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Abstract

Differential Evolution (DE) algorithms are flexible algorithms, able to provide
good results on a wide variety of optimization problems. One of the challenges with
DE is using that flexibility to choose the right configuration for a problem, especially
when there is no prior knowledge of the underlying function. Adaptive Operator
Selection (AOS) mechanisms allow an algorithm to automatically adapt its own
parameters on the fly, vital for good performance on these black-box problems. One
such AOS mechanism is the Multi-Armed Bandit (MAB) which uses a portfolio, a
pre-defined selection of configurations which it can switch between.

This thesis investigates how the size of a portfolio impacts the performance of
MAB-based AOS, using a suite of 24 different problems and portfolios consisting of
up to 16 different mutation operators. After determining the best performing (hy-
per)parameters of all mutation operators and the MAB we found that using differ-
ent portfolio sizes has limited effect on DE performance on 5-dimensional problems,
but has a noticeable impact on 20-dimensional problems. We show that in the latter
case, performance peaks at a portfolio consisting of 4 different configurations and
continuously degrades as larger and larger portfolios are considered. This suggests
little need to consider large portfolios for high-dimensional problems.
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1 Introduction

Optimisation is a field of study that aims to find and improve methods that efficiently solve
problems. The nature of these problems can range from engineering [21] to biological [46]
to financial [23], as long as the problem can be expressed as a function. In practice,
optimisation often means finding a set of inputs that generates an output that is either
as high or as low as possible.
A difficult type of problem encountered in optimisation is the black-box problem [18].
These are problems described by a function whose analytical formula is unknown, but
the problem can be sampled to obtain the evaluation of a given valid input. The number
of times this function can be sampled is limited either by arbitrary constraints, such as
the introduction of a maximum budget, or real-world constraints like physical resources
or time [36].
Differential Evolution (DE) is a powerful and easily configurable stochastic optimisation
algorithm in the field of evolutionary algorithms. It is able to optimise real-valued problems
by iteratively generating candidate solutions. The mutation operator is the driving force
behind DE. It creates new values for candidate solutions, enabling movement throughout
the search space. Changing this operator changes DE’s optimisation characteristics. This
was already noted by Storn and Price, who suggested multiple different mutation operators
both when they introduced DE and soon after [44] [42]. Choosing the right configuration of
operator and parameters for a specific problem can dramatically impact the convergence
speed of the DE algorithm and/or the final obtained solution [30].
Adaptive Operator Selection (AOS) methods provide the ability to automate the selection
of optimal configurations during runtime. This allows an optimisation algorithm such
as DE to not only select optimal configurations for different problems but also change
the configuration during a single problem. For example, changing from an exploration
phase to an exploitation phase. These capabilities are very useful for problems that would
otherwise benefit from a lot of human oversight during runtime for optimal results, such as
the aforementioned black-box problems. For AOS methods that consider a finite number
of configurations, the problem of which configurations and how many configurations to
include can be seen as a portfolio optimisation problem [5], where the goal is to build a
portfolio of complementary configurations.
This thesis explores how the number of configurations in a portfolio, the portfolio size,
affects the performance of DE on 5- and 20-dimensional problems by implementing an
AOS strategy based on the Multi-Armed Bandit [28] [38]. With a series of experiments
and IOHanalyzer’s [47] BBOB test suite [19] we first find optimal parameters for mutation
operators when used on their own. Next, we find optimal hyperparameters for the MAB
adaptive operator selector. Finally, we use the results of the previous experiments to test
portfolio’s ranging from 1 up to 16 different mutation operators.

2 Black-box optimisation

In optimisation the goal is to find an optimal solution to a problem. We define this
problem as a N -dimensional continuous objective function f : XN → R which outputs a
real number. Input XN is a solution vector of length N with its values constrained by the
upper-bounds un and lower-bounds ln defined by box-constraints {∀xn ∈ XN | ln ≤ xn ≤
un, ln < un, 0 ≤ n < N}. Without loss of generality, this solution vector should minimise
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the output of f and needs to be found while being limited by a maximum number of
function evaluations or a maximum allowed runtime. The objective function can take
many shapes. Knowing what kind of characteristics a problem has allows one to tailor an
optimisation algorithm to it, as [37] shows for different cases in machine learning.
The challenge of black-box optimisation is to solve a given objective function as efficiently
as possible without using any prior information. This includes the exact definition of f or
its derivative. The optimisation algorithm can attempt to make its own inferences through
information obtained by evaluating an input (querying) at the cost of budget, as long as
it reliably converges to the global minimum.

2.1 IOHprofiler

We use IOHprofiler to access and analyse a suite of black-box problems. IOHprofiler [14] is
a multipart tool that assists with running benchmarks for optimisation algorithms through
IOHexperimenter [13] and analysing the generated data through IOHanalyzer [47]. Its
components can be seen in figure 1. IOHexperimenter is able to connect to and log the
performance of optimisation algorithms on both continuous real-valued single-objective
problems from COCO’s [18] suite of Black-Box Optimization Benchmark (BBOB) [19]
problems and discrete problem suites. IOHanalyzer allows for an interactive analysis and
visualisation of logs obtained with IOHexperimenter through a web-based interface.

Figure 1: An overview of the steps in Algorithm benchmarking that are targeted by
IOHprofiler [47].

3 Differential Evolution

Differential Evolution (DE) is a type of Evolutionary Algorithm (EA). Through repeated
mutation, crossover, and selection of a population of candidate solutions, it attempts to
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find an optimal solution to a problem defined by an objective function f . Different DE
strategies are classified using the notation DE/a/b/c [44]. In this notation a denotes the
mutation strategy used, b denotes the number of difference vectors included in the mu-
tation strategy, and c denotes the crossover scheme. The strategy that uses a random
vector as base vector during mutation, adds one difference vector to it, and then applies
binomial crossover would be described as DE/rand/1/bin, of which Pseudocode 1 shows
an example.

Algorithm 1: Pseudocode for DE/rand/1/bin

NP ← population size, N ← vector size;

P ← { x0, . . . , xNP } with xi,0...N
u.a.r←−− range[xmin

,0...N , . . . , x
max
,0...N ] ; // Create

population

while Stop condition not reached do
foreach xi ∈ P do

xr1, xr2, xr3
u.a.r←−− P\{xi} without repetition ; // Mutation

vi ← xr1 + F · (xr2 − xr3);
k ← U⌊(1, N + 1]⌋ ; // Crossover

P ′ ← {∅}
foreach j ∈ [1, 2, . . . , N ] do

if U [0, 1] ≤ Cr or j == k then
x′
i,j ← vi,j

else
x′
i,j ← xi,j

P ′ ← P ′ ∪ x′
i,j

foreach xi ∈ P do
if f(xi) < f(x′

i) then
xi ← x′

i

DE was first introduced by Storn and Price as a more performant alternative to Adaptive
Simulated Annealing [20] and Annealed Nelder & Mead [32] [44]. It attempts to adhere
to three main requirements. The algorithm should be able to find the global minimum
regardless of how the population is initialised, the algorithm should be able to converge
with reasonable speed and the algorithm should contain a minimal number of easy-to-
use control parameters. So far, numerous applications of DE algorithms have been tested
and used successfully in different fields of study. Including but not limited to chemo-
metric experiment optimisation [41], wind speed distribution parameter estimation in
wind engineering [21], Multi-Threshold image thresholding [12] and neural network-based
Multi-Agent Reinforcement Learning [8].

As can be seen in Figure 2 and Pseudocode 1. The DE algorithm starts with the initialisa-
tion of a fixed-size population of candidate solutions throughout the viable solution-space.
Each candidate solution is represented by a vector of size N .

The first step of the main loop is mutation. Here, a donor vector vi (mutant) is generated
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for each individual xi in the population. In DE these donor vectors are created by modi-
fying an existing vector from the current population, this vector is called the base vector.
Depending on the chosen mutation strategy, one or more difference vectors are created
by subtracting two vectors from each other, also pulled from the current population.
These difference vectors are scaled by mutation rate F and added to the base vector.
Often, F is a value between 0.0 and 1.0. Bigger values of F allow for faster movement
through the search-space due to the larger difference vectors added to the base vector.
This comes at the cost of difficult convergence to a single point close to the base vector,
which is easier with small difference vectors.
Since the generated donor vector might contain values that fall outside the defined search
space it should be checked and, if needed, repaired according to the specified boundary
constraint handling method before continuing to the next step.
The second step is crossover. Trial vector x′

i is created by copying the existing candidate
solution xi and substituting elements in the vector with elements from donor vector vi.
The amount of elements substituted is dependent on Cr. A Cr of 1.0 means all elements
are copied from vi. As Cr gets closer to 0.0, less and less elements get copied, with a
minimum of one copied element.
The third and last step is selection. The DE algorithm evaluates the existing candidate
solutions and the generated trial vectors and uses either the obtained fitness values or
some other scoring metric to create the next generation. These steps are repeated until a
stop condition is reached.

SelectionStop condition
reached?

CrossoverMutation

Initialisation

Termination

No

Yes

Figure 2: Flowchart of a typical DE algorithm.

Many different initialisation, mutation, boundary constraint, crossover, and selection op-
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erators [6]. Sections 3.1, 3.2, 3.3, 3.4 and 3.5 respectively provide information on the
operators implemented in this project.

3.1 Initialisation

Since we are dealing with a black-box problem, we are unable to use characteristics of
the objective function for value initialisation. What is known are the limits of the search
space of f . Each objective function in the BBOB suite has a box-constraint of [−5, 5]N

which can shifted and rotated in space through IOHprofiler instances. Initialisation of the
population is done using values complying to the box-constrains.
There are multiple suggested methods of initialising the population such as random, Latin
Hypercube [26], center-based [35], opposition based [34], and grid initialisation.
Important fixed control parameters that should be decided upon during the initialisation
phase are the population size M and the number of allowed function queries, also known
as budget, B. Both M and B are generally scaled with dimensionality [31] [22].

3.2 Mutation operators

Mutation operators dictate how the donor vector is generated. This is considered to be
the most important step due to it being the driving force behind the exploration of the
search space [6]. In the mutation step, a donor vector vi (mutant) is generated for each
individual xi. This is done by scaling difference vectors and adding them to a base vector.
When vectors are chosen randomly in the mutation step, it is done uniformly at random
from the current population without replacement. The magnitude of scaling is governed
by the mutation rate F with F > 0. Many of the following mutation operators have
a variant using one difference vector and a variant using two difference vectors. In the
equations, these variants are differentiated through the blue coloured difference vector.

Rand/1 & Rand/2

Three different vectors, base vector xr1 and vectors xr2, xr3 are uniformly at random
selected from the population. A difference vector is taken of xr2, xr3 which gets scaled by
F and is added to xr1 [42]. An additional difference vector, calculated using xr4 and xr5

is added for Rand/2.

vi ← xr1 + F · (xr2 − xr3)[+F · (xr4 − xr5)] (1)

Best/1 & best/2

Equal to Rand/1 apart from the fact that the base vector is not chosen randomly. Instead,
it is the fittest solution xbest in the current population [42].

vi ← xbest + F · (xr1 − xr2)[+F · (xr3 − xr4)] (2)

Target-to-pbest/1

The base vector is taken from the target individual xi for which this operator is generating
a donor vector. Besides the usual scaled difference vector of randomly selected vectors
xr1, xr2, a second scaled difference vector is calculated between xi and xp

best. Vector xp
best is
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selected uniformly at random from the best p ·100% individuals in the current population
with viable values p ∈ (0, 1]. The authors recommend using a new value for p each time
this operator is called with p

u.a.r←−− [ 2
M
, 0.2] [45].

vi ← xi + F · (xp
best − xi) + F · (xr1 − xr2) (3)

Rand-to-best/1 & Rand-to-best/2

A random vector xr1 that is not the current fittest solution xbest is selected as base vector
in the rand-to-best operator. The first difference vector is generated by subtracting xr1

from xbest [42].

vi ← xr1 + F · (xbest − xr1) + F · (xr2 − xr3)[+F · (xr4 − xr5)] (4)

Target-to-best/1 & Target-to-best/2

Target-to-best [17] is a more basic version of Target-to-pbest. Instead of choosing a vector
from the p · 100% best individuals it always chooses the best one.

vi ← xi + F · (xbest − xi) + F · (xr1 − xr2) + [F · (xr3 − xr4)] (5)

Target-to-rand/1 & Target-to-rand/2

The target-to-rand operator is similar to Target-to-best but without the scaled difference
vector between xbest and xi.

vi ← xi + F · (xr1 − xi) + F · (xr2 − xr3)[+F · (xr4 − xr5)] (6)

2-Opt/1 & 2-Opt/2

This mutation operator is largely similar to Rand/1. However, before calculating vi 2-
opt makes a comparison between the fitness of xr1 and xr2 [10]. The fittest of these two
is chosen as base vector while the other is used with xr3 in the creation of the scaled
difference vector.

vi ←

{
xr1 + F · (xr2 − xr3)[+F · (xr4 − xr5)] f(xr1) ≤ f(xr2)

xr2 + F · (xr1 − xr3)[+F · (xr4 − xr5)] f(xr2) < f(xr1)
(7)

DESMU

The “Differential evolution algorithm using stochastic mutation” mutation operator (DESMU)
is a target-to-rand/1 variant that uses values generated based lev́y-flight random walks
lined out in equation 8 to generate a new value for F each time it is called [11].

step(s) =
u

|v|1/α

u = N(0, σ2
u), v = N(0, σ2

v)

σu =

(
Γ(1 + α)sin(πα/2)

αΓ[(1 + α)/2]2(α−1)/2

)1/α

, σ(v) = 1

Fu = U(0, 1) · step
vi ← xi + (Fu) · (xr1 − xr2) (8)
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Bacterial Evolutionary Algorithm

Each mutation step, Nclone ≥ 2 clones are made where at most 1 clone is edited by the
BEA scheme while others are modified by the DE scheme DE/target-to-rand/1 mentioned
above.
For each individual, it and its clones are each divided into a number of segments Ns with
length D/Ns. The mutation operator will go through each segment k ∈ Ns clone-by-clone.
For the first clone only it will for each segment randomly, with probability PBEA, apply
formula 9 on the indexes within that segment in order to do a local search. In other cases
DE/target-to-rand/1 is used. Once all clones have their kth segment mutated the operator
evaluates the clones. The best performing clone has their segment k copied into the other
clones. This continues until all Ns segments have been mutated [3].

vi,j ← xi,j + [Rmin + rand(0, 1) · (Rmax −Rmin)] (9)

Directional Mutation

The directional mutation operator extends an existing mutation scheme by adding a
vector pool [48]. In our case this operator is DE/rand/1. The base state of this operator
is to use this existing mutation scheme. The vector pool is updated only when a new
global best fitness is reached. This update saves the difference vectors between the all
previous positions and new best position to the vector pool. In the iteration after a fitness
improvement mutation will not happen through the regular mutation scheme. Instead,
the donor vector will be created by adding a random scaled difference vector from the
vector pool to a random xr1

u.a.r←−− P\{xi} from the population. After this the vector pool
gets wiped clean, and the operator goes back to using the existing mutation scheme while
again checking for a global fitness improvement, updating and using the vector pool again
once this occurs.

Random vector

This mutation operator generates a random vector as donor vector within the box-
constraints. With other parts of the DE algorithm still in place, using the random vector
operator with a crossover rate of F = 1.0 would have the same effectiveness as random
search.

3.3 Boundary constraints

After application of the mutation operator it is possible for values in vi to be out of range
for viable input values for f as defined by the box constraints. The boundary constraint
operator decides how out-of-bounds values are altered to valid ranges.

Projection

If a value within vi is infeasible, it gets projected back on the boundary. In other words,
the infeasible value is set to the nearest feasible value [9].
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Reflection

If a value within vi is outside the feasible range by a certain distance distout from the
closest boundary cb, the value gets set to distout on the other side of the boundary cb.
Should the value then fall on the other side of the box constraint, the operator repeats
until the value is in within the box constraint [39].

Reinitialisation

When reinitialisation is applied as boundary constraint operator, any infeasible values in
vi are discarded. Instead, these values are set to a random value within the box constraints
[33].

Resampling

Resampling is a method where, if vi is an infeasible solution, the mutation operator is
reapplied until either a valid solution is generated or a maximum limit of resamples is
reached [4]. In the latter case, it will fall back onto another method of boundary constraint
handling. In our case, this is the Projection method.

3.4 Crossover operators

The crossover operator dictates the way trial vector x′
i is generated from individual xi

and its donor vector vi. The following crossover operators have been implemented:

Binomial Crossover

This type of crossover uses a crossover rate Cr ∈ [0, 1] and a random index jrand. For each
index, a uniform random value U(0, 1) is generated. If U(0, 1) ≤ Cr the element will be
taken from vi, if U(0, 1) > Cr it will be taken from xi. The exception is when the current
index equals jrand. In this latter case it will always take from vi.

x′
i,j ←

{
vi,j U ≤ Cr or j = jrand

xi,j all other cases
(10)

From this one can see that with higher the values of Cr, on average more the more
elements will be swapped [42].

Exponential Crossover

Just as binomial crossover, this operator also uses a crossover rate Cr ∈ [0, 1] and a
random index jrand. It starts at index jrand and takes from vi for x′

i. From here on it then
advances to the next index and generates a random number r. If r ≤ Cr it takes from
vi and continues to the next index and repeats with a newly generated r, looping to the
start if the end was reached. If it generates a r > Cr, the operator stops walking through
the indexes. All remaining values are taken from xi. On average longer sections will be
taken from vi with larger values of Cr [44]. Pseudocode can be found below in Alg 2.
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Algorithm 2: Pseudocode for Exponential Crossover

jrand ← Uint[0, N ] x′
i = xi

x′
i,jrand

= vi,jrand

j = jrand + 1
while U(0, 1) ≤ Cr and not j = jrand do

x′
i,j = vi,j j = (j + 1) mod N

3.5 Selection operators

The selection operator decides which individuals from the existing candidate solutions
and the newly generated trial vectors continue to the next generation. Few different selec-
tion operators exist [6]. This work implements only elitist selection. In this scheme each
candidate solution xi ∈ P is only compared against its corresponding trial vector x′i. xi

in the next generation will be the fittest of these two vectors.

xi ←

{
xi f(xi) ≤ f(x′

i)

x′
i f(xi) > f(x′

i)
(11)

4 Adaptive Operator Selection

The basic mechanisms of DE algorithm are easy to understand with only three control
parameters: F , Cr, and NP . Despite this, their optimal values are highly problem de-
pendent. Changing these control parameters can have a large impact on the performance
of the DE [16] [27]. Manually tuning the control parameter values and/or changing be-
tween active operators (in future parts of this thesis referred to as approach) for each new
problem can be a time-consuming process, and the optimal approach can also change over
time. An Adaptive Operator Selection (AOS) strategy automates this process by allowing
the algorithm to change (parts of) its approach during runtime. The ways an AOS can
determine to switch approach can be divided into three main categories, according to [15].
The following subsections first describe these three categories with examples.

4.1 Deterministic

A deterministic strategy adapts its approach based on a predefined rule. It is possible
to cycle through a number of approaches on a fixed budget or time interval. Another
deterministic option is switching from an explorative approach like DE/rand/1/bin to a
more exploitative approach, such as DE/best/1/bin, when a certain amount of the budget
is used. Or lowering F over time. Such annealed versions of DE were already theorised
during its introduction [43].

4.2 Adaptive

Deterministic strategies give a good idea of what we want an AOS to be capable of, but
they are very limited in how and when they can apply a change in approach. Adaptive
parameter control strategies are able to change approaches based on direct feedback from
the algorithm, such as credit values assigned to different approaches. Many well-known
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strategies in DE fall in this category. This subsection describes Multi-Armed Bandits,
EPSDE, and jDE.

The Multi-Armed Bandit [38] (MAB) starts with a portfolio, a selection of predefined
approaches that can be switched between. For each approach, we keep track of a value
we call Q. The starting value of Q should be equal for all approaches and can be set to
0, or an optimistic value. The exact value of the latter case should be dependent on what
values the credit assignment operator can return. At the end of each learning period of lp
iterations, each approach used is given a score R by a credit assignment operator based
on its performance over this learning period. These scores are then used to update the
Q values according to equation 12. In this formula, α (0 ≤ α ≤ 1) determines how much
emphasis is placed on recent scores compared to older scores. Recent scores are weighed
more heavily at lower values of α. Through this, the MAB is able to track which approach
is considered optimal during different stages of the search process.

Qn+1 = Qn + α[Rn −Qn] = (1− α)nQ1 +
n∑

i=1

α(1− α)n−iRi (12)

After all Q’s are calculated, we start a new learning period by selecting new approaches
for all individuals. The approaches are chosen either optimally based on the current values
Q or, with a small chance, chosen at random from the portfolio.

Another adaptive AOS is EPSDE [25], which splits approaches into three different pools.
The first pool contains operators that can be used. These being DE/rand/1/bin, DE/best/2/bin,
and DE/current-to-rand/1/bin. The second pool contains values for F in the range of
[0.4, 0.9] in steps of 0.1. The final pool contains values for Cr in the range of [0.1, 0.9],
again in steps of 0.1. Each individual xi uses a random value from each pool. Should the
resulting trial vector x′

i improve upon xi, then the values are kept. If not, a new random
combination is drawn from the pools.

The final adaptive strategy we cover, jDE [9], uses the DE/rand/1/bin scheme throughout,
but each individual is assigned a F and Cr which it keeps track of. Before the mutation
operator is applied to an individual, its F and Cr values independently have a small chance
(suggested 10%) to be reinitialised. This is done in the range of [0.1, 1.0] and [0.0, 1.0]
respectively. Through the selection operator better values are propagated. Although it is
similar to the next category, “self-adaptive”, it does not apply the mutation or crossover
operators to parameters F and Cr. As such, it cannot truly be classified as a true “self-
adaptive” strategy according to the definitions from [15].

4.3 Self-adaptive

In self-adaptive strategies, details of the approach are encoded within the individuals.
They are appended to and part of the same mutation, recombination, and selection pro-
cess as the solution vector used to solve f . The Self-adaptive Pareto Differential Evo-
lution (SPDE) [1] is an evolutionary multi-objective optimisation algorithm that builds
upon Pareto-frontier Differential Evolution (PDE) [2]. They use the concept of pareto
dominance to decide if an individual is allowed to generate offspring (see [29] for further
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reading). SPDE, as its name implies, adds to PDE by randomly initialising F and Cr
and having both rates be inheritable from the parents. After crossover, each variable is
“perturbed by adding to it a ratio, F ∈ Gaussian(0, 1), of the difference between the two
values of this variable in the two supporting parents”.

4.4 Credit Assignment

Some AOS mechanisms use a credit assignment operator to score approaches at the end
of each learning period. As this thesis later implements one of these, the Multi-Armed
Bandit, thought must be given to what credit assignment operator we use. Four variants
were considered. The first operator, Fitness, assigns a credit score R equal to the fitness
improvement made.

R←

{
0 f(xi) ≤ f(x′

i)

xi − x′
i f(xi) > f(x′

i)
(13)

The second operator, Binary, returns a score of 1 when x′
i improves upon xi and zero

otherwise.

R←

{
0 f(xi) ≤ f(x′

i)

1 f(xi) > f(x′
i)

(14)

The third operator, TanH, can be considered to sit in-between Binary and Fitness. It
attempts to reduce the influence of large fitness improvements that often occur at the start
of the search by taking the hyperbolic tangent of the fitness improvement. This results in
credit roughly linear to fitness improvement in cases where the fitness improvement f(xi)−
f(x′

i) < 1, but a maximum R of 1 is asymptotically approached at larger improvements.

R←

{
0 f(xi) ≤ f(x′

i)

tanh(xi − x′
i) f(xi) > f(x′

i)
(15)

The last operator we name Binary+. It is the same as Binary, but as an extra case, returns
a score of 10 if x′

i improves upon the global best achieved fitness [40].

R←


0 f(xi) ≤ f(x′

i)

1 f(xi) > f(x′
i)

10 f(xbest) > f(x′
i)

(16)

5 Experiments

This section is divided into three parts. First, we test the 16 mutation operators described
in Section 3.2. This allows us to set the best performing settings for F and Cr as default
parameters, and gives us baselines to compare against. Next, we implement AOS based
on the MAB as described in Section 4.2 and find optimal hyperparameter values for the
MAB. Lastly, we test portfolios of different sizes to see if and how portfolio size impacts
the performance of our Multi-Armed Bandit.
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Figure 3: Heatmaps generated through applying median ranking to the individual 5- and
20-dimensional results of DE/rand/1. These show how different parameter combinations
of F and Cr compare. A lower rank is better, a green square highlights the best performing
combination.

5.1 Mutation Operator Baselines

The first experiment consists of a number of relatively low-budget runs done with the
fixed adaptation scheme for every mutation operator. We want to verify two different
things in this experiment. Firstly, we want to verify if different mutation operators have
different performance on different problems. Secondly, we want to verify how different
combinations of control parameters F and Cr impact performance.

Setup

For each single mutation operator, a grid search of F and Cr was conducted over F =
{0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 1.0, 1.1, 1.2} and Cr = {0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 1.0}.
The population is initialised uniformly at random over the search space. Other important
settings and settings changed from their default values have been listed below.

• Budget {2000N}
• Dimensions {5, 20}
• Functions {1, . . . , 24}
• Instances per function {15}
• Crossover Operator {Binomial}
• Boundary Operator {Resample with Projection as fallback}
• Resample limit {10 + ln(N)2}

Results

Using Median ranking, we created heatmaps like the ones in Figure 3 for all mutation
operators. These heatmaps show how different combinations of F and Cr compare. The
remaining median ranking heatmaps can be found in the appendix 9.
The parameter combination with the best median result is highlighted with a green square.
Please note that it is possible that another combination exists with the same median
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Figure 4: Heatmaps generated through applying median ranking to the averaged 5- and
20-dimensional results of the first experiment. These show how different parameter com-
binations of F and Cr compare. A lower rank is better, a green square highlights the best
performing combination.
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rank that is not highlighted. The default F and Cr values were selected using the best
performing combination of the combined d = 5 and d = 20 median ranking, resulting in
the following values:
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Some patterns are visible in this experiment. Mutation operators using more than 1
difference vector often prefer very low or high Cr values (0.05 or 0.9). It can also be seen
that no single operator prefers a F ≥ 0.8. The different behaviours of different mutation
operators are also visible in Figure 3. Here, DE/target-to-best/2/bin seems to be strongly
dependent on F . Favouring an F of 0.5. DE/rand/2/bin, on the other hand, seems to
perform similarly on most combinations of low F and Cr.
Simultaneously, a test was run for the mutation operator that generates a random vector.
Since there are no mutation rate parameters, only the effect of crossover on random search
can be measured. There is a direct correlation between lower Cr and better rank for the
random search mutation operator. This is not unexpected, since a low crossover rate allows
for more regulated improvement. This is very desirable when trial vectors are generated
that can be anywhere in the solution space with equal chance.

5.2 AOS parameters

we mentioned multiple AOS strategies in Section 4. For this work, the Multi-Armed
Bandit strategy was implemented. There are five hyperparameters that can be tuned.
The learning period length lp, the credit assignment operator, the measure of recency
bias α, the strategy to selected operators, and the chance to instead select an operator
uniformly at random ϵ. Of these five, we believe that there are three that are able to
impact performance and behaviour more than the other two. The first of these three
hyperparameters is the learning period lp. This determines how often the MAB should
update the Q values and select new approaches. The second hyperparameter is the credit
assignment operator, which is called at the end of every learning period to determine the
new Q values. Last, we have the MAB selection strategy. The selection strategy, using the
new Q values, decides what mutation operator is set on the individuals.

Setup

For the learning period, we are unsure how it affects performance and thus want to test a
wide range of values. This leads us to the following range lp = {1, 5, 10, 20, 50, 100, 200}.
We have detailed four simple, yet distinct, ways to assign credit to approaches in Section
4.4. All four of these will be tested. For the MAB selection strategy, we compare ϵ-greedy
which with a chance of 1 − ϵ selects the approach with the highest Q value, against a
proportional strategy. With this proportional strategy Pa = Qa/Qtotal, where Pa is the
chance for approach a being chosen, Qa is the current Q value of a, and Qtotal is the
sum of the Q values of all approaches. In order to reduce computation and because we
believe testing different values for these hyperparameters is less needed, we decided upon
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the following fixed values for ϵ and α. An ϵ value that is too large would interfere with
the selection strategy. A value that is too small would give the MAB very few chances to
test not-chosen approaches, leading to slow convergence to the optimal current approach.
A value of ϵ = 0.1 should guarantee that a few individuals have randomly set approaches
each learning period, but that the MAB selection strategy still selects approaches for the
majority of the population. Then we have α, the measure of recency bias. This value
exponentially decays Q values. A value close to 0 puts too much emphasis on the most
recent learning period. A value close to 1 puts too much emphasis on old results, making
it difficult to switch approaches. We therefore decided on α = 0.5.

Settings not pertaining to the MAB or mutation operator are the same as the mutation
operator baselines experiment, the budget was however increased to 10000N . The results
have been sorted based on the Area-Under-Curve of the Empirical Attainment Function
(EAF) [24] implemented in IOHanalyzer. The EAF shows how the results of a stochastic
algorithm are distributed. In other words, how likely it is for a given stochastic algorithm
to obtain a given result within a given budget. Once ordered, each result was given a
corresponding rank. Table 1 groups and shows the average rank of all results using the
setting specified in the Setting column.

Results

There are 2 ·4 ·7 = 56 possible MAB parameter combinations that were compared against
the best performing versions of the 16 tested operators, the Random Vector operator,
a Random Search (i.e. random operator with Cr = 1.0), and Random Operator which
randomly selects from the viable approaches (i.e. MAB with ϵ = 1.0) for a total of 75
results. We see that Random Search performs the worst (ranking starts at 0) with the
Random Vector operator marginally better, as expected from the previous experiment.
We can see that Random Operator ranks right in the middle, but looking at Tables 4
and 5 (in appendix) it is outperformed by a few single mutation operators from the
baseline experiments in both 5- and 20-dimensional problems. These being DE/best/2,
DE/rand-to-best/2, and DE/2opt/2 for the 5-dimensional case and DE/target-to-pbest/1
and DE/DESMU for the 20-dimensional case.

Comparing different MAB settings against each other, we can see that ϵ-greedy selection
is very ineffective at low-dimensional problems compared to proportional selection. In
the high-dimensional problems, its average rank was much closer to that of Proportional
selection, but it was still outperformed. We suspect this to be caused by a combination
of the low time to solve 5-dimensional problems, the ϵ value of 0.1, and the population
size. ϵ-greedy likely could not obtain enough information about all operators quick enough
to rapidly converge on a well performing operator for many of these problems. An issue
that is less impactful on problems that take more time to solve, such as high dimensional
problems where the population size is also larger.

The credit section mostly shows that raw fitness improvement is a poor way to assign
credit. Other credit assignment methods have mixed results. The Binary approach per-
formed best on low-dimensions, while Binary+ performed best on high-dimensions. Tanh
is somewhere in the middle, but not good enough to be selected. Since Binary+ has a
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Setting Count avg Dim=5 avg Dim=20 avg Dim=5,20
comparisons All 75 37.00 37.00 37.00

MAB 56 31.55 28.93 30.24
Fixed Operator 16 51.50 60.62 56.06
Random Search 1 74.00 74.00 74.00
Random Vector 1 72.00 73.00 72.50
Random Operators 1 38.00 38.00 38.00

selection ϵ-greedy 28 40.93 29.71 35.32
Proportional 28 22.18 28.14 25.16

credit Fitness 14 42.43 40.64 41.54
TanH 14 28.64 25.64 27.14
Binary 14 25.07 27.86 26.46
Binary+ 14 30.07 21.57 25.82

learning period lp=1 8 27.88 29.88 28.88
lp=5 8 26.94 23.44 25.19
lp=10 8 31.94 25.62 28.78
lp=20 8 41.69 33.00 37.34
lp=50 8 36.25 32.12 34.19
lp=100 8 41.75 36.00 38.88
lp=200 8 52.50 46.12 49.31

Table 1: Raw results from Appendix Tables 4 and 5 were ranked [0, 1, . . . , 74] on dimen-
sions 5 and 20 (lower is better). The top part of this table groups and averages all MAB
runs, all 16 fixed operator runs and also shows the ranks of Random Vector, Random
Search, and Random operators. The lower part of this table similarly groups the MAB
results in three different ways in order to discern the best performing settings for each
category, listed in bold. An additional visualisation can be found in Figure 10.

better average total on both dimensionalities, it was chosen as the credit assignment func-
tion for the last experiment. The learning period section shows that the MAB favours low
learning periods. Despite this, a learning period of 1 is too low. A learning period of 5
performed best in both tested dimensionalities and was therefore chosen to continue with.

Looking more into the selection method and learning period, we see an interesting relation
between selection method and learning period. It can be seen in Figure 5. The difference
in performance on N = 5 comes mostly from runs with learning periods 5, 10, 20, and
50. The other runs are closer to the centre line, meaning that selection method mattered
little for these learning periods. Looking at the data in tables 4 and 5, this seems to
be caused by the performance of proportional selection moving towards that of ϵ-greedy
rather than ϵ-greedy performing better for these learning periods. This pattern is much
less pronounced on N = 20, as was expected from the results in Table 1. This suggest
that selection strategy only matters if other hyperparameters are well-configured.

From this experiment we obtained the following MAB settings for the final experiment:

• ϵ = 0.1

• α = 0.5
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Figure 5: The effect of different learning periods on the two selection methods is analysed.
The raw results have been divided based on selection method and were then grouped
based on learning periods. These values show the average of the 4 runs in each group.

• Selection = Proportional

• Credit = Binary+

• Learning Period = 5

5.3 Portfolio Generation

Thanks to the previous two experiments, we were able to decide (hyper)parameters for the
mutation operators and the MAB adaptive operator selector. From the previous experi-
ments, we saw that with 15 instances, the stochastic nature of DE still made it possible
for variations to occur that could cause the average of an individual configuration to rank
much higher or lower than expected. Because of this, the 15 instances per function were
increased to 50 instances per configuration for increased precision in the final part of
this thesis. The generation of a portfolio comes with a large problem. Sixteen different
mutation operators gives us 65535 different possible portfolios, too many to test within
a reasonable timeframe. This is why two different strategies of portfolio generation have
been used.

Setup

The first strategy is done top-down. Which means we start with a set of all operators. The
next step is to have a set of c configurations, where each configuration has one different
mutation operator o switched off (we call this 1-out). This switched-off operator cannot
be chosen by the MAB. The best performing configuration in this series can be seen as
the configuration where the switched-off operator ow0 contributed the least. The next set
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consist of configurations that turn off ow0 and one of the other viable operators, c − 1
configurations in total. From this we obtain a new worst performing operator ow1 which
we now also always turn off for subsequent configurations sets. This was repeated until
only one operator was left.
The second strategy is done the other way around, bottom-up. We start with a set of just
one operator turned on at a time. The best performing operator ob0 is chosen, and the
next set is each combination of ob0 plus an additional operator. This is again done until
we are at the configuration with all operators enabled.
Using these two methods of building a portfolio reduces our number of operator combi-
nations tested to a maximum of (16 + 15 + · · ·+ 2 + 1) = 136 per strategy.

0 0 1 0 1 0 1 0 0

0 1 1 1 1 0

1 1 1

portfolio size 1

portfolio size 2

portfolio size 3

Figure 6: An illustration of what the bottom-up approach could look with 3 possible
mutation operators. The combination of available operators is shown through a binary
indicator (1 = can be used, 0 = cannot be used). The solid lined box indicates the best
performing configuration for a given portfolio size. The best new operator is taken note
of and set to be always turned on in subsequent rounds of the experiment.

Measuring performance

Just like the previous experiment, we use the EAF tool implemented in IOHanalyzer to
score the performance of configurations. Unlike the previous experiment, ranking was not
a clear indicator of the best performing portfolio for each size. The frequent occurrence
of multi-way ties necessitated a different approach. A simple rating by averaging the
AUC over both dimensionalities is also not possible. The best and worst AUC values
on 5 dimensions are generally further apart than those on 20 dimensions. Measuring
performance in this way would cause an unfair advantage for configurations that perform
better on lower numbers of dimensions. In the end, it was decided to scale the obtained
AUC-values for each number of dimensions and portfolio size step from 0.0 to 1.0. Taking
the average of the scaled AUC-values gave both dimensionalities equal importance, while
also taking into account how much configuration outperformed each other within a certain
number of dimensions.

Results

From the tables 2 and 3 it can be seen that smaller portfolio sizes perform best for 20-
dimensional problems. For the 5-dimensional problems, the values do not seem to show
a clear trend. This is illustrated more clearly in Figure 7. We can also see that both
approaches resulted in the same operator combinations for the portfolio’s of size 1-4.
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AUC N=5/N=20
16 0.802 / 0.555
15 0.801 / 0.571
14 0.807 / 0.575
13 0.814 / 0.574
12 0.817 / 0.578
11 0.813 / 0.582
10 0.810 / 0.586
9 0.813 / 0.590
8 0.813 / 0.593
7 0.813 / 0.593
6 0.812 / 0.602
5 0.813 / 0.602
4 0.812 / 0.598
3 0.806 / 0.613
2 0.809 / 0.589
1 0.798 / 0.578

Table 2: Top-down approach.
Coloured cells show the best performing selection of operators for that portfolio size.
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AUC N=5/N=20
1 0.798 / 0.578
2 0.809 / 0.589
3 0.806 / 0.601
4 0.805 / 0.613
5 0.813 / 0.598
6 0.821 / 0.600
7 0.816 / 0.591
8 0.818 / 0.588
9 0.819 / 0.584
10 0.812 / 0.583
11 0.816 / 0.583
12 0.811 / 0.583
13 0.809 / 0.581
14 0.803 / 0.574
15 0.801 / 0.571
16 0.802 / 0.555

Table 3: Bottom-up approach.
Coloured cells show the best performing selection of operators for that portfolio size.
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Figure 7: The obtained EAF AUC values found in tables 2 and 3 have been plotted to
illustrate how performance changes with portfolio size. A dot has been placed to show the
best performing portfolio found for each dimensionality with each strategy.

In the line plot shown in Figure 7, the lines for the 20-dimensional experiments show that
the use of a small portfolio with multiple mutation operators is clearly better than using
a single mutation operator. Once more operators are added, the positive effect dimin-
ishes and the performance can even go below the performance of a single operator. The
5-dimensional experiments show a small improvement when more than one operator can
be selected. In contrast to N=20 however, there does not seem to be much of a drop in
effectiveness of larger portfolio sizes until nearly all possible operators have been added
to the portfolio.

In order to verify the effect of the MAB a few bar charts were made. In Figure 8 it
can be seen that, using the found optimal 2-operator portfolio, the two operators were
used in different amounts on different functions. This is especially notable for the functions
belonging to the category “Functions with high conditioning and unimodal”, f10-f14. From
the 16-operator portfolio, we can see some difference in MAB behaviour between the two
dimensions. The operators rand/2 and rand-to-best/1 had mediocre Q-values in N = 5
but had above average Q-values in N = 20, meaning in the latter case they regularly
led to improvement. Next, in N = 5 operators target-to-best/2 and rand-to-best/2 are
selected very frequently for problems f10-f14. In N = 20 they still have an above average
chance of being chosen, but the gap between other operators is a lot less. A final thing
that stood out was the operator 2opt/1. It performed average in N = 20, but in N = 5
it frequently has above average chances of being chosen. Despite this, it was discarded
halfway during the top-down approach and added as 11’th operator during the bottom-up
approach. This likely means it has a very similar performance profile to respectively one
of the remaining or one of the earlier added operators. Not what we are looking for when
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(a) (b)

(c) (d)

(e) (f)

Figure 8: These bar charts show relative Q-values. These indicate for each function how
likely it was for each operator to be picked, averaged over all instances and points in time.
From top to bottom, the bar plots show the likelihoods for the best portfolio’s of sizes 2,
4, and 16. The binary string in the title of each figure can be mapped to the operators as
ordered in earlier tables, such as Tables 2 and 3

23



constructing a portfolio with complementary operators.

6 Conclusion

This thesis investigated the impact of Adaptive Operator Selection and portfolio size in
the context of Differential Evolution. It did so using a modular C++ implementation that
utilizes a Multi-Armed Bandit which tracks the performance of mutation operators and
accordingly adjusts which of the up to 16 mutation operators are used at which points in
the search.

Sixteen mutation operators have been run with a wide range of parameter settings. Many
combinations of mutation rates (F ) and crossover rates (Cr) were tested, showing how
different mutation operators prefer certain values to other values when no adaptation is
applied. From these results, we saw that values of F≥ 0.8 were not competitive. We also
saw that some mutation operators, such as rand/2, have a wide range of parameter com-
binations that perform about equally well. Others, like target-to-best/2, have only a few
combinations or sometimes even just one with which they achieve their best performance
compared to other combinations.

A Multi-Armed Bandit was implemented to serve as adaptive operator selection strat-
egy. There are five hyperparameters that can be changed, three of which have been
tested. Proportional operator selection was found to clearly outperform ϵ-greedy selec-
tion in 5-dimensional problems, while the performance of both was a lot closer on 20-
dimensional problems. A learning period of 5 was the optimal found value for both 5- and
20-dimensional problems. Further investigation can be done into learning periods within
the range [1, 10]. The true optimal value may not be necessarily 5 itself, but it is very likely
to be in the aforementioned range. We also expect some sort of correlation between the
optimal learning period and the in this thesis untested hyperparameter α and the popula-
tion size. The latter of which was within suggested ranges for high-dimensional problems
but in retrospect on the smaller side for 5-dimensional problems since no minimum pop-
ulation size was implemented. This smaller population allowing for less data points when
calculating the MAB’s Q-values. In contrast to the learning period and operator selec-
tion method, the credit assignment had no clear best option. The Binary credit assigner
performed best on 5-dimensional problems and worst on 20-dimensional problems with
Binary+ having opposite results. Due to a better average, Binary+ was eventually chosen.
More intricate credit metrics exist, some of which have been implemented in [7]. These
take into account more aspects than just the fitness improvement and might outperform
the tested credit metrics in this thesis. Testing these different configurations showed that
decently configured Multi-Armed Bandits performed better than any single mutation op-
erator or randomly switching between mutation operators.

With the Multi-Armed Bandit, it was possible to easily to test different portfolios by
changing a single passed hyperparameter. With this, two methods of portfolio generation
were used to test the effect of portfolio size on performance. One approach that starts at
the largest possible portfolio size and continuously removes the mutation operator that
contributes the least. The other starts from the single best performing mutation operator
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and adds the operator that contributes the most to the portfolio of one size larger. Results
show that for the low-dimensional case, performance drops slightly for very high and very
small portfolio sizes. The best performance occured in the rather large portfolio size range
of 6 to 13, with slight variations depending on the portfolio construction method used.
The high-dimensional case shows a much stronger effect. Both approaches resulted in the
same optimal portfolio with a size of 4. The addition or removal of mutation operator
here resulted in steadily declining performance. These four operators are target-to-best/2,
target-to-pbest/1, rand-to-best/2, and DESMU. It is not unexpected that the way a portfo-
lio is constructed has a larger effect when the problems are overall harder to solve. Having
more operators means more options to weigh against each other, which seems to impact
performance much more in these higher-dimensional cases. This means that if one wishes
to generate a portfolio for similar a case or even higher dimensional cases, considerable
time can be saved by excluding small and large portfolio sizes. We suggest only testing
portfolio’s with 4 to 6 mutation operators.

Inspecting the order in which the mutation operators were chosen or eliminated in the two
approaches shows that the well known and first-suggested operators best/1 and rand/1
had lower than average contribution to portfolio performance. The contribution of more
mechanically complex operators ranged from very good to very bad. It may therefore be
worthwhile to test how other novel mutation operators impact portfolio performance. It
is also not always predictable if an operator performs better with one or two difference
vectors. It likely depends a lot on the rest of the portfolio. Since adding or removing a
difference vector is often trivial, implementing versions with different amount of difference
vectors can be worth investigating when creating or implementing any mutation operator.
Finally, there is an avenue this thesis could not delve into but is still interesting to explore.
At which point in the search process are certain operators chosen? The wildly differing
lengths of runs made this tricky to explore, but it could give more insight into why certain
mutation operators were eliminated, if and how certain roles can be assigned to different
operators and give opportunities to decide F and Cr values more effectively.

7 Code

The code used to run the experiments can be found in the following GitHub repository:
https://github.com/PerH3R/basicDE.
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ID Runtime AUC AOC
rand/1 F0.5 Bin Cr0.8 50000 0.696543237268291 0.303456762731709
rand/2 F0.2 Bin Cr0.05 50000 0.707929893803196 0.292070106196804
best/1 F0.5 Bin Cr0.5 50000 0.678354600053396 0.321645399946604
best/2 F0.2 Bin Cr0.05 50000 0.735399519068578 0.264600480931422
ttpb/1 F0.5 Bin Cr0.9 50000 0.689540943519795 0.310459056480205
rand-to-best/1 F0.2 Bin Cr0.05 50000 0.448077239334064 0.551922760665936
rand-to-best/2 F0.5 Bin Cr0.9 50000 0.758026719901712 0.241973280098288
target-to-best/1 F0.5 Bin Cr0.5 50000 0.691947014399355 0.308052985600645
target-to-best/2 F0.5 Bin Cr0.9 50000 0.737981318040853 0.262018681959147
target-to-rand/1 F0.5 Bin Cr0.1 50000 0.627398195922547 0.372601804077453
target-to-rand/2 F0.5 Bin Cr0.2 50000 0.626122622427706 0.373877377572294
2opt/1 F0.5 Bin Cr0.8 50000 0.711010376327307 0.288989623672693
2opt/2 F0.2 Bin Cr0.05 50000 0.718622605841749 0.281377394158251
desmu F0.1 Bin Cr0.5 50000 0.703177844257761 0.296822155742239
BEA F0.5 Bin Cr1.0 50000 0.48440363690643 0.51559636309357
DIRMUT F0.05 Bin Cr0.5 50000 0.535784297100179 0.464215702899821
MAB lp1eps0.1sel0crd0 50000 0.736962238290841 0.263037761709159
MAB lp5eps0.1sel0crd0 50000 0.711141095076916 0.288858904923084
MAB lp10eps0.1sel0crd0 50000 0.700802658156848 0.299197341843152
MAB lp20eps0.1sel0crd0 50000 0.68513305527002 0.31486694472998
MAB lp50eps0.1sel0crd0 50000 0.685794421018079 0.314205578981921
MAB lp100eps0.1sel0crd0 50000 0.685777681612254 0.314222318387746
MAB lp200eps0.1sel0crd0 50000 0.687306929157644 0.312693070842356
MAB lp1eps0.1sel0crd1 50000 0.736962238290841 0.263037761709159
MAB lp5eps0.1sel0crd1 50000 0.724945061959387 0.275054938040613
MAB lp10eps0.1sel0crd1 50000 0.730981465825348 0.269018534174652
MAB lp20eps0.1sel0crd1 50000 0.727480481586755 0.272519518413245
MAB lp50eps0.1sel0crd1 50000 0.730739491311788 0.269260508688212
MAB lp100eps0.1sel0crd1 50000 0.71461570725024 0.28538429274976
MAB lp200eps0.1sel0crd1 50000 0.701632261738575 0.298367738261425
MAB lp1eps0.1sel0crd2 50000 0.736962238290841 0.263037761709159
MAB lp5eps0.1sel0crd2 50000 0.758937934621327 0.241062065378673
MAB lp10eps0.1sel0crd2 50000 0.749733852439518 0.250266147560482
MAB lp20eps0.1sel0crd2 50000 0.734122672090227 0.265877327909773
MAB lp50eps0.1sel0crd2 50000 0.702151388185121 0.297848611814879
MAB lp100eps0.1sel0crd2 50000 0.704845303232058 0.295154696767942
MAB lp200eps0.1sel0crd2 50000 0.709123170013991 0.290876829986009
MAB lp1eps0.1sel0crd3 50000 0.745147438266652 0.254852561733348
MAB lp5eps0.1sel0crd3 50000 0.712569786635573 0.287430213364427
MAB lp10eps0.1sel0crd3 50000 0.685575864696387 0.314424135303613
MAB lp20eps0.1sel0crd3 50000 0.680821604773435 0.319178395226565
MAB lp50eps0.1sel0crd3 50000 0.696720467283956 0.303279532716044
MAB lp100eps0.1sel0crd3 50000 0.710270123704324 0.289729876295676
MAB lp200eps0.1sel0crd3 50000 0.711489227213254 0.288510772786746
random operators 50000 0.713317169035616 0.286682830964384
Random search 50000 0.436310993689696 0.563689006310304
Random vectors 50000 0.463464235121277 0.536535764878723
MAB lp1eps0.1sel1crd0 50000 0.741562268297277 0.258437731702723
MAB lp5eps0.1sel1crd0 50000 0.78763158446953 0.21236841553047
MAB lp10eps0.1sel1crd0 50000 0.7627523321878 0.2372476678122
MAB lp20eps0.1sel1crd0 50000 0.729412776344628 0.270587223655372
MAB lp50eps0.1sel1crd0 50000 0.71114566851275 0.28885433148725
MAB lp100eps0.1sel1crd0 50000 0.693979657679584 0.306020342320416
MAB lp200eps0.1sel1crd0 50000 0.677163254405933 0.322836745594067
MAB lp1eps0.1sel1crd1 50000 0.741562268297277 0.258437731702723
MAB lp5eps0.1sel1crd1 50000 0.784280128479451 0.215719871520549
MAB lp10eps0.1sel1crd1 50000 0.787338635068493 0.212661364931507
MAB lp20eps0.1sel1crd1 50000 0.75889447857906 0.24110552142094
MAB lp50eps0.1sel1crd1 50000 0.73237623113157 0.26762376886843
MAB lp100eps0.1sel1crd1 50000 0.716384257388832 0.283615742611168
MAB lp200eps0.1sel1crd1 50000 0.693311464111736 0.306688535888264
MAB lp1eps0.1sel1crd2 50000 0.741562268297277 0.258437731702723
MAB lp5eps0.1sel1crd2 50000 0.793597780972807 0.206402219027193
MAB lp10eps0.1sel1crd2 50000 0.794496838992993 0.205503161007007
MAB lp20eps0.1sel1crd2 50000 0.775951109573724 0.224048890426276
MAB lp50eps0.1sel1crd2 50000 0.752338782172117 0.247661217827883
MAB lp100eps0.1sel1crd2 50000 0.725494093697743 0.274505906302257
MAB lp200eps0.1sel1crd2 50000 0.696837580966172 0.303162419033828
MAB lp1eps0.1sel1crd3 50000 0.76450214800112 0.23549785199888
MAB lp5eps0.1sel1crd3 50000 0.787513090195196 0.212486909804804
MAB lp10eps0.1sel1crd3 50000 0.788511431849631 0.211488568150369
MAB lp20eps0.1sel1crd3 50000 0.775310723710197 0.224689276289803
MAB lp50eps0.1sel1crd3 50000 0.760135179061711 0.239864820938289
MAB lp100eps0.1sel1crd3 50000 0.742540003356616 0.257459996643384
MAB lp200eps0.1sel1crd3 50000 0.706977868597565 0.293022131402435

Table 4: Raw EAF AUC/AOC results for
Dim=5 for experiment set 2

ID Runtime AUC AOC
rand/1 F0.5 Bin Cr0.8 2e+05 0.501585699420824 0.498414300579176
rand/2 F0.1 Bin Cr0.05 2e+05 0.4693546288934 0.5306453711066
best/1 F0.5 Bin Cr0.5 2e+05 0.528220478769292 0.471779521230708
best/2 F0.1 Bin Cr0.05 2e+05 0.503984542137303 0.496015457862697
ttpb/1 F0.5 Bin Cr0.9 2e+05 0.53570239077805 0.46429760922195
rand-to-best/1 F0.1 Bin Cr0.05 2e+05 0.400210375792009 0.599789624207991
rand-to-best/2 F0.5 Bin Cr0.9 2e+05 0.508528603915042 0.491471396084958
target-to-best/1 F0.5 Bin Cr0.5 2e+05 0.509377898122106 0.490622101877894
target-to-best/2 F0.5 Bin Cr0.9 2e+05 0.503297388620418 0.496702611379582
target-to-rand/1 F0.5 Bin Cr0.1 2e+05 0.506747562546482 0.493252437453518
target-to-rand/2 F0.5 Bin Cr0.2 2e+05 0.504156837541553 0.495843162458447
2opt/1 F0.5 Bin Cr0.8 2e+05 0.510143468174572 0.489856531825428
2opt/2 F0.2 Bin Cr0.05 2e+05 0.475821785099531 0.524178214900469
desmu F0.1 Bin Cr0.5 2e+05 0.535816779506836 0.464183220493164
BEA F0.5 Bin Cr1.0 2e+05 0.397856634714165 0.602143365285835
DIRMUT F0.05 Bin Cr0.5 2e+05 0.453934531857812 0.546065468142188
MAB lp1eps0.1sel0crd0 2e+05 0.528648112723088 0.471351887276912
MAB lp5eps0.1sel0crd0 2e+05 0.528259572306492 0.471740427693508
MAB lp10eps0.1sel0crd0 2e+05 0.529844805056135 0.470155194943865
MAB lp20eps0.1sel0crd0 2e+05 0.524635406665549 0.475364593334451
MAB lp50eps0.1sel0crd0 2e+05 0.520122537887269 0.479877462112731
MAB lp100eps0.1sel0crd0 2e+05 0.51923090961422 0.48076909038578
MAB lp200eps0.1sel0crd0 2e+05 0.522801752503362 0.477198247496638
MAB lp1eps0.1sel0crd1 2e+05 0.528648112723088 0.471351887276912
MAB lp5eps0.1sel0crd1 2e+05 0.545114846849625 0.454885153150375
MAB lp10eps0.1sel0crd1 2e+05 0.54512215576578 0.45487784423422
MAB lp20eps0.1sel0crd1 2e+05 0.544285460791489 0.455714539208511
MAB lp50eps0.1sel0crd1 2e+05 0.541256214639757 0.458743785360243
MAB lp100eps0.1sel0crd1 2e+05 0.554542551054046 0.445457448945954
MAB lp200eps0.1sel0crd1 2e+05 0.537198216419733 0.462801783580267
MAB lp1eps0.1sel0crd2 2e+05 0.528648112723088 0.471351887276912
MAB lp5eps0.1sel0crd2 2e+05 0.54379846500382 0.45620153499618
MAB lp10eps0.1sel0crd2 2e+05 0.542185113759215 0.457814886240785
MAB lp20eps0.1sel0crd2 2e+05 0.54587780360194 0.45412219639806
MAB lp50eps0.1sel0crd2 2e+05 0.547003131618204 0.452996868381796
MAB lp100eps0.1sel0crd2 2e+05 0.548031721449288 0.451968278550712
MAB lp200eps0.1sel0crd2 2e+05 0.536156077866241 0.463843922133759
MAB lp1eps0.1sel0crd3 2e+05 0.545018025098785 0.454981974901215
MAB lp5eps0.1sel0crd3 2e+05 0.545693756567485 0.454306243432515
MAB lp10eps0.1sel0crd3 2e+05 0.54760802593508 0.45239197406492
MAB lp20eps0.1sel0crd3 2e+05 0.545686015221541 0.454313984778459
MAB lp50eps0.1sel0crd3 2e+05 0.547409836921885 0.452590163078115
MAB lp100eps0.1sel0crd3 2e+05 0.544725060386802 0.455274939613198
MAB lp200eps0.1sel0crd3 2e+05 0.533764950830772 0.466235049169228
random operators 2e+05 0.531210356979749 0.468789643020251
Random search 2e+05 0.365667830796954 0.634332169203046
Random vectors 2e+05 0.379220527834085 0.620779472165915
MAB lp1eps0.1sel1crd0 2e+05 0.527943262929114 0.472056737070886
MAB lp5eps0.1sel1crd0 2e+05 0.574089816150028 0.425910183849972
MAB lp10eps0.1sel1crd0 2e+05 0.565270259930928 0.434729740069072
MAB lp20eps0.1sel1crd0 2e+05 0.547455644387656 0.452544355612344
MAB lp50eps0.1sel1crd0 2e+05 0.52709276656883 0.47290723343117
MAB lp100eps0.1sel1crd0 2e+05 0.521019913013061 0.478980086986939
MAB lp200eps0.1sel1crd0 2e+05 0.519388049659748 0.480611950340252
MAB lp1eps0.1sel1crd1 2e+05 0.527943262929114 0.472056737070886
MAB lp5eps0.1sel1crd1 2e+05 0.571254240338092 0.428745759661908
MAB lp10eps0.1sel1crd1 2e+05 0.563751297958526 0.436248702041474
MAB lp20eps0.1sel1crd1 2e+05 0.554120054510833 0.445879945489167
MAB lp50eps0.1sel1crd1 2e+05 0.541861535412652 0.458138464587348
MAB lp100eps0.1sel1crd1 2e+05 0.52825254435036 0.47174745564964
MAB lp200eps0.1sel1crd1 2e+05 0.522035996834346 0.477964003165654
MAB lp1eps0.1sel1crd2 2e+05 0.527943262929114 0.472056737070886
MAB lp5eps0.1sel1crd2 2e+05 0.55533355036052 0.44466644963948
MAB lp10eps0.1sel1crd2 2e+05 0.55247559430211 0.44752440569789
MAB lp20eps0.1sel1crd2 2e+05 0.545593295711293 0.454406704288707
MAB lp50eps0.1sel1crd2 2e+05 0.535481147879869 0.464518852120131
MAB lp100eps0.1sel1crd2 2e+05 0.525938445476062 0.474061554523938
MAB lp200eps0.1sel1crd2 2e+05 0.523009275673036 0.476990724326964
MAB lp1eps0.1sel1crd3 2e+05 0.545269534133 0.454730465867
MAB lp5eps0.1sel1crd3 2e+05 0.557282771203944 0.442717228796056
MAB lp10eps0.1sel1crd3 2e+05 0.553344854807727 0.446655145192273
MAB lp20eps0.1sel1crd3 2e+05 0.552794218790989 0.447205781209011
MAB lp50eps0.1sel1crd3 2e+05 0.538222094293331 0.461777905706669
MAB lp100eps0.1sel1crd3 2e+05 0.531362323673265 0.468637676326735
MAB lp200eps0.1sel1crd3 2e+05 0.526767757823642 0.473232242176358

Table 5: Raw EAF AUC/AOC results for
Dim=20 for experiment set 2
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Figure 9: Heatmaps for all mutation operators for N = 5, 20. Values of each configuration
based on average of median ranked results on 5- and 20-dimensional problems.
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Figure 10: Boxplots of the results in Table 1. Top-left: general comparisons, top-right:
selection method, bottom-left: credit assignment method, bottom-right: Learning Period
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