
model fire spread by integrating Chronnet, a spatiotemporal event network,
with the Susceptible–Infected–Susceptible (SIS) contagion model. We validated
this framework in a case study of Colombia using VIIRS active fire data, and
this method can be applied to any region with similar satellite observations,
such as from MODIS or VIIRS. The goal was to explore whether concepts from
epidemic modeling could offer a useful tool to understand fire spread patterns.

The main contribution is the Chronnet–SIS modeling framework. We trans-
formed VIIRS 375 m active fire detections into a directed, weighted graph by
binning events into 12-hour intervals and connecting fires that occurred in ad-
jacent hexagonal grid cells. On this network, we applied the continuous-time
N-Intertwined Mean-Field Approximation of the SIS model to estimate steady-
state burning probabilities, treating fire spread as a recurrent contagion process
similar to disease transmission.

To reduce the impact of satellite overpass bias and address the sparsity
problem of chronnet graph, we aggregated fire events into two half-day bins.
This improved the temporal consistency of the network while preserving the
sequence of events. We also applied a pruning threshold to remove low-weight
edges, which helped filter out noise and retain only plausible spread patterns.

To study how grid resolution influences the network, we tested a range
of hexagonal sizes from 1 km to 7 km. The analysis showed that grids finer
than 2 km led to fragmented, weakly connected structures, while coarser grids
above 5 km tended to merge unrelated ignitions, producing misleading con-
nections. The 2–5 km range appears to offer the best trade-off between preserv-
ing meaningful spatial relationships and minimizing noise. This result builds
a practical guideline for future applications, suggesting an effective range to
search for the most informative configuration when applying the framework
to other region. In addition, at 2 km, 3 km, and 5 km resolutions, we observed
clear small-world characteristics and heavy-tailed degree and strength distri-
butions, suggesting the existence of hub-like areas with high fire recurrence.

One important observation is that only about 20–30% of fire events within
the largest strongly connected components were actually connected in the net-
work across all tested grid sizes. This suggests that most of the detected ther-
mal anomalies in Colombia represent independent events rather than spatial
spread, at least under the tested grid size range. Although the minimum grid
size was constrained by the dataset resolution, using finer grids led to highly
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fragmented networks with very low connectivity, as indicated by the low ratio
of nodes in the largest strongly connected component. Such sparsity did not
support meaningful propagation modeling. The SIS model should therefore be
understood as describing the dynamics of spread where connections are de-
tectable, rather than modeling all ignition events. This validates our method
of distinguishing between spontaneous and network-driven fire during evalu-
ation.

For the SIS modeling, we calibrated the effective infection rate τ of the SIS
model by minimizing the Jensen–Shannon divergence between estimated and
observed distributions, and maximizing average recall for top-ranked cells.
While PageRank served as a baseline for static centrality, the SIS model consis-
tently achieved higher Average Recall (AR), suggesting it has a superior ability
to rank influential nodes dynamically. The improvement is particularly evident
in the top-ranked cells, which are mostly critical for prevention efforts. These
results demonstrate that fire spread risk is better captured through dynamic
propagation modeling than by static centrality measures. We further confirmed
the model’s robustness and demonstrated that its advantage derives from cap-
turing the complex contagion dynamics of inter-cell spread, rather than simply
relying on the strong signal of fire persistence (self-loops).

This study also has several limitations. First, while the model is good at
ranking which areas are at high risk, its estimated probability values are not
numerically aligned with the real-world data. This partly because we used ho-
mogeneous parameters for infection and recovery rates, which does not reflect
spatial differences in vegetation, climate, or fire management capacity. Second,
to address the sparsity problem in chronnet construction, we select the fixed 12-
hour temporal bins for satellite compatibility, but this could obscure finer-scale
dynamics, especially in fast-moving fires. Third, our model did not incorporate
environmental variables known to influence fire behavior, such as wind speed
and direction, elevation, and fuel availability, which limits the ecological real-
ism of the model. Fourth, dividing fire events into just two categories, that are
“spontaneous” and “network-driven”, could oversimplifies the spread mecha-
nism. In this study, a fire is labeled as network-driven if a neighboring cell was
burning in the previous 12-hour window; otherwise, it is considered sponta-
neous. This definition assumes that temporal succession and spatial proximity
are enough to imply a causal link. However, it fails to distinguish true propaga-
tion from events where a common external factor (e.g., lightning, arson) ignites
multiple nearby cells independently. More importantly, this framework treats
spontaneous fires as events outside the model’s core dynamic, when in real-
ity, they are the very ignition points that initiate the network-driven cascades.
By learning only from established propagation events, the model’s ability to
forecast the emergence of new fire clusters is inherently limited.
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Future work could address these gaps. One direction is to integrate more
data, such as burned are data. We can use this to group scattered fire hotspots
into single, complete fire events. This would create a network that better re-
flects real-world fire spread and would help solve the problem of network
sparsity. With a more reliable network, the next step is to make the model’s
rules more flexible. We should allow the rates of fire spread and extinction (the
parameters β and γ) to vary based on local conditions, such as vegetation type
or weather, instead of using the same values everywhere. Additionally, we
need to better simulate how fires start. Future models should not only focus
on how fires spread but should also include a component that assess the risk
of ”spontaneous” ignitions. A simple way to do this is to add a term repre-
senting ignition risk directly into the existing SIS model equations. Finally, to
enhance the model’s practical value, future work should also explore combin-
ing it with physical models, using it for real-time forecasting, and quantifying
the uncertainty in its estimation to better support real-world decision-making.

Overall, this thesis translates the dynamics of fire spread into a network-
based contagion framework. Although simplifications were necessary, espe-
cially regarding environmental complexity, the results show that Chronnet–SIS
modeling framework can offer valuable insights into how fires spread and how
their risks might be quantified. This approach could serve as a foundation for
developing more adaptive, data-driven tools to support fire risk management
at large scales.
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Appendix

6.1 Additional Figures
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Figure 14: Node Centrality vs. Network-Driven Fire Probability

6.2 Code Availability

The source code for this study is available at: https://github.com/mabelhu465/
2025_chronnet_sis/tree/main
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[33] Márton Pósfai and Albert-László Barabási. Network science, volume 3. Cite-
seer, 2016.

50


	Introduction
	Related Work
	Dataset
	Data Sources
	Preliminary Data Exploration
	Spatial and Temporal Preprocessing
	Hexagonal Grid Generation
	Time Aggregation 


	Method and Experimental Design
	Chronnet Construction
	Network Based SIS Model for Fire Spread
	Overview of the SIS Framework
	Steady–State Solution of the SIS Model
	Fire Spread Threshold

	Experiment Design
	Experimental Setup and Network Characterization
	Modeling and Evaluation Framework


	Results and Analysis
	Method Validation
	Chronnet Resolution Effects on fire Spread Patterns
	Distinguishing Spontaneous and Network-Driven Fire Patterns
	Robustness of the Ground Truth Definition

	Chronnet Network Characterization
	Degree and Strength Distributions of Chronnet
	Topological Metrics of Top 2 SCCs
	Relation between node metrics and fire behavior

	SIS Model Performance Analysis
	Experimental Results Across Different  
	Ranking Performance Evaluation using nDCG
	Spatial Distribution of Fire Risk
	Impact of Self-Loops on SIS Model Performance


	Conclusion
	Additional Figures
	Code Availability


