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Abstract

Huntington’s disease (HD) is a genetically defined neurodegenerative disorder caused by a
CAG repeat expansion in the HTT gene, yet its molecular pathology involves a far more
complex network of interactions beyond the primary mutation. This thesis investigates the
role of protein-protein interactions in the context of HD by constructing and analyzing a
protein-protein interaction network (PPIN) using Cytoscape and data from the STRING
database. Subnetworks centered around the huntingtin protein and other HD-relevant proteins
were analyzed to identify structural patterns and key interactors. Additionally, the structure
of the PPIN was used to integrate and explore data from a genome-wide association study
(GWAS) on HD. This network-based approach provides a structured view of the HD-related
protein landscape, summarizing key relationships between associated proteins.
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1 Introduction

1.1 Huntington’s Disease

Huntington’s disease (HD) is a rare inherited neurodegenerative disease. It is caused by an autosomal
dominant allele. The genetic abnormality is located on chromosome 4. The condition arises from
an elongated trinucleotide repeat of CAG (whose length varies) within the HTT gene which is
responsible for producing the huntingtin protein [BDG+15]. In individuals with HD, this repeat
expansion leads to the production of a mutant form of the protein, known as mHtt (mutant
huntingtin). This version of huntingtin contains an abnormally long polyglutamine sequences. The
effect of the elongated polyglutamine sequences on the protein is the gain of toxic qualities and an
increased risk of early breakage [BDG+15]. The number of CAG repeats correlates with disease
risk and onset. Repeat lengths can be categorized as follows;

• Normal: 26 or fewer repeats – no risk of developing HD.

• Intermediate: 27–35 repeats – not associated with disease symptoms, but the repeat size may
expand in offspring, potentially increasing their risk [Sem06].

• Pathogenic: 40 or more repeats – strongly associated with the development of HD in the
individual [CN11].

1.1.1 Clinical Features of HD

HD symptoms are commonly categorized into three groups: motor, cognitive, and psychiatric.
Individuals who carry the mutation that causes HD typically begin to develop symptoms in mid-
adulthood. However, in some cases, symptoms can appear before the age of 20, a form known
as juvenile Huntington’s disease [Roo10]. The course of the disease is progressive and irreversible
[GT18]. While medications and treatments are available to help manage symptoms, they do not
prevent the ongoing decline in physical, cognitive, and behavioral functions [Cli17].
One of the common movement disorders associated with HD is chorea, characterized by involuntary,
uncontrolled movements that appear sudden and unpredictable [Cli17]. These movements can affect
various parts of the body, including the face, limbs, and trunk. Early signs may resemble restlessness
or clumsiness, but as the disease advances, chorea often becomes more severe, interfering with daily
activities such as walking or speaking [Roo10].
Cognitive impairments in HD often affect executive functions, including planning, organizing, and
multitasking [oNDN21]. Memory and attention are also frequently impacted. Psychiatric symptoms
commonly accompany HD and may even precede motor signs. Depression, irritability, anxiety, and
apathy are prevalent, with some individuals also experiencing obsessive-compulsive behaviors or
psychosis [BOW+08].

1.1.2 Molecular Mechanisms of HD

For this research, we will explore the protein-protein interactions associated with HD. While HD is
known to be caused by a genetic mutation in the HTT gene, the exact molecular mechanisms by
which this mutation leads to the wide range of symptoms are still not fully understood. In particular,
the role of protein-protein interactions involving the mutant huntingtin (mHtt) protein remains
underexplored [KF16]. By investigating how huntingtin interacts with other cellular proteins, the
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aim is to uncover relevant genes, potential pathways and mechanisms that contribute to the disease’s
onset and progression. Gaining a deeper understanding of these interactions may offer valuable
insights into the molecular mechanisms underlying HD.

1.2 Cytoscape

To visualize the protein-protein interactions associated with HD, a network was created using
Cytoscape. Cytoscape is a widely used open-source platform for visualizing, analyzing, and inte-
grating complex biological networks. It enables users to generate subnetworks and supports various
analytical tools and plugins, including STRING enrichment analysis [Cyt23].

1.3 Genome-wide association study

Studies on HD use age at onset as a quantitative phenotype in genetic analysis to find HD modifiers.
However, this is not ideal, age of onset is difficult to define clearly, and not always recorded [MD17].
The challenge arises because HD symptoms develop gradually and vary in type; motor, cognitive,
or psychiatric making it difficult to determine when the disease truly begins [PLS+08]. To address
this issue, the studies that created the GWAS (genome-wide association study) catalog was to
create a better measure of how the disease progresses over time and use this new measure to search
for genetic factors that influence how fast or slow HD progresses [MD17].
The research found that a region on chromosome 5 showed a statistically significant signal. This
region includes the genes MSH3, DHFR, and MTRNR2L2. The strongest signal came from a single
SNP in the MSH3 gene [MD17]. In this thesis, genes identified through GWAS were mapped onto a
protein-protein interaction network to investigate how genetic risk loci relate to network structure
and may contribute to HD pathology.

1.4 Related work

In previous years, other students from Leiden University conducted research into PPINs to better
understand the molecular mechanisms underlying HD. One such study, by Chen Ji Rong Jiang,
compared different databases to identify shared and unique interactions involving the huntingtin
protein [Jia22]. The study applied enrichment analysis to confirm known HD-related processes such
as oxidative phosphorylation and suggested that lesser-known areas of the network could offer novel
research directions.
Another relevant study was conducted by Nina Anna Maria Henninger, who constructed a PPIN
using data from KEGG, STRING, and WikiPathways, and incorporated gene expression information
(Bachelor Thesis, Nina Henninger, Bioinformatics Bachelor, Leiden University, 2022/2023). Her
analysis highlighted disrupted processes in HD, such as the regulation of biological quality, and
proposed a possible link between the MYC gene and HD.
These previous studies laid important groundwork by building and analyzing HD-related PPINs.
In contrast, this thesis integrates GWAS data with tissue-specific filtering to investigate whether
combining genetic modifiers with brain-specific context can reveal novel insights into the molecular
mechanisms of Huntington’s disease.
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1.5 Research question

Can a consensus protein-protein interaction network in Huntington’s disease provide
new insights into the disease mechanism through integration of genome-wide association
study data?

1.6 Thesis overview

This bachelor thesis project is part of the bachelor ”Bioinformatica” at LIACS and was supervised
by Dr. K.J. Wolstencroft and Dr. Lu Cao.

This chapter contains the introduction; Section 2 includes the definitions; Section 3 outlines the
methodology used to obtain the results; section 4 presents the results; Section 5 provides the conclu-
sions; And section 6 offers suggestions for future research. All images that are used in this bachelor
thesis can be found on GitLiacs: https://git.liacs.nl/s2662620/bachelor-thesis-2662620.

2 Definitions

2.1 PPIN

Proteins serve various roles in biomolecular systems, functioning as sensors, transporters, and
structural components. Interactions between these proteins, protein-protein interactions, enable
dynamic adaptation to changing environmental circumstances [Bar11]. The interactions between all
proteins within a biological system are described in the protein-protein interaction network (PPIN).
Even slight alterations in PPINs can have major consequences for the system and may lead to
disease phenotypes [Bar11].

2.2 Nodes, edges, hubs

In PPINs, proteins are represented as nodes, and the interactions between proteins are shown
as edges connecting these nodes. The number of edges per node, also known as degree, varies
significantly across the network. While many proteins show low connectivity, a small number of
nodes are highly connected [HZ06]. These highly connected nodes are referred to as hubs. Hubs
often play central roles in maintaining the structure and function of the network. Their positioning,
connectivity patterns, and associated biological functions can provide valuable insights into disease
mechanisms and are therefore of particular interest for this research.

2.3 Enrichment analysis

Enrichment analysis can be performed on gene sets. Genes encode gene products, mainly proteins
but non-coding RNA molecules as well. These products serve functions at the molecular, cellular, and
organismal levels [CAea23]. Enrichment analysis is used to find pathways which are more enriched
as would be expected to happen by chance [CAea23]. Studying upregulated and downregulated
genes is particularly useful, as these may be associated with disease phenotypes.
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2.4 Gene Ontology

The Gene Ontology (GO) is a standardized representation of biological knowledge. GO is divided
into three categories; molecular function, cellular component, and biological process [AM00].

• Biological process refers to the broader biological objective or process that the gene product
is involved in. For example cell division or immune response.

• Molecular function refers to the specific biochemical activity of a gene product, such as
enzyme activity or binding to a particular molecule.

• Cellular component describes where in the cell the gene product is located or active. For
example nucleus or plasma membrane.

By integrating these three categories, the GO enables researchers to create a comprehensive map
of gene functions and their roles within cellular and organismal biology. This, in turn, supports
a wide array of scientific applications, including functional genomics, systems biology, and the
interpretation of experimental data [AM00].

2.5 Reactome

Reactome is an openly accessible and collaboratively developed database that compiles information
on biological pathways for a wide range of normal and disease-related biological processes. It aims
to support research and education by providing advanced tools for visualizing, analyzing, and
interpreting complex biological processes [Mea23].

2.6 Wikipathways

WikiPathways is an open, collaborative platform for collecting and curating biological pathways.
It allows researchers and the broader scientific community to contribute, edit, and share pathway
information, supporting the visualization and analysis of molecular interactions involved in both
normal biological functions and disease processes [Aea23].

3 Methods

3.1 Data Gathering

Data from different sources were used to later filter and generate subnetworks.
Data sources used to collect data:

• STRING app disease database [Szk24] (version 11.5) — https://string-db.org

• GWAS Catalog [Bun24] (version from 2023) — https://www.ebi.ac.uk/gwas/

• Reactome [Gil24] (version 78, released 2024-01) — https://reactome.org

• WikiPathways [Mar24] (version 20230510) — https://www.wikipathways.org

The STRING app disease database was used to create the initial network. The data from GWAS
catalog, Reactome and Wikipathways were used for comparison to the initial network.
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3.2 Network Creation

The network was constructed using the STRING application integrated within Cytoscape. The data
used to create the initial network were imported from public databases. To obtain the interaction
data, the ‘STRING: disease query’ option was selected as the data source, with ’Huntington’s
disease’ entered as the disease term. A full STRING network was chosen for the network type. The
confidence score cutoff was set to 0.40, which is the default threshold. The maximum number of
proteins was kept at the default value of 200. Using these settings, the network was imported into
Cytoscape. The resulting initial HD network comprised a total of 1,200 nodes and 83,019 edges.
Following the import of the initial network, the network was extended to the desired size within
the menu of the STRING application. The number of additional interactors to expand the net-
work by was set to 1,000. This number was chosen to strike a balance between including too few
nodes—potentially omitting relevant interactions—and excessive expansion, which could introduce
noise and dilute meaningful disease-specific relationships. This approach aligns with recommenda-
tions from Szklarczyk et al. (2019) [SGL+19]. The organism selected for the interacting proteins
was Homo sapiens. The selectivity parameter was kept at its default value of 0.5.
The network includes a node table and an edge table, which provide detailed information about
the proteins (nodes) and the interactions between them (edges), respectively. The constructed
network was analyzed as an undirected graph in the tools menu within the Cytoscape application,
to characterize both global and node-specific properties. For each node, the degree (the number of
undirected edges connected to a node) and radiality were calculated. At the network level, overall
structural parameters were also determined, including the network diameter and network radius.

3.3 Network filtering

To identify meaningful patterns and structural properties within the HD network, the initial network
was subjected to a series of filtering steps. These filtering steps aimed to reduce network complexity
and focus the analysis on biologically relevant subnetworks, such as genes associated with the CNS
or those related to the findings of the GWAS study.
The following subnetworks were created by network filtering:

• Subnetwork of first neighbors of HTT

• Subnetwork of second neighbors of HTT

• Subnetworks filtered by genes from the GWAS dataset

• Subnetworks filtered by nervous system–specific genes

3.3.1 Filtering for Central nervous system

To focus the analysis on genes relevant to the central nervous system (CNS), the initial HD network
was filtered based on CNS-specific gene activity. The CNS, comprising the brain and spinal cord,
is the primary site affected in HD. This focus helps identify proteins that are most relevant to
disease mechanisms and progression in the affected tissue [MT18]. The node table in the network
includes a column labeled “tissue nervous system,” which provides a CNS-specific activity score
for each protein. This score, ranging from 0 (no activity) to 5 (high activity), was used to filter
proteins based on CNS relevance. Two CNS-specific subnetworks were constructed by applying
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different thresholds to this score. The first subnetwork applied a threshold of 4.5 to include genes
with moderate to high CNS activity. A stricter threshold of 4.9 was used for the second subnetwork,
capturing only genes with strong CNS-specific activity. These thresholds were selected based on
exploratory analysis. A threshold of 4.0 generated a large, less specific network ( 860 nodes), while a
threshold of 5.0 yielded only 9 nodes—potentially excluding relevant proteins. The chosen thresholds
of 4.5 and 4.9 thus represent broader and narrower CNS-specific subnetworks, respectively. The
resulting subnetworks were analyzed to compare differences in network structure, including node
counts, edge density, and the presence of key genes such as HTT, as well as to examine how varying
the CNS activity threshold affects network composition.

3.3.2 Filtering for GWAS Catalog data

In the GWAS Catalog, one study with associated dataset was found to be associated with HD.
These GWAS findings were compared to genes present in the initial HD network. TThis comparison
revealed that MSH3 and GFRA1 were present in both datasets. To explore their roles within
the network, three subnetworks were constructed. The first subnetwork included MSH3 and its
first-degree neighbors. The second subnetwork included GFRA1 and its first-degree neighbors.The
third subnetwork encompassed both MSH3 and GFRA1, along with nodes connecting them. These
subnetworks were analyzed to assess the presence and positioning of key genes like HTT and to
identify network hubs. The hubs identified in each subnetwork were compared to those in the initial
HD network to determine if central genes were preserved or if distinct hub profiles emerged.

3.4 Reactome

The Reactome database was queried using the term “HTT” to identify relevant molecular events.
Because Reactome is structured around molecular entities and reactions, “HTT” is a suitable
query for identifying specific interactions. This search returned results across multiple categories,
including protein, reaction, complex, and pathway. Among these, the reaction, complex, and pathway
categories contained entries involving the MECP2 gene, suggesting a potential interaction between
HTT and MECP2. In the reaction category, one result indicated a direct binding event where
MECP2 binds to HTT (see Figure 10, Appendix) In the complex category, the result identified
a molecular complex formed by MECP2 and HTT, labeled as “MECP2:HTT”. The consistent
appearance of MECP2 across result types highlights its potential relevance in HTT-associated
pathways.

3.5 Wikipathways

The WikiPathways database was queried using the term “Huntington’s disease” to identify relevant
biological pathways. Since WikiPathways frequently annotates pathways with disease names, this
broader term was considered appropriate. This search returned multiple results, including pathways
that are specifically focused on HD as well as others that are more broadly related to the CNS or
other neurodegenerative disorders. Among the results, two pathways were identified as being directly
related to Huntington’s disease: “Effect of omega-3 PUFA on Huntington’s disease pathways” (see
Figure 12, Appendix) and “ERK pathway in Huntington’s disease” (see Figure 11, Appendix).
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4 Results

4.1 Analysis initial HD network

The initial HD network, constructed from STRING database data, contains 1,200 nodes and 83,019
edges, indicating a high level of connectivity within the network. Among all nodes in the network,
AKT1 was identified as the node with the highest degree, having a total of 822 direct interactions.
Figure 1 provides a visual representation of the initial HD network, highlighting the top ten network
hubs in distinct colors. Notably, these hubs are located in close proximity to one another within the
network. The ten network hubs identified in the initial HD network are: AKT1, GAPDH, ACTB,
TP53, TNF, BCL2, INS, CASP3, IL6, and MYC. In Table 1, the top ten network hubs nodes are
listed, along with their ranking, display name, shared name, and degree. Figure 2 presents a visual
representation of the hubs identified in the initial HD network, with node sizes scaled by degree.
The figure illustrates that these hubs are highly interconnected.

Figure 1: Initial HD PPIN with top ten hubs colored (STRING)
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Table 1: Top ten hub proteins in the initial HD network, ranked by degree

Top ten highest connected nodes
Ranking Display name Shared name Degree
1 AKT1 9606.ENSP00000451828 822
2 GAPDH 9606.ENSP00000380070 805
3 ACTB 9606.ENSP00000494750 789
4 TP53 9606.ENSP00000269305 744
5 TNF 9606.ENSP00000398698 656
6 BCL2 9606.ENSP00000381185 630
7 INS 9606.ENSP00000380432 611
8 CASP3 9606.ENSP00000311032 606
9 IL6 9606.ENSP00000385675 599
10 MYC 9606.ENSP00000478887 594

Figure 2: Top ten hubs from initial HD PPID together with their connecting edges (STRING)
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4.1.1 HTT and the initial network

The huntingtin protein directly associated with the development of HD, has a degree of 275 within
the initial HD network. Indicating that it directly interacts with 275 other proteins. Figure 3
illustrates a subnetwork comprising HTT and its first-degree neighbors. Consequently, this network
contains a total of 276 nodes (the HTT protein and its 275 direct interactors) and includes 8,617
edges. The HTT first-neighbor network has an edge density of 0.226 (8,617 edges among 276
nodes), while the initial HD network has an edge density of 0.115 (83,019 edges among 1,200
nodes). This suggests a more densely interconnected structure in HTT’s immediate interaction
environment. In addition to these direct connections, HTT has 1,198 second-degree neighbors, which
are proteins connected indirectly through one intermediate node. Despite its biological significance
in the pathology of HD, HTT does not rank among the top ten highest-degree nodes in the initial
HD network. Interestingly, the subnetwork composed of HTT and its second-degree neighbors
closely mirrors the size of the initial HD network, with 1,199 nodes compared to 1,200 in the initial
HD network. This subnetwork contains 83,012 edges, closely matching the full network’s 83,019
edges. Figure 4 depicts the subnetwork of HTT and its second-degree neighbors.

Figure 3: HD PPIN filtered for first-degree neighbors of HTT (STRING)

9



Figure 4: PPIN HD filtered for second-degree neighbors of HTT (STRING)

4.2 Analysis of the GWAS data

One study with a corresponding dataset related to HD is available in the GWAS Catalog. From
this GWAS data, two overlapping genes, MSH3 and GFRA1, were identified within the initial HD
network. These overlapping genes suggest a potential genetic association supported by both GWAS
and protein-protein interaction data, highlighting their relevance to HD pathology. MSH3 has 23
first-degree neighbors in the initial HD network, while GFRA1 has 62 first-degree neighbors.
MSH3 and GFRA1, previously identified as common between the initial HD network and the GWAS
dataset, were further analyzed with respect to HTT. These proteins are not direct (first-degree)
neighbors of HTT; rather, they are second-degree neighbors, indicating an indirect interaction
through one intermediary node. A subnetwork consisting of MSH3 and its first neighbors contains
24 nodes and 171 edges; this network is shown in Figure 5. Similarly, the subnetwork composed of
GFRA1 and its first neighbors consists of 63 nodes and 1,106 edges and is displayed in Figure 6.
Additionally, a focused subnetwork was constructed combining MSH3, GFRA1, and their connecting
nodes. This subnetwork comprises 84 nodes and 1,487 edges. As expected, the HTT gene is not
included in this subnetwork, due to the absence of direct connections with either MSH3 or GFRA1.
This subnetwork is shown in Figure 7. Interestingly, despite the exclusion of HTT, the top ten hub
genes (Table 2) in the subnetwork focused on MSH3, GFRA1, and their connecting components
show overlap with those identified in the initial HD network (Table 1). Specifically, AKT1, TP53,
and MYC are among the top ten most highly connected nodes in both the initial HD network and
the subnetwork. This suggests that certain hub genes maintain a central role in the overall network
structure, even when analysis is restricted to proteins indirectly associated with HTT.
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Figure 5: HD PPIN filtered for first-degree neighbors of MSH3 (STRING)

Figure 6: HD PPIN filtered for first-degree neighbors of GFRA1 (STRING)
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Figure 7: HD PPIN filtered for shared first-degree neighbors of MSH3 and GFRA1 (STRING)

Table 2: Top ten most connected nodes in the subnetwork of first-degree neighbors of MSH3 and
GFRA1

Top ten highest connected nodes
Ranking Display name Shared name Degree
1 TP53 9606.ENSP00000269305 66
2 AKT1 9606.ENSP00000451828 64
3 GFRA1 9606.ENSP00000347591 62
4 SRC 9606.ENSP00000362680 61
5 KRAS 9606.ENSP00000256078 60
6 PTEN 9606.ENSP00000361021 58
7 MYC 9606.ENSP00000478887 58
8 PIK3CA 9606.ENSP00000263967 57
9 BDNF 9606.ENSP00000414303 57
10 NGF 9606.ENSP00000358525 56
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4.2.1 STRING enrichment analysis

A STRING enrichment analysis was performed on the subnetwork constructed from MSH3, GFRA1,
and their connecting nodes. The results revealed several significant GO terms associated with
biological processes, cellular components, and molecular functions for both genes.

For GO biological process, the enriched terms were:

• MSH3: cellular response to stimulus, system development and multicellular organism develop-
ment

• GFRA1: cellular response to stimulus, system development, multicellular organism develop-
ment and enzyme-linked receptor protein signaling pathway.

For GO cellular component, the enriched terms were:

• MSH3: protein containing-complex

• GFRA1: protein containing-complex, axon and somatodendritic compartment

For GO molecular function, the enriched terms were:;

• MSH3: protein binding and enzyme binding

• GFRA1: protein binding and signaling receptor binding

MSH3 was identified as the most significant genetic modifier of HD progression in the GWAS
study by Moss et al. It was found to have a strong association with somatic expansion of the CAG
repeat in HTT[MD17]. The enriched GO terms for MSH3, including “cellular response to stimulus”
and “protein binding,” are consistent with its known role in DNA mismatch repair and stress
response mechanisms implicated in HD. Although GFRA1 was not identified as significant in the
same study, it was mentioned among sub-threshold signals. The enriched functions for GFRA1,
such as neurodevelopmental signaling and axonal localization, suggest potential roles in neuronal
maintenance or degeneration in HD, although Moss et al. did not highlight it as a primary modifier
[MD17].

4.3 Central nervous system

Two subnetworks were created to focus on CNS relevance. The first subnetwork was generated
using a threshold of 4.5, while the second subnetwork applied a stricter threshold of 4.9.

4.3.1 Subnetwork filtered nervous system 4.5

This subnetwork contained 768 nodes and 34,986 edges. This subnetwork is shown in Figure 8.
Node coloring is based on the nervous system activity score. A gradient from green to red is used to
visually represent relative CNS relevance, with green representing lower scores and red indicating
higher CNS relevance. HTT was included in this filtered network, indicating its relevance within
the nervous system context. Moreover, GFRA1 was also present in the network. In contrast, MSH3
was not included, suggesting it does not meet the CNS activity threshold for CNS activity and may
be less involved in nervous system-specific mechanisms.
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Additionally, the top ten highest degree genes in this filtered network differed from those in the
initial HD network, indicating a reorganization of key hubs when the network is refined to include
only CNS-relevant proteins. The top ten highest connected nodes are: ACTB, TP53, CASP3, ALB,
JUN, STAT3, EGFR, CTNNB1, MAPK3, and HIF1A. The nodes ACTB, TP53, and CASP3
are also present within the top ten highest connected genes in the initial HD network. This shift
highlights the impact of tissue-specific filtering on the network’s structural composition and the
identification of potentially important nodes within the CNS context.

Figure 8: HD PPIN filtered for tissue nervous system cutoff 4.5, with coloring based on tissue
nervous system score (STRING)

4.3.2 Subnetwork filtered nervous system 4.9

The resulting subnetwork contained 308 nodes and 7,541 edges, as shown in Figure 9. HTT was
still included in the network, though it was not among the top ten highest-degree nodes. In this
more stringently filtered network, neither MSH3 nor GFRA1 was present, indicating that both fell
below the higher CNS relevance threshold applied here.
Furthermore, the top ten most highly connected genes in this subnetwork differed from those
identified in the initial HD network and the 4.5-threshold filtered network. The top ten most
highly connected nodes in this subnetwork are: GAPDH, ACTB, TP53, ALB, CTNNB1, HIF1A,
HSP90AA1, HSP90AB1, FOS, and MTOR.
When compared with the initial HD network, ACTB, TP53, and GAPDH are shared between
both networks, indicating their central roles. In comparison with the subnetwork filtered for CNS
relevance at the 4.5 threshold, ACTB and TP53 remain common to both networks, highlighting
their continued importance in the CNS context despite the more restrictive filtering.
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Figure 9: HD PPIN filtered for tissue nervous system cutoff 4.9, with STRING enrichment analysis
coloring (STRING)

A STRING enrichment analysis for Gene Ontology (GO) biological processes was performed on the
subnetwork filtered for nervous system relevance at the 4.9 threshold. The analysis revealed several
significantly enriched GO biological process terms:

• GO:0065008 – Regulation of biological quality

• GO:0042221 – Response to chemical

• GO:0010033 – Response to organic substance

• GO:0050896 – Response to stimulus

• GO:0070887 – Cellular response to chemical stimulus

The ancestor charts from QuickGO can be found in Figure 12 of the Appendix. Among the
identified GO terms, cellular response to chemical stimulus (GO:0070887) emerged as the most
significant. This term was associated with nine of the top ten hubs from the initial HD network,
with HSP90AA1 being the only exception. The next most significant terms were regulation of
biological quality (GO:0065008) and response to chemical (GO:0042221). The term response to
stimulus (GO:0050896) was the least significant among those considered. Notably, the term response
to organic substance (GO:0010033) has since been marked obsolete and is no longer in active use
in current GO annotations.
This result aligns with established characteristics of HD pathology. The enrichment of terms related
to chemical and stimulus responses corresponds with prior findings that HD-affected neurons exhibit
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altered responses to a wide range of chemical and environmental stressors. Notably, key pathological
mechanisms in HD, such as oxidative stress, mitochondrial impairment, and abnormal glutamate
signaling, are all associated with cellular responses to chemical stimuli[ZVC10]. Therefore, the
identification of these GO terms among the hubs in this subnetwork network is an expected and
biologically plausible finding. It supports the robustness of the network approach used in this study
and reinforces the relevance of stress response pathways in HD progression.

4.4 Reactome

According to Reactome pathway data, MECP2 is reported to bind directly to HTT, indicating a
potential functional relevance to HD. MECP2 was identified within the initial HD network, where
it had a degree of 132, placing it outside the top ten most highly connected nodes. Furthermore,
MECP2 was also found in both the first and second neighbor subnetworks of HTT, further supporting
its possible involvement in HD-related protein interactions. However, MECP2 was not present in
the first neighbor subnetworks of MSH3 and GFRA1, nor in the combined subnetwork connecting
these two GWAS-linked genes from the GWAS dataset. Additionally, MECP2 was absent from
the CNS-filtered subnetworks generated using threshold scores of 4.5 and 4.9. These observations
indicate that while MECP2 may have a direct molecular interaction with HTT, its expression or
functional involvement appears limited in CNS-specific contexts and does not feature prominently
in subnetworks derived from GWAS-associated genes.

4.5 WikiPathways

Among the WikiPathways results, two pathways were directly associated with HD: “Effect of
omega-3 PUFA on Huntington’s disease pathways” and “ERK pathway in Huntington’s disease.”

4.5.1 ERK pathway in Huntington’s disease

In the WikiPathways entry for the “ERK pathway in Huntington’s disease,” the protein MAPK1 is
listed. This protein is also present in the initial HD network. Interestingly, although MAPK1 is
part of the full HD network, it is neither a first- nor second-degree neighbor of HTT. This makes
MAPK1 the only protein from the initial HD network that is not represented in the HTT second
neighbor subnetwork, accounting for the difference in node count between the two (1,200 vs. 1,199
nodes). Furthermore, MAPK1 was identified in both CNS-relevant subnetworks created using the
4.5 and 4.9 tissue score thresholds, indicating a likely relevance in the nervous system context.
However, it was not present in any of the subnetworks constructed from GWAS Catalog-derived
proteins (MSH3 and GFRA1). Suggesting that MAPK1 may play a role in HD pathology through
pathways specific to CNS signaling rather than through genetic associations captured in the GWAS
studies.
In addition to MAPK1, the following proteins from ”the ERK pathway in Huntington’s disease”
(WikiPathways) were also identified in the initial HD network: RAF1, MAP3K1, MAP2K1, CASP7,
CASP3, GRM1, EGFR, NTRK2, BDNF, and EGF. Among these, CASP3 stands out with a degree
of 625, ranking 8th among the top ten highest degree nodes in the initial HD network (Table 1).
Table 3 presents a comparison of these proteins across the initial HD network and its subnetworks.
The subnetwork based on MSH3, GFRA1, and their connecting nodes is not included in the table,
as proteins not present in the individual subnetworks of MSH3 and GFRA1 cannot appear in their
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combined subnetwork. Proteins present in both separate subnetworks will automatically also be
present in the combined subnetwork of MSH3 and GFRA1. For example, NTRK2 is found in both
individual subnetworks and is therefore expected to be included in their combined subnetwork as
well. Of the proteins listed in Table 3, only NTRK2 appears in both individual subnetworks of
MSH3 and GFRA1, and is therefore also present in their combined subnetwork.
Additionally, all listed proteins except for MAPK1, which was previously noted as excluded—are
expected to be included in the HTT second neighbor subnetwork. Since the second neighbor network
encompasses all of HTT’s first-degree neighbors and their immediate interactions, any protein
found in HTT’s first neighbor subnetwork will, by definition, also appear in the second-degree
subnetwork..

Table 3: Presence of ERK Pathway Proteins in the HD Network and Subnetworks. Proteins
annotated in the ”ERK pathway in Huntington’s disease” (WikiPathways) are listed with their
display names. The table compares their inclusion in the initial HD network and relevant derived
subnetworks. The ”Degree” column reflects each protein’s degree in the initial HD network. HTT1
refers to the HTT first-neighbor subnetwork; HTT refers to the HTT second-neighbor subnetwork.
An ”X” indicates presence, and a ”–” indicates absence of the protein in the respective subnetwork.

Name Degree HTT1 HTT2 MSH3 GFRA1 CNS4.5 CNS4.9
RAF1 157 - X - - X -
MAPK3 540 X X - - X -
MAP2K1 219 - X - - - -
CASP7 113 - X - - - -
CASP3 625 X X - X X -
GRM1 96 X X - - - -
EGFR 574 X X - - X -
NTRK2 219 X X X X X X
BDNF 415 X X - X X -
EGF 447 X X - - - -

4.5.2 Effect of omega-3 PUFA on Huntington’s disease pathways

The ”Effect of omega-3 PUFA on Huntington’s disease pathways” offers a more detailed and
comprehensive map than the ”ERK pathway in Huntington’s disease”. It includes a wider range of
proteins and interactions relevant to HD, with the ERK pathway fully encompassed within it. One
key interaction shown in the pathway is from mHTT to BCL2. BCL2 is included in the initial HD
network, where it has a degree of 637, making it the 6th most connected node (Table 1). It is also
found in the first neighbor subnetwork of HTT, and consequently in the second neighbor subnetwork
of HTT. However, BCL2 is not present in the subnetworks based on MSH3 and GFRA1, nor in
their combined subnetwork. Furthermore, BCL2 is absent from both CNS-focused subnetworks,
indicating it may have limited relevance in CNS-specific or GWAS-derived HD contexts. As BCL2
is not included in the MSH3 and GFRA1 subnetworks, it is not among the top ten highest ranked
nodes based on degree within these subnetwork (Table 2). This absence reflects the changing
network structure when focusing on GWAS data relevance. Another component of this pathway
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to which mHTT is linked is the phosphorylation of BAD. BAD is also present in the initial HD
network, where it has a degree of 49—relatively low compared to other proteins discussed previously.
It was identified only in the second neighbor subnetwork of HTT, which aligns with expectations
given the near-complete overlap in node count between the initial HD network and the HTT second
neighbor subnetwork (1,200 vs. 1,199 nodes).

5 Conclusions

This thesis examined the protein-protein interaction landscape of Huntington’s disease by analyzing
networks centered on the huntingtin protein and other HD-relevant genes. The initial HD network,
constructed using STRING data, was large and densely interconnected, comprising 1,200 nodes
and over 83,000 edges. This high level of connectivity underscores the value of network biology in
studying complex diseases such as HD. A tissue-specific subnetwork focused on the central nervous
system revealed distinct structural properties compared to the full HD network, underlining the
value of context-specific filtering in the study of neurological diseases. Subnetwork analysis using
genes from a GWAS-based study showed limited overlap with the initial HD network; only two
proteins, MSH3 and GFRA1, were found in both the GWAS dataset and the PPIN. This suggests
that while genetic studies can identify potential risk loci, these genes may not correspond to highly
connected proteins within disease-relevant interaction networks.
Overall, this thesis addressed the research question: Can a consensus protein-protein interaction
network in Huntington’s disease provide new insights into the disease mechanism through integration
of genome-wide association study data? By combining STRING-derived interaction data with
CNS-specific filtering and GWAS-based genetic findings, the study demonstrated that integrating
protein interaction networks with genetic and tissue-specific information can yield complementary
insights not evident from individual data sources alone. These findings emphasize the importance
of integrating diverse data sources to gain a more comprehensive understanding of the molecular
mechanisms underlying HD.

6 Further Research

Genes identified in this study as potentially involved in HD may also contribute to other neurodegen-
erative disorders, and conversely, genes associated with those diseases could offer valuable insights
into HD mechanisms. Given that more prevalent neurodegenerative conditions have been studied in
greater molecular detail, comparative analysis of pathways across these diseases may reveal shared
mechanisms relevant to HD. For instance, the pathways returned from the WikiPathways search
were generally broad and not specific to HD, but they may highlight common molecular processes
active in the CNS. Future research could focus on exploring these shared pathways in greater detail,
as well as validating candidate genes through experimental approaches to better clarify their roles
in HD pathology. Additionally, subsequent studies could examine how the HD network evolves over
time or varies across different brain cell types, such as neurons and glial cells. Another promising
direction would be to assess whether any existing drugs target key proteins identified in this study,
potentially enabling drug repurposing for HD treatment.
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Appendix

Figure 10: MECP2 binds HTT part of Regulation of MECP2 expression and activity (Homo sapiens)
from Reactome
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Figure 11: ERK pathway in Huntington’s disease from Wikipathways
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Figure 12: Effect of omega-3 PUFA on Huntington’s disease pathways from Wikipathways
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Figure 13: Anchestor charts for GO terms from Quick GO
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