
F.J. Hobrecker

Solving the Bounded Distance Decoding Problem

A Generalization of Barnes-Wall Lattice Decoding and Its Application to Tensor
Hexagonal Lattices

Bachelor Thesis

April, 2025

Thesis Supervisors: prof. dr. L. Ducas
prof. dr. ir. N. Mentens

Leiden University
Mathematical Institute and

Leiden Institute of Advanced Computer Science (LIACS)

Abstract

In this thesis, we explore the bounded distance decoding (BDD) problem and efficient solutions for
the problem within specific lattice structures. The lattices of interest are the Barnes-Wall lattices
and the tensor hexagonal lattices. For the Barnes-Wall lattices, we implement an efficient decoding
algorithm based on the work of Micciancio and Nicolosi [MN08]. We then generalize this approach
to develop a framework for solving the BDD problem in lattices of dimension n = 2ℓ with ℓ ∈ Z≥1,
relying on certain hypotheses to ensure correct decoding. Finally, we apply this framework to the
tensor hexagonal lattices. Our results show that efficient solutions for the BDD problem extend
beyond the Barnes-Wall lattices.

Contents

1 Introduction 1

2 Preliminary lattice theory 2
2.1 Lattices . 2
2.2 Bounded distance decoding problem . 3

3 Lattice families of interest 6
3.1 Barnes-Wall lattices . 6

3.1.1 Determinant . 6
3.1.2 Minimum distance . 7

3.2 Tensor hexagonal lattices . 9
3.2.1 Determinant . 9
3.2.2 Minimum distance . 10

3.3 Comparing lattices . 11

4 Bounded distance decoding problem 13
4.1 Solving the bounded distance decoding problem in Barnes-Wall lattices 13

4.1.1 Correctness . 15
4.1.2 Complexity . 15
4.1.3 Performance outside the squared unique decoding radius 16

4.2 Solving the bounded distance decoding problem in lattices of dimension n = 2ℓ,
ℓ ∈ Z≥1 . 17
4.2.1 General decoding algorithm . 17
4.2.2 Correctness . 18
4.2.3 Complexity . 19

4.3 Solving the bounded distance decoding problem in tensor hexagonal lattices 20
4.3.1 Hypotheses validation . 20
4.3.2 Decoding algorithm . 23
4.3.3 Correctness and complexity . 24

5 Conclusion and further research 25

References 27

Appendix A 27
A.1 Equivalence of lattices over G and lattices over Z . 28
A.2 Implementation decoder . 28

Chapter 1

Introduction

The rapid advancements in quantum computing pose a serious threat to the security of many existing
cryptographic systems. Quantum algorithms, such as Shor’s algorithm, can efficiently solve the com-
putationally hard problems on which they are based [FA24]. This threat has lead to the exploration
of quantum-resistant cryptographic systems. A promising candidate is lattice-based cryptography,
which relies on the hardness of certain lattice problems. One of these hard lattice problems is the
bounded distance decoding (BDD) problem. It involves finding the closest lattice point to a given
target point, provided that the target is within a certain bounded distance from the lattice.

This thesis investigates efficient algorithms for solving the BDD problem in certain lattice structures.
We first introduce some fundamental concepts in lattice theory and formally define the BDD prob-
lem in Chapter 2. In Chapter 3 we examine two lattice families of interest: the Barnes-Wall lattices
and the tensor hexagonal lattices. These lattices were chosen for their recursive constructions, which
can be exploited to develop efficient decoding algorithms. Chapter 4 focuses on efficient decoding
algorithms. We begin with the decoding algorithm for Barnes-Wall lattices, based on the work of
Micciancio and Nicolosi [MN08]. We implement this algorithm and test its performance outside its
unique decoding radius. We then generalize this approach to develop a framework for solving the
BDD problem in lattices of dimension n = 2ℓ with ℓ ∈ Z≥1, relying on certain hypotheses to ensure
correct decoding. Lastly, we show how one can apply this generalized algorithm to tensor hexagonal
lattices.

Our results show that we can generalize the algorithm for solving the BDD problem in Barnes-Wall
lattices to work for a broader class of lattices, including the tensor hexagonal lattices.

1

Chapter 2

Preliminary lattice theory

In this chapter, we introduce key concepts and definitions related to lattices and lattice problems.

Matrices are written in uppercase bold B, vectors are written in lowercase bold x and are interpreted
as row vectors, and scalars are written in normal lowercase λ. We use R for the real numbers, Z for
the integers, C for the complex numbers and G for the Gaussian integers.

2.1 Lattices

A lattice is a collection of points in n-dimensional space that follows a repeating and regular pattern.
Formally, we have the following definition:

Definition 1 (Real lattice, [DD18a]). A real k-dimensional lattice L ⊆ Rn is a discrete additive
subgroup of Rn. The lattice is said to be full rank if k = dim(L) = n.

To clarify the components of this definition, we formally define additive and discrete subgroups.

Definition 2 (Additive subgroup, [Cor20]). A subset L ⊆ Rn is an additive subgroup if it satisfies:

• 0 ∈ L,
• ∀x,y ∈ L, x+ y ∈ L (closure under addition),
• ∀x ∈ L, −x ∈ L (closure under negation).

Definition 3 (Discrete subgroup, [DD18a, HWL08]). A subset L ⊆ Rn is discrete if the induced
topology on L is discrete, i.e. every subset of L is open. In other words, for every x ∈ L, there exists
a radius 󰂃 > 0, such that the open ball

B(x, 󰂃) = {y ∈ Rn : 󰀂x− y󰀂 < 󰂃}

contains no other points of L, meaning B(x, 󰂃) ∩ L = {x}.

Discreteness ensures that each lattice point has a neighborhood containing no other lattice points,
thereby guaranteeing a strictly positive minimum distance between any to distinct lattice points
[vW23]. Formally, we have the following:

2

Proposition 4 ([DD18a]). Let L ⊆ Rn be a non-trivial additive subgroup of Rn. Then L is discrete
if and only if there exists a strictly positive and well-defined minimum distance between any two
distinct points in L.

The additive structure of the lattice implies that the difference between any two distinct lattice
points is itself a lattice point. This leads to the following definition:

Definition 5 (Minimum distance, [MG02]). The minimum distance of a lattice L ⊆ Rn is given by:

λ1(L) = min
x ∕=y∈L

󰀂x− y󰀂 = min
x∈L\{0}

󰀂x󰀂 ,

where λ1(L) > 0 and 󰀂·󰀂 is the Euclidean norm.

Every lattice can be described by a set of linearly independent generators (basis matrix). Throughout
this thesis, we work with row notation, where the lattice is generated by the rows of the basis matrix.
Formally, we have the following:

Definition 6 (Basis, [MG02]). Let B ∈ Rk×n be a matrix with as rows k linearly independent
vectors b1, b2, . . . , bk ∈ Rn. The lattice generated by B is the set

L(B) =
󰀋
z ·B : z ∈ Zk

󰀌
=

󰀫
k󰁛

i=1

zibi : zi ∈ Z

󰀬

of all integer linear combinations of the rows of B. The rank of the lattice is k and the dimension
of the ambient space is n. When k = n, then L(B) is a full rank lattice.

From now on we assume that all lattices are full rank lattices with dimension n.

Definition 7 (Determinant, [DD18b]). Let L be an n-dimensional lattice generated by some basis
B ∈ Rn×n. The determinant of the lattice is given by:

det(L(B)) =
󰁴
det (B⊤B) = |det(B)| .

Definition 8 (Automorphism group, [vP16]). The automorphism group of a lattice L denoted
Aut (L), is the set of distance-preserving linear transformations of the space that fix the origin and
take the lattice to itself.

Definition 9 (Complex lattice, [For88, Cor20]). A complex n-dimensional lattice L ⊆ Cn is a
discrete additive subgroup of Cn (we assume that it is a full-rank lattice). Let B be a matrix with as
rows n linearly independent vectors in Cn. The lattice generated by this basis is the set composed of
all complex integer linear combinations of the rows of B.

2.2 Bounded distance decoding problem

An important problem in lattice theory is the bounded distance decoding (BDD) problem.

Definition 10 (Bounded distance decoding (BDD) problem, [DP19]). Given a lattice L ⊆ Rn, a
target vector t ∈ Rn, a unique decoding radius r ≤ λ1(L)/2, and the guarantee that

∃z ∈ L s.t. 󰀂t− z󰀂 < r,

3

find the lattice point z ∈ L.

Proposition 11. The BDD problem has a unique solution due to the condition r ≤ λ1(L)/2.

Proof. Let L ⊆ Rn be a lattice, t ∈ Rn a target vector, and suppose

∃z ∈ L s.t. 󰀂t− z󰀂 < λ1(L)/2.

Assume for contradiction that there exist two lattice points z1 ∕= z2 ∈ L satisfying

󰀂t− z1󰀂 < λ1(L)/2 and 󰀂t− z2󰀂 < λ1(L)/2.

By the triangle inequality, we have:

󰀂z1 − z2󰀂 = 󰀂z1 − t+ t− z2󰀂 ≤ 󰀂t− z1󰀂+ 󰀂t− z2󰀂 .

It then follows that 󰀂z1 − z2󰀂 < λ1(L). This implies that the distance between two distinct lattice
points z1 and z2 is less than the minimum distance, which is a contradiction. We can conclude that
the BDD problem has a unique solution.

To provide further insight into the formal proof, we examine a simple visual example illustrated in
Figure 2.1. Consider a lattice generated by the basis vectors b1 and b2, and let v1 be a shortest
nonzero vector, such that λ1(L) = 󰀂v1󰀂. We can then draw spheres centered at each lattice point
with a radius of less than half the minimum distance, without any of the spheres overlapping. Any
target point within one of these spheres is uniquely closest to the lattice point at its center. This
implies that the BDD problem has a unique solution.

Figure 2.1: Visualization of unique solution BDD problem.

The BDD problem is also well-defined for a decoding radius larger than half the minimum distance.
In this case, there may be multiple solutions and the process is called list decoding rather than
bounded distance decoding [Cor20].

To determine the complexity of the algorithms used to solved the bounded distance decoding prob-
lem, the masters theorem for divide and conquer is often used. Formally, this states the following:

Theorem 12 (Masters theorem for divide and conquer recurrences, [CLRS09]). The time complexity
of a problem of size n that is solved by solving a subproblems of size n/b is given by a recurrence
relation:

T (n) = aT (n/b) +O
󰀃
nd

󰀄

4

where T (n/b) is the time for each subproblem and O
󰀃
nd

󰀄
is the time to combine the solutions of the

subproblems into a solution of the original problem. Then, the solution is:

T (n) =

󰀻
󰁁󰀿

󰁁󰀽

O
󰀃
nd

󰀄
if d > logb a,

O
󰀃
nd logb n

󰀄
if d = logb a,

O
󰀃
nlogb a

󰀄
if d < logb a.

Importance of the bounded distance decoding problem

The bounded distance decoding problem (BDD) plays an important role in both cryptography and
communication theory.

Its computational hardness, even in quantum computing, serves as a foundation for lattice based
cryptography. Specifically, unless some trapdoor information is revealed, solving the BDD problem
is computationally infeasible for an adversary [LSLY].

An algorithm that solves BDD can also be used as a decoder for messages with noise in communi-
cation theory. A message is considered as a lattice point to which noise is added in transmission.
Decoding this and finding the original message is an instance of the bounded distance decoding
problem [DP19].

In both cryptography and communication theory, a key objective is to maximize the minimum dis-
tance between lattice points, while ensuring that the BDD problem can be solved efficiently [DP19].
In cryptography, a larger minimum distance implies a harder problem for adversaries to solve, as
the larger gap between lattice points reduces the likelihood of successful guessing or approximation
attacks. In communication theory, larger minimum distance increases error tolerance, meaning a
larger amount of noise can be introduced to a message without compromising the ability to accu-
rately decode the original message [Lap21].

There is a limit as to how large the minimum distance of an n-dimensional lattice in Rn can be.
This limit is defined by Minkowski’s bound.

Definition 13 (Minkowski’s bound, [vW23]). Let L ⊆ Rn with basis B ∈ Rn×n be an n-dimensional
lattice. Then

min
x∈L\{0}

󰀂x󰀂 = λ1(L) ≤
√
n · |det(B)|1/n or

λ1(L)
|det(B)|1/n

≤
√
n. (2.1)

Minkowski’s bound states that the normalized minimum distance of an n-dimensional lattice is less
or equal than

√
n. One hopes to find lattices with normalized minimum distance as close as possible

to this bound, while still being able to solve the bounded distance decoding problem efficiently.
Unfortunately, efficient decoding algorithms are not known for lattices that are close to Minkowski’s
bound [DP19].

There are however efficient algorithms known for lattices with better normalized minimum distance
than the baseline case, the integer lattice. An example is the efficient decoding algorithm for Barnes-
Wall lattices by Micciancio and Nicolosi [MN08], which we will discuss in Section 4.1.

5

Chapter 3

Lattice families of interest

3.1 Barnes-Wall lattices

Barnes-Wall (BW) lattices are best described as m-dimensional lattices over the Gaussian integers
G = Z+ iZ. Alternatively, they can be interpreted as 2m-dimensional lattices over the integers Z.

For a detailed justification of this equivalence, see Appendix A.1. Working with the complex repre-
sentation often simplifies our definitions and algorithms.

Let k be a nonnegative integer (k ≥ 0), and define ℓ = k+1. Define the dimension of the BW lattice
over the Gaussian integers G as m = 2k. Consequently, define n = 2m = 2k+1 = 2ℓ, which represents
the dimension of the BW lattice over the integers Z.

Formally, we have the following definition for the BW lattices:

Definition 14 (BW lattices, [MN08]). Let k ≥ 0 be a nonnegative integer and m = 2k. The k-th
Barnes-Wall lattice BWk over the Gaussian integers G of dimension m is the lattice generated by
the rows of the k-fold Kronecker product

Bm =

󰀕
1 1
0 φ

󰀖⊗k

=

󰀕
Bm/2 Bm/2

0 φBm/2

󰀖
,

where φ = 1 + i is the prime of the least squared norm in G and B1 =
󰀃
1
󰀄
.

Equivalently,
BWk+1 =

󰀋󰀃
u,u+ φv

󰀄
: u,v ∈ BWk

󰀌
, (3.1)

and BW0 = G.

We now discuss two properties needed to determine the normalized minimum distance of the BW
lattice: the determinant and the minimum distance.

3.1.1 Determinant

Proposition 15. Let k ≥ 0 and let m = 2k. Let BWk be the m-dimensional BW lattice over the
Gaussian integers generated by the basis Bm. The determinant is given by:

detG
󰀃
BWk

󰀄
= mm/4. (3.2)

6

Proof. We prove the correctness of formula (3.2) by using induction on k.

Base case:
Let k = 0 (and m = 1). Using the definition of the BW lattice, we have:

detG (BW0) = |detG (B1)| = 1.

Since 11/4 = 1, we can conclude that the formula (3.2) holds for k = 0.

Inductive step:
Assume that there exists some k ≥ 0 for which detG (BWk) = mm/4 (inductive hypothesis). We

want to show that detG (BWk+1) = (2m)
m/2

(formula (3.2) holds for k + 1). We can rewrite the
determinant of BWk+1 as follows:

detG (BWk+1) = detG (L (B2m)) = |detG (B2m)|
= |detG (Bm) · detG (φ ·Bm)| (3.3)

= |detG (Bm) · φm · detG (Bn)| (3.4)

= |φ|m · |detG (Bm)|2

=
󰀃√

2
󰀄m · (detG (BWk))

2.

The factorization in (3.3) uses the upper triangular structure of B2m and (3.4) applies the property
det(c ·A) = cp · det(A), where c is a constant and A is a p× p matrix. By the induction hypothesis,
detG (BWk) = mm/4 and substituting this gives:

detG (BWk+1) = 2m/2 · (detG (BWk))
2
= 2m/2 ·

󰀃
mm/4

󰀄2
= 2m/2 ·mm/2 = (2m)

m/2
.

We conclude that formula (3.2) holds for k + 1.

This completes the induction, proving that detG (BWk) = mm/4 for all k ≥ 0.

We have established the determinant of the m-dimensional BW lattice over the Gaussian integers:

detG (BWk) = mm/4.

Using the isomorphism described in Appendix A.1, the corresponding real representation is an n-
dimensional lattice over Z with n = 2m. The determinant of the n-dimensional BW lattice over the
integers is:

detZ(BWk) = |detG(BWk)|2 =
󰀃
mm/4

󰀄2
= mm/2 = (n/2)n/4.

3.1.2 Minimum distance

Since the minimum distance remains the same over both the complex and real numbers, we will not
use a subscript to distinguish between them, as we did in the determinant calculations.

Proposition 16. Let k ≥ 0 and m = 2k. Let BWk be the m-dimensional BW lattice over the
Gaussian integers generated by the basis Bm. The minimum distance is:

λ1 (BWk) =
√
2k =

√
m. (3.5)

Proof. We prove the correctness of formula (3.5) by using induction on k.

7

Base case:
Let k = 0. The one-dimensional BW lattice is G. Let a+ bi ∈ G \ {0}. Then:

λ1 (BW0) = λ1(G) = min
a+bi∈G\{0}

󰀂a+ bi󰀂 = min
(a,b) ∕=(0,0)

󰁳
a2 + b2.

We want to minimize a2+b2 for integers a and b with (a, b) ∕= (0, 0). If (a = 1, b = 0), then a2+b2 = 1,
if (a = 0, b = 1), then a2 + b2 = 1 and if (a = 1, b = 1) then a2 + b2 = 2. Hence, the smallest value
of a2 + b2 that satisfies a+ bi ∕= 0 is 1 and there exist a and b that obtain this value. We conclude

λ1 (BW0) = min
(a,b) ∕=(0,0)

󰁳
a2 + b2 = 1.

Since 1 =
√
20, λ1 (BWk) =

√
2k for k = 0. So formula (3.5) holds for k = 0.

Inductive step:
Assume that λ1 (BWk) =

√
2k for some arbitrary k ≥ 0 (inductive hypothesis). We want to show

that λ1 (BWk+1) =
√
2k+1. Let z ∈ BWk+1 \ {0}. Using (3.1) we know that:

z =
󰀃
u,w

󰀄
=

󰀃
u,u+ φv

󰀄
(3.6)

with u,v,w ∈ BWk. Recall that the minimum distance is the length of the shortest nonzero vector.
First we will prove that every nonzero vector in BWk+1 has length at least

√
2k+1 and then we

will prove that there exists a nonzero vector with this minimum length. We have three options for
nonzero vectors.

1. Assume u = 0 and w ∕= 0. Then w = φv and

󰀂z󰀂2 = 󰀂u󰀂2 + 󰀂w󰀂2 = 󰀂w󰀂2 = 󰀂φv󰀂2 = |φ|2 󰀂v󰀂2 = 2 󰀂v󰀂2 .

Since w ∕= 0 it follows that v ∕= 0 and since v ∈ BWk, we know that v ∈ BWk \ {0}. Then by

the inductive hypothesis 2 󰀂v󰀂2 ≥ 2 · 2k = 2k+1.

2. Assume u ∕= 0 and w = 0. Since w = 0, it follows that u+ φv = 0, so u = −φv and

󰀂z󰀂2 = 󰀂u󰀂2 + 󰀂w󰀂2 = 󰀂u󰀂2 = 󰀂−φv󰀂2 = |−φ|2 󰀂v󰀂2 = 2 󰀂v󰀂2 .

Since u ∕= 0 it follows that v ∕= 0 and since v ∈ BWk, we know that v ∈ BWk \ {0}. Then by

the inductive hypothesis 󰀂z󰀂2 = 2 󰀂v󰀂2 ≥ 2 · 2k = 2k+1.

3. Assume u ∕= 0 and w ∕= 0. Then u,w ∈ BWk \ {0}. Using the inductive hypothesis, we have:

󰀂z󰀂2 = 󰀂u󰀂2 + 󰀂w󰀂2 ≥ 2k + 2k = 2 · 2k = 2k+1.

We can conclude that 󰀂z󰀂 ≥
√
2k+1 for all z ∈ BWk+1 \{0}. Next we need to show that there exists

a vector in BWk+1\{0} with length
√
2k+1. By the inductive hypothesis there is some y ∈ BWk\{0}

with 󰀂y󰀂 =
√
2k. Let

x =
󰀃
0,φy

󰀄
∈ BWk+1.

Then x ∈ BWk+1 \ {0} and

󰀂x󰀂2 = 󰀂φy󰀂2 = 2󰀂y󰀂2 = 2 · 2k = 2k+1.

We conclude that every nonzero vector in BWk+1 has length at least
√
2k+1 and there exists a

nonzero vector in BWk+1 with length exactly
√
2k+1. This completes the inductive step and thus,

by induction on k, we have λ1 (BWk) =
√
2k for all k ≥ 0.

8

3.2 Tensor hexagonal lattices

Let k be a nonnegative integer (k ≥ 0), and define m = 2k and ℓ = k + 1. Define the dimension of
the tensor hexagonal lattice over the integers Z as n = 2m = 2k+1 = 2ℓ.

Definition 17 (Tensor hexagonal (TH) lattice). Let ℓ ≥ 1 be a positive integer and define n = 2ℓ.
The ℓ-th tensor hexagonal lattice THℓ of dimension n is the lattice over the integers generated by
the rows of the ℓ-fold Kronecker product

Hn =

󰀕
1 0
1
2 ψ

󰀖⊗ℓ

=

󰀕
Hn/2 0
1
2Hn/2 ψHn/2

󰀖

where ψ = 1
2

√
3 and

H2 =

󰀕
1 0
1
2 ψ

󰀖
.

Equivalently,
THℓ+1 =

󰀋󰀃
u+ 1

2v, ψv
󰀄
: u,v ∈ THℓ

󰀌
, (3.7)

and TH1 = L (H2).

Claim 1. If
󰀃
x,y

󰀄
∈ THℓ+1, then x ∈ 1

2THℓ and y ∈ ψTHℓ.

Proof. Let
󰀃
x,y

󰀄
∈ THℓ+1. With (3.7) we know that there exist u,v ∈ THℓ such that:

x = u+ 1
2v, y = ψv.

Since v ∈ THℓ it follows that 1
2v ∈ 1

2THℓ and ψv ∈ ψTHℓ. Since lattices are additive groups,
the sum of elements in THℓ and 1

2THℓ remains in the scaled lattice 1
2THℓ. We can conclude that

x ∈ 1
2THℓ and y ∈ ψTHℓ.

3.2.1 Determinant

Proposition 18. Let ℓ ≥ 1 and let n = 2ℓ. Let THℓ be the n-dimensional tensor hexagonal lattice
over the integers generated by the basis Hn. The determinant of the lattice is

det (THℓ) = ψ2ℓ−1ℓ. (3.8)

Proof. We prove the correctness of formula (3.8) by using induction on ℓ.

Base case:
Let ℓ = 1 (and n = 2). With the definition of the tensor hexagonal lattice we find that

det (TH1) = |det (H2)| = ψ.

Since ψ21−1·1 = ψ20 = ψ, we can conclude that formula (3.8) holds for ℓ = 1.

Inductive step:

Assume that there exists some ℓ ≥ 1 for which det (THℓ) = ψ2ℓ−1ℓ (inductive hypothesis). We want

9

to show that det (THℓ+1) = ψ2ℓ(ℓ+1) (formula (3.8) holds for ℓ+1). We can rewrite the determinant
of THℓ+1 as follows:

det (THℓ+1) = det (L (H2n)) = |det (H2n)|
= |det (Hn) · det (ψ ·Hn)| (3.9)

= |det (Hn) · ψm · det (Hn)| (3.10)

= |ψ|n · |det (Hn)|2

= ψn · (det (THℓ))
2
.

The factorization in (3.9) uses the bottom triangular structure ofH2n and (3.10) applies the property
det(c·A) = cp · det(A), where c is a constant and A is square matrix of dimension p. By the inductive

hypothesis, det (THℓ) = ψ2ℓ−1ℓ and substituting this gives:

det (THℓ+1) = ψ2ℓ · (det (THℓ))
2
= ψ2ℓ ·

󰀓
ψ2ℓ−1ℓ

󰀔2

= ψ2ℓ+2·2ℓ−1ℓ = ψ2ℓ+2ℓℓ = ψ2ℓ(ℓ+1).

We conclude that formula (3.8) holds for ℓ+ 1.

This completes the induction, proving that det (THℓ) = ψ2ℓ−1ℓ for all ℓ ≥ 1.

We have established the determinant of the TH lattice of dimension n = 2ℓ over the integers. We
can also express this determinant in terms of n, this gives us the following for ℓ ≥ 1:

det (THℓ) = ψ2ℓ−1ℓ = ψn log2(n)/2.

3.2.2 Minimum distance

Proposition 19. Let ℓ ≥ 1 and n = 2ℓ. Let THℓ be the n-dimensional TH lattice over the integers
generated by the basis Hn. The minimum distance is:

λ1 (THℓ) = 1. (3.11)

Proof. We prove the correctness of (3.11) by using induction on ℓ.

Base case:
Let ℓ = 1. Let z ∈ TH1, then

z = x1 ·
󰀃
1, 0

󰀄
+ x2 ·

󰀃
1
2 ,ψ

󰀄

for some x1, x2 ∈ Z. The squared length of the vector is:

󰀂z󰀂2 =
󰀐󰀐󰀃x1 +

1
2x2, ψx2

󰀄󰀐󰀐2 =
󰀃
x1 +

1
2x2

󰀄2
+ (ψx2)

2
= x2

1 + x1x2 + x2
2.

We want to minimize x2
1 + x1x2 + x2

2 for integers x1 and x2 with (x1, x2) ∕= (0, 0). If x1 = 0 and

x2 ∕= 0, we have 󰀂z󰀂2 = x2
2 which is minimal for x2 = 1,−1. For x1 ∕= 0 and x2 = 0 we have

󰀂z󰀂2 = x2
1, which is minimal for x1 = 1,−1. For x1 ∕= 0 and x2 ∕= 0 all terms contribute to the

minimum distance. For x1 = 1 and x2 = 1 we have 󰀂z󰀂2 = 3 ≥ 1, for x1 = 1 and x2 = −1 we have

󰀂z󰀂 = 1 ≥ 1, for x1 = −1 and x2 = 1 we have 󰀂z󰀂2 = 1 ≥ 1 and lastly for x1 = −1 and x2 = −1

we have 󰀂z󰀂2 = 3 ≥ 1. Any other values outside of −1, 0 and 1 will give larger squared lengths.
We conclude that for all nonzero vectors the squared length is larger or equal to 1, which implies
󰀂z󰀂 ≥ 1 for all z ∈ TH1 \ {0}. It is easy to see that any other values outside of −1, 0 and 1 will give
larger squared lengths. So we can conclude that for all nonzero vectors the squared length is larger or
equal to 1. We also know that there are 6 vectors in TH1 with length 1 (use the values for x1 and x2).

10

Inductive step:
Assume that λ1 (THℓ) = 1 for some arbitrary ℓ ≥ 1 (inductive hypothesis). We want to show that
λ1 (THℓ+1) = 1. Let z =

󰀃
x,y

󰀄
be an arbitrary vector in THℓ+1 \ {0}. Because of Definition 3.7

and Claim 1 we have 󰀃
x,y

󰀄
=

󰀃
u+ 1

2v,ψv
󰀄

with u,v ∈ THℓ. Recall that the minimum distance is the length of the shortest nonzero vector.
First we will prove that every nonzero vector in THℓ+1 has length at least 1 and then we will prove
that there exists a nonzero vector with length exactly 1. We have three options for nonzero vectors.

1. Assume x = 0 and y ∕= 0. Since x = 0 it follows that u+ 1
2v = 0, so v = −2u and then:

󰀂z󰀂2 = 󰀂y󰀂2 =
󰀐󰀐 1
2

√
3 · v

󰀐󰀐2 =
󰀐󰀐 1
2

√
3 ·−2u

󰀐󰀐2 =
󰀐󰀐−

√
3u

󰀐󰀐2 ≥ 3.

2. Assume x ∕= 0 and y = 0. Since y = 0 it follows that v = 0, so x = u. Since x ∕= 0 we know
that u ∈ THk \ {0}. With the inductive hypothesis we know that 󰀂u󰀂 ≥ 1, hence:

󰀂z󰀂2 = 󰀂x󰀂2 = 󰀂u󰀂2 ≥ 1.

3. Assume x ∕= 0 and y ∕= 0. Using Claim 1, we know that x ∈ 1
2THℓ and y ∈ ψTHℓ, so there

exists w ∈ 1
2THk \ {0} and v ∈ ψTHk \ {0} such that

󰀃
x,y

󰀄
=

󰀃
1
2w,ψv

󰀄
. Using the inductive

hypothesis we then find the following:

󰀂z󰀂2 =
󰀐󰀐󰀃 1

2w,ψv
󰀄󰀐󰀐2 =

󰀐󰀐 1
2w

󰀐󰀐2 + 󰀂ψv󰀂2 = 1
4 󰀂w󰀂2 + 3

4 󰀂v󰀂
2 ≥ 1.

We can conclude that 󰀂z󰀂2 ≥ 1 for all z ∈ THℓ \ {0}. Next we need to show that there exists a
vector in THℓ \ {0} with length 1. By the inductive hypothesis we know that there exists a nonzero
vector u′ in THℓ with length 1. Let z′ =

󰀃
u′,0

󰀄
∈ THℓ+1. Then z′ ∈ THℓ+1 \ {0} and 󰀂z′󰀂 = 1. We

conclude that every nonzero vector in THℓ+1 has length 1. This completes the inductive step and
thus, by induction on ℓ, we have λ1 (THℓ) = 1 for all ℓ ≥ 1.

3.3 Comparing lattices

Let k ≥ 0 and m = 2k. Let ℓ = k + 1 and n = 2ℓ = 2k+1 = 2m.

To fairly compare different lattice families, we use the normalized minimum distance. As a baseline,
we consider the normalized minimum distance of the n-dimensional integer lattice Zn, which remains
constant across dimensions. In Zn the minimum distance is 1, since the shortest nonzero vectors are
the standard basis vectors. The determinant of Zn is also 1, as it is generated by the identity matrix.
Therefore, the normalized minimum distance is equal to:

λ1 (Zn)

det (Zn)
1/n

= 1.

The best case is Minkowski’s bound, which is for an n-dimensional lattice is equal to:

Θ
󰀃√

n
󰀄
.

Let BWk be the m-dimensional BW lattice over the Gaussian integers. The corresponding real
representation is a lattice over Z of dimension 2m = n. Using the determinant and minimum distance

11

calculated in the previous sections, we find that the normalized minimum distance over the integers
is equal to:

λ1 (BWk)

detZ (BWk)
1/2m

=
m1/2

󰀃
mm/2

󰀄1/2m =
m1/2

m1/4
= m1/4 = (n/2)1/4.

For large n, the normalized minimum distance scales as n1/4 and so the growth is proportional to
n1/4. The normalized minimum distance of the n-dimensional BW lattice over the integers simplifies
to

Θ
󰀃
n1/4

󰀄
.

Let THℓ be the n-dimensional tensor hexagonal lattice over the integers. Using the determinant and
minimum distance calculated in previous sections, we find that the normalized minimum distance
over the integers is equal to:

λ1 (THℓ)

|detZ (Hn)|1/n
=

1
󰀃
ψn log2(n)/2

󰀄1/n = ψ− log2(n)/2 =
󰀃
4
3

󰀄 1
4 log2(n) .

Using the property alogb(c) = clogb(a) we can rewrite this expression as follows:

󰀃
4
3

󰀄log2(n)/4 = nlog2((4/3)1/4) = nlog2(4/3)/4 = n(log2(4)−log2(3))/4 = n(2−log2(3))/4 ≈ n0.1038.

We can conclude that the normalized minimum distance of the tensor hexagonal lattice THℓ is given
by:

Θ
󰀃
n0.1038

󰀄
.

In conclusion, a good baseline for the normalized minimum distance is the integer lattice, as it
doesn’t grow with dimension. The tensor hexagonal lattice with Θ

󰀃
n0.1038

󰀄
and Barnes-Wall lattice

with Θ
󰀃
n1/4

󰀄
both outperform the integer lattice but fall short of Minkowski’s bound Θ

󰀃√
n
󰀄
. Among

these, the BW lattice has a higher growth rate of normalized minimum distance compared to the
tensor hexagonal lattice.

12

Chapter 4

Bounded distance decoding
problem

In this chapter we are going to discuss algorithms for solving the bounded distance decoding (BDD)
problem in lattices. We begin with an algorithm by Micciancio and Nicolosi, which is specific to
Barnes-Wall lattices [MN08]. We then deconstruct and generalize this algorithm, providing a frame-
work to solve the BDD problem in a broader class of lattices. Lastly, we demonstrate the general
algorithm’s versatility by applying it to the tensor hexagonal lattice.

4.1 Solving the bounded distance decoding problem in Barnes-
Wall lattices

In this section we consider Barnes-Wall lattices as lattices over the Gaussian integers. BW lattices
are a family of lattices with a strong recursive structure, as we have seen in the previous chapter. This
allows for efficient decoding algorithms, as given by Micciancio and Nicolosi [MN08]. We consider a
version of the algorithm without parallelization and assume that we are not restricted by the number
of available processors. The bounded distance decoding problem in BW lattices is formally defined
as:

Definition 20 (BDD problem in BW lattices). Let k ≥ 0 and m = 2k. Let BWk the m-dimensional
BW lattice. Let t ∈ Cm be a target vector and assume that

∃z ∈ BWk s.t. 󰀂t− z󰀂2 < m/4.

Find the lattice point z ∈ BWk.

Claim 2. Solving this BDD instance will give a unique solution.

Proof. The minimum distance in the m-dimensional BW lattice over the Gaussian integers is
√
m.

The unique decoding radius, the radius for which the BDD problem has a unique solution, is half the
minimum distance, i.e.

√
m/2. The squared unique decoding radius is m/4 (we work with squared

distances for easier computation). Solving the BDD instance will give a unique lattice point if the
squared distance between the target vector and lattice vector is less than m/4, which is the case.

13

The algorithm given by Micciancio and Nicolosi [MN08] to solve the bounded distance decoding
problem in BW lattices is based on the following four observations:

1. If
󰀃
z0, z1

󰀄
∈ BWk+1, then z0, z1 ∈ BWk.

2. Assume m ≥ 2. Let t =
󰀃
t0, t1

󰀄
∈ Cm and z =

󰀃
z0, z1

󰀄
∈ BWk and assume that t is within

squared unique decoding radius of z, so 󰀂t− z󰀂2 < m/4. Per definition we have:

󰀂t− z󰀂2 =
󰀐󰀐󰀃t0 − z0, t1 − z1

󰀄󰀐󰀐2 = 󰀂t0 − z0󰀂2 + 󰀂t1 − z1󰀂2 .

Hence 󰀂t0 − z0󰀂2 + 󰀂t1 − z1󰀂2 < m/4. This is only possible if at least one of the two squared
distances is less than m/8 (if both are larger than or equal to m/8, then the total sum is larger
than or equal to m/4, contradiction). So either t0 is within the squared unique decoding radius
of BWk−1 or t1 is within the squared unique decoding radius of BWk−1, or both. We conclude
that if t is within the squared unique decoding radius of BWk, then at least one among t0 and
t1 has to be within squared unique decoding radius of BWk−1.

3. The function
T :

󰀃
z0, z1

󰀄
󰀁→ (φ/2) ·

󰀃
z0 − z1, z0 + z1

󰀄

is an automorphism of BWk.

Proof. To show that T is an automorphism, we need to proof that 󰀂z󰀂2 = 󰀂T (z)󰀂.

󰀂T (z)󰀂2 =
󰀐󰀐(φ/2) ·

󰀃
z0 − z1, z0 + z1

󰀄󰀐󰀐2 = |(φ/2)|2 ·
󰀐󰀐󰀃z0 − z1, z0 + z1

󰀄󰀐󰀐2

= 1
2 ·

󰀐󰀐󰀃z0 − z1, z0 + z1
󰀄󰀐󰀐2

= 1
2 · 󰀂z0 − z1󰀂2 + 1

2 · 󰀂z0 + z1󰀂2 = 1
2 · (z0 − z1)

2
+ 1

2 · (z0 + z1)
2

= 1
2 ·

󰀃
z2
0 − 2z0z1 + z2

1

󰀄
+

1

2
·
󰀃
z2
0 + 2z0z1 + z2

1

󰀄

= 1
2 ·

󰀃
2z2

0 − 2z0z1 + 2z0z1 + 2z2
1

󰀄

= z2
0 + z2

1 = 󰀂z0󰀂2 + 󰀂z1󰀂2 =
󰀐󰀐󰀃z0, z1

󰀄󰀐󰀐2 = 󰀂z󰀂2 .

So we can conclude that the function T is indeed an automorphism.

4. Let
󰀃
z−, z+

󰀄
= T

󰀃󰀃
z0, z1

󰀄󰀄
. The vectors z0 and z1 can be recovered from any of the pairs

(z0, z−) , (z0, z+) , (z1, z−) , (z1, z+) .

Proof. We are going to show this for one of the pairs, but the rest can be recovered using a
similar approach. If we know z0 and we want to recover z1 when knowing z− , we get the
following:

z− = (φ/2) ·(z0 − z1) = z− = (φ/2) ·z0−(φ/2) ·z1 ⇔ 2φ−1z− = z0−z1 ⇔ z1 = z0−2φ−1z−.

This is how we can recover the original from two of the projections.

The algorithm given by Micciancio and Nicolosi is based on these observations. It works by recur-
sively (and independently) decoding 4 target vectors of dimension m/2 = 2k−1 that are derived from
the received target vector and then combining the results appropriately [GP12]. The main feature
of the algorithm is the use of a distance-preserving linear automorphism T of the BW lattice.

14

Algorithm 1 Decoding algorithm for Barnes-Wall lattices of dimension m = 2k

1 function DecodeBW(t)
2 if t ∈ C1 then
3 return ⌈t⌋ Round t component-wise to the closest Gaussian integer
4 else
5

󰀃
t0, t1

󰀄
← t Split t into two halves

6
󰀃
t+, t−

󰀄
← (φ/2) ·

󰀃
t0 + t1, t0 − t1

󰀄
Compute T (s)

7 for all i ∈ {0, 1,+,−} do
8 zi ← DecodeBW(ti) Execute the recursive calls on t0, t1, T (t0) , T (t1)
9 end for

10 z+
0 ←

󰀃
z0, 2φ

−1z+ − z0
󰀄

Compute the 4 candidate vectors
󰀃
z0, z1

󰀄
∈ BWk

11 z−
0 ←

󰀃
z0, z0 − 2φ−1z−

󰀄

12 z+
1 ←

󰀃
2φ−1z+ − z1, z1

󰀄

13 z−
1 ←

󰀃
2φ−1z− + z1, z1

󰀄

14 z ← argminz′∈{z+
0 ,z−

0 ,z+
1 ,z−

1 }{󰀂t− z′󰀂} Select the candidate closest to t
15 return z
16 end if
17 end function

Next we are going to proof the correctness of this algorithm and determine the complexity.

4.1.1 Correctness

Theorem 21. For any m = 2k and t ∈ Cm such that the squared distance between t and the m-
dimensional BW lattice is less than m/4, Algorithm 1 computes the unique lattice vector z ∈ BWk

within squared distance m/4 from the target vector t [MN08].

Proof. The base case is clear, so we only need to check correctness for m ≥ 2. Let
󰀃
z0, z1

󰀄
be

the lattice point within squared distance m/4 from the target
󰀃
t0, t1

󰀄
. Since T is an automor-

phism, the lattice point
󰀃
z−, z+

󰀄
= T

󰀃󰀃
z0, z1

󰀄󰀄
is within squared distance m/4 from the target󰀃

t−, t+
󰀄
= T

󰀃󰀃
t0, t1

󰀄󰀄
. With the previously discussed observations, we know that at least one

among t0 or t1 is within the squared unique decoding radius in BWk−1, and that at least one among
T (t0) or T (t1) is within the squared unique decoding radius in BWk−1.

The algorithm recursively computes four m/2-dimensional vectors, and we have four potential pair-
ings of these vectors where one of them is guaranteed to indeed be the closest lattice vector in
dimension m, namely (z0, z−), (z0, z+), (z1, z−) and (z1, z+). From the previous observations we
know that the original lattice vector can be recovered from any of these pairings and we know that
there is only one vector within the squared unique decoding radius. Hence, recovering the original
lattice vector and selecting the candidate vector closest to the target, will give you the correct solu-
tion for the BDD problem in the m-dimensional BW lattice. So, Algorithm 1 computes the unique
lattice vector z ∈ BWk within squared distance m/4 from the target vector t.

4.1.2 Complexity

Theorem 22. For any m = 2k and t ∈ Cm, the execution of Algorithm 1 terminates after O
󰀃
m2

󰀄

steps.

15

Proof. At each recursion depth the problem is divided into four subproblems of size m/2 and after
obtaining the solutions to these subproblems, the algorithm combines them and selects the best
ones. The combining and selecting has a complexity of O (m) (it is a linear amount of work). Let
T (m) denote the runtime for decoding the BW lattice of dimension m. We can then conclude the
following:

T (m) = 4T (m/2) +O (m) .

Using the masters theorem for divide and conquer recurrences, as given in Theorem 12, we can
solve this recurrence relation. To apply the theorem we use a = 4, b = 2, d = 1. It then follows that
logb a = 2 and d = 1 < 2, so T (m) = O

󰀃
mlogb a

󰀄
= O

󰀃
m2

󰀄
. So we can conclude that the algorithm

terminates after O
󰀃
m2

󰀄
steps.

4.1.3 Performance outside the squared unique decoding radius

In Theorem 21 we proved that Algorithm 1 computes the unique lattice vector z ∈ BWk within
squared distance m/4 from some target vector t. The squared unique decoding radius represents
a theoretical boundary within which the decoder is guaranteed to succeed. To test the robustness
of the algorithm, we can test how the algorithm performs for values outside the squared unique
decoding radius.

To investigate this, we implemented the algorithm in Python. The complete implementation, includ-
ing the tests that were run, can be found in Appendix A.2. We generated target vectors t at varying
distances of α · (m/4) from lattice points in the Barnes-Wall lattice and evaluated if the algorithm
returned the correct lattice point. We tested for dimensions 2k with k ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. The
experiments were run on 32 processors, 1000 samples per datapoint, and 100 datapoints per curve.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

α (distance scaling factor)

S
u
cc
es
s
ra
te

Decoding performance within squared distance α · (m/4) from a certain lattice point

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

k = 9

k = 10

The results show us that when the algorithm operates outside the unique decoding radius, the suc-
cess rate of correctly identifying the lattice point decreases. We also observe that higher-dimensional
lattices maintain a higher decoding success rate for longer outside the unique decoding radius com-
pared to lower-dimensional lattices.

16

To understand why higher-dimensional BW lattices sustain higher success rates longer than lower-
dimensional BW lattices, we consider open balls of radius α · (m/4) around each lattice point in
the BW lattice. In low dimensions, as the radius increases, the open balls around adjacent lattice
points begin to overlap quickly. This rapid overlap means that a point quickly is within the radius of
multiple lattice points, causing a decrease in the success rate of the algorithm. In higher dimensions,
the empty space between the open balls increases exponentially. This greater separation delays
significant overlaps, which causes an extended plateau in the succes rate.

4.2 Solving the bounded distance decoding problem in lat-
tices of dimension n = 2ℓ, ℓ ∈ Z≥1

In the previous section, we discussed an algorithm for solving the bounded distance decoding problem
in the Barnes-Wall lattice. The key idea of this algorithm is to project the lattice onto smaller
dimensions, solve the decoding problem in these reduced dimensions, and then reconstruct the
original lattice vector using the solutions from the reduced dimensions. This general idea can be
used to formulate an algorithm for solving the BDD problem in lattices other than the Barnes-Wall
lattice.

4.2.1 General decoding algorithm

Let ℓ ∈ Z≥1 and n = 2ℓ. Let L be an n-dimensional lattice over the real numbers. Using the ideas
from the decoding algorithm for BW lattices we will now formulate a generalized algorithm for solv-
ing the bounded distance decoding problem in L.

The correctness of the algorithm depends on a series of hypotheses. These hypotheses describe
properties of the lattice and projections that must hold to ensure that the algorithm will find the
correct lattice point.

Hypothesis 1. There exist s projections π1, . . . ,πs : Rn → Rn/2 such that

πi (L) ≃ L′ ∀i ∈ {1, . . . , s}

for some lattice L′ with dim (L′) = n/2.

Hypothesis 2. For any two projections πi and πj with i ∕= j ≤ s it holds that:

ker (πi) ∩ ker (πj) = {0} .

Hypothesis 3. For any e ∈ Rn, there exist i ∕= j ≤ s and γ < 1 such that:

󰀂πi (e)󰀂 ≤ γ · 󰀂e󰀂 and 󰀂πj (e)󰀂 ≤ γ · 󰀂e󰀂 .

Hypothesis 4. There exists an algorithm that solves the bounded distance decoding problem in the
lattice L′ up to an absolute radius γ · r with γ · r ≤ λ1(L′)/2. This algorithm is called the subroutine
in the decoding algorithm.

These four hypotheses ensure that the algorithm solves the bounded distance decoding problem
correctly. We will formally proof this in the next section.

17

Algorithm 2 General decoding algorithm for lattices of dimension n = 2ℓ, ℓ ∈ Z≥1

1 function Decode(t)
2 if t ∈ R1 then
3 return ⌈t⌋ Round t to the closest integer
4 else
5 m ← ∞
6 for all i ∈ {1, . . . , s} do
7 ti ← πi (t) Compute the projection of the target vector
8 zi ← subroutine(πi (t)) Decode in the projected lattice
9 end for

10 for all i, j ∈ {1, . . . , s} with i < j do
11 zi

j ← reconstruct(zi, zj) Reconstruct original from any two projections

12 if
󰀐󰀐t− zi

j

󰀐󰀐 < m then Store the vector closest to the target vector

13 m ←
󰀐󰀐t− zi

j

󰀐󰀐, z ← zi
j

14 end if
15 end for
16 return z
17 end if
18 end function

4.2.2 Correctness

Theorem 23. Let L be a lattice of dimension n = 2ℓ with ℓ ∈ Z≥1. For any t ∈ Rn such that
the distance between t and L is less than half the minimum distance r = λ1(L)/2 and the stated
hypotheses are satisfied, Algorithm 2 computes the unique lattice vector z ∈ L within distance r from
the target vector t.

Proof. The first step in the algorithm is to compute the projections of the target vector and then
decode these projections in the projected lattice. Using Hypothesis 3, there exist indices i ∕= j ≤ s
such that

󰀂πi(e)󰀂 ≤ γ · 󰀂e󰀂 and 󰀂πj(e)󰀂 ≤ γ · 󰀂e󰀂,

where e = t − z. Since 󰀂e󰀂 < r (definition of the bounded distance decoding problem) and γ < 1,
it follows that:

󰀂πi(e)󰀂 < γ · r and 󰀂πj(e)󰀂 < γ · r.

By Hypothesis 1, we know that the projections are isomorphic to a lattice L′ and by Hypothesis
4, there exists a subroutine that can decode correctly up to an absolute radius γ · r in L. As a
result, the algorithm can correctly recover the lattice vector zi ∈ πi (L) from ti = πi (t) whenever
󰀂πi(e)󰀂 < γ · r. Therefore, the algorithm correctly decodes the projections ti and tj in line 8 of the
algorithm.

After decoding the projections, the next step is to reconstruct the original lattice vector z ∈ L from
the decoded projections zi ∈ πi(L) and zj ∈ πj(L). Hypothesis 2 ensures that for any two distinct
projections πi and πj , we have:

ker(πi) ∩ ker(πj) = {0}.

Equivalently, the linear map z 󰀁→ (πi(z),πj(z)) is injective. This implies that no nonzero vector is
sent to (0,0) by both projections. It follows that any vector z ∈ L can be uniquely determined from
its images πi(z) and πj(z).

18

More concretely, let Ai and Aj denote the matrices representing the projections πi and πj . Once we
have decoded zi = πi(z) and zj = πj(z), the original vector z can be reconstructed by solving

󰀕
Ai

Aj

󰀖
z =

󰀕
zi
zj

󰀖
.

Since ker(πi) ∩ ker(πj) = {0}, this system of equations has a unique solution z.

Lastly, the algorithm computes the distance between the target vector and each candidate lattice
vector reconstructed from pairs of projections. By Hypothesis 2, the reconstruction is correct for any
pair of projections πi and πj , and Hypothesis 4 ensures that the decoding radius in the projected
lattices is sufficient for correct decoding. The algorithm iterates over all

󰀃
s
2

󰀄
pairs of projections,

reconstructs the corresponding candidate lattice vector, and selects the one closest to t. It follows
that the algorithm selects the lattice vector z such that 󰀂t− z󰀂 is minimized. Since 󰀂t− z󰀂 < r and
r ≤ λ1(L)/2, the closest lattice vector z is unique. Thus, the algorithm correctly finds the lattice
vector closest to t.

We can now conclude that Algorithm 2 computes the unique lattice vector z ∈ L within distance r
from the target vector t.

The generalized version of the decoding algorithm for Barnes-Wall lattices correctly finds the closest
lattice vector for any lattice of dimension n = 2ℓ with ℓ ∈ Z≥1, as long as the hypotheses are satisfied.
The decoding algorithm by Micciancio and Nicolosi [MN08] is a recursive application of this general
algorithm. The subroutine in the general algorithm is a call to the function itself with as argument
the projected target vector.

4.2.3 Complexity

Theorem 24. For any n-dimensional lattice L with n = 2ℓ and ℓ ∈ Z≥1, Algorithm 2 terminates
after sTs(n/2)+O (n) steps, where s is the number of projections used in the algorithm and Ts(n/2)
is the complexity of the subroutine for a problem of size n/2.

Proof. The size of the problem is n and the algorithm solves it by solving s subproblems of size n/2.
We know that the time complexity is given by:

T (n) = sTs(n/2) +O(s2 · n),

where Ts(n/2) is the time of the subroutine for each subproblem of size n/2 and O(s2 · n) is the
time to combine the solutions of the subproblems into a solution of the original problem. We have
to reconstruct the original lattice vector for all s2 pairs and the reconstruction itself is linear. So
O(s2 · n) represents the time to combine the solutions of the subproblems involving

󰀃
s
2

󰀄
pairwise

reconstructions, each taking linear time relative to n. Since the number of projections is constant,
it follows O(s2 · n) = O(n). The complexity is then given by:

T (n) = sTs(n/2) +O (n) .

We cannot apply the masters theorem, because it is not necessarily a recursive application. We
cannot further simplify the complexity.

Remark 25. In the case of the Barnes-Wall lattices, the algorithm by Micciancio and Nicolosi, is
a recursive application of Algorithm 2. The complexity is given by:

T (n) = sT (n/2) +O (n) .

19

To determine the time complexity, we apply the masters theorem for divide and conquer recurrences,
as given in Theorem 12. To apply the theorem we use a = s, b = 2 and d = 1. It then follows that
logb a = log2(s). The Barnes-Wall decoding algorithm uses 4 projections, so a = 4. We can conclude
that:

T (n) = 4T (n/2) +O (n) = O
󰀃
nlog2 4

󰀄
= O

󰀃
n2

󰀄
,

which coincides with the time complexity established for the Barnes-Wall lattice decoding algorithm
by Micciancio and Nicolosi [MN08].

4.3 Solving the bounded distance decoding problem in tensor
hexagonal lattices

In this section we will apply the general algorithm from 4.2 to the tensor hexagonal lattice from 3.2.
Recall that ψ = 1

2

√
3.

4.3.1 Hypotheses validation

Before proving that the tensor hexagonal lattice can satisfy the hypotheses for the general algorithm
2, we first introduce some necessary lemmas.

Lemma 26. Let π1,π2,π3 : R2n → Rn be three projections defined by

π1(x0,x1) = x0, π2(x0,x1) = − 1
2 x0 − ψ x1, π3(x0,x1) = − 1

2 x0 + ψ x1,

where x0,x1 ∈ Rn. Then for any i ∕= j, the following holds:

ker(πi) ∩ ker(πj) = {0}.

Proof. We are going to proof the lemma by induction on dimension.

Base case:
Let n = 1. Then (x0, x1) ∈ R2 and

π1(x0, x1) = x0, π2(x0, x1) = − 1
2 x0 − ψ x1, π3(x0, x1) = − 1

2 x0 + ψ x1.

The kernel equations are given by:

ker(π1) = {(0, x1) | x1 ∈ R},

ker(π2) = {(x0, x1) | − 1
2x0 − ψx1 = 0} = {(2ψx1, x1) | x1 ∈ R},

ker(π3) = {(x0, x1) | − 1
2x0 + ψx1 = 0} = {(−2ψx1, x1) | x1 ∈ R}.

So each ker(πi) corresponds to a line in R2. To determine the intersection of two distinct projections,
we have to solve the following system:

x0 = 0, − 1
2x0 ± ψx1 = 0.

It is easy to see that the only solution is (0, 0). Thus, the base case holds.

20

Inductive step:
Suppose the lemma holds in dimension n. Then for any x0,x1 ∈ Rn, the intersection of any two
kernels is trivial. We will now prove the statement for 2n. Consider the projections π1,π2,π3 :
R2(2n) → R2n, defined by:

π1(x0,x1) = x0, π2(x0,x1) = − 1
2 x0 − ψ x1, π3(x0,x1) = − 1

2 x0 + ψ x1,

where x0,x1 ∈ R2n. We need to show that for any i ∕= j, we have:

ker(πi) ∩ ker(πj) = {0}.

Write any z ∈ R2(2n) as (x0,x1) with x0,x1 ∈ R2n. The projections π2 and π3 introduce linear
constraints that apply to each coordinate block of z in the same way as they do in the base case.
Specifically, they impose the following system:

− 1
2x0 − ψx1 = 0, − 1

2x0 + ψx1 = 0.

This consists of two independent linear constraints on (x0,x1), just as in the n = 1 case. Since the
same transformation 󰀃

− 1
2 ,±ψ

󰀄

applies component wise in each 2n-dimensional sub block and we know with the inductive hypothesis
that in each 2n-dimensional block, the only solution is 0, so we can conclude that z = 0 in R2(2n).
Thus, ker(πi) ∩ ker(πj) = {0} in all dimensions by induction.

Lemma 27. For the same three projections π1,π2,π3 : R2n → Rn, the following holds:

󰀂π1(e)󰀂2 + 󰀂π2(e)󰀂2 + 󰀂π3(e)󰀂2 = 3
2 󰀂e󰀂

2

for every e ∈ R2n.

Proof. We are going to proof this by induction on dimension.

Base case:
Let n = 1. Then e = (e0, e1) ∈ R2, and

π1(e0, e1) = e0, π2(e0, e1) = − 1
2e0 − ψe1, π3(e0, e1) = − 1

2e0 + ψe1.

This gives the following:

󰀂π1(e)󰀂2 + 󰀂π2(e)󰀂2 + 󰀂π3(e)󰀂2 = 󰀂e0󰀂2 + 󰀂 − 1
2e0 − ψe1󰀂2 + 󰀂 − 1

2e0 + ψe1󰀂2

= e20 +
1
4e

2
0 + ψ2e21 +

1
4e

2
0 + ψ2e21

= e20 +
1
4e

2
0 +

3
4e

2
1 +

1
4e

2
0 +

3
4e

2
1

= 3
2e

2
0 +

3
2e

2
1

= 3
2 󰀂e󰀂

2.

Inductive step:
Suppose the statement is true in dimension n. We will now prove that it is also true in 2n. Write
e = (e0, e1) ∈ R2n with each part in Rn. By the same definition as above, we have the following:

π1(e0, e1) = e0, π2(e0, e1) = − 1
2e0 − ψe1, π3(e0e1) = − 1

2e0 + ψe1.

21

It then follows that:

󰀂π1(e)󰀂2 + 󰀂π2(e)󰀂2 + 󰀂π3(e)󰀂2 = 󰀂e0󰀂2 + 󰀂 − 1
2e0 − ψe1󰀂2 + 󰀂 − 1

2e0 + ψe1󰀂2

= 3
2

󰀃
󰀂e0󰀂2 + 󰀂e1󰀂2

󰀄

= 3
2 󰀂e󰀂

2.

Hence the statement is true in dimension 2n, completing the induction.

We can now proof that the hypotheses of the general algorithm apply to the tensor hexagonal lattice.
We introduce the following theorem.

Theorem 28. For any integer ℓ ≥ 1, the n = 2ℓ dimensional tensor hexagonal lattice THℓ satisfies
the four hypotheses required for the general decoding algorithm 2 with 3 projections defined by:

π1(t) = t0, π2(t) = − 1
2t0 − ψt1, π3(t) = − 1

2t0 + ψt1,

with t ∈ Rn and γ2 = 3/4. Consequently, the general decoding algorithm can be successfully applied
to THℓ to solve the BDD problem within the unique decoding radius.

Proof. We will proof this theorem with induction on ℓ.

For ℓ = 1 we have the hexagonal lattice of dimension 2. We will now verify the four hypothesis for
TH1.

(H1) Let z ∈ TH1. Then:

z = x1

󰀃
1, 0

󰀄
+ x2

󰀃
1
2 ,ψ

󰀄
=

󰀃
x1 +

1
2x2,ψx2

󰀄
, x1, x2 ∈ Z.

By substituting this into the projections π1, π2 and π3 we obtain:

π1(z) = x1 +
1
2x2, π2(z) = − 1

2

󰀃
x1 +

1
2x2

󰀄
− ψ(ψx2) = − 1

2x1 − x2,

π3(z) = − 1
2

󰀃
x1 +

1
2x2

󰀄
+ ψ(ψx2) = − 1

2x1 +
1
2x2.

Since x1, x2 ∈ Z, we can conclude that:

π1(TH1) = Z+
1

2
Z ≃ Z, π2(TH1) = − 1

2Z− Z ≃ Z, π3(TH1) = − 1
2Z+ 1

2Z ≃ Z.

Thus, each projection maps TH1 isomorphically to L′ = Z, satisfying Hypothesis 1.

(H2) By Lemma 26 in the base case n = 1, we have ker(πi)∩ ker(πj) = {0} for i ∕= j, so Hypothesis
2 is fulfilled.

(H3) Using Lemma 27, we have:

󰀂π1(e)󰀂2 + 󰀂π2(e)󰀂2 + 󰀂π3(e)󰀂2 = 3
2 󰀂e󰀂

2.

If fewer than two of these are ≤ γ · 󰀂e󰀂 for γ =
√
3
2 , the sum of squares would exceed 3

2󰀂e󰀂
2.

This is a contradiction with Lemma 27. We can conclude that at least two lie below γ · 󰀂e󰀂,
fulfilling (H3).

(H4) Each of the projections maps TH1 to L′ = Z. The bounded distance decoding problem in
Z can be solved by rounding the target vector to the closest integer, as long as the distance
between the target vector and the lattice vector is less than 1

2 (otherwise we aren’t guaranteed
unique solutions). So we have a decoding algorithm for a decoding radius r = 1

2 , which satisfies
the condition

γ · r =
√
3
2 · 1

2 =
√
3
4 < 1

2 = λ1(Z)
2 .

Thus, there exists a decoding algorithm for L = Z that operates within the required radius,
satisfying Hypothesis 4.

22

We can now conclude that the theorem holds for the tensor hexagonal lattice of dimension 2.

Next we will proof that if there exists a k ≥ 1 for which the hypotheses are satisfied, the hypotheses
are also satisfied in the tensor hexagonal lattice of dimension 2k+1. We will again proof them one
by one.

(H1) Any lattice point z ∈ THk+1 can be expressed as:

z =
󰀃
u+ 1

2v,ψv
󰀄
,

where u,v ∈ THk. Applying the projections yields the following results:

π1(z) = u+ 1
2v ∈ THk + 1

2THk ≃ THk,

π2(z) = − 1
2z0−ψz1 = − 1

2 (u−
1
2v)+ψ(ψv) = − 1

2u−
1
4v−

3
4v = − 1

2u−v ∈ 1
2THk+THk ≃ THk,

π3(z) = − 1
2z0 + ψz1 = − 1

2 (u+ 1
2v) + ψ(ψv) = − 1

2u+ 1
2v ≃ THk.

So each projection πi(z) maps THk+1 isomorphically to THk, thereby satisfying Hypothesis
1 (the lower dimensional tensor hexagonal lattice has half the dimension of the original tensor
hexagonal lattice).

(H2) By Lemma 26 in dimension 2n, the kernels of any two distinct projections πi,πj intersect only
in {0}. Thus Hypothesis 2 is satisfied.

(H3) By Lemma 27 in dimension 2n, for any e ∈ R2n, the following holds:

󰀂π1(e)󰀂2 + 󰀂π2(e)󰀂2 + 󰀂π3(e)󰀂2 = 3
2 󰀂e󰀂

2,

forcing at least two projections below γ󰀂e󰀂 with γ =
√
3
2 . Therefore Hypothesis 3 holds.

(H4) Each projection maps THk+1 to THk, which by the inductive hypothesis can be decoded
within radius γ r ≤ λ1(THk)/2. Thus Hypothesis 4 is satisfied.

Having verified all four hypotheses for THk+1, the inductive step is complete. We can conclude that
the theorem holds for all tensor hexagonal lattices THk of dimension 2k with k ≥ 1.

4.3.2 Decoding algorithm

We can now give the algorithm for solving the bounded distance decoding problem in the tensor
hexagonal lattice of dimension k. Using the hypotheses we can explicitly reconstruct the original
lattice vector. With Hypothesis 2 we know that any error vector can be recovered correctly form
any two projections. Let

󰀃
z−, z+

󰀄
= − (1/2) ·

󰀃
z0 + z1

√
3, z0 − z1

√
3
󰀄
. At least two projections can

be decoded correcly, we need to show that we can recover the original lattice vector from any of the
three pairs

󰀃
z0, z+

󰀄
,
󰀃
z0, z−

󰀄
or

󰀃
z−, z+

󰀄
.

Assume that we know z0 and we want to recover z1 when knowing z+. We get the following:

z+ = − 1
2z0 +

1
2z1

√
3 ⇔ 1

2z1
√
3 = z+ + 1

2z0 ⇔ z1 = 2√
3
z+ + 1√

3
z0.

Assume that we know z0 and we want to recover z1 when knowing z−. We get the following:

z− = − 1
2z0 −

1
2z1

√
3 ⇔ − 1

2z1
√
3 = z− + 1

2z0 ⇔ z1 = − 2√
3
z− − 1√

3
z0.

Assume that we know z+ and z− and we want to recover z0 and z1. We know the following:

z+ = − 1
2z0 +

1
2z1

√
3 ⇔ 1

2z0 = 1
2z1

√
3− z+ ⇔ z0 = z1

√
3− 2z+

23

and
z− = − 1

2z0 −
1
2z1

√
3 ⇔ 1

2z0 = −z− − 1
2z1

√
3 ⇔ z0 = −z1

√
3− 2z−.

It then follows that:

z1
√
3− 2z+ = z0 = −z1

√
3− 2z− ⇔ 2z1

√
3 = 2z+ − 2z− ⇔ z1 = 1√

3
z+ − 1√

3
z−.

Substituting this into z0 = z1
√
3− 2z+ gives us the following:

z0 =
√
3 ·

󰀓
1√
3
z+ − 1√

3
z−

󰀔
− 2z+− = z+ − z− − 2z+ = −z+ − z−.

The explicit reconstruction of the original lattice vector can be found in the pseudocode for the
algorithm, which is given below.

Algorithm 3 Decoding algorithm for tensor hexagonal lattices of dimension n = 2k

1 function DecodeTH(t)
2 if t ∈ R1 then
3 return ⌈t⌋ Round t to the closest integer
4 else
5

󰀃
t0, t1

󰀄
← t Split t into two halves

6
󰀃
t−, t+

󰀄
← − (1/2) ·

󰀃
t0 + t1

√
3, t0 − t1

√
3
󰀄

7 for all i ∈ {0,+,−} do
8 zi ← DecodeTH(ti) Decode the projections in the projected lattice
9 end for

10 z+
0 ←

󰀓
z0,

2√
3
z+ + 1√

3
z0

󰀔
Compute the 3 candidate vectors

󰀃
z0, z1

󰀄
∈ THk

11 z−
0 ←

󰀓
z0,− 2√

3
z− − 1√

3
z0

󰀔

12 z+
− ←

󰀓
−z+ − z−,

1√
3
z+ − 1√

3
z−

󰀔

13 z ← argminz′∈{z+
0 ,z−

0 ,z+
−}{󰀂t− z′󰀂} Select the candidate closest to t

14 return z
15 end if
16 end function

4.3.3 Correctness and complexity

The correctness of the algorithm follows directly from the fact that the hypotheses are satisfied.

We use three projections, so using the formula for complexity for the general algorithm, we can
conclude that the the complexity is:

O(nlog2(3)) ≡ O(n1.5850).

24

Chapter 5

Conclusion and further research

The goal of this thesis was to explore the bounded distance decoding (BDD) problem and efficient
solutions for the problem within specific lattice structures. We investigated efficient solutions for
the Barnes-Wall lattices and generalized this approach to an efficient solution for tensor hexagonal
lattices. We were able to determine the time complexity for solving the BDD problem in both cases
and we determined the normalized minimum distance for both lattice families. Recall that we are
ideally looking for lattices where we can solve the BDD problem efficiently with some trapdoor in-
formation and for lattices with large minimum distance.

For Barnes-Wall lattices, we demonstrated that the BDD problem can be solved in O
󰀃
n2

󰀄
time. For

tensor hexagonal lattices, we demonstrated that the BDD problem can be solved in O
󰀃
n1.5850

󰀄
time.

We determined that the normalized minimum distance for Barnes-Wall lattices is Θ
󰀃
n1/4

󰀄
. We also

determined that the normalized minimum distance for tensor hexagonal lattices is Θ
󰀃
n0.1038

󰀄
.

We conclude that although the BDD problem is solved faster in tensor hexagonal lattices, the nor-
malized minimum distance is larger in Barnes-Wall lattices compared to tensor hexagonal lattices.

Our findings raise several questions for future research. Is it possible to improve efficiency of the
tensor hexagonal lattice decoding process? Can the efficiency of the general BDD algorithm proposed
in this thesis be improved? And, can this general algorithm be applied to other lattice families to
further extend its applicability?

25

Bibliography

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms (3rd edition). MIT Press and McGraw-Hill, 2009.

[Cor20] Vincent Corlay. Decoding Algorithms for Lattices. PhD thesis, Institut Polytechnique de
Paris, 2020.

[DD18a] D. Dadush and L. Ducas. Introduction to Lattice Algorithms and Cryptography, Lecture
1 – Introduction. https://homepages.cwi.nl/~dadush/teaching/lattices-2018/

notes/lecture-1.pdf, 2018.

[DD18b] D. Dadush and L. Ducas. Introduction to Lattice Algorithms and Cryptography, Lec-
ture 2 – Determinant, Packing and Covering, and the Minkowski Theorems. https://

homepages.cwi.nl/~dadush/teaching/lattices-2018/notes/lecture-2.pdf, 2018.

[DP19] Léo Ducas and Cécile Pierrot. Polynomial Time Bounded Distance Decoding near
Minkowski’s Bound in Discrete Logarithm Lattices. Designs, Codes and Cryptography,
2019.

[FA24] Efat Fathalla and Mohamed Azab. Beyond Classical Cryptography: A Systematic Review
of Post-Quantum Hash-Based Signature Schemes, Security, and Optimizations. IEEE
Access, 2024.

[For88] G David Forney. Coset codes - Part I: Introduction and Geometrical Classification. IEEE
Transactions on Information Theory, 34(5):1123–1151, 1988.

[GP12] Elena Grigorescu and Chris Peikert. List decoding barnes-wall lattices. In 2012 IEEE
27th Conference on Computational Complexity, pages 316–325. IEEE, 2012.

[HWL08] Jr. Hendrik W. Lenstra. Lattices. https://www.math.leidenuniv.nl/~stevenhagenp/
/ANTproc/06hwl.pdf, 2008.

[Lap21] Oleksandra Lapiha. Comparing Lattice Families for Bounded Distance Decoding near
Minkowskis Bound. Cryptology ePrint Archive, 2021.

[LSLY] Zhe Li, Chaoping Xing San Ling, and Sze Ling Yeo. On the Bounded Distance Decoding
Problem for Lattices Constructed from Polynomials and Their Cryptographic Applica-
tions.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a Crypto-
graphic Perspective, volume 671. Springer Science & Business Media, 2002.

[MN08] Daniele Micciancio and Antonio Nicolosi. Efficient bounded distance decoders for Barnes-
Wall lattices. In 2008 IEEE International Symposium on Information Theory. IEEE,
2008.

26

https://homepages.cwi.nl/~dadush/teaching/lattices-2018/notes/lecture-1.pdf
https://homepages.cwi.nl/~dadush/teaching/lattices-2018/notes/lecture-2.pdf
https://www.math.leidenuniv.nl/~stevenhagenp//ANTproc/06hwl.pdf

[vP16] Alex van Poppelen. Cryptographic decoding of the Leech lattice. Master’s thesis, 2016.

[vW23] Wessel Pieter Jacobus van Woerden. Lattice Cryptography, from Cryptanalysis to New
Foundations. PhD thesis, Leiden University, 2023.

27

Appendix A

A.1 Equivalence of lattices over G and lattices over Z

There exists an isomorphism between any n-dimensional real lattice and a corresponding 2n-dimensional
lattice over the integers Z [For88]. This isomorphism turns each complex number into a pair of co-
ordinates in the real lattice. The isomorphism is given by:

f : a+ bi 󰀁→
󰀃
a, b

󰀄
a, b ∈ Z.

Let B ∈ Gn×n be a lattice basis with rows in Gn. Then, there exists a basis matrix B′ ∈ Z2n×2n

such that
{x ·B : x ∈ Gn} = L(B) ∼= L(B′) =

󰀋
y ·B′ : y ∈ Z2n

󰀌
,

where the isomorphism preserves lattice structure. However, it does not preserve the multiplicative
structure of the ambient spaces [For88]. Therefore, while the ambient spaces Gn and Z2n are not iso-
morphic, the lattices defined over them are isomorphic. We can conclude that n-dimensional lattices
described by bases over the Gaussian integers are equivalent to 2n-dimensional lattices described by
bases over the integers.

The simplest example of a complex lattice is the one-dimensional complex lattice G corresponding
to the two-dimensional real lattice Z2 [For88]. The point

󰀃
a, b

󰀄
in Z2 corresponds to the point a+ bi

in G, where a and b may be any pair of integers [For88].

A.2 Implementation decoder

"""

Implementation of a modified version of the parallel bounded distance decoder

(BDD) for Barnes -Wall lattices , given in Algorithm 1 in the paper "Efficient

Bounded Distance Decoders for Barnes -Wall Lattices" by Daniele Micciancio and

Antonio Nicolosi. It also includes a test function to see how the algorithm

performs inside and outside the squared unique decoding radius.

"""

import matplotlib.pyplot as plt

import numpy as np

from multiprocessing import Pool

from time import time

from numpy.random import seed

phi = 1 + 1j # Prime of the least squared norm in the Gaussian integers

28

"""

Bounded Distance Decoder (BDD) for Barnes -Wall lattices

For any N = 2^n and s in C^N such that dist ^2(s, BW^n) < N/4, Algorithm 1 computes

the (unique) lattice vector z in BW^n within squared distance N/4 from the target

vector s.

"""

def bounded_distance_decoder(s):

If s is a one dimensional complex vector , we round s component wise to the

closest Gaussian integer.

if len(s) == 1:

return np.round(s.real) + 1j * np.round(s.imag)

else:

s_0 , s_1 = np.split(s, 2) # Split the target vector into two halves

Apply the automorphism to the target vector

s_minus = (phi / 2) * (s_0 - s_1)

s_plus = (phi / 2) * (s_0 + s_1)

Execute recursive calls

z_0 = bounded_distance_decoder(s_0)

z_1 = bounded_distance_decoder(s_1)

z_minus = bounded_distance_decoder(s_minus)

z_plus = bounded_distance_decoder(s_plus)

Compute the 4 candidate vectors

z_0_minus = np.concatenate ([z_0 , z_0 - 2 * (1 / phi) * z_minus])

z_0_plus = np.concatenate ([z_0 , 2 * (1 / phi) * z_plus - z_0])

z_1_minus = np.concatenate ([2 * (1 / phi) * z_minus + z_1 , z_1])

z_1_plus = np.concatenate ([2 * (1 / phi) * z_plus - z_1 , z_1])

candidates = [z_0_minus , z_0_plus , z_1_minus , z_1_plus]

Select the candidate closest to s

z = min(candidates , key=lambda candidate: np.linalg.norm(s - candidate))

return z

"""

Generate the basis matrix for the Barnes -Wall lattice of dimension 2^n.

"""

def generate_lattice(n):

Matrix used to generate higher dimensional generator matrices

base_matrix_BW = np.array ([[1, 1], [0, phi]])

if n == 0:

return np.array ([1])

elif n == 1:

return base_matrix_BW

else:

BW_power_n = base_matrix_BW

for _ in range(n - 1):

Calculate the n fold Kronicker product of the base matrix

BW_power_n = np.kron(BW_power_n , base_matrix_BW)

return BW_power_n

"""

Function that generates a random vector in the Barnes -Wall lattice. A lattice

vector is a gaussian linear integer combination of the rows of the basis matrix.

"""

29

def random_BW_vector(n):

Basis matrix for 2^n dimensional Barnes -Wall lattice

BW_power_n_matrix = generate_lattice(n)

coefficients_real = np.random.randint (-100, 100, size=2 ** n)

coefficients_im = np.random.randint (-100, 100, size=2 ** n)

Random vector that is a combination of the rows of A

random_vector = np.dot(coefficients_real + 1j * coefficients_im ,

BW_power_n_matrix)

return random_vector

"""

Given a lattice point in a N = 2^n dimensional Barnes -Wall lattice , generate a

vector s at a specified distance from this lattice point. For alpha = 1 we get

points exactly on the unique decoding radius , for alpha > 1 we get points

outside the squared unique decoding radius and for alpha < 1 we get inside the

squared unique decoding radius.

"""

def generate_s(n, z, alpha):

N = 2 ** n

unique_radius_squared = N/4

squared_distance = alpha * unique_radius_squared

Create the perturbation vector with each coordinate a Gaussian random variable.

Normal distribution ensures the perturbations are spread in all directions.

delta = np.random.normal(0, 1, N) + 1j * np.random.normal(0, 1, N)

delta_normalized = delta / np.linalg.norm(delta)

delta_scaled = delta_normalized * np.sqrt(squared_distance)

s = z + delta_scaled

return s

"""

Test the algorithm ’s performance at various distances alpha * N/4 from the

lattice. Input is a list of alpha values , and a number of trials for each

alpha value.

"""

def aux(params):

n, alpha , trials = params

seed(int(np.round(alpha *1e8)))

successes = 0

for _ in range(trials):

z = random_BW_vector(n)

s = generate_s(n, z, alpha)

decoded_z = bounded_distance_decoder(s)

Check if the decoded result matches the original lattice point

if np.array_equal(decoded_z , z):

successes += 1

success_rate = successes / trials

return (alpha , success_rate)

def test_algorithm(n, alpha_values , trials , cores =32):

with Pool(cores) as p:

results = p.map(aux , [(n, a, trials) for a in alpha_values])

return results

for n in range(2, 13):

T0 = time()

print("starting experiment %d"%n)

L = test_algorithm(n, np.linspace(0, 4, 101), 1000)

30

file = open("exp_n%d.txt"%n, "w")

file.write("n, \t alpha , \t succ_rate \n")

for (alpha , sr) in L:

file.write("%d, \t %.4f, \t %.4f \n"%(n, alpha , sr))

file.close ()

T1 = time()

print("Done in Time %.2f s"%(T1 -T0))

31

