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Chapter 1

Abstract

BCIs hold promise for translating neural activity into control of external devices, yet most motor-
decoding studies have been limited to discrete classification or unreliable continuous trajecto-
ries. This thesis explores continuous decoding of executed and imagined upper-limbmovements
from EEG using both empirical and theoretical approaches. In Part A, a multimodal experimen-
tal pipeline was developed to synchronously record 32-channel EEG and MoCap data during
both actual and imagined reaching tasks. Despite rigorous preprocessing and synchronization
validation, residual EEG artifacts and integration drift in motion data rendered the self-collected
dataset unsuitable for training reliable deep learningmodels. As such, the focus shifted to Part B,
where we switched to using theWAY-EEG-GAL public motor-EEG dataset and a new “manifold
learning” method called MARBLE. We conducted two reproducibility studies and one original
experiment: (1) we verified MARBLE’s ability to learn smooth latent embeddings on synthetic
vector fields, (2) we replicated its performance on macaque intracranial data by clustering reach
directions and reconstructing kinematics, and (3) we performed a novel application of the frame-
work to EEG data, identifying necessary preprocessing steps and running preliminary models to
assess compatibility. The findings of this thesis establish both a practical foundation for future
data collection and a theoretical basis for structured, geometry-aware decoding strategies that
align with the brain’s organization of motor intent.
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Chapter 3

Introduction

3.1 Motivation and Research Objective
Brain-Computer Interfaces (BCIs) provide a way to translate neural activity from the brain into
commands for external devices. This offers exciting oportunities for assistive technologies,
neuro-rehabilitation, and immersive virtual experiences [Sosnik and Zheng, 2021]. Accurately
interpreting motor intentions from brain signals into natural movement remains one of the main
challenges in BCI research.

Traditionally, BCI studies employ classification approaches in solving the motor decoding chal-
lenge. This approach categorizes predefinedmovements or imagined actions into discrete classes
[Lotte et al., 2018]. While this approach can be effective, it still fails in providing the full dy-
namic nature of real-world movements. A different paradigm, namely trajectory reconstruction,
has aimed to address this limitation through the continuous estimation of movement parameters
such as limb velocities from neural activity [Sosnik and Zheng, 2021, Robinson et al., 2015,
Korik et al., 2019, Jeong et al., 2020].

Previous studies demonstrated the ability of decoding continuous trajectories using linearmodels
(see Section 4.1.1). Unfortunately, performance was limited, especially in the case of imagined
movements. More recent work has shown that deep learning models, especially those combin-
ing spatial and temporal components, can improve decoding accuracy for executed movements
[Pancholi et al., 2022]. However, their application to imagined movements has not been ex-
plored. This thesis aims to address this discrepancy by investigating whether these models can
also improve the accuracy of decoding imagined upper limbmovements in a continuous manner.
Additionally, we are interested in checking whether decoding performance can be improved by
targeting biomechanically meaningful variables. In other terms, we would like to investigate
how decoding performance varies between choosing velocities, positions or joint angles as the
decoding target [Wang et al., 2023c].

3.2 Research Question
This work was guided by the following central research question:

Can deep learning models accurately decode both continuous executed and imag-
ined upper limb movements from EEG signals, and what representations or model-
ing strategies are best suited for this task?

To address this, the thesis is structured into two complementary parts:
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• Part A: A hands-on approach that aims to build a pipeline for simultaneous recording
and preprocessing of electroencephalography (EEG) and Motion Capture (MoCap) data
to train models that decode physical movement.

• Part B: An exploration into how the brain might internally represent movement. The
goal is to determine the best modeling approach in order to address the limitations in the
literature.

3.3 PartA:Experimental Approach –End-to-EndDeepLearn-
ing for Motion Decoding

Part A initially aimed to implement an end-to-end deep learning pipeline that allows for decod-
ing upper limb trajectories from synchronized EEG and MoCap recordings. The experiment
involved both executed and imagined movements, with a focus on using deep learning models,
such as CNN-LSTMs or transformers, that can capture spatiotemporal dynamics in neural ac-
tivity. The latter would be used to reconstruct movement trajectories directly from EEG signals.
The aim was to extend previous work by applying these models to imagined movements.

However, despite careful planning, our approach was limited by real-world constraints. This
included hardware limitations, which had a negative impact on data quality andwork scheduling.
As a result, the collected dataset was deemed unsuitable for our purposes. This forced us to
reconsider ourmethodology, pushing us towards a deeper investigation onto howmotor intention
is represented in the brain.

3.4 Part B: Theoretical Approach –Modeling InternalMotor
Representations

Building on insights from the initial phase, Part B focuses on identifying the most suitable mod-
eling approach to achieve our goal. This required an extensive investigation onto movement
representation in the brain. Our initial goal of decoding physical positions was replaced by an
understanding that movement representation is better captured by interpreting it as patterns of ac-
tivity that follow an organized and structured path in a simplified, low-dimensional latent space.
This shift was mainly driven by our goal of improving reconstruction of imagined trajectories,
which would have been limited had we followed our initial intuitions from Part A.

This part explores alternative modeling strategies using latent space representations, contrastive
learning, and manifold geometry. It makes use of theoretical models such as MARBLE, origi-
nally developed for invasive neural data, and attempts to adapt their insights for use with EEG.
A public dataset was used as temporary stand-in for our own recordings to explore the feasibility
of inferring imagined trajectories from neural signals, and to investigate the model’s ability to
generalize to unseen trials and new motor intentions.

Although practical implementation of these models was constrained by time and scope, this
theoretical trajectory offers a strong foundation for future empirical work.
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3.5 Thesis Outline
This thesis reflects two bodies of work: one about building and testing a real system, and another
about developing the theory that completes it. Each main chapter is split into two parts to reflect
this structure.

• Chapter 4 – Related Work: Provides a literature review onto concepts relevant to both
standard motion decoding and models of motor representation.

• Chapter 5 – Background: Provides knowledge to familiarize the reader with some pre-
liminary information related to motor decoding.

• Chapter 6 – Methodology: Details the experimental approach and theoretical modeling
approach.

• Chapter 7 – Experiments: Provides a high-level description of experiments conducted
during pipeline construction, and during empirical exploration of our new modeling ap-
proach using our recordings (Part A) and public datasets (Part B).

• Chapter 8 – Results: Presents the results of the experiments introduced in the previous
chapter.

• Chapter 9 –Discussion: Merges insights fromParts A andB, reflecting on their interplay.

• Chapter 10 – Conclusion: Summarizes contributions and proposes future directions.

13



Chapter 4

Related Work

This chapter provides the foundation for both phases of the thesis. It is structured in two parts,
reflecting the dual progression of the project. Part A looks at the practical work and ideas that
shaped the experiment. It reviews prior work on EEG-based trajectory decoding, including
linear models and early deep learning strategies. It also examines the biomechanical and neu-
ral control principles that guided the selection of decoding targets and inspired the experimental
design. While Part B explores the theoretical shift that followed the practical challenges encoun-
tered during implementation. It also introduces recent theoretical advancements in movement
representation, such as neural manifolds, reference frame transformations, and compositional
motor structures. These insights offered a more structured way to conceptualize motor intention
and laid the groundwork for future decoding models.

4.1 Part A: Theoretical Basis for Experimental Approach

4.1.1 Initial Approaches to EEG-Based Movement Decoding
The original hypothesis aimed to decode EEG signals into upper-limb movement trajectories
using deep learning models. This work is motivated by studies employing linear models such
as Multivariate Linear Regression (MLR), Kernel Ridge Regression (KRR), and Kalman Filter
(KF) as per [Sosnik and Zheng, 2021, Robinson et al., 2021, Korik et al., 2019, Kobler et al.,
2020]. These studies emphasized the correlation between velocity and low-frequency EEG.
The decision to explore deep learning models was primarily inspired by the promising results
reported by Pancholi et al. [2022]. The latter showed superior performance over in decoding 3D
hand trajectories using a hybrid CNN-LSTM model.

4.1.2 From Classification to Continuous Trajectory Reconstruction
A important conceptual distinction emerged during the literature review between classification-
based decoding [Lotte et al., 2018], common in motor imagery research, and continuous tra-
jectory reconstruction, which is more suitable for practical applications such as Virtual Reality
(VR) embodiment or motor rehabilitation. Continuous decoding methods [Sosnik and Zheng,
2021, Pancholi et al., 2022], offering natural and fluid movement control, were thus prioritized
for their practical aspect.
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4.1.3 Biomechanical Constraints & Decoding Modality
TheMotion Trajectory Reconstruction Trasnformer (MTRT) byWang et al. [2023c], highlighted
the value of biomechanical constraints on decoding performance. The loss function employed
by their model included constraints on the decoded position that were in line with the accept-
able range of motion of the average human. As such, we consider the potential performance
improvement from applying such constaints on decoding targets such as joint angles, positions,
and velocities.

4.1.4 Movement Primitives as Biomechanical Intermediaries
Investigating neuromusculoskeletal models, particularly the Electromyography (EMG)-driven
musculoskeletal model introduced by Durandau et al. [2018], revealed how internal biomechan-
ical variables contribute to movement. Their framework broke down the decoding process sev-
eral steps, includingmuscle activation, force generation, and finally joint movement. This hinted
at how brain signals might translate into physical motion. Velocity becomes an informative de-
coding target that naturally integrates components like muscle activation and joint torques. To
be clear, although velocity does not explicitly represent muscle activations or joint torques, it
emerges from their combined effect. As such, velocity can be seen as a high-level feature that
implicitly carries information about the underlying neuromuscular control.

In contrast, Vargas et al. [2023] used artificial neural networks trained on simulated muscle spin-
dle input (feedback signal from the muscles to the nervous system) to show that activity in the
somatosensory cortex more closely matched variables, such as joint positions and velocities, in-
stead of detailed muscle-level signals. This supports a hierarchy in motor representation, where
lower levels (e.g. EMG) reflect fine-grained motor control, while higher levels (e.g. neo-cortex)
abstract movement into goal-oriented kinematics. Even though Vargas et al. [2023] studied the
somatosensory cortex, we can assume that the motor cortex uses similar ways of representing
movement. This assumption is based on the observation that these brain areas are both in con-
stant feedback loops aiming to predict and adjust actions as they happen [Evarts, 1973, Friston,
2010]

These insights led us to consider frameworks capable of representingmovement compositionally
and hierarchically. Dynamic Movement Primitives (DMPs), for instance, model trajectories
using abstract parameters like phase, amplitude, and goal. Hotson et al. [2016] demonstrated
that decoding performance improves when such simplified representations are used, suggesting
that the brain may construct complex actions by combining simpler movement primitives. This
resonated with our early intuition that generalization to unseen movements might rely on an
efficient subspace of motor actions, potentially formed from basis vectors or eigencomponents.
The DMP framework offered a mathematical formalism that aligned with this view, serving
as a bridge between biologically grounded theories and practical modeling tools for exploring
modularity and generalization in motor decoding.

Importantly, this compositional structure becomes even more valuable when decoding imagined
movements. In the absence of overt muscle activity or sensory feedback, decoding must rely
on internal representations that are abstract, stable, and generalizable. DMPs and similar frame-
works, by simplifying motion into a small set of dynamic parameters, offer a way to bridge the
gap between noisy EEG signals and high-level motor intentions. They also enable the possibility
of mapping imagined actions into meaningful trajectories by leveraging shared latent structure
across movement types (executed vs imagined). This insight played a key role in shaping both
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our theoretical and methodological shift toward models that explicitly take advantage of com-
positionality and latent space structure.

4.1.5 Temporal Synergies and Sequence Models
In recent work, temporal synergies within EEG signals were identified Yoshimura et al. [2017].
These correspond to recurring activation patterns in motor regions. The sequence of activations
seems to carry meaning in interpreting motor intentions. This provides additional support for the
concept of compositionality. These findings suggest that decoding endeavors could improve by
taking advantage of these structured temporal dynamics. Additionally, the phase-driven mech-
anism in DMPs, which behaves like an internal clock that orchestrates state-transitions, seems
to matched the brain’s own time-dependant activity patterns. This encourages the use of models
that account for long-range temporal dependencies.

In addition to these theoratical insights, empirical efforts were made in recent work to model
these temporal dynamics using deep recurrent architectures like ChronoNet [Roy et al., 2022].
Notably, Wang et al. [2023c] used a transformer model, achieving improved decoding perfor-
mance compared to previous approaches Pancholi et al. [2022], although on a different dataset.
With these observations supporting the literature about temporal synergies and DMPs, we were
encouraged to explore transformer architectures’ ability to capture long-range temporal depen-
dencies in EEG signals. These insights also emphasized the importance of tailoring the choice
of deep learning architecture such that it is driven by domain-knowledge, rather than simply
increasing the computational potential of the model.

Taken together, these insights point toward a key realization: decoding motor intentions from
EEG cannot rely solely on raw coordinate prediction or linear regression. The brain represents
movement using structured, low-dimensional, and compositional patterns that abstract away
muscle-level details in favor of goal-directed kinematics. These representations are not only
hierarchical and temporally organized but also robust to noise and capable of generalizing across
tasks. In this context, rather than treating EEG as unstructured input and attempting to force a
structure during decoding, it is more advantageous to employ models that take advantage of
latent spaces, specifically neural manifolds (more on that in Section 4.2.3). These offer the
ability to capture the underlying task-relevant parameters using a structures representation that
is more in line with brain-like representations. This synthesis motivated the shift in Part B: from
learning direct mappings to designing decoding models that explicitly recover and align with
the internal geometry of motor intention as reflected in EEG.

4.2 Part B: Theoretical Framework for Structured Decoding
and Neural Geometry

4.2.1 Movement Primitives as Goal-Directed Dynamical Systems
As discussed in Part A, the DMP framework offers a method for modeling movement as a set of
simplified dynamic parameters. These models describe trajectories as goal-directed dynamical
systems shaped by a phase variable and internal control parameters [Saveriano et al., 2023,
Hotson et al., 2016, Bahl et al., 2020]. The success of this approach at EEG decoding hints at
the fact that the brain might employ similar abstractions in motion representation.
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4.2.2 Reference Frames in Motor Representation
Yoshimura et al. [2017]’s source localization not only reflected temporal dynamics as discussed
in Section 4.1.5, but also highlighted that different brain regions are involved, depending on
whether movement is framed intrinsically (body-relative) or extrinsically (world-relative). This
aligns with more recent findings which showed that the brain often encodes movement goals
in world-centered terms, even if the actual movement is carried out using a body-centered per-
spective Herweg and Kahana [2018], Ottenhoff et al. [2025]. This dynamic shifting between
reference frames reinforces that idea that basic regression into Cartesian coordinates, as has
been done in most prior work, can only capture a very limited representation of brain dynam-
ics that correlate with motion. This motivates the use of decoding models capable of internally
representing different spatial encodings.

4.2.3 Neural Manifolds and Population Geometry
Before encountering formal manifold literature, our investigations had converged on the idea
that motor intent is encoded in structured, compositional neural activity patterns. Our initial
thoughts hovered around concepts like DMPs, basis and, eigenvectors as per Section 4.1.4. This
was later formalized by Chung and Abbott [2021], who described patterns of brain activity as
’neural trajectories’ moving through high-dimensional spaces, known as ’neural manifolds’.

Neural manifolds adapt dynamically through transformations such as rotations, scaling, and non-
linear warping, depending on the cognitive context or motor task Chung and Abbott [2021]. For
example, when a person reaches for a cup with their right hand versus their left, the brain might
use the same general motor plan but represent it differently depending on the hand used or the
target’s position in space. In this example, the underlying neural activity still follows a similar
structure but is reshaped (rotated, stretched, or curved from a neural manifold perspective) to
match the specific context. This allows the brain to reuse existing movement patterns, instead
of creating a new representation every time. This mechanism mediated by ’neural manifold’
was critical for decoding imagined trajectories. Unlike executed movements, imagined actions
lack sensory feedback and overt muscle activation. To design a model capable of generalizing
to imagined movements, you then need a mechanism to differentiate between more subtle and
internally generated neural patterns. These manifold transformations constitute a solid option
for detecting these variations in motor representations within the same latent space.

Moreover, this adaptability to different cognitive contexts aligns well with the dynamic switch-
ing between spatial reference frames discussed earlier in Section 4.2.2. Just as the brain can
shift between allocentric and egocentric representations, decoding models should also exhibit a
similar mechanism. This can be achieved by employing manifold-based decoding approaches as
they leverage transformations in their latent space. In this way, we can achieve true generaliza-
tion, by employingmethods that mimic the brain’s own strategies for integrating context-specific
motor intentions.

4.2.4 Latent Space Approaches to EEG Decoding
Building on the manifold framework, we explored models that explicitly learn structured, low-
dimensional manifolds from neural data; notably MARBLE and GREEN. Unlike typical la-
tent space models that reduce dimensionality without enforcing structure, manifold learning
approaches aim to uncover the underlying geometry and dynamics of neural activity.
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MARBLE, originally developed for intracranial neural recordings (i.e., implanted electrodes
rather than non-invasive sensors like EEG), uses contrastive learning to embed neural samples
as continuous flow fields over a learned manifold [Gosztolai et al., 2025]. This approach builds
on earlier models like Latent Factor Analysis via Dynamical Systems (LFADS), which inferred
neural trajectories from high-resolution recordings of neuronal populations [Pandarinath et al.,
2018]. GREEN adapted manifold learning for EEG by combining Riemannian projections with
adaptive wavelets to handle the noisier scalp signals [Paillard et al., 2024].

These studies validated our earlier hypotheses and provided computational tools to formalize
them. Although constraints prevented full implementation, these models offer a solid basis for
future work.
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Chapter 5

Background Information

In this chapter, we provide the reader with some useful background information in order to gain
a solid understanding of some of the basic terminology relevant to this type of research.

5.1 Frequency Bands
Cortical activity is reflected in EEG signals across a frequency range from below 4 Hz to ap-
proximately 140 Hz. The commonly recognized frequency bands and their associated cognitive
or behavioral states are summarized in Table 5.1.

Table 5.1: Summary of EEG frequency bands and their associated cognitive or behavioral states.

Wave Type Frequency Range Associated State / Function

Delta < 4 Hz Deep sleep
Theta 4–7 Hz Light sleep, drowsiness, hypnagogic states
Alpha 8–12 Hz Relaxed wakefulness, eyes closed
Mu 7.5–12.5 Hz Motor cortex activity, motor imagery and execution
Low Beta 12.5–16 Hz Focused attention, alertness
Beta 2 16.5–20 Hz Active thinking, cognitive load
High Beta 20.5–28 Hz High alertness, anxiety, stress
Gamma 25–140 Hz Higher-order cognition, perception, memory, conscious-

ness

5.2 Brain Areas
The brain is organized into distinct regions that correspond to motor and sensory functions. This
distribution is illustrated by the Penfield homunculus in Figure 5.1, which shows how different
body parts are mapped to specific areas in the motor and somatosensory cortices.
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Figure 5.1: Penfield Homunculus. Credit: Encyclopaedia Britannica

The somatosensory cortex processes sensory information from the skin, muscles, and joints,
while the motor cortex is responsible for planning and executing voluntary movement[Condylis
et al., 2020]. Each limb is associatedwith the contralateral hemisphere—e.g., the left hemisphere
controls the right side of the body.

The outer layer of the cerebrum, the cerebral cortex, is divided into Brodmann areas. EEG data
is commonly recorded using the 10-10 system, standardized by the American Electroencephalo-
graphic Society. Figure 5.2 shows both the 10-10 system aligned with Brodmann areas and the
simplified 10-20 layout used in this thesis.

In this thesis, we use a reduced 32-channel montage based on the 10-20 system, as shown in
Figure 5.2b, following guidance from recent literature.

20



(a) 10-10 system with Brodmann areas. Credit:
[Asanza et al., 2022]

(b) 32 EEG electrodes (10-20 system). Credit:
[B.V., n.d.]

Figure 5.2: Comparison of the 10-10 system (left) and the 10-20 system with 32 electrodes
(right).

5.3 Experimental Paradigms in Recent Literature
EEG-basedBCI studies typically employmotor imagery (MI) ormotor execution (ME) paradigms,
each with distinct experimental goals.

5.3.1 Motor Imagery (MI) Paradigms
MI refers to the mental simulation of movement without physical execution [Hanakawa et al.,
2003]. MI tasks are often categorized as either kinesthetic, involving the imagination of the
sensation of movement (e.g., muscle tension), or visual, involving the mental visualization of
movements from a first- or third-person perspective [Neuper et al., 2005].

Common MI tasks include imagining hand, foot, or tongue movements [Edelman et al., 2019,
Pfurtscheller et al., 2006]. These tasks align with the somatotopic organization of the motor
cortex. While useful for classification, MI-based BCI studies increasingly explore continuous
decoding tasks, such as estimating velocity during reaching [Jeong et al., 2020, Kim et al., 2015].
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Figure 5.3: Summary of experimental paradigms for upper-limb motor BCI, including (a) MI
and (b) ME. Credit: [Wang et al., 2023b]

5.3.2 Motor Execution (ME) Paradigms
ME refers to real physical movements and reflects natural motor control [Bai et al., 2007]. ME
tasks are often categorized as either movement type recognition, which involves identifying
movement types such as wrist rotation, elbow flexion, or grasping [Liu et al., 2018], or move-
ment onset detection, which involves identifying the intention to move for real-time BCI use
[Jochumsen et al., 2015].

Movement decoding experiments often use center-out tasks where participants move from a
central position to multiple targets [Robinson et al., 2015, Sosnik and Zheng, 2021, Wang et al.,
2022]. Other paradigms include pursuit tracking tasks (Pursuit Tracking Task (PTT)) using
cursors to follow moving stimuli. Decoding velocity, direction, and position is possible, though
noise and artifacts remain significant challenges.

5.3.3 2D vs. 3D Reconstruction
Reconstruction efforts in EEG-based motion decoding can differ significantly depending on the
dimensionality of the targeted movements. In 2D reconstruction, motion is constrained to a pla-
nar surface, such as horizontal or vertical movements on a screen. This approach is often simpler
to implement and interpret, making it more robust and easier to decode from EEG data due to
the reduced complexity of the motion [Robinson et al., 2015, Kim et al., 2015]. In contrast, 3D
reconstruction involves estimating motion in three-dimensional space, accounting for additional
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degrees of freedom such as depth and joint articulation. While 3D reconstruction offers a more
realistic and natural representation of upper-limb movements [Sosnik and Zheng, 2021], it poses
greater challenges in terms of decoding accuracy and signal reliability, particularly when using
non-invasive neuroimaging techniques like EEG [Jeong et al., 2020].
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Chapter 6

Methodology

This chapter outlines the methodological framework used in both phases of the thesis. Reflect-
ing the structure of the project, it is divided into two parts. Part A details the design, execution,
and technical aspects of the empirical experiment, including hardware-software integration, syn-
chronization strategy, and participant protocol. Part B presents the theoretical modeling plan,
including decoding targets, neural representation strategies, and planned model architectures.

6.1 PartA:Experimental Approach –End-to-EndDeepLearn-
ing for Motion Decoding:

6.1.1 Participant Recruitment and Inclusion Criteria
The study involved healthy adult volunteers recruited primarily from Leiden University, includ-
ing both students and staff. A total of 10 participants were planned, representing a typical sample
size for exploratory EEG studies. Participants were recruited through university mailing lists,
posters, and personal networks. All volunteers were required to be 18 years or older and ca-
pable of providing informed consent. To maintain consistency in both motor ability and neural
activity, only individuals with no history of neurological or musculoskeletal conditions were
included.

Beyond these basic health criteria, additional factors were considered to ensure reliable EEG
and MoCap recordings:

• Age Range: Only participants between the ages of 18 and 35 were included. This range
was selected because EEG signal quality and motor control have been shown to decline
with age [Dustman et al., 1999, Delgado-Aguilera et al., 2024], and adhering to this range
helped to minimize variability across participants and trials.

• Handedness: All participants were right-handed, as confirmed using the EdinburghHand-
edness Inventory (EHI) as per [Oldfield, 1971]. This was done to ensure consistent brain
hemisphere activation during motor tasks, since handedness affects how motor plans are
represented in the brain.

• Session Timing and Meal Instructions: To control for natural fluctuations in brain ac-
tivity, all sessions were conducted during a fixed two-hour window in the morning or
afternoon. Participants were also instructed to eat a light meal at least one hour before
the session, as both time of day and food intake can affect EEG signal patterns [Cajochen
et al., 1995].
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• Fit and Compatibility: Participants underwent visual inspection for factors that could
interfere with signal quality or sensor placement, such as very thick hair, unusual skull
shape, or body proportions that might distort the MoCap suit fit. These checks were based
on guidelines from previous MoCap studies [Liao et al., 2011].

• Motor Imagery Ability: Since the experiment included imagined movement tasks, par-
ticipants were also assessed for their ability to perform different forms of motor imagery
(see Section 5.3.1) using the Kinesthetic and Visual Imagery Questionnaire (KVIQ) as
per [Malouin et al., 2010]. Only those with scores above a certain threshold were invited
to participate.

These criteria helped in noise reduction during EEG recordings sessions and increased the relia-
bility of comparisons between participants. The goal was to recruit a small but carefully selected
group of individuals capable of performing both executed and imagined versions of the motor
task under controlled conditions.

6.1.2 Ethical Approval and Data Management
This study was conducted in accordance with the ethical standards of Leiden University. Ap-
proval was granted by the university’s Ethics Committee (see Appendix E), allowing the recruit-
ment of up to ten participants. Additionally, the research went through a formal Data Protection
Impact Assessment (DPIA) (DPIA: FWN24-008) to ensure compliance with the General Data
Protection Regulation (GDPR). The DPIA outlined the nature of the data collected, including
sensitive biometric signals (EEG andMoCap), as well as basic contact information (name, email,
student ID). To protect participant privacy, all data were pseudonymized and access was strictly
limited to the researcher and supervisor.

Finally, a detailed Data Management Plan (DMP) was also submitted and approved prior to the
start of the study. This plan covered how data would be stored, processed, and protected over
the course of the project. Key data handling procedures included:

• Storage: All data were saved on the university’s secure network (J: Drive), with backups
and version control handled via descriptive filenames and metadata logs.

• Encryption: Sensitive files were encrypted using Veracrypt, and access was restricted to
approved devices.

• Pseudonymization: Personally identifiable data were stored in a separate location from
EEG and MoCap recordings, minimizing the risk of identification.

• Metadata Documentation: Data was documented using standardized README files
following the ISA-Tab format to ensure reproducibility and clarity for potential collabo-
rators.

• Retention and Sharing: In line with university guidelines, the data will be stored for 10
years. While the dataset itself will not bemade public due to privacy restrictions, metadata
may be shared upon request for purposes of collaboration or verification.

These steps were taken to protect participants’ privacy while still being open about the research
methods, making sure the study followed both ethical guidelines and proper data handling stan-
dards for neuroscience research.

25



6.1.3 Data Collection Experiment Refinement
This section describes the process of iteratively improving our experimental design, shaped by a
combination of practical constraints, literature insights, and iterative pilot testing. Our aim was
to develop a setup that could capture both EEG and MoCap data during upper-limb executed
and imagined movements, while ensuring a comfortable experience for participants.

EEG System Selection

Choosing the right EEG system was a crucial step. We needed a device that could deliver high-
quality neural recordings, work smoothly with MoCap systems, and support precise synchro-
nization. We began with a literature review focused on EEG systems commonly used in BCIs
and neurorehabilitation research. A survey by Dai et al. [2023] proved especially useful, as
it compared popular systems in terms of signal quality, number of channels, portability, and
synchronization support (see Table 6.1). This gave us a solid benchmark for evaluating options.

With this information, we contacted vendors like ANT Neuro and Artinis, two Dutch companies
with strong reputations in the field. We scheduled meetings to explore technical specifications,
potential university-mediated discounts, and/or short-term lease possibilities. At the same time,
we investigated existing EEG setups already available at Leiden University. This involved vis-
iting labs, reviewing inventories, and consulting with technical staff.

Following our vendor meetings, it became clear that both ANT Neuro and Artinis offered ex-
cellent systems in terms of channel density, signal quality, and synchronization support. ANT
Neuro in particular provided compelling advantages with active electrodes, portable amplifiers,
and strong software compatibility. However, the cost of both systems was too high, even after
exploring university-supported discounts.

Fortunately, our internal investigation led to the discovery of a Biosemi ActiveTwo system
housed within the university at the SOLO Labs. While it was not initially our first choice,
the system aligned well with our experimental requirements. Biosemi’s reputation for research-
grade performance, active gel-based electrodes, and support for up to 256 channels made it a
viable candidate. More importantly, the system was partially compatible with the synchroniza-
tion architecture designed for this project.

As such, the Biosemi ActiveTwo was selected for all subsequent experimental recordings pre-
sented in this thesis.
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Table 6.1: Comparison of EEG systems adapted from [Dai et al., 2023].
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Motion Capture System

In parallel, we conducted a detailed investigation into MoCap platforms capable of synchro-
nizing with neural recordings while supporting fine-grained limb tracking. Our goal was to
identify a system that would provide sufficient spatial resolution, low latency, and adaptability
to real-time conditions typical of motor control experiments.

We began by evaluating the ZeroKey Quantum RTLS, an ultrasonic-based real-time localization
system known for sub-millimeter accuracy in industrial settings [ZeroKey Inc., 2023]. Its accu-
racy was impressive, but the system was clearly designed for industrial applications rather than
human motion capture. It required a static environment, a grid of anchor nodes, and complex
calibration procedures which made it impractical for our needs.

Next, we considered the Microsoft Kinect sensor, informed by its prior use in EEG-motor de-
coding studies Sosnik and Zheng [2021]. While affordable and easy to integrate, Kinect’s ac-
curacy drops significantly in occluded or fast-motion scenarios, which are common in upper-
limb experiments. We also looked into AI-based markerless pose estimation tools like Open-
Pose, DeepLabCut, and Pose2Sim [Mathis et al., 2018, Pagnon et al., 2022]. These approaches
promised scalable, low-cost tracking pipelines, but they also suffer from issues such as sensi-
tivity to lighting, camera angle, and depth ambiguity.

As with the EEG search, we investigated possible alternatives at the university’s labs. Although
the explored MoCap systems outlined were promising, ultimately, the wearable inertial-based
motion capture Movella Awinda system proved to be most suitable for our use case. It supports
multi-limb tracking, provides real-time joint kinematics, and incorporates proprietary filtering
and error correction algorithms to improve measurement reliability [Movella Inc., 2023a]. It is
also partially compatible with available synchronization methods and offers advanced biome-
chanical analytics through the MVN software suite. Compared to other solutions, the Movella
system offered the best trade-off between precision, flexibility, and integration, making it the
most appropriate MoCap platform for this project.

As such, the Movella Awinda was selected as the motion capture apparatus for all subsequent
recordings. Table 6.2 summarizes the comparative selection process of MoCap selection.
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Table 6.2: Comparison of Evaluated Motion Capture Systems. Credit: By Author

System Tracking
Type

Precision / Ac-
curacy

Biomechanical
Modeling

Integration
Complexity

Notes / Out-
come

ZeroKey Quantum
RTLS

Ultrasonic
RTLS

Sub-mm Not Human-
Centric

High (Re-
quires An-
chors)

Designed for
industrial as-
sets; high cost;
not practical for
wearable use

MicrosoftKinect v1 RGB-D
Camera

Moderate (low
under occlu-
sion)

Full-body
Skeleton

Moderate
(LSL-
compatible)

Low cost,
but limited
accuracy
under move-
ment/occlusion

OpenPose /
DeepLabCut /
Pose2Sim

Markerless
Vision
(Deep
Learning)

Variable (frame-
dependent)

Inferred Joints
Only

Post-
processing
Required

Susceptible
to light-
ing/occlusion;
not ideal for
precise kine-
matics

Movella MTw
Awinda

Inertial
(IMUs)

High (propri-
etary filtering)

Real-Time Joint
Kinematics

Seamless
(MVN +
Hardware
Sync)

Available in lab;
ideal balance
between preci-
sion, mobility,
and integration

Iterative Experiment Refinement

After hardware selection, the experiment design itself was subject to multiple iterations. We ran
a series of pilot sessions with volunteer participants to troubleshoot timing, comfort, clarity of
instructions, and overall workload. These iterations shaped both the technical implementation
and the participant experience.

Stage I – Tracker Load and Sample Rate

The initial design aimed to record full upper-body kinematics for both left and right arms. How-
ever, early test sessions revealed that capturing bilateral motion with adequate trial numbers
would significantly lengthen the experiment, resulting in participant fatigue and compromised
data quality. Additionally, the Movella system’s sampling rate was found to decrease with in-
creased tracker count as shown in Table 6.3. These technical constraints and ergonomic limita-
tions led us to explore simplified recording configurations. The final experiment employed five
inertial trackers configured exclusively for the right arm, placed on: the hand, forearm, shoul-
der, scapula and sternum. This allowed a maximal motion capture sampling rate of 100 Hz and
ensured coverage of the most relevant kinematic segments for decoding upper-limb motion.
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Table 6.3: Movella MTw Awinda Wireless Update Rates by Tracker Count. Credit: [Movella
Inc., 2023a]

Number of Trackers Update Rate (Hz)

1–5 120
6–9 100
10 80
11–20 60

Stage II – Trial Timing and Cue Synchronization

Participants reported that the original trial pacing, adapted from Sosnik and Zheng [2021], felt
rushed. This was especially true for imagined movement blocks. We experimented with several
schemes, eventually settling on the following version. Each trial was expanded to five seconds:
a 2.5-second reach phase followed by a 2.5-second return. Block durations were modified as fol-
lows: V-block (8s), P-block (5s), R-block (10s), IBI (30s). This scheme improved participants’
ability to perceive cues and synchronize trial execution accordingly. A complete description of
the experimental paradigm and illustrative diagrams are provided in Section 6.1.4.

Stage III – Visual Cue Integration

Relying on sound alone caused confusion in some early sessions. Participants occasionally
missed the beeps or lost track of timing. We mitigated this issue by incorporating simple vi-
sual cues (e.g., directional arrows, highlighted targets) to reinforce the auditory signals. This
multimodal cueing strategy was implemented such that Runs 1 and 3 presented both visual and
auditory stimuli, while Runs 2 and 4 relied solely on auditory tones. Research indicates that
visual cues can enhance brain responses during motor imagery tasks. For instance, [Kilmarx
et al., 2024] found that imagining something right after seeing it (short-term visual imagery)
creates more robust and decodable EEG patterns than trying to imagine it without any visual aid
(from long-term memory). This supports the use of visual cues alongside auditory ones in BCI
experiments.

Stage IV – Exploring Compositionality

Inspired by theories of compositional motor control (see Chapter 4), we introduced new move-
ment targets and paths designed to investigate how participants mentally combine simple move-
ments into more complex ones. Five spatial targets were defined: four corner positions and
a central fifth target. In later runs, five dynamic trajectories were introduced, with the fifth
trajectory designed as a linear combination of the first and fourth (see Figure 6.1).

Stage V – Reducing Fatigue

Even after making several improvements, long recording sessions still caused participants to
feel tired and uncomfortable. As such, we experimented with longer rest breaks, mid-session
pauses, and the option to split recordings across two days. We decided to let participants opt
for whichever option was most suitable according to their constraints. They had the choice
between mid-session pauses, or to split recordings across two days. These strategies helped
reduce physical and mental strain while preserving data quality and participant motivation.
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6.1.4 Experiment Design and Trial Structure
The experiment was designed to collect simultaneous recordings of brain activity and upper-
limb motion, with the goal of investigating the neural correlates of both executed and imagined
reaching movements. Each session lasted approximately 60 minutes and consisted of four runs.
Each run alternated between executed and imagined movements and followed a consistent struc-
ture to ensure control and repeatability. Participants were sat comfortably in a chair with their
dominant arm resting on a starting pad placed on the armrest. All stimuli, cues, and instructions
were presented on a screen facing them, and pacing was reinforced through auditory tones.

Task Format and Targets

Each run included five blocks (labeled T1–T5), with each block targeting a specific movement
target or trajectory. Each block contained 12 trials in which participants repeatedly moved (or
imagined moving) toward the same target or along the same trajectory. Targets were either static
(e.g., top-left, bottom-right) or dynamic (continuous paths like vertical or lateral sweeps). Each
was represented by either a square or an arrow on the screen, depending on the movement type
(see Figure 6.1).

Figure 6.1: Visual layout of static targets (left) and trajectories (right). Targets are labeled from
1 to 5, starting from the top-left corner and proceeding clockwise; Target 5 corresponds to the
central target shown on the left. Trajectories are similarly numbered 1 through 5. Notably,
trajectory 5 combines trajectories 1 and 4 involving a horizontal sweep from left to right (Tra-
jectory 1), followed by a vertical sweep from bottom to top (Trajectory 4) as illustrated on the
right. Credit: By Author, adapted from [Sosnik and Zheng, 2021].
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Trial Timing and Structure

Each individual trial lasted 5 seconds and was divided into three distinct phases:

• Movement Initiation (0–2.5s): A 4 kHz tone signaled the start of the trial. Participants
reached (or imagined reaching) toward the displayed target. They were encouraged to
pace their movement naturally, starting after the cue and progressing smoothly toward the
goal.

• Pause at Target (2.5s): Until the midpoint of the trial, participants reached the target and
briefly paused. This pause varied slightly depending on their pacing

• Return to Start (2.5–5s): A second tone at 2.5 seconds (6 kHz) signaled the participant
to return to the home position, completing the trial by the 5-second mark.

This consistent timing structure ensured reliable synchronization across EEG and MoCap data
streams and replicable trials. While the trial timing was externally constrained, the details of
forward movement and pause duration varied slightly based on participant behavior. This design
choice was adopted in light of the findings from Section 6.1.3

Instructional and Rest Blocks

Each block followed a repeating structure of instruction, preparation, execution/imagery, and
rest:

• Visual Message (V) Block: A brief on-screen cue informed the participant of the upcom-
ing task for a duration of 8 seconds (e.g., ”execute reach to target 2” or ”imagine sweeping
motion along arrow”).

• Preparation (P) Block: The target or trajectory was visually presented for 5 seconds.
Participants used this time to mentally prepare or rehearse the upcoming movement.

• Trial Execution (T) Block: Participants performed 12 trials based on the presented in-
struction and trajectory. Executed and imagined trials were split by the half-run point.

• Rest (R) Block: A 10 second rest period followed each execution/imagery block. Par-
ticipants were asked to remain still and minimize any movement, talking, or clenching,
though this was not strictly enforced. These segments were excluded during data process-
ing.

• Inter-Block Interval (IBI) After each half-run (five blocks), participants were given a
longer 30-second rest period. These intervals served as a reset period and as a baseline
measurement for neural activity in a relaxed state. Participants were instructed to avoid
swallowing, fidgeting, or jaw tension.
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Figure 6.2: Overview of the timing structure for a full run. Each run includes blocks of visual
instruction (V), preparation (P), trial execution (T), rest (R), and inter-block intervals (IBI),
alternating between executed and imagined conditions. Credit: By Author, adapted from [Sosnik
and Zheng, 2021]

Participant Instructions

Participants were provided with detailed instructions and real-time guidance during the session
to ensure consistency across conditions. These measures aimed to support comparative analysis
under highly controlled and repeatable circumstances. Specifically, participants were instructed
to:

• Follow the auditory cues precisely to initiate and return during each trial, aiming for
smooth, natural pacing.

• Keep their gaze fixed on the target or trajectory to minimize eye movement artifacts.

• Be wary of performing physical movement during imagined trials.

• Remain relaxed, upright, and silent during rest intervals.

6.1.5 Experimental Setup and Hardware Configuration
The experiment was conducted using a synchronized multimodal setup that enabled the simul-
taneous recording of EEG and MoCap data. This section describes the hardware components,
how they were physically arranged, and the synchronization architecture that linked all parts of
the system. The goal was to ensure a replicable infrastructure, minimal latency and, comfort for
participants throughout the recording.

Recording Equipment

Neural activity was recorded non-invasively using a BioSemi ActiveTwo system (BioSemi B.V.,
Amsterdam, Netherlands) with a 32-channel electrode cap. Electrodes were placed according
to the international 10–20 system (see Figure 5.2b). EEG signals were sampled at 1024 Hz,
referenced using BioSemi’s standard Common Mode Sense (CMS)/Driven Right Leg (DRL)
electrode configuration. In addition, Electrooculogram (EOG) was recorded using four external
electrodes sampled at 1024 Hz as well. Simultaneously, MoCap was achieved using the MVN
Awinda system by Movella, which consists of 17 wireless MTw Awinda Inertial Measurement
Units (IMUs). For the purposes of this study, only upper limb segments were used, specifically
the shoulder, upper arm, forearm, and wrist totaling 5 wireless MTw trackers. Motion data was
sampled at 100 Hz and included acceleration and orientation measurements.
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Participant Seating and Physical Layout

Participants were seated in an adjustable office chair with armrests. A computer monitor was
placed at eye level, 60 cm in front of the participant, to display instructions and stimuli (see Fig-
ure 6.3). The EEG cap was secured on the participant’s scalp, with flat ribbon cables connecting
it to the BioSemi A/D box behind the chair as illustrated in Figure 6.11. The motion capture
sensors were worn over a soft, fitted MoCap suit. Care was taken to ensure participant comfort
and minimize cable tension.

Figure 6.3: Overview of the lab seating arrangement, stimulus presentation, and hardware syn-
chronization components. The participant is seated on the office chair using pre-defined mea-
surements. The experimental task is presented on the monitor facing them, and the EEG cap was
secured and connected to the AD box via flat ribbon cables behind them. Credit: By Author.

Figure 6.4: EEG cap secured and connected to the AD box via flat ribbon cables. Credit: By
Author
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System Architecture and Data Flow

To ensure that EEG, MoCap, and experiment triggers were all temporally aligned, a custom
system architecture was implemented, as illustrated in Figure 6.5.

Figure 6.5: Overview of the hardware and connection layout used during the experiment. Num-
bers refer to components; letters refer to physical or logical connections. Credit: By Author
Components (Numbered): (1) Active electrode 32-channel EEG cap; (2) Mark II EEG A/D box ; (3)
Movella Awinda Station; (4) Movella Motion Capture Suit with Inertial Trackers; (5) EEG Acquisition
Desktop; (6) Personal Laptop; (7) Biosemi USB Receiver; (8) External Monitor.

Connections (Labeled A–G): A) Flat ribbon cables output from EEG cap to the A/D box; B) Optical cable
output from A/D box to Biosemi USB receiver; C) BNC coaxial output from Awinda Station to Biosemi
USB receiver via BNC Distribution Box; D) Wireless output from Inertial Trackers to Awinda Station; E)
USB output from Awinda Station to personal laptop; F) Digital trigger from UsbParMarker to Biosemi USB
receiver (via DB-25 to DC-37); G) USB output from Biosemi USB receiever to EEG desktop; H) HDMI
output from laptop to external monitor. (C) & (F) Combined output from BNC Box to Biosemi 37-pin input;
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Detailed Description of System Architecture

In this subsection, we provide the reader with a detailed description of all components and con-
nections presented in Figure 6.5, explaining its function, physical location in the lab, and how it
interacts with other components during data collection. The numbering and lettering used here
correspond to the labels in the diagram for consistency and clarity.

Experiment Laptop:
A personal laptop (6) was used to run both theMTManager software, responsible for controlling
the Movella Awinda motion capture system, and PsychoPy, which executed the experimental
protocol and managed stimulus presentation and timing.

EEG Acquisition System:
EEG data was recorded using a dedicated acquisition desktop (5) connected to a Biosemi Ac-
tiveTwo USB receiver (7) and A/D box (2). The system was controlled using Biosemi’s Ac-
tiView software. The AD box interfaced (A) with the EEG cap (1) and the USB receiver (7)
collected trigger signals via a shared 37-pin Sub-D connector (F), which allowed synchronized
registration of experimental events.

Display Monitor for Participant:
An external monitor (8), connected via HDMI (H) to the experiment laptop (6), was positioned
exactly 60 cm away from the armrest of the chair in which the participant was seated. The height
of the screen’s bottom bezel to the floor was such that it was 15 cm above the chair’s armrest
(see Figure 6.3). This screen was used to present the visual stimuli for each experimental block,
ensuring the participant’s view remained fixed and ergonomically comfortable.

Movella Awinda Station:
The motion capture system included the Awinda Station (3) hardware, which handled wireless
communication (D) with the wearable inertial sensors (4). It also served as the master device
for synchronization, sending TTL pulses via its BNC OUT port (C) at recording onset.

Synchronization and Cabling:
Trigger signals were routed through a custom-built cable interface involving a BNC distribution
box, the UsbParMarker and a 37-pin Sub-D synchronization hub. This apparatus combined
digital triggers from the experiment laptop (6) (via UsbParMarker and DB-25 to DC-37 parallel
connection cable (F)) and synchronization pulses from the Awinda Station (3) into a shared
output connected to the Biosemi USB receiver (7). This ensured aligned start times between
EEG and MoCap recordings, as detailed in Section 7.1.1.

Software Infrastructure

Several programs ran in parallel across two machines to manage data collection:

• PsychoPy: Controlled the experimental task, stimulus display, and timing of event mark-
ers (laptop).

• ActiView: Captured and displayed incoming EEG signals and trigger events (EEG PC).

• MTManager: Controlled the recording of inertial data from the motion sensors (laptop).

• UsbParMarker: A Python module used to send digital event triggers to the EEG system.
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6.1.6 Middleware, Synchronization & Consistency Checks
Accurate synchronization between the EEG and MoCap systems was critical to ensure reliable
data alignment for multimodal decoding. We explored both software-based and hardware-based
synchronization approaches, ultimately developing a custom hardware solution that allowed for
real-time alignment of recording streams.

Software-Based Synchronization via LSL

The first approach we investigated was software-based synchronization using the Lab Streaming
Layer (LSL) framework. LSL is a widely adopted middleware developed for real-time acqui-
sition and synchronization of time-series data from multiple devices. It uses a shared network
clock to manage device-specific offsets and compensate for clock drift, allowing streams to be
aligned during post-processing with sub-millisecond accuracy [Kothe, 2014]. LSL also supports
the embedding of time-stamped event markers and provides tools such as LabRecorder and LSL
Viewer for real-time diagnostics.

We were able to successfully stream EEG data from the Biosemi ActiveTwo system using
Biosemi’s native LSL plugin. This stream was visible and verifiable via LabRecorder. How-
ever, streaming motion data from the Movella Awinda system proved to be a challenge. Despite
efforts using Movella’s LSL plugin, the data stream was not detected.

To isolate the problem, we tested an alternative: a Microsoft Kinect sensor integrated via the
open-source Kinect-LSL plugin. Skeletal motion data was successfully streamed and synchro-
nized, confirming that LSL was functional on our end. This led us to investigate Movella’s soft-
ware and revealed that our system was running on the MVN Animate license, which does not
support biomechanical data export or LSL-based streaming. These features require the higher-
tier MVN Analyze license, which was not available under our university’s license agreement.

Hardware-Based Synchronization via TTL Triggering

In parallel with these efforts, Movella had released documentation on hardware synchronization
for third-party systems [Movella Inc., 2023c], including detailed instructions on synchronizing
with ANT Neuro EEG systems via TTL pulses transmitted through BNC ports on the Awinda
Station (see Figure 6.6a) [Movella Inc., 2023b]. These TTL triggers can be configured to start
and stop events, using either rising or falling edges, specific pulse widths, and adjustable delays
(illustrated in Figure 6.6b).

Although this guidewas designed forANTNeuro systems, a technical consultationwithMovella’s
support team suggested that a similar approach could be applied to Biosemi’s ActiveTwo sys-
tem, which allows external triggers to be received via a USB interface coupled with an analog-
to-digital conversion box. The main challenge layed in interfacing these two systems, as the
Awinda Station outputs synchronization pulses via standard BNC coaxial cables, while the
Biosemi system requires digital trigger input through its own USB-based receiver, which uses
a proprietary format and voltage levels.

It is worth mentioning that even with the missing license, it was still possible to initiate syn-
chronization by using MT Manager. This is Movella’s software for configuring and recording
data from the Awinda system. Unlike MVN Animate and MVN Analyze, which offer real-time
visualization and biomechanical output, MT Manager focuses on device management and raw
data acquisition [Inc., 2014].
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(a) The Xsens Awinda Station BNC connectors,
two Sync IN and two Sync OUT.Credit: [Movella
Inc., 2023b]

(b) Polarity: Rising/ falling edge (Sync IN)
or positive/ negative pulse (Sync OUT). Credit:
[Movella Inc., 2023b]

Figure 6.6: Awinda Station synchronization BNC ports (left) and pulse polarity of TTL trigger
(right).

Custom Cabling and Logging Setup

To mitigate these incompatibilities, we collaborated with university lab technicians to develop
a custom hardware interface capable of delivering synchronization and digital trigger signals
simultaneously. The solution included the following components:

• BNCOUT fromAwinda Station: Configured as the synchronization master, the Awinda
Station sends a TTL pulse from its BNC OUT port (illustrated in Figure 6.6a) as soon as
recording begins in MT Manager software.

• BNC Distribution Box: A custom-built passive box containing four BNC ports (two IN,
two OUT) used to split and route the synchronization pulse (see Figure 6.7).

• UsbParMarker: Another cable, originating from the experiment laptop, allows digital
event codes (e.g., run starts, trial blocks, etc.) to be sent using a USB-to-parallel cable
connector known as UsbParMarker (see Figure 6.8a). It is a replacement for the parallel
port (of type DB-25), also known as Line Printer Terminal (LPT) which was built by the
university labs asmost laptops nowadays are devoid of parallel ports. This cable interfaces
with a DB-25 to DC-37 parallel connection cable (see Figure 6.7).

• Convergence Hub: Both the synchronization pulse (from the Awinda Station to the BNC
distribution box) and the digital trigger signals (from the laptop via the UsbParMarker
through a DB-25 to DC-37 parallel cable) are routed (see Figure 6.7) to a shared 37-pin
Sub-D output interface (see Figure 6.8b). This shared interface connects directly to the
Biosemi USB receiver and analog/digital converter (see Figure 6.9), allowing both types
of signals to be registered as digital triggers in the EEG data stream.

This configuration allowed for both global synchronization and event marking to be injected
into the EEG stream through a single, converged hardware pathway. The entire setup is was
first illustrated in Section 6.1.5.
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Figure 6.7: Xsens Awinda Station (left: black box), BNC Distribution Box (middle: white box),
and UsbParMarker + DB-25 to DC-37 parallel cable (right: junction). Credit: By Author

(a) UsbParMarker. Credit: [SOLO
Labs]

(b) 37 pins male Sub-D parallel connector.
Credit: [B.V.]

Figure 6.8: UsbParMarker (left) and 37 pins male Sub-D parallel connector (right).
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Figure 6.9: Biosemi analog/digital converter 37 pins male Sub-D parallel port. Credit: [Movella
Inc., 2023c]

6.1.7 Data Pipeline – From Raw Signals to Labeled Dataset
To ensure a reproducible and scalable preprocessing workflow, we designed a modular pipeline
that transforms raw data EEG and MoCap data into a structured and preprocessed dataset with
consistent formatting and metadata.

Data Pipeline Workflow

The goal of the pipeline is to convert raw multimodal recordings into an organized format suit-
able for machine learning. This includes aligning the EEG and motion streams, segmenting
trials based on event markers, associating relevant metadata with each segment, and exporting
everything into a compact, hierarchical format for downstream processing. As such, the pipeline
was designed with the following principles in mind:

• Modularity: Each component handles a single modality or task (e.g., EEG cleaning,
motion integration, trial segmentation).

• Reusability: Script configurations are defined separately to enable adaptation across dif-
ferent recording sessions or datasets.

• Precision and Metadata: Trial segmentation is informed by precise EEG triggers, en-
abling each trial to carry detailed labels such as run number, repetition count, target ID,
execution type, and trial phase.

• Compatibility: Output is saved in a structured .h5 format, facilitating integration with
machine learning libraries and possibly real-time applications.

The entire preprocessing pipeline is controlled through a master script (pipeline_full.py)
which calls several modular components responsible for signal preprocessing, alignment, seg-
mentation, and export. A simplified overview of the pipeline is shown in Figure 6.10.
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Figure 6.10: Flowchart of the preprocessing pipeline. Raw EEG and motion data are handled
by dedicated scripts for preprocessing and alignment, followed by segmentation into labeled
trials and saving to an HDF5 dataset. Each module is designed to be reusable, configurable, and
extendable for future experiments. Credit: By Author

EEG &Motion Data Pre-processing

Prior to trial segmentation and conversion into a structured dataset, raw EEG andMoCap record-
ings underwent a series of preprocessing steps aimed at removing artifacts and preparing the data
for further analysis. While minimal preprocessing was applied overall, specific cleaning steps
were used to mitigate known issues.

EEG Data

EEG signals are highly sensitive to noise. However, given the recent success of deep learn-
ing models in extracting high-level features directly from raw or minimally processed EEG
data [Pancholi et al., 2022], we followed a minimal preprocessing strategy. The preprocessing
pipeline can be summarized by the following steps:

• Loading and renaming channels by reading raw EEG files using MNE-Python. Chan-
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nels were renamed and reordered according to the standard 10–20 system.

• Notch filtering at 50 Hz to remove powerline noise.

• Bandpass filtering in the 0.1–40 Hz range to isolate relevant motor-related brain activity.

• Re-referencing the EEG signal to reduce channel-specific bias.

• Artifact correction by applying ICA to remove blink, muscle, or cardiac artifacts. EOG
channels were used to help identify and reject artifact components.

• Event detection and epoching by parsing trigger channels to extract event markers. EEG
signals were segmented into epochs aligned with task events (e.g., movement onset, return
phase).

All preprocessing was logged, and intermediate outputs could be inspected visually using MNE
and matplotlib plotting functions. A visual comparison of raw and cleaned EEG is provided in
Section 7.1.2

Kinematic Data

In contrast, motion data which was captured via inertial sensors, presented more of a challenge.
Unlike EEG, MoCap systems typically rely on proprietary algorithms to produce accurate po-
sition or velocity estimates. However, due to licensing restrictions, we only had access to raw
IMU data, such as orientation and acceleration. As such, we were required to develop a custom
pipeline to approximate these values. The preprocessing pipeline can be summarized by the
following steps:

• Coordinate alignment by transforming IMU orientation data into a participant-centered
coordinate frame to standardize movement direction across sessions.

• High-pass filtering (cutoff: 0.3 Hz) to remove low-frequency drift and gravitational bias;

• Low-pass filtering (cutoff: 12 Hz) to smooth out high-frequency sensor noise;

• Baseline subtraction using preparation and imagined rest phases;

• Kalman filtering to reduce noise in velocity and position estimates;

• Zero Velocity Updates (ZUPT) to suppress drift during assumed stable periods;

• Integration methods using both cumulative summation and the trapezoidal rule for ve-
locity and position estimation.

• Feature extraction into estimated linear velocity, joint positions, and joint angles derived
from quaternion chains (shoulder to hand).

Despite the various processing steps, the motion data still suffered from drift and growing in-
accuracies over time, especially during the later parts of the recordings. We elaborate on the
results in Section 7.1.2.

Segmentation and Trial Labeling

The preprocessed EEG and MoCap data were segmented into consistent and labeled epochs.
Each trial was marked using digital triggers inserted during the experiment, with the following
logic:
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• Start-of-Run Triggers: Unique digital markers indicated the start of each run, encoding
both the run number and task type (executed vs. imagined).

• Block Labels: Trials were grouped by block (T1–T5), with labels corresponding to target
position or movement type.

• Rest, Preparation, and IBI: These segments were also segmented and labeled. Although
not used for decoding, they served as baselines.

The segmented trials were stored in an HDF5 format, where each trial was saved as a separate
data object, along with associated metadata (e.g., trial ID, label, condition, block number, task
type). A separate inspection script was used to verify the consistency of the stored dataset, which
is further described in Section 7.1.2.

Additional Processing Considerations

IBIs were treated as baseline segments and handled accordingly during preprocessing. Motion
parameters during these intervals were explicitly zeroed out, as no movement was expected. In
contrast, EEG data during IBIs was preserved to serve as a reference point for baseline brain
activity. This design choice facilitates the model’s ability to distinguish rest, preparation, and
active movement states during both executed and imagined trials.

Furthermore, in order to provide ground-truth labels for imagined movement trials, an average
motion profile was computed for each condition from the executed trials. This averaging process
grouped executed trials by target and movement direction, computed the mean across matched
trials, and assigned the resulting trajectory as ground truth for corresponding imagined trials.
This approach relies on the idea that when someone repeats the same movement toward a target,
they tend to follow a similar path. We use that pattern to estimate what the person likely intended
to do during imagined movements, even though there’s no actual motion data available.

The resulting dataset thus includes both real and imagined movement trials with temporally
aligned EEG and motion features, each appropriately preprocessed and labeled to facilitate
downstream modeling tasks.
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6.2 Part B: Theoretical Approach –Modeling InternalMotor
Representations

Following the challenges encountered in Part A, as outlined in Section 7.1.3, Part B of this thesis
reflects a shift in modeling approach. This transition was not only a reaction to practical issues,
but also an active decision informed by theoretical developments that occurred throughout the
literature review process.

6.2.1 Rationale for Modeling Shift
Initial efforts in Part A explored end-to-end deep learning models, such as hybrid CNN-LSTM
and transformer architectures, to decode 3D hand trajectories from EEG signals. These models
were selected based on their demonstrated success in prior work [Pancholi et al., 2022, Wang
et al., 2023c] and theoretical insights [Yoshimura et al., 2017]. As such, the pipeline was built
accordingly. However, two key developments prompted a shift:

• Empirical Limitations: The experimental data collected for this thesis suffered from ex-
cessive noise. Despite rigorous preprocessing efforts, cumulative errors caused the mo-
tion data (velocity and position) unusable for accurate decoding. As a result, the collected
dataset could not be used to train or evaluate decoding models reliably.

• Theoretical Refinement: During the literature review, it became increasingly clear that
effective motor decoding may benefit from structured representations that align with how
the brain internally encodes movement. Neural manifolds, movement primitives, and
reference frame transformations pointed toward a latent space approach that emphasizes
internal geometry and compositional abstraction over direct prediction of output coordi-
nates.

6.2.2 Theoretical Foundations
The theoretical basis of this new modeling direction was drawn from a set of interconnected
neuroscience principles that describe howmovement may be represented in the brain as outlined
in Chapter 4, but can be briefly summarized as follows:

• Compositionality: Instead of treating each movement as a unique signal, the brain may
generate actions by adaptively combining smaller, reusable components or primitives.
This makes movement both generalizable and efficient. The DMP framework provides a
concrete mathematical model for this idea [Hotson et al., 2016]

• NeuralGeometry: Motor planning and execution unravel within low-dimensional spaces,
coined ’neural manifolds’, that capture shared structure across tasks and trials [Chung and
Abbott, 2021]. These manifolds organize neural activity into smooth, interpretable tra-
jectories and support generalization across movement types and tasks.

• Reference Frame Flexibility: Spatial encoding in the brain is not fixed; it dynamically
transforms between egocentric and allocentric reference frames [Herweg and Kahana,
2018, Ottenhoff et al., 2025]. Effective models must accommodate these internal dynamic
shifts.
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• Latent Dynamics: Instead of directly decoding EEG into Cartesian coordinates, we aim
to model how neural activity evolves over time. The MARBLE framework does this by
embedding neural activity samples into a latent space where the dynamics of said activity
unravel as interpretable ’flow fields’ [Gosztolai et al., 2025].

6.2.3 Model of Choice: MARBLE
MARBLE is a neural manifold learning framework. It uses contrastive learning to embed neural
samples into a latent space, where it learns temporal transitions between them as continuous vec-
tor fields (flow fields). The advantage of this approach lies in its unsupervised nature. It learns
to organize neural representations based on their dynamics, clustering together similar move-
ment intentions, even across different sessions or individuals. While MARBLE was designed
for intracranial recordings, similar geometric principles have recently been adapted to EEG via
models like GREEN [Paillard et al., 2024], motivating our attempt to explore MARBLE in the
context of EEG-based decoding.

Figure 6.11: Overview of the MARBLE architecture, illustrating its key components and unsu-
pervised manifold learning process. Credit: By [Gosztolai et al., 2025]

6.2.4 Public Dataset: WAY-EEG-GAL
Due to the unsuitability of our collected dataset, we opted to use the WAY-EEG-GAL public
EEG dataset [Luciw et al., 2014], for preliminary experimentation. This dataset, previously
used by Pancholi et al. [2022], includes EEG recordings from participants performing reaching
and grasping movements in a 3D workspace.

TheWAY-EEG-GALdataset was designed to investigate the relationship between neural activity
and natural upper-limb movements. It contains data from 12 healthy, right-handed participants
who repeatedly performed a structured grasp-and-lift task using their right hand. Each trial
consisted of the following sequence: reaching for an electro-magnet, grasping and lifting it off
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a surface, holding it momentarily, and then lowering it back to its original position. Trials were
initiated and terminated via an LED cue. Variations in object weight and surface texture were
introduced across trials to elicit different motor responses. Each participant completed up to 294
trials, resulting in a rich and diverse dataset suitable for decoding experiments.

Brain activity was recorded using a 32-channel EEG cap arranged according to the international
10–20 system and sampled at 512 Hz. Hand kinematics were captured using a 3D motion track-
ing sensor placed on the wrist. This sensor provided spatial coordinates of the hand throughout
the movement sequence.

6.2.5 Reference Dataset: Macaque Reaching Task from MARBLE
To evaluate the MARBLE framework, [Gosztolai et al., 2025] re-analyzed an existing dataset
involving a macaque monkey performing a center-out reaching task. In this experiment, the
monkeywas trained tomove a handle from a central start position to one of seven target locations
evenly spaced in a circle around it. These reaches were performed in response to a go cue, and
each trial was associated with one of the seven spatial directions. Neural activity was recorded
from the premotor cortex using a 24-channel implanted microelectrode array across 44 different
sessions. Alongside this neural data, precise hand kinematics were captured using a robotic
manipulandum equipped with motion sensors, providing continuous ground truth trajectories
for each reach direction. The analysis focused on the neural signals immediately following the
go cue, corresponding to the active movement phase.

When applied in an unsupervised fashion, MARBLE successfully reconstructed both the tem-
poral structure of individual reaches and the global geometric layout of the task space. These
findings served as a benchmark for adapting MARBLE for EEG-based decoding on the WAY-
EEG-GAL dataset.

6.2.6 Analysis of MARBLE
This section outlines a series of explorations and experiments conducted during the second phase
of the thesis, which shifted focus from direct regression models to a latent manifold-based ap-
proach. Due to the limitations of the collected dataset, the experiments focused on adapting the
MARBLE framework for our purposes by employing its original intracranial dataset and the
public WAY-EEG-GAL dataset [Luciw et al., 2014]. The first two replication tasks made use of
MARBLE’s public Github repository 1.

Replicating Latent Flow Fields with MARBLE

The first step involved running MARBLE’s code and reproducing its built-in toy datasets and
synthetic examples. These experiments helped clarify the model’s architecture, loss functions,
and training dynamics. In particular, we examined how the model constructs latent trajectories
using contrastive learning, and how flow fields evolve over time to capture the internal structure
of neural sequences.

In the specific example of vector fields on a flat surface, we defined four simple 2D vector
fields with distinct underlying dynamics: two linear fields and two vortices. These served as
test signals to evaluate how MARBLE encodes and organizes dynamic patterns in latent space.

1https://github.com/Dynamics-of-Neural-Systems-Lab/MARBLE/tree/main
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• Linear Left and Right: These fields maintained constant vector directions throughout
space.

• Vortex Left and Right: These mimicked rotational dynamics, producing curved motion
patterns.

After feeding these into the MARBLE pipeline, the model used contrastive temporal learning to
embed each trajectory into a 2D latent space. The goal was to see if the model could recognize
patterns that change over time in a meaningful way and group similar ones together, while also
telling apart different types of movement dynamics. Results are reported in Section 7.2.1.

Replicating the Monkey Reaching Task with MARBLE

This experiment replicated the end-to-endMARBLE pipeline on a dataset of intracranial record-
ings from macaque monkeys performing a center-out reaching task. The aim was to evaluate
how MARBLE infers low-dimensional latent dynamics from neural activity and how these rep-
resentations capture meaningful motor structure. The original dataset and preprocessed neural
activity were provided via the MARBLE GitHub repository.

We ran the full MARBLE training pipeline, reproduced the original latent dynamics and classifi-
cation metrics, and visualized the latent space evolution across different target conditions. This
process provided valuable insight into how motor intention is organized in a low-dimensional
manifold and how MARBLE learns to separate and interpolate across movement directions.

The process was divided into three main stages: data conversion, latent manifold construc-
tion using MARBLE, and subsequent visualization and decoding. Results are reported in Sec-
tion 7.2.2.

Data Preparation

The original macaque dataset provided neural spiking data (inMATLAB format) recorded across
multiple sessions and reach directions. To use this data with MARBLE, it had to be transformed
into instantaneous firing rates suitable for modeling.

• The script convert_spikes_to_firing_rates.pywas used to transform spike trains into smooth
instantaneous firing rates via Gaussian convolution (using the Elephant toolbox).

• The data was binned at 20 ms resolution and stored as trial-wise tensors (Trials × Chan-
nels × Time).

• Only valid trials (non-empty, well-aligned) were included. Associated kinematicmetadata
(e.g., target direction and hand velocity) was extracted for downstream decoding.

Latent Space Construction

The next stage involved running the MARBLE training pipeline using the run_marble.py
script:

• PCA was first applied per session to reduce dimensionality of the firing rate signals.

• Instantaneous velocity vectors were computed between time steps and paired with anchor
embeddings.
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• MARBLE used contrastive learning to associate each anchor with its future velocity, thus
constructing a latent space structured temporally .

• Model-specific hyperparameters such as embedding dimension, kernel radius, and MLP
architecture were configured as per Github documentation.

• The resulting embeddings and latent flow fields were saved in serialized .pkl files for
visualization and decoding.

Analysis & Visualization

Finally, the latent representations were explored and used for decoding:

• The latent embeddings were visualized using PCA and UMAP to assess clustering by
reach direction across trials.

• A decoder was trained to predict 2D hand position and from the latent features.

Preparing WAY-EEG-GAL for MARBLE

The following steps focused on preparing the WAY-EEG-GAL dataset so it could be used with
the MARBLE framework. The aim was to take raw EEG and MoCap data and convert it into a
clean, trial-by-trial format that MARBLE could work with. To do this, we built a step-by-step
processing pipeline, where each stage handled a specific part of the data transformation. Results
are reported in Section 7.2.3.

Raw Data Extraction

Raw participant recordings, originally stored in compressed archives (e.g., P1.zip), were ex-
tracted into a standardized directory structure using extract_zipped_data_V0.py. Each par-
ticipant’s data was stored as MATLAB .mat files in a data/extract/sub-XX/raw/ hierarchy.

Metadata Loading and Alignment

Trial markers and behavioral metadata were preprocessed from a structured pickle file contain-
ing the AllLifts dataset using the load_alllifts() function. This enabled fast access to LED
onset, movement initiation, and lift completion times, eliminating the need to repeatedly parse
MATLAB structures.

Signal Preprocessing

Data preprocessing was applied to EEG and MoCap data using data_preprocessing_V0.py.
Major steps included:

• Downsampling: EEG data was downsampled from 500 Hz to 100 Hz using zero-phase
decimation.

• Trial Cropping: EEG signals were cropped to 2 seconds after LED onset; motion signals
to 2 seconds after movement start.

• Bandpass Filtering: Delta, Alpha, Beta, Gamma, and total broadband signals were ex-
tracted using zero-lag Butterworth filters.

• Referencing&Normalization: Common average referencing and z-score normalization
were applied.
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• Motion Scaling: Kinematic channels were min–max normalized per condition.

• Bad Trial Rejection: Trials with response-times to stimulus onset exceeding an estab-
lished threshold or strong artifacts using were discared using reject_bad_trials() as
per [Pancholi et al., 2022].

• Conversion toRate-LikeRepresentations: EEG signals were converted into non-overlapping
20 ms windows of binned neural activity using convert_to_rates_V0.py. Output data
was saved as eeg_rate_data_gamma_20ms.pkl.

• Dimensionality Reduction via PCA: Savitzky-Golay filtering (window=9, order=2) was
used to smooth each trial, which were then stacked into a single matrix and passed through
fit_pca() to extract components.

Each trial was stored as a dictionary containing raw EEG, band-filtered preprocessed EEG, pre-
processed MoCap data, and trial metadata (e.g., labels, timings).

Running MARBLE with WAY-EEG-GAL dataset

To explore the compatibility of manifold learning with EEG-based decoding, we conducted a
series of early experiments using the WAY-EEG-GAL dataset. We explored a range of hyper-
parameter configurations to identify suitable model setups. Key parameters included:

• Manifold dimensionality: [3, 5, 8, 10, 16]

• Encoder depth: [1, 2, 3]

• Nodes per layer: [16, 32, 64, 128]

• Vector diffusion: Enabled / Disabled

• Momentum coefficient: [0.90–0.95]

• Dropout rate: [0.1–0.3]

Embeddings were generated for each configuration to visually assess the latent structure of neu-
ral dynamics and to evaluate clustering patterns across movement conditions.

These early attempts were intentionally exploratory, with minimal model-specific tuning, and
are reflected upon in Section 7.2.3.

6.2.7 Alternative Models Considered
Before shifting to MARBLE, we explored a range of model architectures for decoding move-
ment trajectories directly from EEG data. These models varied in their theoretical basis, neural
decoding strategy, and data requirements. We present an overview of these models below for
the sake of completeness:

• CNN-LSTM: Served as initial baseline due to its strong performance in decoding 3D
hand movements from EEG Pancholi et al. [2022].

• Transformers: Considered due to their strength in capturing long-range dependencies
and self-attention mechanism but requires large dataset Wang et al. [2023c].
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• RiemannianClassifiers: Considered due to their ability in exploiting geometric structure
of EEG data. However, most implementations are tuned towards discrete classification
rather than continuous decoding [Paillard et al., 2024].

• FoundationModels (BrainBERT, Brant, LaBraM,MOMENT):Considered due to the
high-volume data it was trained on and strong results. However, built for high-resolution
or intracranial recordings and not optimized for continuous decoding [Wang et al., 2023a,
Zhang et al., 2023, Jiang et al., 2024, Goswami et al., 2024].

While each of these models offered attractive features, they shared a common limitation: they
required either high-resolution data (as in intracranial recordings) or large quantities of it. Our
collected dataset, due to its limitations, could not be employed for such approaches. Moreover,
as our theoretical understanding of motor intention deepened, we moved away from models
focused purely on raw input-output mappings.

6.2.8 Looking Ahead: Returning to Our Own Data
Once new EEG and motion data are collected using the improved pipeline described in Part A,
the MARBLE-based decoding strategy will then be applied to it. The current analyses using
public data are intended to validate the model choice and theoretical insights, with the goal of
transferring the implementation to our own recordings.
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Chapter 7

Results

7.1 PartA:Experimental Approach –End-to-EndDeepLearn-
ing for Motion Decoding:

7.1.1 Middleware, Synchronization & Consistency Checks: Outcome.
After implementing the custom hardware-based synchronization setup described in Section 6.1.6,
we performed a several steps to validate the alignment between the EEG and MoCap data
streams. Initially, we suspected a temporal misalignment between EEG event markers and
motion onsets. Specifically, trigger events in the EEG stream appeared to occur slightly af-
ter movement had already begun, as observed in raw motion recordings (see Figure 7.1). This
prompted further investigation into possible causes such as packet loss, sending/receiving delay,
or sampling rate inconsistency.
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Figure 7.1: Example of motion data from a single trial illustrating a suspected trigger misalign-
ment. Each subplot corresponds to a different modality recorded from the right hand: velocity
(top), position (middle), and joint angle (bottom). The black dashed lines represent the EEG
event triggers signaling the different stages of the trial. Notably, a visible delay is observed
between the trigger position and the actual onset of movement, which should occur shortly after
the cue. Credit: By Author

Stage I - Packet Loss

First, we considered packet loss in the motion data stream as a possible cause. Using a Python
script, we analyzed the packet counters embedded in the raw motion files as illustrated in Fig-
ure 7.2. These counters are expected to increase sequentially for each recorded frame. By
comparing the expected range of packets to the actual sequence, we verified that no packets
were missing. Thus, packet loss was ruled out.
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Figure 7.2: Packet counter progression across the full motion capture recording session. Each
reset in the counter corresponds to the natural overflow of the 16-bit packet counter used by the
Movella sensors. The blue line shows the continuous increment of the packet counter, and the
red markers (none visible here) would indicate missing frames. As shown in the top-left overlay,
a total of 380,092 packets were recorded with zero missing frames, confirming that packet loss
was not responsible for observed timing inconsistencies. Credit: By Author

Stage II – Testing for Delay in Sending Triggers

Next, we considered whether there might be a delay in sending event triggers from the experi-
ment code. To test this, we implemented internal logging in the PsychoPy script, recording each
trigger event with two types of timestamps: PsychoPy’s internal clock, which provides the time
since the start of the experiment, and the system’s Unix time, offering an absolute wall-clock
reference.

By comparing the timestamps between consecutive events in the log file, we confirmed that the
actual sending time matched exactly the intended experimental timing. For example, reaching
trials were expected to occur every 5 seconds within trial blocks, and indeed we recorded events
at consistent 5-second intervals, as programmed. This ruled out any issues in the timing of
trigger transmission from the stimulus presentation software.
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Figure 7.3: Log file output from PsychoPy showing the precise timing of experimental events.
Each event is timestamped using both PsychoPy’s internal clock and the Unix wall-clock time.
Credit: By Author

Stage III - Testing for Delay in EEG Reception

We then explored the possibility that the EEG system might be receiving triggers with a delay.
Since Biosemi records at a known fixed rate of 1024 Hz, we examined whether the time intervals
between events, once converted from samples to seconds, were consistent with the programmed
timing of events. As such, EEG events were extracted from the Biosemi BDF files using MNE-
Python. Then, a script analyzed the time differences between each bracket of corresponding
events (i.e. blocks) using the corresponding formula.

Time Difference (s) =
Sample Difference

1024

The result confirmed that EEG event were received at consistent intervals aligned with the ex-
periment structure. This ruled out any issues in the timing of trigger reception into the EEG
system.

Stage IV - Estimating the Actual Sampling Rate of Motion Data

After confirming there were no issuesWith the EEG system, our attention returned to theMoCap
system. We suspected that the sampling rate might not be the expected 120 Hz, possibly due to
the use of MT Manager instead of MVN Pro. To test this, we computed the expected number
of motion samples using the total duration of the EEG recording and compared it to the actual
number of motion samples:

Expected Samples = EEG Duration (s)× 120

We then compared this to:
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Actual Sampling Rate =
Total Motion Samples
EEG Duration (s)

This series of calculation revealed that themotion data was sampled at approximately 100.29 Hz,
significantly lower than the 120 Hz sampling rate advertised. All calculations were mediated by
custom Python scripts as illustrated by the output in Figure 7.4.

Figure 7.4: Mismatch between expected and observed motion data sampling rate. The total
number of motion samples falls short of the expected count based on EEG duration and adver-
tised 120 Hz rate, suggesting a lower effective rate. Credit: By Author

Stage V - Verifying Sampling Rate Consistency

To determine if this rate was stable, we used event pairs (e.g., TARGET to RETURN) to segment
motion data into discrete trials. For each segment, we computed the duration and number of
motion samples. Trials showed a consistent sample count of around 100 samples for a 10-
second segment, indicating a true sampling rate of approximately 100 Hz. This was also tested
for all event pairs in our experiment, and findings were consistent as illustrated in Figure 7.5.

The small deviation (0.29 Hz) observed in Figure 7.4 is explained by an extra 10 seconds of
motion data recorded after EEG stopped. This extra time is accounted for, since stopping the
recording of data is done manually at the end of the experiment. We do this because some of
the Biosemi discussion pages online have expressed that using the auto-save function via trigger
bursts, can sometimes result in corrupted files.

Figure 7.5: Trial-by-trial sampling rate analysis confirms consistency around 100 Hz. Credit:
By Author
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Stage VI - Initial Trigger Interpretation Correction

Upon further investigation, we discovered that using theMNE function mne.find_events(raw,
stim_channel='Status', initial_event=True) introduced an earlier event at the very
start of the EEG stream. By default initial_event is set to False, which discards this first
event. However, enabling this flag revealed an additional trigger occurring approximately 0.82
seconds earlier than the initially assumed synchronization marker.

This first trigger corresponds to the TTL pulse emitted from the Awinda Station as soon as
recording begins. The exact nature of the second trigger has not been identified. However,
when accounting for this shift, we recovered the consistent alignment that we expected in the
first place. In order to get proper alignment, we had to consider the initial event at the start, and
then shift all the triggers back by this 0.82 seconds offset. In fact, it was better to set this as a
variable, and correct it dynamically, as the actual offset would hover around that value from one
recording session to the next.

Figure 7.6: Initial and Secondary synchronization trigger events at the start of data recording.
Credit: By Author

Stage VII - Final Timing Verification

Events on the raw motion file showed that movement onset now aligned as expected: roughly
300–450 ms after the synchronization trigger (see Figure 7.7). Given that the experiment inten-
tionally delays stimulus onset by 200 ms (to avoid jitter), this leaves a participant reaction time
of about 250 ms, matching previously published values in motor imagery experiments such as
[Pancholi et al., 2022]. We verify by computing average reaction times over all trials and find a
value of around 246 ms. The reaction times range from 200 to 300 ms.
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Figure 7.7: Example of motion data from a single trial illustrating a corrected trigger alignment.
The delay between the actual onset of movement and trigger event has been corrected, illustrat-
ing correct temporal order in execution of movement, which should occur shortly after the cue.

We also observe that movement onset begins at the exact time as recorded by the tracker on MT
Manager (see Figure 7.8) before exporting the data. This increases confidence in the synchro-
nization and alignment startegies.

Figure 7.8: Trial-by-trial sampling rate analysis confirms consistency around 100 Hz, validating
the true sampling rate of the motion capture system despite initial assumptions. Credit: By
Author

In conclusion, we show in this section our validation process of the alignment between the EEG
and MoCap data streams. By working through a series of possible causes for the initial timing
mismatch, we were able to identify and correct the problem. Once adjustments were made,
namely accounting for the true motion sampling rate and the shift of the initial synchronization
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trigger, the data showed clear and consistent alignment across all trials. These results confirm
that our synchronization method worked as intended and that our recordings are well-suited for
further analysis.

7.1.2 Data Pipeline – From Raw Signals to Labeled Dataset
Data Pipeline Workflow

The final dataset was stored in HDF5 format and organized hierarchically by participant, run,
and trial (see Figure 7.9). Each trial segment includes synchronized EEG and MoCap data
stored in a modular structure. Segments are further divided into experimental phases such as
reaching and returning allowing for targeted analysis of specific periods within each trial (see
Figure 7.10).

Figure 7.9: Overview of the dataset structure, including EEG and motion data for the IBI block,
and the accompanying metadata used for indexing and analysis. Credit: By Author

For each phase, EEG data is stored as a multi-channel array, while MoCap data is available
for key upper limb joints including the hand, elbow, and shoulder as illustrated in Figure 7.10.
Motion features include estimated joint angles, positions, and velocities in three-dimensional
space. This structure ensures that all relevant sensor modalities are accessible and aligned within
a common temporal frame.

Accompanying each data segment is a range of metadata attributes. These include the condition
type (executed vs. imagined), target id, block number, repetition number, and goal type (target or
trajectory). This metadata enables flexible querying, filtering, and segmentation of the dataset
for various downstream analysis and modeling tasks.
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Figure 7.10: Overview of the dataset structure, showcasing the first trial. Notice that the trial is
split into a reaching and returning phase respectively with corresponding metadata allowing for
fine-grained analysis of various stages of movement. Credit: By Author

EEG &Motion Data Pre-processing

Following the preprocessing steps described in Section 7.1.2, we inspected the cleaned EEG and
motion signals to evaluate the effectiveness of artifact removal strategies and the overall data
quality for downstream tasks.

EEG Data

In order to demonstrate the impact of these preprocessing steps, we analyzed a representative
EEG trial in which event-related potentials were visible on channels PO3, O1, Oz, O2 and,
PO4 following a visual cue. The raw signal, as shown in Figure 7.11a, is heavily contaminated
by line noise and low-frequency drifts. After applying notch and bandpass filters, followed
by Independent Component Analysis (ICA), the resulting signal shows clear suppression of
contaminating artifacts and highlights the event-related potentials (see Figure 7.11c).
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(a) Before preprocessing. High-frequency noise
and drifts dominate.

(b) After notch and bandpass filtering. Event-
related potentials become more visible.

(c) After ICA artifact removal. Eye and muscle arti-
facts are suppressed, improving clarity.

Figure 7.11: Effect of EEG preprocessing on evoked potentials for a representative trial. Credit:
By Author

Figure 7.12a shows an example trial that was affected by motion and ocular artifacts. In the raw
EEG, large fluctuations obscure the underlying neural activity (see Figure 7.12a). After applying
notch and bandpass filters, followed by ICA, the signal quality improves (see Figure 7.12b). The
EOG signal recorded during the trial confirms the presence of eyemovements (see Figure 7.12c),
which were used to identify and remove associated components through ICA.
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(a) Raw EEG segment from an executed trial
showing motion and eye related artifacts.

(b) Same trial after filtering and ICA. Artifacts are sub-
stantially reduced, and task-related activity becomes
more visible.

(c) EOG recording from the same trial, highlighting
eye movement activity used to guide ICA artifact re-
moval.

Figure 7.12: Illustrative example of EEG artifact removal through filtering and ICA with EOG
signals. Credit: By Author

Additionally, we present a baseline (rest) segment before and after preprocessing (see Fig-
ure 7.13a, Figure 7.13b). In this case, two distinct artifacts were present. One was successfully
removed through ICA, while the other persisted. Due to the sensitive trade-off between remov-
ing noise and preserving brain signals, ICA was set to 26 components. Using a larger value
risked removing meaningful signals.
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(a) Raw EEG during a baseline segment, showing
two noticeable artifacts.

(b) Same baseline segment after filtering and ICA.
One artifact is successfully removed, while the
other remains.

Figure 7.13: Partial artifact removal in baseline EEG using filtering and ICA. Credit: By Author

These examples demonstrate that preprocessing greatly improves EEG signal quality and helps
reveal neural responses. However, some residual artifacts such as facial or neck muscle move-
ments may remain. This is a common limitation in EEG recordings involving movement and
should be considered when analyzing the data.

Kinematic Data

Preprocessingmotion datawas significantlymore challenging, mainly because of the cumulative
effects of integration drift in estimating velocity and position. Several cleaning techniques were
implemented and evaluated as outlined in Section 6.1.7.

Using a high-pass and low-pass filter was crucial, as otherwise the integration of accelerometer
data resulted in unrealistic growth in velocity and position over time, often diverging toward
infinity as illustrated in Figure 7.14.

Figure 7.14: Effect of high-pass and low-pass filtering on position and velocity signals. Without
filtering (left), drift accumulates rapidly. Credit: By Author

Despite the use of several preprocessing methods (Kalman smoothing and baseline correction)
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no perceivable improvements were observed in velocity or position signals. Zero Velocity Up-
date (ZUPT) was the onlymethod to show ameasurable effect. When applied with a high thresh-
old, it aggressively zeroed out movement, suppressing truemotion signals; at lower thresholds, it
missed stationary periods entirely. Figure 7.15 compares the impact of different ZUPT thresh-
olds. Any value lower than the ones shown would result in no change in the data, making it
identical to Figure 7.14 (b).

Figure 7.15: Comparison of ZUPT performance with low (0.1) vs. high thresholds (0.3). Credit:
By Author

In all trials, movement seemed to start before the visual cue appeared, which should not happen.
This was caused by small errors in the acceleration data adding up during the integration process
used to compute velocity and position. As a result, these derived features became unreliable and
were excluded from the analysis.

On the other hand, angular orientation data remained mostly stable and accurate throughout
the recordings. This is because it was taken directly from the sensor’s gyroscope readings,
rather than being calculated from acceleration data. This could have been used to make a more
elaborate version of ZUPT. However, this was beyond the scope of this work.

Electromagnetic Interference

During one recording session, we observed a change in the EEG signal that coincided with an
incoming phone notification in the room. While this kind of interference didn’t happen often, it
showed us how important it was to keep the recording environment free of electrical noise. To
avoid similar issues, we had to be strict about lab conditions. In subsequent recording sessions,
we would request from participants to leave all electronic items in a separate room with lockers
before starting the experiment.

We also started considering the possibility of further contamination from the various electronic
devices which are native to the lab room, such as the desktops, laptops, and crucially the Awinda
station itself, which wirelessly communicates with the trackers. To investigate this, one could
perform an ablation analysis by systematically turning off each electronic device and compar-
ing the resulting EEG signal quality across conditions, helping to isolate and identify specific
sources of Electromagnetic Interference (EMF). Later on, these frequencies can be specifically
targeted in preprocessing steps.
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7.1.3 Limitations Encountered and Pivot to Public Dataset
Although a significant portion of this project was dedicated to the design, implementation, and
refinement of a custom multimodal experiment and data collection pipeline, the resulting self-
collected dataset ultimately proved unusable for modeling. The limitations encountered can be
grouped into three main categories: technical challenges, participant-related constraints, and
paradigm inconsistencies.

Technical Challenges with Data Quality

While the EEG data quality improved after preprocessing, some residual noise remained in
the recordings. These artifacts, including muscle movements and low-frequency drift, were
partially but not fully suppressed. Nonetheless, the EEG signal was generally usable on the
condition of accounting for EMF in subsequent recording sessions. In contrast, the MoCap data
presented more severe limitations. Despite the application of several preprocessing methods,
velocity and position data suffered from significant drift. Errors accumulated during integration,
making these features unreliable across trials. Furthermore, the motion capture system operated
at an effective sampling rate of 100 Hz (rather than the advertised 120 Hz), which introduced
additional uncertainties. After all, only angular data remained usable.

Lack of Participant Availability

Another limitation was the inability to continue data collection. By the time the experimen-
tal protocol had been finalized and the synchronization and preprocessing pipelines were fully
operational, the two participants who had initially supported the development process were no
longer available. Despite significant efforts to recruit new participants via flyer distribution, lab
networks, and in-person requests, no additional volunteers were secured. As a result, collecting
a new, clean dataset from scratch within the project’s time constraints was not feasible.

Variability in Motor Imagery Strategy

During the early recording sessions, participants engaged with the motor imagery task differ-
ently. Some imagined the movement visually, while others relied on a kinesthetic sensation.
This difference, while expected, added uncontrolled differences in mental strategy that likely
influenced the neural pathway used. This would mean that making comparisons between par-
ticipants would be less interpretable.

Decision

As a result, the decision to exclude the self-collected dataset from downstream tasks was made.
The preprocessing pipeline remains functional and well-documented, and several recommenda-
tions have been made in improving future versions. However, to move forward constructively
within the thesis timeline, a change was made to use an existing public dataset of better signal
quality and larger participant coverage, albeit with reduced customization (motor imagery not
included). The details of this pivot and the new dataset are discussed in Part B of the thesis.
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7.2 Part B: Theoretical Approach –Modeling InternalMotor
Representations

This section presents the outcomes of the analyses described in Section 6.2.6. The results reflect
both qualitative and quantitative insights gained through testing and adapting the MARBLE
framework for structured EEG decoding. The first two replication tasksmade use ofMARBLE’s
public Github repository 1.

7.2.1 Replicating Latent Flow Fields with MARBLE
Here we provide the results of the first experiment. The latent structure that MARBLE ex-
tracted from the vector fields was visualized through four key plots: embeddings, flow fields,
histograms of feature activations, and a neighborhood similarity graph.

(a) Latent space embedding of four vector field
types. Clustering reflects correct grouping of dy-
namics by type. Credit: By [Gosztolai et al., 2025]

(b) MARBLE-inferred vector field reconstruction
over the latent space, showing internal smooth
flow directions across the manifold. Credit: By
[Gosztolai et al., 2025]

Figure 7.16: Visualization of MARBLE’s latent manifold learning from synthetic vector field
data. (a) The learned 2D embedding shows clustering of the four input dynamics, indicating
successful separation. (b) The corresponding inferred flow fields in the latent space demonstrate
smooth vector field reconstruction, revealing the model’s ability to capture internal dynamics
across the manifold. Credit: By [Gosztolai et al., 2025]

Figure 7.16a confirms that MARBLE successfully separated the four vector field types into
distinct clusters. The flow field plot (see Figure 7.16b) further illustrates how these embeddings
maintain internal temporal continuity, with smooth vector directions over the latent space.

The analysis was extended with feature-level visualizations. The histograms in Figure 7.17a
shows how different neural features become active across different inputs, and Figure 7.17b

1https://github.com/Dynamics-of-Neural-Systems-Lab/MARBLE/tree/main
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shows local motifs. The latter illustrates how MARBLE learns to capture spatially and tempo-
rally adjacent representations. Even with simple input patterns, the learned feature types were
diverse and organized.

(a) Distribution of learned features across different
vector fields. Distinct activation patterns emerged
for each class. Credit: By [Gosztolai et al., 2025]

(b) Local motifs identified over the latent space.
Credit: By [Gosztolai et al., 2025]

Overall, these results confirmed that MARBLE works as intended and helped us better under-
stand how it shapes a low-dimensional latent structure that captures patterns both specially and
temporally. Even with very simple input data, the model was able to separate different patterns
clearly and organize them. This makes it a strong candidate for future use in decoding brain
activity from EEG signals.

7.2.2 Replicating the Monkey Reaching Task with MARBLE
The MARBLE pipeline successfully generated low-dimensional latent embeddings that pre-
served the structure of the reaching task. When viewed using PCA and UMAP projections,
these embeddings show clear clustering by target direction. This demonstrates the model’s abil-
ity to separate neural trajectories based on the monkey’s intended movement.

Figure 7.18 shows the MARBLE-generated latent embeddings. Each point represents a neural
state at a given time, colored by the reach direction condition. The distinct clusters confirm
that MARBLE encoded task-relevant differences in neural activity in an unsupervised setting.
Locally, these embeddings are organized as flow fields (see Figure 7.16), which represent how
neural activity evolves over time.
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Figure 7.18: MARBLE-generated latent embeddings from macaque spiking activity. Each dot
represents the neural state at a point in time, colored by reach direction. Credit: By [Gosztolai
et al., 2025]

These embeddings were also evaluated in decoding hand kinematics. A regression model was
trained to predict the reaching trajectories from the MARBLE embeddings. As shown in Fig-
ure 7.19, the decoded trajectories closely matched the true movements across all directions,
confirming that the learned latent representations retained detailed motor information.

Figure 7.19: Ground-truth hand kinematics (top) and corresponding trajectories decoded from
MARBLE embeddings (bottom). Credit: By [Gosztolai et al., 2025]

Together, these results demonstrate MARBLE’s ability to uncover the internal dynamics of mo-
tor intention from intracranial recordings. The latent space both separates reach directions and
preserves detailed kinematic information for accurate decoding. These findings further support
the use of MARBLE for structured decoding of EEG.

7.2.3 WAY-EEG-GAL with MARBLE
Preparing WAY-EEG-GAL for MARBLE

The goal of this experiment was to reformat theWAY-EEG-GAL dataset into a structure compat-
ible withMARBLE.We successfully developed and executed a modular preprocessing pipeline,
which performed the following:

• Extracted raw EEG and kinematic data across sessions and participants.

• Loaded and aligned trial metadata using annotated event markers.

• Applied filtering, band decomposition, and standardization to EEG signals.
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• Binned the EEG signals into 20 ms non-overlapping rate-like representations.

• Performed Principal Component Analysis (PCA) to reduce dimensionality while preserv-
ing neural variance.

To determine the appropriate number of principal components for MARBLE input, we applied
PCA separately to each EEG frequency band: alpha, beta, delta, gamma, and the full-band (to-
tal). Figures 7.20 and 7.21 present the cumulative variance explained across increasing numbers
of principal components for each frequency band. The number of components needed to reach
90% variance varied across bands, highlighting differences in signal complexity and potential
decoding relevance.

(a) Alpha band – 11 components (b) Beta band – 15 components

(c) Delta band – 9 components (d) Gamma band – 17 components

Figure 7.20: Cumulative variance explained per frequency band. Dashed lines indicate 90%
(red) and 95% (green) thresholds. Credit: By Author
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Figure 7.21: PCA variance explained for the total band (full-spectrum EEG). 8 components are
required to explain 90% of the total variance. Credit: By Author

These PCA results reveal how information is spread across EEG channels in each frequency
band. For instance, the delta, alpha, and total bands required fewer principal components. This
suggests that the information they carry is more globally organized or redundant across channels.
In contrast, the beta and especially gamma bands required many more components to reach the
same variance threshold, indicating more spatially complex or localized activity. Prior studies
have shown that each frequency band carries distinct information about brain function, particu-
larly during movement planning and execution. For example, Ottenhoff et al. [2025] observed
that each band reflects a different layer of brain organization, from large-scale coordination
(delta) to detailed local computation (gamma).

This analysis is crucial for future steps, since it shows that fine-tuning the dimensionality of
MARBLE’s input to each frequency band may help the model better capture their unique con-
tribution to motor representation, in turn shedding light on the role that these various frequencies
play in movement.

The processed dataset now contains PCA-reduced neural data organized by trial and movement
condition.

Running MARBLE with WAY-EEG-GAL dataset

Here we report the results of early experiments with the goal of assessing the validity of the
MARBLE frameworkwith EEG data. The initialMARBLE runs on theWAY-EEG-GAL dataset
yielded consistently high validation losses across all tested configurations (see Figure 7.22).

While some low-dimensional embeddings displayed early signs of clustering as shown in Fig-
ure 7.23, but these were inconsistent across runs and sensitive to hyperparameter settings. These
embeddings could not be considered reliable due to poor convergence.

69



Figure 7.22: Attempted MARBLE configuration with corresponding validation loss. Credit:
MARBLE GitHub (Dynamics of Neural Systems Lab, 2023), Adapted by Author

Figure 7.23: Example of MARBLE-generated latent embeddings from EEG data using the
WAY-EEG-GAL dataset. Credit: MARBLE GitHub (Dynamics of Neural Systems Lab, 2023),
Adapted by Author

Readers might be inclined to conclude that the results are not interpretable. However, the initi-
ated eye will recognize the value in these observations. To make it clearer, it is best to contex-
tualize these outcomes:

Cautious Interpretation:
Results reflect early-stage, minimally tuned experimentation. Furthermore, high validation loss
does not imply that EEG is incompatible with manifold learning. Rather, these results imply
that MARBLE may require architectural or preprocessing adaptations tailored to EEG.

Theoretical Support for Compatibility:
Several examples in the literature have provided direct evidence for such applications of mani-
fold learning using EEG data. Thought Chart shows EEG connectivity forming latent manifolds
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of mental states [Xing et al., 2016]. Riemannian classifiers provide interpretable EEG embed-
dings using covariance and wavelets [Paillard et al., 2024]. Finally, EEG microstates suggest
underlying low-dimensional structures [Michel and Koenig, 2018], showcasing the presence of
essential neural patterns for MARBLE learning.

Challenges with EEG:
We also identified several challenges specific to EEG-MARBLE integration, such as volume
conduction, low spatial resolution, and the need for preprocessing to reveal neural geometry.
These challenges relate mainly to the issue of source localization, such that it becomes in-
tractable for the model to recognize spatial contribution of different channel locations, which
not only reflect the activity of several populations of neurons, but alos overlap with readings
from neighboring channels. These challenges are met with proposed enhancements, including
wavelet-based features, covariance modeling, and architectural modifications such as Rieman-
nian layers or graph-based encodings.

7.2.4 Part B: Summary of Results
The analyses in Part B explored the feasibility and benefits of using MARBLE for EEG de-
coding. The first experiment, using toy vector fields, demonstrated that MARBLE successfully
learns smooth, temporally coherent latent spaces from synthetic inputs. This provides an under-
standing into the model’s internal mechanics and the concept of flow fields.

The second experiment replicated MARBLE’s application to intracranial monkey recordings,
confirming that its latent embeddings preserve both class-level separation and fine-grained mo-
tor trajectories suitable for decoding.

The final experiment focused on adapting the WAY-EEG-GAL dataset as a temporary place-
holder in the absence of our dataset. A modular pipeline was built to segment, filter, decom-
pose, and reduce the EEG signal through PCA, yielding representations ready for downstream
input. PCA results showed that slower bands like delta and alpha required less components than
faster bands like gamma and beta. We also make early attempts at training the MARBLE frame-
work with EEG data, however we do not get any concluding results. Rather, thorough analysis
suggests some fine-tuning that would allow for processing our non-invasive neural data with
MARBLE.

Together, these results support the theoretical shift toward structure-aware latent modeling in
EEG decoding and lay a strong foundation for future work. However, due to time constraints
and technical adaptation challenges, we were unable to complete the final MARBLE validation
phase using the EEG dataset.
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Chapter 8

Discussion

The pipeline in Part A highlighted significant challenges in simultaneous EEG-MoCap stud-
ies. While EEG preprocessing revealed meaningful evoked potentials, MoCap velocities and
positions suffered from cumulative drift and an unexpected sampling rate, despite hardware
specifications. Participant recruitment constraints and variability in their experimental strate-
gies further limited the dataset. These findings emphasize the practical difficulty in obtaining
large, high-quality multimodal recordings for continuous decoding.

These setbacks along with supporting literature pushed us to adapt our methodology toward la-
tent modeling in Part B. By employing MARBLE’s contrastive embedding of neural sequences
into smooth latent flow fields, we leverage the brain’s use of structured representations rather
than treating EEG as unstructured input. Experiments on synthetic vector fields and macaque
datasets confirmed the model’s ability to separate movement classes and preserve detailed kine-
matic details in an unsupervised manner.

Experiments on the WAY-EEG-GAL dataset demonstrated the preprocessing requirements and
formatting specifications for correct adaptation of EEG data to the MARBLE approach. We had
hoped to demonstrate decoding of kinematic parameters from EEG using this approach. The
expected outcome would have been distinct neural trajectories representing different movement
conditions. Furthermore, it would have been relevant to investigate cross-subject decoding per-
formance can be enhanced by leveraging this approach of modeling neural dynamics, which
allows for potentially uncovering similar computational structures that could be reused across
participants. Crucially, the model might have been capable of locating the overlapping patterns
between executed and imagined movements, thus increasing decoding accuracy of imagined
trajectories. Finally, compositionality and generalizing to unseen movements could be verified.

The intended direction after the setback in Part A, involved validating our theoretical approach
of using manifold learning on the public dataset, which allows for a wide array of test to be
conducted and for comparison with other work using this dataset. Crucially however, the inten-
tion was to later replace this by data collected using our own experiment and pipeline. That is
because our own implementation benefited from a level of customization and diverse movement
types that is absent from most public dataset.

Although the thesis might seem disconnected due to the A and B narratives. However, it is
important to note that this dual narrative actually converges onto the same final goal, by com-
plementing each other. Part A provides access to data in a format which is absent from public
dataset, allowing for crucial research questions to be investigated by employing the develop-
ments in Part B, which crucially informed us about movement representation and modeling
strategies.
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Chapter 9

Conclusion

This thesis contributes a dual foundation for EEG-based continuous motor decoding. First, it de-
tails the design, synchronization, and preprocessing pipelines necessary for simultaneous EEG
and MoCap recording, and documents the technical and logistical limitations encountered. Sec-
ond, it establishes a theoretical shift toward latent manifold models which better align with the
brain’s structured, compositional representation of movement. While practical application to the
collected dataset remains future work, the demonstrated success on synthetic and public invasive
neural datasets lays the foundation for generalizable continuous decoding of both executed and
imagined movements. Future efforts will collect new multimodal data under the established re-
fined protocols and apply MARBLE end-to-end, aiming to realize naturalistic, continuous BCI
control.
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For the research  

Decoding 3D Upper Limb Motion Using EEG and Motion 

Capture Integration: A Deep Learning Approach 

it is necessary to use personal data. To use this data during our research we need your consent. 

Goal of the research. 
The goal of the research is to identify brain activity which maps to the movement of your upper 
limbs. Hence, we aim to develop a decoder based on AI which is able to reconstruct the trajectory 
of your upper limbs (right wrist, elbow, and shoulder).   

How does the study work? 
You will have to perform a task that involves moving your hand from a rest position (on the chair 
handles) to one of five target positions. Then you will return your hand to the rest position. This will 
be repeated several times, and your movements towards the target and back will be queued by a 
sound. You will subsequently be asked to perform the same experiment, however this time you will 
be asked to imagine moving your hand towards that target. 

The activity in the brain is recorded by placing a cap with electrodes on your head. The cap ties 
under the chin. To get good contact between the electrode and the head, electrode gel is used (this 
makes your hair sticky). 

The kinematic data will be recorded using a motion capture suit which you will be asked to wear.  

Time. 
A full session lasts about 60 minutes. 

What are the risks? 
There are no risks involved in participating in this study. 

Data collected.  
The following data is being used: 

• First name and last name: this is used solely to address you in our communications. 
• E-mail address: this is used for communication. 
• Gender: this is used since EEG brain activity is different between genders. 
• Age: this is used for auditing age groups within the study. 
• EEG (electroencephalogram): brain activity data which will be used along with the motion 

data to train the AI regression model. 
• Kinematic Data: the motion of your upper limbs (right wrist, elbow, and shoulder) which will 

be used along with the EEG data to train the AI regression model. 
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Data storage and use. 
Data that can be traced back to you will also be anonymized. Additionally, your personal data (as 
listed previously) will not be stored with your brain activity or motion data. Instead, we will use a 
conversion list to recognize the data belongs to whom. Furthermore, only the lead researcher in 
this study will have access to this sensitive information.  

Your data will be kept for 10 years (standard retention time) after the research is concluded.  

Your data will be stripped of your name and other information that can identify you, with the aim of 
keeping your brain activity confidential as is your right. 

If you agree that Leiden University can further use of your personal data for other research in the 
field of Brain-Computer Interfaces, within 6 months after the end of this research, your data will be 
used for this research as well. Please indicate this below. 

 

Your rights 
Within the European privacy law, you have several rights. For instance: if you change your mind 
about your participation, you can send an e-mail with a short message indicating that you want 
your personal data to be removed, then your name will be permanently deleted from the collected 
data.  

Other rights are, for instance, the right to be informed and the right to rectify. If you want to know 
more about your rights: these are listed in chapter 3 of the GDPR, in which articles 15 to 21 are the 
most relevant ones in this case. 

• If you have any questions or concerns, please contact: 
 
Mohamad Hoteit, Leiden Institute of Advanced Computer Science, Leiden University. 

m.hoteit@umail.leidenuniv.nl Tel: +31 6 47 25 08 72 

• If you or you guardian have any questions that you would like to address to an independent 
qualified party, please contact: 
 
Richard van Dijk, Leiden Institute of Advanced Computer Science, Leiden University. 
m.k.van.dijk@liacs.leidenuniv.nl  
 
Matthijs van Leeuwen, Leiden Institute of Advanced Computer Science, Leiden University. 
m.van.leeuwen@liacs.leidenuniv.nl 
 
Tessa Verhoef, Leiden Institute of Advanced Computer Science, Leiden University. 
t.verhoef@liacs.leidenuniv.nl 
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In case your data is used for further research you will receive a notification of this, with the 
possibility to withdraw your consent. Please place a cross in the box that is applicable.  

 

О I do not consent to any use of the information collected about me.  

О I consent to the use of the information collected about me for this research project, but not for 
further research.  

О I consent to the use of the information collected about me for this research project, as well as for 
further research in the field of Human interaction research, brain interface research. 

 

Name   _______________________ 

Date   _______________________ 

Location  _______________________ 

Signature  _______________________ 
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Research Study Participant Information Form 

 
Title of the Study: Decoding 3D Upper Limb Motion Using EEG and Motion Capture 
Integration: A Deep Learning Approach. 

Principal Investigator: Mohamad Hoteit, Leiden Institute of Advanced Computer Science, 
Leiden University  

Purpose of This Form: This form is designed to collect necessary personal data from 
participants involved in the research study. The information you provide here will be kept 
confidential and used solely for the purposes described in the consent form. 

Personal Information 

First Name: ______________________________________ 

Last Name: ______________________________________ 

E-mail Address: ______________________________________ 

Gender: ______________________________________  

Age: ______________________________________ 

 

Note:  

- Please specify your biological birth gender. This is important because Male and Female 
brains are quite different under EEG studies.  
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Checklist for instructions to participants 

 
1. Give information regarding the aim of the study: 

- The goal of the research is to identify brain activity which maps to the movement of your 
upper limbs.  

2. Information regarding the registration: 

- We register EEG from the brain. It is very important that you sit as still as possibly. 

- Avoid additional muscle activity. Don’t talk during the performance of the task. 

- Focus on the task. 

‐ We will register where the hand, elbow, and shoulder (right) are during the execution of 
the task. 

‐ There are no known risks with the experiments. 

3. Describe the task 

‐ Sit close to the table, relax your shoulder, and place your arms next to your body on the 
chair’s armrests. During the execution of the task, the forearm shall not touch the table. 
The other arm should rest on the armrest. 

‐ The audio tone is the signal to reach out towards the target. A different audio tone will be 
used as signal to bring back your arm to the rest position. 

- You shall rest your hand on the armrest – relax your shoulder. 

‐ Before we start the registration you will get to practice the task a few times. 

4. Risk and voluntary participation 

‐ The participation is voluntary, and you may quit at any time. 

‐ If you have any questions, feel free to ask before we start (or between the tasks). 

5. Consent form 

Ensure that the participant signs the consent form. 
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Kinesthetic and Visual Imagery Questionnaire - Short Version (KVIQ-10) 

Overview 

The KVIQ-10 is a tool used to assess an individual’s ability to imagine movements visually (clarity of 
the image) and kinesthetically (intensity of sensations). It is designed for use in seated participants, 
making it suitable for both clinical and non-clinical populations. The questionnaire evaluates five 
movements for both visual and kinesthetic imagery, providing scores on two subscales. 

 

Instructions 

This questionnaire asks you to imagine performing specific movements in two ways: 

1. Visual Imagery: Attempt to form a visual image of the movement in your mind. Imagine 
yourself performing the movement as if you are watching yourself. 

2. Kinesthetic Imagery: Attempt to feel what performing the movement is like without 
actually doing it. Imagine the sensation of the movement as vividly as possible. 

For each movement: 

1. You will first perform the movement as demonstrated by the examiner. 

2. You will return to the starting position and imagine performing the movement: 

o First, rate how clearly you can see the movement (visual imagery). 

o Next, rate how intensely you can feel the movement (kinesthetic imagery). 

3. Use the provided rating scales to assess each dimension of imagery. 

 

Rating Scales 

Visual Imagery Scale Kinesthetic Imagery Scale 

Rating Description 
5 Image as clear as 

seeing 
5 Sensation as intense 

as executing 
4 Clear image 4 Intense sensation 
3 Moderately clear 

image 
3 Moderately intense 

sensation 
2 Blurred image 2 Mildly intense 

sensation 
1 No image 1 No sensation 
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Movements 

1. Forward Shoulder Flexion 

• Starting Position: Sit upright with your arm resting at your side. 

• Action: Move your arm forward and upward until it is at shoulder height, then return to the 
starting position. 

• Imagery Task: 

o Visual: Imagine seeing your arm move forward and upward. 

o Kinesthetic: Imagine feeling the motion of your arm as it moves forward. 

2. Thumb-Finger Opposition 

• Starting Position: Sit upright with your hand resting on your lap. 

• Action: Sequentially touch the tip of your thumb to the tip of each finger on the same hand, 
then return to the starting position. 

• Imagery Task: 

o Visual: Imagine seeing your thumb touch each fingertip. 

o Kinesthetic: Imagine feeling the contact of your thumb with each finger. 

3. Forward Trunk Flexion 

• Starting Position: Sit upright with your feet flat on the floor. 

• Action: Slowly bend forward at the hips as if reaching for your toes, then return to the 
starting position. 

• Imagery Task: 

o Visual: Imagine seeing yourself bend forward. 

o Kinesthetic: Imagine feeling the stretch and movement as you bend. 

4. Hip Abduction 

• Starting Position: Sit upright with your knees bent and feet flat on the floor. 

• Action: Move one leg outward to the side, keeping your foot on the floor, then return to the 
starting position. 

• Imagery Task: 

o Visual: Imagine seeing your leg move outward. 

o Kinesthetic: Imagine feeling the sensation of your leg moving. 
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5. Foot Tapping 

• Starting Position: Sit upright with your feet flat on the floor. 

• Action: Lift your foot slightly and tap it on the floor repeatedly, then return to the starting 
position. 

• Imagery Task: 

o Visual: Imagine seeing your foot lift and tap. 

o Kinesthetic: Imagine feeling the motion of your foot tapping. 

 

Response Form 

Movement Visual Rating (1–5) Kinesthetic Rating (1–5) 
1. Forward Shoulder Flexion   
2. Thumb-Finger Opposition   
3. Forward Trunk Flexion   
4. Hip Abduction   
5. Hip Abduction   

 

 

Scoring Instructions 

1. Subscale Scores: 

o Visual Imagery Subscale (V): Sum of visual ratings for all five movements (maximum 
= 25). 

o Kinesthetic Imagery Subscale (K): Sum of kinesthetic ratings for all five movements 
(maximum = 25). 

2. Total Score: 

o Add the visual and kinesthetic subscale scores (maximum = 50). 
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Faculty of Science 
Ethics Review Committee 
 

Gorlaeus laboratory 
Einsteinweg  
  Leiden 

 
 

 

 
 

Project title Decoding 3D Kinematics from EEG with a Biomechanical model and 
Interactive Machine Learning. 

Applicants Richard M.K. van Dijk, M. Hoteit (student) 
 
 
Dear colleague, 
 
The committee has considered your proposal ‘Decoding 3D Kinematics from EEG with a 
Biomechanical model and Interactive Machine Learning.’and concludes that the research 
proposed adheres to the ethics principles of Leiden University.  
 
The proposal concerns an experimental collection of ECG data and motion data from adult 
participants. This is a preliminary study that potentially will not yield conclusive results (due 
to a small sample size) but is a precursor for future larger studies. The study does not entail a 
big risk or burden on the participants, and so we think it can be approved.  
However, you might consider whether the sample is sufficient to obtain conclusive results, 
given the potential gender, cultural background and mobility diversity among the 
participants, and perhaps perform a study with a slightly larger group of people (e.g. 10 
instead of 5). We consider that a small increase in the sample will still fall under this 
application. 
 
  
Yours sincerely 
On behalf of the Ethics Review Committee 
 
 
 
 
Prof.dr. S. Verberne 
Chair 
 
 

Richard M.K. van Dijk 
 
 

 
Number 2024 - 012 Date 11 July 2024 
Your reference  Telephone  
Subject Ethics Review Committee Contact M. Leemkuil 
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Think It, Move It: 
Unlock the Future of 

Interaction!

Call For Participants!

Study Description
Participants will perform a series of tasks involving real and 
imagined arm movements while wearing an EEG cap and a 
Motion Capture suit to record brain activity and motion 
parameters simultaneously. You will be guided through the 
tasks, and your data will help us develop a brain-computer 
interfaces.

Eligibility
•Age: 18-35
•Right-handed
•Healthy: No medication
•Compensation provided

Location & Duration
•Sylvius, Lab 2.4.01
•About 90 mins

Sign Up Now!

https://forms.gle/qcH9GP1fbwh2B2J29
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