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Abstract

With the increasing frequency of extreme weather events, wildfires pose an escalating
threat to ecosystems. As an efficient aerial inspection tool, Unmanned Aerial Vehi-
cles (UAVs) have attracted growing attention in wildfire monitoring applications. To
address the challenges of complex path planning and limited energy capacity in multi-
UAV cooperative missions, this thesis proposes an innovative Mixed-Integer Linear
Programming (MILP) model that integrates route optimization with charging facility
deployment. The model comprehensively accounts for key factors such as charging
modes, battery health, maintenance cycles, and cost control, with the objective of
minimizing total system cost.
To tackle the computational difficulty of solving large-scale instances, a hybrid opti-
mization framework is further developed by combining a two-stage genetic algorithm
with a commercial solver. Experimental results on both benchmark datasets and
real-world forest scenarios demonstrate that the proposed approach outperforms tra-
ditional methods in solution quality and computational efficiency, and can effectively
support the scheduling and deployment strategies of practical forest wildfire preven-
tion systems.



Contents

1 Introduction 6
1.1 Study background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 9
2.1 Research on UAV routing problem . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 UAV routing problem . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Energy constrained UAV routing problem . . . . . . . . . . . . . . . . 9
2.1.3 Location-Routing problem with recharging station . . . . . . . . . . . 10

2.2 Research on wildfire surveillance . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Traditional wildfire inspections . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Application of UAVs in wildfire detections . . . . . . . . . . . . . . . . 11
2.2.3 VRP models for wildfire detections . . . . . . . . . . . . . . . . . . . 11

2.3 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Problem Statement and Method 13
3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Hybrid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Computational Experiments 20
4.1 Experiment setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Benchmarking instances . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 UAV parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.3 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.4 Benchmarking environment . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 MIP performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Hybrid method performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Performance on base test instance . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Performance on real world data . . . . . . . . . . . . . . . . . . . . . 25

4.4 Impact of UAV parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Conclusions 28

5



Chapter 1

Introduction

1.1 Study background

With global warming and the frequent occurrence of extreme weather, the frequency of forest
fires and the extent of their damage have been increasing. As an important part of the Earth’s
ecosystem, the protection and management of forests has become one of the core tasks of
ecological environmental protection. The traditional manual patrol approach suffers from high
labor costs, slow response times, and limited coverage, making it inadequate for the demands
of modern, efficient, and intelligent forest resource management [19]. In response, Unmanned
Aerial Vehicle (UAV) offer a compelling alternative to traditional patrol methods for forest
monitoring.
The application of UAVs in the forest environment mainly includes tasks such as fire monitoring,
illegal logging detection and biodiversity surveys. However, due to the physical constraints of
UAVs in terms of flight time, battery capacity, communication range, etc., they still face many
challenges during their actual deployment. Especially in large forest scenarios, how to effectively
plan the patrol paths of multiple UAVs, coordinate their task assignments, and reasonably set
up midway charging stations to meet the energy replenishment and coverage requirements has
become a core issue that restricts its widespread applications.

1.2 Problem formulation

This study focuses on the “Multi-UAVs Wildfire Detection and Charging Station Siting Prob-
lem”, with the core objective of minimizing the overall operational costs, including the cost
of charging station construction, UAV usage, and patrol time, while ensuring adequate patrol
coverage of the forest area. The forest area is discretized into a uniform hexagonal grid to
facilitate coverage modeling. To simplify coverage evaluation, we assume that when a UAV
visits a grid, all of its neighboring cells are also considered covered, thereby defining adjacency
in the graph structure.
Meanwhile, considering the limited range of the UAV, we introduce a charging mechanism in
the model and further distinguish between two modes: fast charging and slow charging. It is
found that both fast charging with higher voltage and overcharging have a large negative
impact on battery life[25]. Therefore, in order to prolong the UAV lifetime, we limit the
maximum charging amount in the model when fast charging is employed, while slow charging,
although longer, can charge the battery to full capacity. This setting is not only more realistic,
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but also introduces a new modeling complexity: the charging strategy will directly affect the
UAV’s path planning and charging station layout.
At the model level, we construct a Mixed Integer Linear Programming (MILP) model to jointly
model decision variables such as UAV patrol paths, charging behavior, and charging station
siting, and introduce key constraints such as sub-patrol path connectivity, charging constraints,
and constraints on the dynamic change of energy, so as to ensure that the solution is physical
feasibility and scheduling rationality.
Although the MILP model has strong modeling capabilities and optimality guarantees for theo-
retical solutions, in the actual solution process, due to the huge size of the NP-Hard attributes
and variables of the problem, the direct use of commercial solvers (e.g., Gurobi, CPLEX) on
medium and large-scale instances often faces the problems of long solution time[21]. For this
reason, we designed a hybrid solution framework that integrates heuristic search and exact
optimization methods in a hybrid solution approach. The framework takes the Genetic Algo-
rithm (GA) as the global search backbone, and utilizes its advantages of strong search diversity
and good convergence in complex solution space to generate a set of feasible solutions that
satisfy the constraints; when a solution has a better cost performance, a commercial solver is
introduced to perform a local refinement on the solution to further improve the quality and
feasibility of the solution.

1.3 Main Contribution

For the challenges of complex path planning, energy constraints, diverse charging behaviors,
and difficult charging station siting in multi-UAV collaborative wildfire monitoring missions,
this paper carries out system modeling and algorithm design work, and the research work has
the following major contributions:

1. We propose a mixed-integer linear programming model that, for the first time, compre-
hensively considers multiple real-world factors, such as UAV power limitations, maximum
mission time, charging mode, charging time, and station deployment, in the context of
using multiple UAVs for wildfire detection. The model effectively simulates the complex
decision-making environments encountered in real-world forest inspection tasks.

2. To address the high computational cost of the model, we propose a hybrid approach
that combines a genetic algorithm with a commercial solver, achieving a balance between
accuracy and efficiency.

3. We designed several randomly generated test instances and conducted a real-world case
study in China to systematically evaluate the performance of the proposed models and
algorithms in terms of solution performance, cost convergence, and other metrics.

1.4 Thesis structure

The structure of this paper is organized as follows: Chapter 2 reviews and summarizes the
related researches on multi-drone path planning, charging station siting, multi-objective opti-
mization and hybrid algorithms. Chapter 3 describes in detail the assumptions underlying the
problem modeling and the structure of the MILP model, and proposes a solution method that
hybridizes the GA and the commercial solver and describes the details of the core algorithms.
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Chapter 4 demonstrates the experimental setup and the analysis of the results. Chapter 5 sum-
marizes the whole paper and proposes future research directions. To facilitate reproducibility
and further research, all source code and experimental data have been made publicly available
at: https://git.liacs.nl/optimization/mastertheses.git.
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Chapter 2

Literature Review

The purpose of this chapter is to sort out two major research areas closely related to this
study: first, the research on vehicle route planning (VRP) around unmanned aerial vehicles
(UAVs); and second, the development of forest fire monitoring and patrolling systems, covering
the evolutionary trend from traditional manual methods to modern intelligent technologies.
By reviewing the above studies, a theoretical foundation is laid for the hybrid modeling and
algorithmic approach proposed in this study.

2.1 Research on UAV routing problem

2.1.1 UAV routing problem

The UAV route planning problem can often be abstracted as a variant of the vehicle path
problem (VRP), where the goal is to find a set of optimal paths such that multiple mission
points can be efficiently visited while satisfying practical conditions such as energy constraints,
time windows, and task assignments [28].
Much of the research has focused on using drones to solve the problem of last-mile delivery.
Liu et al. [16] investigate the option of using multiple drones to perform in-delivery resupply
for multiple trucks in a distribution so that packages arriving late at the warehouse arrive on
time. Ren et al. [24] proposed a heuristic algorithm for solving multiple variants of the UAV-
assisted vehicle path problem (VRPD). The study considers the case of UAVs taking off and
landing at different nodes, supports multiple trucks and UAVs for collaborative distribution,
and optimizes the transportation cost or completion time.
Other common research scenarios include the use of UAVs for surveillance or charging, etc.
In the paper from Amorosi et al. [1], they explored the routing problem of using UAVs for
surveillance using multiple UAVs and a mothership scenario, proposing a MINLP formulation
and solving it using both a commercial solver and mathematical methods. Zhou et al.[32]
investigated the use of UAVs as mobile charging stations for charging IoT sensors, developed
a charging model with a hybrid charging strategy, and solved it using a greedy algorithm.

2.1.2 Energy constrained UAV routing problem

With the widespread use of electric drones, researchers are beginning to expand on Energy-
constrained VRP. For example, Tamke et al.[27] focuses on VRP with drone speed selec-
tion, also considers speed-dependent energy consumption and drone-charging process. Shen
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et al.[26] explored drone allocation and battery management strategies in a multi-warehouse
UAV delivery system, proposing heuristic algorithms to optimize drone scheduling assuming a
fixed charging time. They found that battery replacement is superior to plug-and-play charg-
ing, and the shared scheduling strategy for UAVs is more advantageous in terms of throughput
enhancement and cost reduction. In the paper from Cokyasar et al.[8], they investigated the
use of automated battery replacement devices to extend the range of drones in a drone deliv-
ery network and constructed a mixed integer nonlinear model to solve it. The use of drones
to improve the safety of transportation of high-value items was investigated by Zandieh et
al[31]. They used drones to monitor safety in ground vehicle routes while using charging sta-
tions to change batteries for the drones. They proposed an iterative local search algorithm
to optimize the problem. Unlike the traditional VRP using graphs, in Liu’s study, a spatially-
continuous MIP formulation describes the UAV on-demand food delivery model and proposes
an online scheduling algorithm to solve the problem, which is proved to be effective in a sim-
ulation case[17]. For the application of spraying UAVs in environmental pollution or epidemic
response, Manshadian et al. proposed a mixed-integer linear programming model for coordi-
nating ground vehicles and UAVs to work together, in which the UAVs can recover their power
by changing batteries in the vehicles. To solve large-scale instances, they designed a hybrid
heuristic algorithm incorporating simulated annealing and forbidden search, and verified the
effectiveness of the model and algorithm with real data[18]. Nguyen er al.[22] introduce a
parallel drone scheduling vehicle routing problem(PDSVRP), which uses multiple drones that
change batteries at warehouses to assist vehicles in providing services.

2.1.3 Location-Routing problem with recharging station

Considering the joint optimization of location and path planning for charging facilities is a
hot research topic in recent years. Vichitkunakorn et al. [29] studied the stock-taking drone
routing problem (STDRP), where a fleet of drones is routing through a warehouse for stock-
taking purposes as well as deciding on the location of charging stations on the warehouse floor,
and proposed a heuristic algorithm based on Adaptive Large Neighborhood Search (ALNS)
for solving it. Chen et al.[6] constructed a charging station locating and capacity optimiza-
tion model for the range-constrained problem of UAV delivery, integrating task assignment,
path planning and charging scheduling to minimize the investment cost and task time, and
combining the algorithms of Variable Neighborhood Search (VNS) and Mixed-Integer Linear
Programming to efficiently find high-quality solutions in large-scale instances.

2.2 Research on wildfire surveillance

2.2.1 Traditional wildfire inspections

The traditional wildfire prevention system mainly relies on manual inspection, watchtower
monitoring and ground communication means, in the vast, high mountains, remote and other
terrain there are monitoring blind zones and response lag, but also has very high labor costs
and security risks, difficult to meet the needs of modern forest fire prevention [19]. Satellites
are also commonly used for forest fire detection. In a study by Rashkovetsky et al. [23], a
supervised deep learning approach, trained on satellite images, can achieve a 96% detection
rate for forest fires that have already occurred. In wildfire detection using ground-based sensors,
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weather monitoring sensors, gas sensors, and optical sensors are currently used for detection,
but also face challenges including energy consumption, latency, and detection accuracy [5].

2.2.2 Application of UAVs in wildfire detections

In recent years, UAVs have been widely used in wildfire monitoring due to their high mobility,
low cost and multi-sensor integration capability. Studies have shown that UAVs can realize
wildfire detection at the initial stage of fire by carrying infrared thermal imaging equipment or
optical equipment through deep learning technology, with excellent response time and detection
accuracy [3]. In the research by Osama et al, [4], a UAV-based wildfire detection system
was proposed and demonstrated better performance for early wildfire detection using UAVs
compared to traditional IoT devices.

2.2.3 VRP models for wildfire detections

Fewer current studies jointly model energy constraints, multi-UAVs collaboration, and charging
station deployment with mission coverage requirements. Rodrigo et al. [9] explored the con-
struction of a forest fire monitoring method including watchtowers, monitoring balloons with
UAVs in mountainous areas, and the use of UAVs to expand the coverage of watchtowers,
but did not consider issues such as the charging process of UAVs. For the UAV path planning
and scheduling problem in forest fire monitoring, Sadati [33] constructs a MILP model and
proposes a metaheuristic method to improve the solution efficiency by introducing Benders
decomposition. The model performs well on CoVRP and EVRP datasets, and the value of
UAV application in wildfire monitoring is verified by a case study in Belgrade Forest, Istanbul.
In the research from Momeni et al. [20], they propose a multi-objective mixed-integer plan-
ning model for coordinated patrolling between UAVs and ground vehicles for difficult-to-access
areas in forest fire monitoring. The solution efficiency is improved by the Benders decomposi-
tion algorithm, and the effectiveness of the method is verified in large-scale datasets. Li et al.
[15] developed a mixed-integer linear programming model for the path optimization problem
in forest firefighting with the objective of minimizing the total fire point loss, and proposed
a parallel genetic algorithm combined with variable neighborhood search (PGA-VNS), which
outperforms a variety of benchmark algorithms in multiple scale instances. Bailon-Ruiz et al. [2]
propose a wildfire monitoring system based on fixed-wing UAV formation, which uses a variable
neighborhood search algorithm to plan UAV trajectories for efficient observation of dynamically
spreading fires. The model integrates terrain, wind, fire propagation and UAV characteristics,
and the effectiveness of the system in tracking fire changes is verified by simulated reality tests.
In the paper from Cheng at al. [7], they establish a collaborative truck-UAV-motorcycle site-
path robust optimization model for the mountain wildfire emergency transportation problem
to minimize the material distribution time, and use a boxed uncertainty set to deal with the
demand uncertainty. An improved adaptive large neighborhood search (IALNS) algorithm is
proposed, which combines multiple deletion and collaborative strategies to effectively enhance
the solution efficiency. Ozkan et al. [12] proposed a UAV path planning method based on
minimizing fire probability for the problem of early detection of forest fires far from residential
areas. Their model combines heuristic scheduling rules with simulation optimization algorithms
while considering the uncertainty and dynamics in real environments, and its effectiveness in
real scenarios is demonstrated through experiments. Xu et al. [30] proposed a UAV patrol
path planning method based on forest fire risk maps, using the ring self-organizing mapping
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(RSOM) algorithm to generate routes based on risk levels and combining with Gaussian hybrid
clustering to divide the area, and designing a multi-UAVs collaborative patrolling strategy, so
as to solve the problem of the limited range of a single aircraft in the monitoring of fires in
large forest areas.

2.3 Research gaps

To analyze the characteristics and shortcomings of the existing studies, we compared the
current researches from multiple dimensions. The main comparisons include: the way of envi-
ronment modeling, whether to support multi-UAVs collaboration, whether to consider energy
limitation, charging behavior, charging time, and the way of charging station setup.

Authors Multi-UAVs Dynamics
Energy
Constraint

Charging
Method

Charging
Time

Charging
Station
Deployment

Rodrigo et al. (2024) yes no yes
change
battery

no no

Sadati (2025) yes no yes
change
battery

no no

Momeni et al. (2022) yes no yes
change
battery

no no

Li et al. (2024) yes no yes
not
considered

no no

Bailon-Ruiz et al. (2022) yes
wildfire
state

no
not
considered

no no

Cheng et al. (2024) no no no
not
considered

no no

Ozkan et al. (2022) no no no
not
considered

no no

Xu et al. (2022) yes no no
not
considered

no no

Our research yes no yes
on-site
charging

yes yes

In summary, the current research on multi-UAVs wildfire patrol path planning and charging
strategies still has many shortcomings. Most of the literature only considers the basic energy
constraints and battery replacement methods, and less involves the modeling of on-site charg-
ing behavior as well as charging time, not to mention the lack of systematic research on the
optimization of charging station deployment. In contrast, the model proposed in this paper
provides more comprehensive modeling in terms of multi-UAVs support, energy constraints,
on-site charging behaviors and charging station setups, which helps to fill the key gaps in the
current research and provides theoretical support for a wildfire monitoring system that is closer
to practical application scenarios.
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Chapter 3

Problem Statement and Method

3.1 Problem description

This model addresses the joint problem of UAV path planning and charging station placement
in forest patrol tasks. The primary goal is to determine the optimal number of UAVs, their
patrol routes, and suitable locations for charging stations to ensure full-area monitoring while
minimizing operational costs.
For modeling and practical deployment, we divide the forest area into hexagonal grids with
equal side lengths. In order to simulate the detection effect of UAVs, it is assumed that when
a UAV arrives at a grid, that grid and all of its six neighboring grids are considered to have
been successfully detected, thus achieving coverage of the area.
Considering the power consumption of UAVs during flight, a certain number of charging sta-
tions must be constructed in the region to ensure that UAVs can be recharged to replenish
energy during mission execution. Unlike the traditional method of using replacement batter-
ies, we allow the UAV to be charged at the charging station at the advance charging rate.
Considering the effects of higher charging speeds, deep discharging, and overcharging on the
battery life [25], we limit the minimum charge level when the UAV is operating, and set the
charging speed to two levels: fast charging can only charge up to 80% of the battery’s maxi-
mum capacity, and slow charging allows the battery to be fully charged, but takes longer. The
charging process is considered to be a linear increase.
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Figure 3.1.1: Grid structure

Figure 4.1.1 illustrates the map structure consisting of a hexagonal grid. In each patrol mission,
the UAV starts from the node representing the warehouse, patrols the forest area according to
the pre-planned path, can replenish its power at the set charging station node on the way, and
finally returns to the warehouse node to complete the mission. In Figure 4.1.1.1, we show the
initial scenario using one UAV with three automatic charging stations set up in the area. The
area that can be monitored by the drone in the starting state is shown in Figure 4.1.1.2. Figure
4.1.1.3 shows the monitoring of the region when the drone arrives at the charging stations for
charging after a period of operation. When the UAV completes a patrol, its operation route
and coverage state are shown in Figure 4.1.1.4.

3.2 Model formulation

We propose a mixed-integer linear programming model. The optimization objective of the
model is to find the least costly solution by combining the expense of setting up the charging
station, the expense of the drone with the time cost of patrolling. The parameters and variables
used are shown in Table 3.2.1.
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Sets:

V set of all nodes without warehouse.

V0 V0 = V ∪ 0 set of nodes includes warehouse 0.

S current charging station.

Parameters:

K maximum number of drones.

Q maximum battery level.

δij node i is the neighbor of node j.

d distance between two nodes.

t time to move between two conjoint nodes.

e power consumption between two nodes.

vf charging speed for fast charging.

vs charging speed for slow charging.

Cs charging station setup costs.

Cd drone costs.

Ct time costs per hour.

Cm maintenance intervals for equipment.

Decision Variables:

xk
ij whether drone k move from node i to j.

rki whether drone k using fast charge at node i.

fi whether node i is charging node or not.

dk whether drone k is used.

τ ki the time that the drone k reaches the node i.

tkmax the total time spent on one patrol for drone k.

ωk
i charge of drone k at node i.

yki battery level for drone k at node i.

Table 3.2.1: Variables and parameters used in the model
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Minimize Cs

∑
i∈V

fi + Cd

∑
k∈K

dk + CmCt

∑
k∈K

tkmax (3.1)∑
i∈V

∑
l∈V

∑
k∈K

δij · xk
li ≥ 1, ∀j ∈ V (3.2)

fi = 1, ∀i ∈ S (3.3)

xk
ij ≤ dk, i, j ∈ V0, k ∈ K (3.4)∑

j∈V

xk
ij =

∑
j∈V

xk
ji, ∀i ∈ V, k ∈ K (3.5)∑

i∈V

xk
0i ≤ dk, ∀k ∈ K (3.6)∑

i∈V

xk
i0 ≤ dk, ∀k ∈ K (3.7)

yki ≥ 0.2 ·Q, ∀i ∈ V, k ∈ K (3.8)

yki ≤ Q · (1− 0.2rki ), ∀i ∈ V, k ∈ K (3.9)

ωk
i ≤ Q · fi, ∀k ∈ K, i ∈ V0 (3.10)

ykj − ωk
j ≤ yki − exk

ij, i ∈ V0, j ∈ V, k ∈ K (3.11)

τ ki + txk
ij + ωk

i · (
rki
vf

+
1− rki
vs

)−M(1− xk
ij) ≤ τ kj , ∀i ∈ V0, j ∈ V, i ̸= j, k ∈ K

(3.12)

tkmax ≥ τ ki , ∀i ∈ V, k ∈ K (3.13)

xk
ij ∈ {0, 1}, i, j ∈ V0, k ∈ K (3.14)

rki ∈ {0, 1}, i ∈ V0, k ∈ K (3.15)

fi ∈ {0, 1}, i ∈ V0 (3.16)

dk ∈ {0, 1}, k ∈ K (3.17)

τ ki , ω
k
i , y

k
i ∈ R≥0, i ∈ V0, k ∈ K (3.18)

Objective function 3.1 minimizes the total cost of building charging stations, purchasing drones,
and patrolling routes. Since the UAV performs multiple missions during a single maintenance
cycle. We set the UAV to perform one patrol per day and therefore multiply the maintenance
cycle by the path cost of a single mission as the total path cost. The constraint 3.2 is the
drone coverage constraint. The constraint 3.3 indicates whether there are already charging
stations in the forest. The constraint 3.4 restricts activation to only purchased drones.The
constraint 3.5 ensures the continuity of the drone’s route. The constraints 3.6 - 3.7 constrain
the drone from and back to the warehouse. The constraint 3.8 - 3.9 are on battery health
where 3.8 ensure the battery level is higher than 20% and 3.9 limits maximum battery level for
fast and slow charging. Constrain 3.10 constraint drones can only charged at charging station.
Constraint 3.11 indicates the change in power level of the drones. Constraint 3.12 is sub-tours
eliminating constrains considering movement and charging times. The constraint 3.13 is used
to ensure that tkmax records the running time for drone k to complete a patrol. Finally, the
constraints 3.14 - 3.18 denote the domains of definition of the variables.
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3.3 Hybrid method

Although the Mixed Integer Linear Programming (MILP) model can accurately describe the
constraints and optimization objectives of the forest patrol and charging station site problem, as
the size of the problem increases (e.g., the number of nodes and the number of available UAVs
increase), solving the complete model using commercial solvers (e.g., Gurobi, CPLEX) will
face high computational resources consumption and slow convergence problems[13]. To solve
this problem, we propose a hybrid optimization method that combines a Genetic Algorithm
(GA)[14] with a commercial MILP solver, aiming to balance global exploration and local
refinement.
Genetic algorithm is an optimization method that simulates the process of natural selection
and genetic variation, and its basic process includes:

• population initialization: generate a set of initial feasible solutions that satisfy the con-
straints.

• Adaptation Evaluation: calculate the adaptation degree of each individual based on the
objective function.

• Selection: select quality individuals into the next generation based on fitness.

• crossover and mutation: perform crossover and mutation on the offspring to explore the
new solution space;

• evolutionary iteration: repeat the above process until the termination condition is satis-
fied.

However, for the complex variable space of our model, running the genetic algorithm directly
on the full variable space will cause inter-variable interference, resulting in slow convergence
and poor solution quality. Therefore, we designed a two-stage genetic algorithm to improve
the search stability and solution space coverage by staged crossover and optimization of the
variable subspace. Its structure is as follows:

1. Initialization set: First, in order to enhance the population quality and early convergence
speed of GA, we design an initial solution generation method based on graph partitioning
and greedy optimization. The specific steps are as follows:

• Initial path construction: for each subgraph, solve a path that starts from the depot
and completely covers all grids within the subgraph before returning to the depot.
The path can be obtained by solving the TSP with a commercial solver.

• Path Refinement Optimization: After obtaining a complete path, sequentially try to
delete noncritical nodes in the path, and observe whether the coverage requirement
can still be satisfied for all grids and their neighboring grids in the graph. If the
coverage is still satisfied the constraint 3.2, the deletion operation is retained until
the path cannot be further compressed.

• Charging station deployment: On the refined path, the battery consumption of
the UAV is simulated step by step based on the power usage per grid movement.
According to the constraint 3.8 and constraint 3.9, if the remaining battery falls
below 20% of the full capacity before the next move, a charging station is deployed
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at the current grid and a fast-charging operation is triggered to recharge the battery
up to 80%. These charging decisions are recorded in the solution as binary station
placement variables. The resulting path ensures energy feasibility for each UAV to
complete its task and return safely to the depot.

• Initial solution set construction: Repeat the above process from 1 to K times
to construct feasible paths using 1 to K UAVs and charging station deployment
scenarios, and ultimately obtain a diversified initial solution set with reasonable
structure and constraints satisfied, which serves as the initial population of GA.

2. Two-stage genetic algorithm Search: We use a two-stage genetic algorithm for localized
search. The crossover and mutation is performed on the multi-UAVs path or the charging
station location in the current solution in each of the two phases, and the two phases
are repeated to gradually optimize the solution.

• Fix the path variables, and only crossover the charging station deployment related
variables to optimize the charging station deployment scheme.

• Fix the charging station layout and perform genetic operations only on the multi-
UAVs detection paths to optimize the path structure.

3. Global refinement: To overcome the defect that out two-stage genetic algorithms may
fall into local optimization in complex constraint spaces, in this paper, after completing
the complete two-phase search cycle each time, the commercial solver is automatically
invoked to perform fine solving for the feasible solutions with higher quality in the current
population.

• Select the feasible solution with better objective value from the current solution
set as the initial solution to be passed into the commercial solver, and construct
the corresponding problem for refining the solution.

• If the objective value is better after refinement, replace the original individual with
the new solution and update the population.

• If the refinement fails or there is no improvement, the maximum solution time for
the next call to the solver is extended to improve its solving capability.

4. Iteration and Termination: Repeat the above two steps until the solver give the optimized
solution or the set upper algebraic limit or convergence criterion is satisfied, and finally
outputs the current optimal solution set.
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Algorithm 1 Hybrid GA and MILP Solver for Wildfire Patrol and Charging Station
Planning

1: Input: Graph G = (V,E), depot node, UAV and energy constraints, max UAV count
K

2: Output: Optimal or near-optimal patrol paths and charging station layout

3: for k = 1 to K do
4: Partition G into k subgraphs
5: for each subgraph do
6: Solve TSP path covering all grids from depot and returning to depot
7: while there exists a deletable noncritical node do
8: Try deleting the node
9: if coverage constraints (Eq. 3.2) still satisfied then
10: Keep deletion
11: else
12: Revert deletion
13: end if
14: end while
15: Deploy charging stations on the refined path according to UAV energy con-

straints
16: end for
17: Add constructed k-UAVs solution to initial population P0

18: end for

19: while termination criteria not met do
20: while termination criteria not met do
21: Fix paths, apply crossover and mutation on charging station variables only
22: Fix charging stations, apply crossover and mutation on path variables only
23: end while

24: Select best feasible individual(s) from current population
25: Pass as initial solution(s) to MILP solver for refinement
26: if refined solution improves objective then
27: Replace original individual and update population
28: else
29: Increase MILP solver runtime limit for next call
30: end if
31: end while

32: Return the best solution found
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Chapter 4

Computational Experiments

4.1 Experiment setting

4.1.1 Benchmarking instances

To validate the effectiveness of the proposed model and algorithm, we designed two types of
experimental datasets: basic test instances and real forest data.
The base test instance uses a randomly generated hexagonal grid to model the forest region.
The edge length of the grid is the unit distance, each node represents a node in the UAV
movement path, and the edges indicate the reachable paths. The connectivity between the grids
is guaranteed, and the adjacency relationship is considered for simulating the coverage of the
UAV. The specific test instance data is shown in table 4.1.1, which includes the instance name,
the number of grids to be monitored(N) and the maximum number of drones available(K).

Instance N K Instance N K
a1 18 1 b7 36 2
a2 20 1 b8 42 2
a3 30 1 b9 48 2
a4 36 1 c1 12 3
a5 42 1 c2 16 3
a6 48 1 c3 18 3
b1 12 2 c4 20 3
b2 16 2 c5 24 3
b3 18 2 c6 30 3
b4 20 2 c7 36 3
b5 24 2 c8 42 3
b6 30 2 c9 48 3

Table 4.1.1: Instances

The real data as shown in figure 4.1.1 comes from a forest in the northern region of China.
By processing the map data, we transformed the field forest area into an equilateral hexagonal
grid map and labeled the location of the starting point (warehouse). Finally, we obtain a forest
graph structure with 92 valid nodes, which has some practical feasibility.
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Figure 4.1.1: Real World Data

4.1.2 UAV parameter setting

The key parameters in the experiments are shown in Table 4.1.2.The selected UAV and charging
station parameters were taken from the technical specifications of Heisha Tech[11] and DJI[10].
The model of the charging station used is Heisha Tech V200 and the model of the UAV is DJI
FlyCart 30.

Paremeters Value
UAV cost 1000$
Charge station cost 3000$
Time cost 3.6$/h
Maintenance Cycle 365 Days
Maximum SOC in fast charge 80%
Minimum SOC 20%
UVA battery energy 2000Wh
Fast charge power 180W
Slow charge power 45W
UAV speed 20m/s
Power usage between node 20Wh

Table 4.1.2: Parameters setting
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4.1.3 Hyperparameter Tuning

To improve the performance of the hybrid algorithm and ensure high quality solutions in a
reasonable time, we tuned the hyperparameter of one of the genetic algorithms. The goal
of tuning is to balance the solution quality and computational efficiency, mainly focusing on
five hyperparameter: population size, number of offspring, crossover probability, termination
period, and maximum number of iterations.
We used grid search to test the combination of the above parameters on base test instance
b6 and averaged the results based on multiple random initial seeds to ensure the stability of
the results. Table ?? shows the search range with the final selected parameter combinations.

Hyperparameter Search Space Result
pop size 100, 200, 300, 400, 500, 600, 800, 1000 300
n offsprings 30, 50, 70, 100, 150, 200 150
crossover prob 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95 0.9
termination period 10, 15, 20, 25, 30 20
n max gen 100, 200, 300, 400, 500, 600 300

Table 4.1.3: Hybrid method hyperparameter tuning

Among all candidate combinations, the final selected parameter configuration is: pop size=300,
n offsprings=150, crossover prob=0.9, termination.period=20, termination.n max gen= 300.This
combination shows stable search capability with fast convergence on the test instances, and
high quality solutions are obtained in reasonable time on most runs.

4.1.4 Benchmarking environment

All experiments were running on the ALICE compute resources provided by Leiden University.
Here are the hardware and software configurations:

• CPU: Intel Xeon Gold 6126 2.6GHz 12-Core

• Memory per cpu: 4GB

• Programming language: Python 3.12.3

• Solver: gurobi 12.0.0

• GA: implement from pymoo 0.6.1.5

4.2 MIP performance

Table 4.2 shows the performance of Gurobi on the base test instance. The column ”Drone
Route Length” reports the monitoring path length of each UAV. When multiple UAVs are
used, values are separated by a ”|” symbol. From the results:

• For small-sized instances, Gurobi is able to find the optimal solution in a very short
period of time, and the optimal solution has exactly the same upper and lower bounds.

22



• As the number of nodes and the number of UAV increase, the size of the problem grows
rapidly and the number of variables and constraints grows exponentially. For example,
instance c9 contains more than 7500 variables and 20,000 constraints.

• In medium- to large-sized instances, Gurobi has not yet found an optimal solution within
the specified time limit of 7200 seconds, and the optimality gap is generally more than
75%, which demonstrates the high computational complexity of the problem.

• Certain medium-sized instances were able to find the optimal solution, but took longer,
reaching hundreds of seconds or even nearly time limit.

This result shows that although the MIP model can obtain an accurate solution on small
instances, its efficiency is limited when dealing with large-scale instances, especially in the
case of an increasing number of UAVs, where the solution space expands rapidly, resulting in
search difficulties.

Instance UB LB Gap (%) Time (s)
Station
Count

Drone
Count

Drone
Route
Length

a1 3920.0 3920.0 0.0 50.93 0 1 8
a2 3920.0 3920.0 0.0 3.98 0 1 8
a3 12030.0 7285.0 39.44 7200.00 1 1 22
a4 14585.0 2460.0 83.13 7200.00 1 1 29
a5 19410.0 2456.0 87.20 7200.00 2 1 34
a6 22695.0 2095.0 90.77 7200.00 2 1 43
b1 2460.0 2460.0 0.0 1.59 0 1 4
b2 3190.0 3190.0 0.0 1.93 0 1 6
b3 3920.0 3920.0 0.0 6.55 0 1 8
b4 3920.0 3920.0 0.0 40.46 0 1 8
b5 7475.0 7475.0 0.0 5975.50 0 2 8 | 7
b6 7475.0 3460.0 0.15 7200.00 0 2 8 | 7
b7 14585.0 2095.0 85.63 7200.00 1 1 29
b8 18870.0 2101.0 88.87 7200.00 1 2 33 | 5
b9 24155.0 2095.0 91.32 7200.00 2 1 47
c1 2460.0 2460.0 0.0 1.04 0 1 4
c2 3190.0 3190.0 0.0 26.88 0 1 6
c3 3920.0 3920.0 0.0 105.05 0 1 8
c4 3920.0 3920.0 0.0 203.24 0 1 8
c5 7475.0 4920.0 34.18 7200.00 0 2 8 | 7
c6 7475.0 2475.0 66.89 7200.00 0 2 8 | 7
c7 14585.0 2101.0 88.87 7200.00 1 1 29
c8 18140.0 1735.0 90.43 7200.00 1 2 33 | 3
c9 22695.0 2095.0 90.76 7200.00 2 1 43

Table 4.2.1: Gurobi experiment result
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4.3 Hybrid method performance

4.3.1 Performance on base test instance

To evaluate the effectiveness of the proposed hybrid algorithm, we use Gurobi, Hybrid method,
and two-stage genetic algorithm without refinement process to solve on base test instance
respectively. Table 4.3.1 shows the results of the three methods in terms of solution quality
and solution time.
In terms of solution quality, Gurobi, as an exact solver, succeeds in obtaining optimal solutions
in most small-scale instances. However, as the problem size increases, Gurobi exhausts the set
maximum runtime (7200 seconds) in several instances (e.g., a3, a4, a5, etc.) without obtaining
a feasible solution or with suboptimal solution quality. In contrast, the hybrid method finds
feasible solutions in a short time in all instances and reaches or approaches Gurobi’s optimal
results in most of the cases, and even outperforms Gurobi in some instances (e.g., b8, b9, and
c8), with the optimal solutions outperforming Gurobi by 9.6%, 6.0%, and 2.0%, respectively.
This indicates that the hybrid algorithm has stronger robustness and solution space search
capability while maintaining good convergence.
Further observation of the difference between the Init cost and Min cost shows that the hybrid
algorithm significantly reduces the objective function value during the optimization process,
with an average reduction of more than 30%, which verifies the synergy between the two-stage
genetic search mechanism and the global refinement strategy. The results obtained using the
two-stage GA are generally higher than those of the hybrid algorithm and Gurobi, indicating
that the unrefined genetic algorithm is prone to fall into local optimality on this problem.
In terms of solution efficiency, Gurobi takes a significant amount of time in most medium
to large instances, reaching the upper limit of 7,200 seconds in several instances, while the
hybrid algorithm is able to obtain a high-quality solution within a few minutes in the majority
of cases, demonstrating good computational efficiency. For example, in the a6 instance, the
hybrid algorithm obtained a solution comparable to Gurobi in only 160 seconds, which is a
significant improvement in efficiency.
In summary, the proposed hybrid algorithm outperforms the traditional GA in terms of solution
quality and solving efficiency in this model, and is able to match or even exceed Gurobi’s
performance in most instances, which verifies the applicability and practicality of the method
in complex wildfire detection tasks.
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Gurobi Hybrid method GA

Instance Cost Time(s) Init cost Min cost
Init cost
gap(%)

Min cost
gap(%)

Station
Count

Drone
Count

Drone
Running
Time

Time(s) Cost Time(s)

a1 3920.0 50.93 12760.0 3920.0 69.27 0.0 0 1 8 13.18 3920.0 7.47
a2 3920.0 3.98 12760.0 3920.0 74.95 0.0 0 1 8 13.25 3920.0 8.40
a3 12030.0 7200.00 14585.0 12030.0 17.52 0.0 1 1 22 66.06 13490.0 16.87
a4 14585.0 7200.00 21455.0 15680.0 35.08 6.9 1 1 32 74.82 21455.0 28.04
a5 19410.0 7200.00 24885.0 21235.0 14.67 8.5 2 1 39 85.58 21600.0 58.52
a6 22695.0 7200.00 34455.0 23790.0 30.95 4.6 2 1 46 160.02 28535.0 94.65
b1 2460.0 1.59 3140.0 2460.0 21.65 0.0 0 1 4 1.91 2825.0 1.64
b2 3190.0 1.93 4055.0 3190.0 21.33 0.0 0 1 6 2.86 3190.0 1.72
b3 3920.0 6.55 9020.0 3920.0 56.54 0.0 0 1 8 8.89 5285.0 5.23
b4 3920.0 40.46 8570.0 3920.0 54.25 0.0 0 1 8 32.29 6380.0 17.42
b5 7475.0 5975.50 10845.0 7475.0 31.08 0.0 0 2 8 | 7 71.23 7840.0 31.81
b6 7475.0 7200.00 11030.0 7475.0 32.23 0.0 0 2 8 | 7 55.87 7475.0 44.64
b7 14585.0 7200.00 25020.0 14585.0 41.70 0.0 1 1 29 101.63 24155.0 86.57
b8 18870.0 7200.00 26295.0 17045.0 35.18 -9.6 1 2 25 | 7 160.48 24885.0 91.47
b9 24155.0 7200.00 31630.0 22695.0 28.24 -6.0 2 1 43 152.23 28805.0 106.70
c1 2460.0 1.04 3700.0 2460.0 33.5 0.0 0 1 4 2.10 2825.0 1.05
c2 3190.0 26.88 5040.0 3190.0 36.71 0.0 0 1 6 18.29 3190.0 11.51
c3 3920.0 105.05 8110.0 3920.0 51.66 0.0 0 1 8 29.19 5285.0 15.90
c4 3920.0 203.24 9450.0 3920.0 58.51 0.0 0 1 8 34.57 6380.0 16.34
c5 7475.0 7200.00 11030.0 7475.0 32.23 0.0 0 2 8 | 7 83.22 7840.0 52.45
c6 7475.0 7200.00 10665.0 7475.0 29.91 0.0 0 2 8 | 7 103.84 7475.0 54.22
c7 14585.0 7200.00 26490.0 14585.0 44.95 0.0 1 1 29 126.67 24155.0 104.53
c8 18140.0 7200.00 30770.0 17775.0 42.25 -2.0 1 2 3 | 32 170.07 24885.0 108.62
c9 22695.0 7200.00 35065.0 22695.0 35.28 0.0 2 1 42 249.01 28805.0 163.07

Table 4.3.1: Result on generated dataset

4.3.2 Performance on real world data

On the real forest inspection dataset shown in figure 4.1.1, we further validate the practical
adaptability and optimization performance of the proposed hybrid optimization method. The
experimental results are shown in table 4.3.2 and the obtained UAV routes with charging
station locations are shown in figure 4.3.1.

Result:

Init cost 81155.0

Min cost 28520.0

Gap 64.85%

Time 272.47s

Table 4.3.2: Result summary on real world data

From the results, it can be seen that the hybrid method effectively reduces the total cost of
the problem in a shorter period of time, from 23,159 for the initial solution to 11,242 for
the final solution, with an optimization of 51.46%. This fully demonstrates that the hybrid
algorithm has good convergence ability and solution efficiency in the complex, multi-constraint,
multi-objective real forest inspection task.
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Figure 4.3.1: Real world result

4.4 Impact of UAV parameters

To further investigate the sensitivity of the model to key parameters, we designed a set of com-
parative experiments to analyze the effects on the total system cost, the number of charging
stations, the number of UAVs and the mission path structure by varying the key parameters
such as the charging station construction cost, the UAV acquisition cost, the number of UAVs
with the maximum range nodes, and the maximum maintenance cycle, respectively.
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Station
Cost

Drone
Cost

Maximum
Operating
Node

Maintenance
Cycle

Cost
Station
Count

Drone
Count

Drone
Route
Length

3000 1000 10 365 19045 2 1 33
1000 1000 10 365 15045 2 1 33
5000 1000 10 365 23045 2 1 33
10000 1000 10 365 33045 2 1 33
3000 100 10 365 18145 2 1 33
3000 500 10 365 18545 2 1 33
3000 1000 7 365 22045 3 1 33
1000 100 10 365 14245 2 2 28 | 5
3000 1000 20 365 10395 0 2 11 | 11
3000 1000 10 180 12940 2 1 33
3000 1000 10 720 30760 2 1 33

We find that the increase in charging station costs, drone costs and maintenance interval leads
to a linear cost increase. With a constant configuration, only the total cost is affected without
changing the overall scheduling structure. Say It is shown that the model is difficult to further
compress the fixed costs of charging stations and drones, exhibiting a stronger dependence on
infrastructure.
UAV range has a significant impact on the optimization results. When the maximum number of
operable nodes is increased from 10 to 20, the system completely removes the charging station
deployment and uses 2 UAVs to complete the paths separately, significantly reducing the total
cost. Whereas, when the range is reduced, additional charging stations must be deployed to
meet mission feasibility as the remaining infrastructure costs remain the same.
Meanwhile, in the combination scenario of low UAV cost and low site cost, the system tends
to enable multiple UAVs to share the task, resulting in path splitting, demonstrating the ability
of the scheduling mechanism to adapt to the cost structure.
In summary, the system optimization results are most sensitive to range capability, followed
by the infrastructure price. For practical deployments, improving UAV range or reducing the
infrastructure cost within a reasonable range will have the most significant effect on overall
system cost control.

4.5 Discussion

This chapter evaluates the effectiveness of the proposed multi-UAVs wildfire inspection and
charging station siting planning model and its solution method through a series of experiments.
First, in the constructed basic test instances, we validate the model’s solution capability at
different scales. Subsequently, the proposed hybrid optimization algorithm is further tested on
real maps. Compared to solving with gurobi and genetic algorithm, it performs better in terms
of runtime speed while the solution quality remains stable. In addition, combining the UAV
operation parameters with the actual charging strategy settings, the experiment also verifies
the feasibility and flexibility of the model in real deployment.
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Chapter 5

Conclusions

This study focuses on the path planning and charging station siting problem for multi-UAVs
collaborating in wildfire monitoring missions, and proposes a multi-objective mixed-integer
planning model that considers energy constraints, charging behaviors (including fast and slow
charging), charging time, and charging station deployment. To cope with the difficulty of
solving this problem under large-scale instances, this paper designs a hybrid solving framework
based on the collaborative solution of genetic algorithm (GA) and commercial optimizer, which
takes into account both the solution quality and the solving efficiency.
Through testing on generated and real geographic data, we verify that the proposed model
can effectively plan the cooperative patrol paths of multiple UAVs, accomplish the wildfire
monitoring task under the premise of satisfying the energy constraints and battery health, and
realize the reasonable arrangement of charging resources. Compared with the existing studies
that focus only on the path planning itself, ignoring the practical issues such as charging time
and station deployment, the work in this paper has obvious advantages in terms of modeling
depth and real-world adaptability.
This research has theoretical and practical significance. In the theoretical aspect, this paper
constructs a realistic optimization model, which provides a modeling idea and solution method
for the multi-UAVs routing problem. In practice, the research results can be widely used in
wildfire protection, agricultural monitoring, border security and other practical scenarios that
require large-scale patrol. The related models and algorithms are of high reference value for
researchers, engineering practitioners and even forest management departments, which can
help them design more efficient and sustainable UAV scheduling schemes, and improve the
efficiency of resource use and system intelligence.
Future research can be expanded in the following directions: first, the dynamic response model
of wildfire is introduced to make UAV scheduling closer to real emergency response needs.
The second is to add communication constraints and cooperative mechanisms to enhance the
UAV’s mission coordination capability in complex environments. Third, uncertainty and robust
optimization are considered to improve the stability and anti-disturbance of the model in real
deployment. Fourth, we promote the integration of the model with the actual system, combine
remote sensing images, terrain data and flight control platform to carry out joint testing of
hardware and software, and verify the application effect of the model in reality.
Overall, this paper explores the modeling depth, realistic constraint considerations, algorithm
design, and application effects, providing a foundation for the construction of an intelligent
UAV wildfire monitoring system.
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