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Abstract

This paper proposes a simplified machine learning method for vocal intensity
categorization. The vocal intensity in a vocal recording may contain hidden phys-
iological signals involving someone’s health and emotions. Vocal health reveals
the condition of the vocal ligaments and any potential or existing problems in
articulation. Unlike Vocal Pressure which can be measured directly by a sound
level meter, the measurement of the vocal intensity is more complicated. In vocal
intensity measurements, a standard calibration signal is required that can be used
together with the vocal signal to quantify the measured sound pressure level(SPL)
signals into vocal intensity levels. Consequently, an audio measurement without
SPL cannot assure the actual vocal intensity. On the other hand, machine learn-
ing methods have shown to provide opportunities to classify vocal intensity in
recordings without calibration information. In this paper, research is conducted
on the application of different feature extraction methods (Spectrogram, Mel-
spectrogram, MFCC) and classification models (ResNet) for classifying the vocal
intensity categories (soft, normal, loud, very loud), and study the influence of
calibration methods. It is shown that the proposed simplified model obtains a
71% accuracy on the Aalto Vocal Intensity Dataset.
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1 Introduction

The speech signed contains a wide range of different types of information. Not only does
it contain the speech contents, i.e., the human language information, but also hidden
information in the audio waves if carries information on the the speakers’ status. As
such vocal intensity can give clues on the distance between two speakers, environmental
noise gives information on the environment of the speaker, e.g., indoors or outdoors, the
pitch and loudness carry information on the emotions of the speaker, etc. To explore
the hidden information in the speech signal, it is crucial to have insight in the theory
of sound production and sound transformation.

1.1 Vocal Pressure, Vocal Power and Vocal Intensity

A vocal source can be seen a radiative power, which ineffect causes the vocal pressure.
The vocal pressure is a scalar that directly reflects on the effect that adds to the en-
vironment. But when measurement at a distance it does not describe the state of the
power source. To evaluate the vocal source certain special methods are required to
evaluate the vocal intensity, the sound waves are measured as power per unit area in a
direction perpendicular to the area.

In the equation form, the intensity I is defined as:

I =
P

A
=

(∆p)2

2ρvw
(1)

where P is the power through an area A. ∆p is the pressure amplitude in units
of pascals(Pa or N/m2), ρ is the density(kg/m3) of material of the sound wave trav-
els, and vw is the speed(m/s) of sound in the medium. With the relationship in the
equation, we acknowledge that the sound wave is produced by vibration, and the more
air is locally compressed when conducting the sound, the higher the pressure amplitude.

1.2 Applications of Vocal Intensity

The vocal intensity is a direct characteristic of vocal source, which is difficult to mea-
sure in isolation. The vocal intensity in general is determined by measuring the vocal
pressure at a certain distance from the speaker. The vocal pressure can only measure
the vector scalar value of a certain point on a convergence. This scalar value includes
also all other vocal sources in the current sound field. Le., it can be located in an open
space or a room containing hundreds of other sound sources. Consequently, the mea-
surement of vocal pressure requires specific environments like a silent recording room
to collect the desired sound levels, which can be impractical. In general, the sound
intensity measurement will take place anywhere. In those cases the sound intensity
measurement can be adopted for a specific or individual sound source. For example,
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using noise cancellation such that the noise in the background will have no influence
when estimating the intensity.

In a conversation, the speaker’s vocal intensity will vary during a sentence. The
changing vocal intensity can be affected by a great number of reasons, such as commu-
nication goals, emotions expressed, environmental influences, and health conditions as
mentioned above. Emphasizing the important content, softening the voice for intimacy,
competing with environmental noise, and reflecting the speakers’ health, age, etc., are
all reflected in the vocal intensity of the speaker.

Vocal intensity and collect effective data in complicated environments, which can
is used in many scenarios. One common usage of vocal intensity is in manufacturing,
such as finding the noise sources in the vehicle design to give a better driving experi-
ence for passengers. Recently, vocal intensity has become an important topic in health.
Vocal health can be an important sign of human health. When a vocal is produced,
the muscles and tissues compress the air passing through the larynx. Vocal source can
be influenced by human health conditions. Vocal health level can reflect aspects of
someone’s health. This ranges from the potential health damage of imbalanced system
hydration[1] to more severe diseases like Parkinson’s disease[2]. Thus, vocal intensity
is a significant sign of health marker, and measuring and evaluating the vocal intensity
can play a major role in disease prevention. Another significant usage of vocal intensity
is emotion analysis. There is evidence that vocal intensity modification quantitatively
affects the emotionality in vocal emotion[3].

However, measuring vocal intensity requires professional devices that record vocal
data with calibration. Most recording devices are not calibrated. Most of the recordings
from daily recording devices like phones lack calibration data, nor do they take place in
a silent room at a fixed distance. This results in difficulties in collecting calibrated data
and a correct analysis afterwards. Due to most of the data not being recorded with
calibration but with non-standard amplitude scales, the measurement of vocal intensity
can be used to describe speakers’ biomarking more precisely. Without calibration also
means that the measurement of the intensity is computationally impossible. In recent
years, researchers have introduced machine learning (ML) based methods for vocal in-
tensity classification using calibrated recordings.

In this work we propose a novel more straightforward method using deep neural
networks (DNN) for vocal. The contribution of this research are:

• A simplified method using traditional spectrograms, mel-spectrograms and MFCCs
as input combined with a more fine-grained FFT window-step-size to obtain
ResNet features for vocal intensity classification.

• An evaluation of our simplified method for vocal intensity classification against
SOTA methods based on transformers like Wav2Vec2, HuBERT, AST to extract
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features and SVM as a classifier.

• Our simplified method shows an improved vocal intensity classification accuracy
of 71% while having a reduced computational complexity.

The rest of the paper is organized as follows: In Section 2, we discuss the past
research on many vocal intensity categorize methods. In Section 3, we introduce the
fundamentals used in the baseline methods and our methods, and in addition, we explain
the evaluations. The used benchmark dataset for vocal intensity category classification
is described in Section 4. In Section 5, the baseline methods are described and in
Section 6 our method is described in detail. In Section 7, the experimental setup and
results are given in Section 8. Finally, in Section 9, conclusions, discussions, and future
research directions are discussed.
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2 Related Research

The studies on vocal intensity classification have focused on detecting single or binary
intensity classes where the targets of vocal intensity classification are certain specific
emotions or speech expressions. For example, single vocal intensity classification for
whisper detection[4] and shouted speech detection [5], or the binary classification [6] of
cries and whispers. These papers utilized acoustic engineering features and signal and
image processing technologies to process the data and determine the vocal intensity
feature. The author of the paper [6] used the source characteristics like Mel-frequency
Cepstral Coefficients(MFCC), Teager Energy Operator(TEO), Voiced/Unvoiced Fre-
quency(VUF), Voice Quality (VQ) etc to classify cries and whispers. In paper [7],
the author brought up five speech modes that categorized the speech to classes of
whispered, soft, natural, loud and shouted respectively. The proposed method uses
Gaussian mixture models(GMM) and the Supported Vector Machines(SVM) to classify
speech into the five models. The dataset used in the paper, the data was inadequate
for not only limited in size and only contained male vocal data. Consequently, more
recent researchers in the field of automatic speech intensity classification foucused on
incorporating multiple intensity categories with more advanced models and experiment
on larger datasets including data with various physiological property regarding genders,
ages, etc.

Recent advancements in deep learning have popularized the use of pre-trained mod-
els across various areas of speech technology [8], [9]. These models are particularly
valuable in domains like paralinguistics, where speech datasets are often limited. Pre-
trained models allow for the application of deep neural networks initially trained on
tasks requiring large datasets (e.g., automatic speech recognition) to areas with smaller
training datasets, such as paralinguistics. Different methods for leveraging pre-trained
models have been explored, including feature extraction, fine-tuning, and autoencoder
implementations [10], [11], [12]. Notable examples of their application include emo-
tion recognition [13], stuttering detection [9], and analysis of pathological speech [14],
demonstrating their potential in paralinguistics.

Specifically, the methods introduced by the paper [15] and [16] are the baseline
methods used in our evaluation. The first method used traditional acoustic methods
(spectrogram, mel-spectrogram, MFCC) and is similar to our proposed but uses an
SVM for classification while several ResNet DNNs. The second method used state-of-
the-art transformer-based models (Wave2Vec2, HuBert, AST) to extract the acoustic
information and classify it with SVM. In this paper, the methods we use are clearly
inspired by both of these approaches. We make the acoustic information obtained by the
traditional acoustic method more effective by changing the parameters and employing
ResNet further for vocal intensity classification to enhance the features.
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3 Fundamentals

In this section, we will introduce the fundamental concepts, models and algorithms
involving both the baseline methods and the improved method to have a better under-
standing of the principles of the methods.

3.1 Speech Feature Extraction

Audio features can be extracted and represented vectors as multidimensional. The
baseline methods both use the spectrogram of the audio as input. The horizontal axis
shows the time and the vertical axis shows the frequencies of the input audio.

In many real-world applications, signals are non-stationary, meaning their frequency
content changes over time. Examples include speech, music, and biological signals. A
global Fourier Transform does not capture these time-varying characteristics because
it assumes that the signal’s frequency content does not change over time.

To address this limitation, we use the Short Time Fourier Transform(STFT) which
processes the input audio signal in short, overlapping time segments, making it possible
to examine localized frequency content. This localized analysis is achieved by applying
the Fourier Transform to successive segments of the signal.

The STFT of a continuous-time signal x(t) is defined as:

X (t, ω) =

∫ ∞

−∞
x(τ)w(t− τ)e−jωτ dτ (2)

Here:

• X (t, ω) is the STFT of x(t).

• τ represents time.

• ω represents angular frequency.

• w(t) is the window function that localizes the signal in time.

In practice, the STFT is applied to discrete-time signals, where the discrete STFT
is defined as:

X (m, k) =
∞∑

n=−∞

x[n]w[n−m]e−j2πkn/N (3)

Here:

• X (m, k) is the STFT of the discrete signal x[n].
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• n represents discrete time.

• m is the time-shifting index.

• k is the frequency bin index.

• N is the length of the FFT (Fast Fourier Transform).

The window function w(t) plays a crucial role in the STFT. It defines the segment
of the signal to be analyzed and shapes it to minimize edge effects. Common win-
dow functions include the Hann, Hamming, and Gaussian windows, each with specific
properties that influence the trade-off between time and frequency resolution. In our
research we will use Hamming window with a window size of 25ms period length.

A fundamental concept in the STFT is the trade-off between time and frequency res-
olution, governed by the Heisenberg Uncertainty Principle. A narrow window provides
better time resolution but poorer frequency resolution, as it captures shorter segments
of the signal. Conversely, a wider window improves frequency resolution but reduces
time resolution, as it captures longer segments.

This trade-off is a critical consideration when selecting the window length for a
particular application. For instance, in speech processing, a balance must be struck
between capturing rapid changes in speech sounds and providing sufficient frequency
resolution to distinguish different phonetic elements.

3.1.1 Windows

(a) Hamming Window (b) Frequency Response of Hamming Win-
dow

Figure 1: Hamming window and its frequency response
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The Hamming window is defined as

w(n) = 0.54− 0.46 cos

(
2πn

M − 1

)
, 0 ≤ n ≤ M − 1 (4)

The Hamming was named for R. W. Hamming and is described in Blackman and
Tukey[17]. It is recommended for smoothing the truncated autocovariance function in
the time domain. The frequency response of the Hamming window demonstrates its
ability to reduce spectral leakage in signal processing. The central peak, known as the
main lobe, contains most of the energy and determines the frequency resolution, while
the smaller side lobes represent unexpected energy leakage into other frequency bands.
Compared to the rectangular window, the Hamming window achieves a side lobe rejec-
tion of about -42dB, which significantly reduces spectral leakage. This trade-off results
in a slightly wider main band with moderate frequency resolution but excellent arte-
fact suppression. Due to the uniform symmetry of the Hamming window in the time
domain, its response is symmetrical around the zero point. These characteristics make
it ideal for applications like spectral analysis and digital filter design, where balancing
resolution and leakage reduction is critical.

3.1.2 Spectrogram

A spectrogram is a visual representation of the spectrum of frequencies of a signal as it
varies over time. In this paper, the spectrogram is generated from pre-processed audio
clips in the dataset.

Figure 2 illustrates the process of how the audio signals are processed into spec-
trograms. The audio signal will first be framed by the windows and segmented into
smaller segmentation pieces. Then for each segmentation, there will be an FFT process
upon the segmentation signal, in the spectrograms’ case, the FFT process is STFT.
The spectrogram is made of a group of STFT series that are converted from segmenta-
tions. As the figure shows, the spectrogram can be demonstrated in a 3d spectrogram,
which vividly explores the data relationship between Time, Frequency and Power. The
Spectrogram is the 3d spectrogram’s overlook perspective, which is the project of Power
on Time and Frequency. In the baseline methods, the window length is 25ms and the
overlap length is 5ms. In the improved method, we keep the window length the same
but adjust the overlap length to 20ms.

3.1.3 Mel-spectrogram

The Mel scale is a perceptual scale of which the listeners judge pitches that are at
equal distances from each other. It is based on how humans perceive sound frequencies,
which are not linear. Instead, humans perceive pitch logarithmically, which means that
the difference in pitch between low frequencies is greater than the difference in pitch
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audio signal

segmentations

FFT Series

Spectrogram

3D Spectrogram

Figure 2: The transform from audio signal to spectrogram
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Figure 3: Mel-filters

Input Windows FFT(*)

Sum

Sum

Sum

Mel- Spectrogram

... ...

Figure 4: The Mel-spectrogram Algorithm

between higher frequencies.

The formula to convert a frequency f in Hertz to Mel scale is:

M(f) = 2595 · log10
(
1 +

f

700

)
(5)

Conversely, the formula to convert the Mel scale back to a frequency in Hertz is:

f(M) = 700 ·
(
10

M
2595 − 1

)
(6)

To transform the mel-frequencies to mel-spectrogram, apply the Short-Time Fourier
Transform (STFT) to the audio signal to obtain its frequency representation over time.
Transform the linear frequency spectrogram into mel-scale with the mel filter bank as
depicted in Figure 3. The Mel-filters consist of a group of triangle filters that map to
the FFT vectors. Each vector in FFT will only be filtered by the corresponding as
Figure 4 demonstrated. The output of the mel-filter will be summed up to create a
mel-spectrogram.
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Sum
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Cepstral Coeffiecients

... ...

Figure 5: The MFCC Algorithm

3.1.4 MFCC

Mel-Frequency Cepstral Coefficients (MFCCs) [18] are an important feature extraction
technique in audio signal processing, especially in automatic speech recognition (ASR).
MFCCs aim to capture the short-term power spectrum of a sound signal in a way that
mimics human auditory perception. This is achieved through a series of steps involving
the transformation of the signal from the time domain to the frequency domain, map-
ping frequencies to the Mel scale, and applying cepstral analysis.

The first step is pre-emphasis, which applies a high-pass filter to the audio signal to
amplify high-frequency components. This can be expressed as:

y(t) = x(t)− αx(t− 1) (7)

where x(t) is the input signal, y(t) is the output signal, and α is a pre-emphasis coef-
ficient (typically α = 0.97). The signal is then divided into overlapping frames. Each
frame is windowed using a Hamming window to reduce spectral leakage:

w(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
(8)

where N is the frame length. The Fast Fourier Transform (FFT) is applied to each
windowed frame to obtain the frequency spectrum:

X(k) =
N−1∑
n=0

x(n)e−j2πkn/N (9)

The power spectrum is then computed as: P (k) = |X(k)|2. The power spectrum is
passed through a Mel filter bank to model human auditory perception.

The Mel scale is defined as:

m = 2595 log10

(
1 +

f

700

)
(10)
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The filters are triangular and spaced linearly on the Mel scale as figure 3. The logarithm
of the filter bank energies is taken to compress the dynamic range:

logEm = log

(
K−1∑
k=0

P (k)Hm(k)

)
(11)

where Hm(k) is the m-th Mel filter.

The final step is applying the Discrete Cosine Transform (DCT) to obtain the
MFCCs:

cn =
M−1∑
m=0

logEm cos

[
πn(2m+ 1)

2M

]
(12)

MFCCs are widely used in ASR systems due to they are effective in capturing
perceptually relevant features of speech. They are also applied in tasks like music genre
classification, speaker identification, and environmental sound recognition. Although
MFCCs are robust and computationally efficient, they are sensitive to noise, so noise
reduction techniques should be used for preprocessing the audio data. In conclusion,
MFCCs provide a powerful and widely-used method for audio feature extraction, which
is closely aligned with human auditory perception. Their integration into various audio
processing systems highlights their importance in the field.

3.2 Machine Learning Models

In this paper, several machine-learning models are adopted for feature extraction and
classification. In this section, we will introduce all the models that are used in the
baseline models and our proposed method.

3.2.1 SVM

Both baseline models use SVM with radial basis function as the radial basis kernel func-
tions as a classifier. Support Vector Machines(SVM) [19] are machine learning method
that separates the data points into different classes. SVM is a supervised machine
learning algorithm that intends to separate data points with the optimal boundaries.

A linear SVM classifier is a 2-D classifier that separates the data points into two
classes with a hyperplane. There are other kernel functions like Polynomial, Gaussian,
and Radial Basic Function(RBF) for calculating more complex situations. The image6
illustrates the process of how to find the optimal classification. The red line is the
hyperplane to separate the space, where the support vector w is the minimum distance
of data points toward the hyperplane.

Multi-classification SVM is widely used in categorical tasks. The multi-classification
SVM include the OneVsAll(OvA) classification and the OneVsOne(OvO) classification.
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The OneVsAll approach requires training binary SVM classifiers for each class, where
a single training separates one class as positive and the rest classes as negative. The
OneVsOne approach will compare each class with the rest of the classes one class by
one class until all the classes have trained once.

Figure 6: A simple linear SVM example [20]

The SVM functions as a classifier in the classification task with the extracted vocal
intensity data.

3.2.2 Wav2vec2

In the second baseline method[16], Wave2vec2 and HuBERT are used as feature extrac-
tors. Wav2Vec2 [21] is a model developed by Facebook AI (Meta AI) for self-supervised
learning on speech processing. The main purpose of Wav2Vec2 is to transform raw au-
dio waveforms into meaningful representations, making it particularly useful in tasks
like automatic speech recognition, audio classification, and other audio processing tasks.

Wav2Vec2’s feature extraction is very effective for audio classification because it
learns a nuanced hierarchical representation directly from the raw waveform. Using
convolutional layers to capture short-term and long-term dependencies generates con-
textual embeddings that can be valuable for distinguishing between different classes.
Wav2Vec2 uses masked prediction targets in self-supervised pre-training to develop ro-
bust context-aware features for a wide range of audio domains, from speech to ambient
sound, without the need for manual feature engineering. This end-to-end learning ap-
proach enables Wav2Vec to capture subtle nuances in audio to provide a finer and more
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efficient representation for classification.

Figure 7: The joint learning of contextualized speech process on Wav2vec2 [22]

As the figure 7 shows the Wav2Vec2 model structure. The model consists of nu-
merous speech units that are shorter than a phoneme, which eliminates the interference
from the recording environment. The encoder for each unit is a Convolutional Neural
Network (CNN) which converts the raw waveform into latent space, with the audio
representations of 25ms each. This structure motivates the model to focus on the main
feature of the raw data. The data from the latent space will be sent to the quantizer
and transformer. The transformer will take the half-masked data and append infor-
mation about the audio sequence data. The output of the transformer can be used in
comparison tasks. In this paper, Wav2vac is used as a feature extractor for extract-
ing the vocal intensity feature. After the extraction and encoding process, there will
be a classifier(SVM) waiting for class prediction instead of a decoder structure like
Connectionist Temporal Classification(CTC) as in the original paper for audio content
recogition.

3.2.3 HuBERT

Hidden-Unit BERT(HuBERT)[22] is a self-supervising speech model inspired by the
Wav2vec model above. HuBERT follows a similar structure as Wav2vec2 as figure 8.
Both of Wav2vec2 and HuBERT have CNN encoder extracting the feature from the
raw audio data followed by a Transformer.

HuBERT’s clustering will add on most influence on the classification tasks in this
paper’s experiment. The first step in training HuBERT, the goal is to extract the hid-
den units from raw audio waves. The k-means clustering is utilized to separate the unit

14



Figure 8: The model structure of HuBERT [?]

segmentation of audio into K-clusters. All the clustered segments will be signed to a
unit label. Then the hidden units will be mapped to an embedding vector that will
be used for prediction in the next step. CNN encoder isn’t the only choice for feature
extraction. MFCC features can also be used as the extractor before clustering.

However, there are several differences: The encoder in HuBERT framing is in 20ms,
and encoded features are randomly masked. HuBERT adopts the cross-entropy loss
just as BERT, while the Wav2vec2 uses combined loss that sums contrastive loss and
diversity loss, which simplifies the training process and robustness.

Similar to Wav2vec2’s usage in the experiment. The HuBERT model in the exper-
iment was also followed by an SVM for classification.

3.2.4 AST

The AST is used as the feature extractor in the baseline2 method. The Audio Spectro-
gram Transformer (AST)[23] is a pure attention-based model for audio classification.
The figure 9 shows the progress of how the AST model predicts attention mechanism
resembling Vision Transformer(ViT)[24].
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Figure 9: The AST model architecture [23]

As the input for the model is an image, the mel-spectrogram of the raw audio is used
as the input. Just like ViT, AST will split the spectrogram into small patches of the size
of 16 × 16 with an overlap of 6 in time(x-axis) and frequency(y-axis) dimensions. Each
small patch will be firstly sequential and flattened to a 1-D patch embedding of size 768
by linear projection. After the linear projection, a trainable positional embedding is
added on each patch embedding to ensure the sequence can be read by the Transformer.

3.2.5 ResNet

In our proposed simplified method for Vocal Intensity classification, we use several
versions of ResNet (ResNet34 and ResNet101) for feature extraction and improvement.

Residual Neural Network(ResNet)[25] is a very classic deep learning CNN model
that arises from ImageNet[26]. Figure 10 depicts the residual building block in ResNet.
The residual building blocks are the major components of ResNet. The ResNet facil-
itates the training of deep neural networks by using skip connections among layers to
mitigate the vanishing gradient problem and ensure the effective learning of identity
mappings. The stacked non-linear layers are denoted as F (x), where identity x is the in-
put of the residual block. The desired underlying mapping H(x) = F (x)+x, which the
shortcut connections feedforward the identity mapping, and the output of stacked non-
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Figure 10: A residual building block [25]

linear layers’s output and the identity are added together to the next block. ResNet
offers great improvements by addressing the vanishing gradient problem so enabling
scalability to deep-level networks, and achieving excellent classification performance
and high computational efficiency.

Figure 11: The architecture of ResNet34 [25]

The ResNet is built by multiple of such residual blocks. Figure 11 illustrates the
ResNet34 architecture. The residual blocks connect one by one when the output size
of the previous block and the input size of the next block is the same. There are 2 op-
tions for increasing the dimensions, one is using an extra zero entries padded, another
is mapping projection shortcut, and both of the options are performed with a stride of 2.

Owing to the flexibility of the residual blocks, the ResNet can be shaped into many
layers. The common ResNet are 18-layer, 34-layer, 50-layer, 101-layer, 152-layer, etc.
Just as we discussed above, the ResNet consists of residual blocks that can be added to
any layer as wished. However, in this paper, we will use the common ResNet layers to
simplify the experiment and demonstrate the generalization of the model for academic
purposes.

4 Dataset

In our experiments, we use the dataset Aalto Vocal Intensity Database(AVID)[27]
(http://research.spa.aalto.fi/projects/intensity_category_db/) dataset, a spe-
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cial classification dataset often used for vocal intensity research. The dataset collection
recorded the vocal intensity with a DPA 4065-BL headset condenser microphone and
an EG2-PCX2 electroglottograph(EGG), a calibrator, sound card, and a laptop with
the Audacity program. During the recording sessions, the microphone was positioned
5 cm from the centre of the speaker’s lips, and the electrodes were adjusted according
to the placement indicator on the EGG device. Both signals were transmitted through
an RME Babyface sound card and captured using the Audacity software at a sampling
frequency of 44.1 kHz. Following setup and calibration, the speakers were instructed to
sequentially produce utterances at four designated vocal intensity levels: soft, normal,
loud, and very loud.

The dataset consists of two speaker major tasks. Task 1 requires each speaker to
record 25 given sentences from the TIMIT[28] database in 4 different vocal intensity
categories(i.e. soft, normal, loud, very loud). During the recording process, the speak-
ers deliver the sentences in their natural speaking style with a pause between words.
Task 2 requires each speaker to record 2 given paragraphs of the novel ”The Call of the
Wild” by Jack London in 4 different vocal intensity categories as Task 1.

The texts used in Task 1 are listed in table 8 which can be found in the appendix.
Each speaker was asked to recite the 25 given sentences in the four intensity categories.
Overall there are 25 × 4 × 50 = 5000 audio data. For each category, there are 1250
audio recordings respectively. In the experiments, the sentences will be repeated once
by the speakers, therefore the total data in Task 1 is 5000 ∗ 2 repetitions= 10000. In
this paper, we only adopted Task 1 as the experiment dataset because of dataset size of
Task 2 is only 800 files(2 paragraphs 50 speakers 4 intensity categories 2 repetitions).
In addition, to conduct a fair comparison of the experiment results in paper[15] and
paper[16], which all used Task 1 as the experimental dataset but there is no Task 2
data used in paper[16].

4.1 Data Exploration

Initially, we followed the dataset processing method from baseline method paper [15],
where cut all the silence in each slice of recording in the dataset. But considering that
CNNs are known to be very effective in learning features from spectrograms for vari-
ous classification tasks, we proposed the potential to use the original data from vocal
intensity classification.

Figure 12 demonstrates the original and cut spectrograms, mel-spectrograms and
MFCC. Compared to the original spectrograms, before the raw data was translated
into the cut spectrograms, the silence was removed from the raw data. The silence in
the raw data includes the before/after of the speech and the silence between the words.
From the images, we noticed that the cut spectrogram still shows a similar spectral
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(a) Original Spec (b) Original Mel (c) Original MFCC

(d) Cut Spec (e) Cut Mel (f) Cut MFCC

Figure 12: Comparison of the different spectrogram for Original and Cut Features

distribution and features. When the size of the spectrogram stays the same, the band-
width in the cut spectrogram is also increased, and so is the potential noise. The cut
spectrograms do not bring a thorough change to the features and, thus will not greatly
influence the feature learning process for classification. Accordingly, it is unnecessary
to cut the silence before feature extraction.

Figure 13 shows the spectrograms of 4 different categories, respectively. The spec-
trograms for the same uttered text but in different categories show a marked difference.
There is no clear visible feature or pattern in the spectrogram that indicates the cor-
responding vocal intensity. It is design methods that are able to determine the vocal
intensity spectrogram.

4.2 SPL label

Sound pressure level (SPL) is the measurement of vocal intensity, expressed on a deci-
bel(dB) scale, as the logarithm of the ratio between the sound pressure and a standard
reference pressure of 20µPa [29]. The original label of the dataset, i.e., soft, normal,
loud, very loud, are the subjective labels of each recording that depend on the speaker’s
understanding of the vocal intensity. The actual vocal intensity might differ from the
label, so the SPL expressed is introduced to represent the objective measurement in-
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(a) Soft (b) Normal

(c) Loud (d) Very Loud

Figure 13: The spectrograms for 4 vocal intensity classes from the same speaker that
speaking the same sentence
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tensity level label.

In the AVID dataset [27], the author calculated 18 different SPL labels for each
audio data covering the most prevalent SPL parameters in frequency weightings (A-
, C-, and Z(zero) weightings), time weightings(slow(S), medium(M), fast(F) with the
time constant τ of 1 s, 0.125 s and 0.03 s), and time averaging(the mean SPL and the
equivalent SPL) according to paper[30] and [27]. The following equation shows how to
calculate the SPL value.

SPLspeech = 94 + 10 log10
Energy(speech)

Energy(calibration)
. (13)

The SPL label used in the baseline methods is the calculation result LmeanZF , i.e.
with mean average, zero frequency weighting and fast time weighting. All the SPL
data are stored in a metadata sheet in the dataset. However, when we try to relabel
the SPL label as the baseline method, we find out that there is one-row lacking data
of the audio file sp35 s1 sen4 loud. Consequently, we can not follow exactly the same
procedure for determining the SPL label as used in the original SPL experiments of
the baseline methods. In this paper, we use the provided audio and calibration data
to calculate the Energy due to the limited data. The Energy is calculated with the
equation 14, where the x(n) represents the amplitude of the audio wave at the nth
sample, and N is the total sample.

Energy =
N∑

n=0

(x(n))2 (14)

The SPL labels can be categorized as the SPL values in the table1 based on the
calculation with the equation 13 and 14.

Intensity Category SPL Classification Range SPL Categories File Numbers
Soft SPL < 79 dB 1930

Normal 79 dB ≤ SPL < 86 dB 2506
Loud 86 dB ≤ SPL < 93 dB 3406

Very loud SPL ≥ 93 dB 2158
Total 10000

Table 1: SPL Intensity Categories
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5 Baseline Methods

In this section, we introduce the two baseline methods. The first method [15] is based
on acoustic feature engineering plus the SVM as the vocal intensity classifier. The
second method [16] is based on Transformers models for feature engineering and the
SVM for vocal intensity classification.

Speech
Signal

Varients of Acoustic Feature Extraction Models:
- Spectrogram

- Mel- spectrogram
- MFCC

Classification:
SVM Predictions

Figure 14: Baseline 1, using acoustic characteristics as features either spectrograms,
mel-spectrograms or MFCCs. SVM with radial basis kernels is used as the classifier.

Speech
Signal

Varients of Acoustic Feature Extraction Models:
- Wav2Vec2

- HuBERT
- AST

Classification:
SVM Predictions

Figure 15: Baseline 2, using Transformer based models i.e., Wav2vec2, HuBERT and
AST for feature extraction. SVM with radial basis kernels is used as the classifier.

The first baseline is introduced by [15] and the second baseline is studied paper[16]
and shown to be the current SOTA on Vocal Intensity Category classification. Figure
14 and 15 depict Baseline 1 [15] and Baseline 2 [16] respectively. In the baseline model,
the classification was done by SVM only. The main difference between these baselines is
the acoustic feature extraction methods. Baseline 1 used spectrograms as acoustic fea-
tures. 3 Types of spectrograms have been used, i.e., spectrograms, mel-spectrograms,
and MFCCs. Baseline 2 used two speech models and one model used for audio classifi-
cation for feature extraction, respectively. Wav2vec, HuBERT and AST are each time
followed by an SVM classifier.

6 Spectrograms-ResNet Classification

The global architecture of our method is depicted in Figure 16. Our proposal was
inspired by Baseline 1 [15], and during the research Baseline 2 [16] appeared, estab-
lishing the current state of the art on Vocal Intensity Category classification. We
adopted the Acoustic Feature Extraction Model as Baseline 1, using Spectrograms,
Mel-spectrograms, and MFCCs as the feature extractors. Meanwhile, in Baseline 1, the
classifier is replaced by a further feature enhancement and subsequent FCNN classifier
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in the form of ResNet 34, and ResNet 101, respectively. Note that, these could be
replaced by other ImageNet-based DNN classifiers.

CNNs and other image classifiers trained on the ImageNet dataset [31] have been
widely effective in the field of audio classification. Therefore, we studied and proposed
to use ResNet as an analyzer and a feature enhancement method in this application of
Vocal Intensity Category Classification.

Speech
Signal

Varients of Acoustic Feature Extraction Models:
- Spectrogram

- Mel- spectrogram
- MFCC

Classification:
ResNet Predictions

Figure 16: Spectrograms-ResNet Classification, using acoustic characteristics as fea-
tures either spectrogram, mel-spectrograms or MFCCs. ResNet is used as the classifier.

Figure 17 is the outline of both base methods and improved methods that are
involved in this paper. The left side depicts Baseline 1 with the traditional feature
extraction process also used in our method, and the right side depicts Baseline 2.

6.1 Optimized STFT window-size

The frequency resolution is determined by window length and FFT size, the longer win-
dow length brings better frequency resolution but deficient the time resolution. The
time resolution is determined by the hop size between successive frames, and the smaller
hop size provides a better time resolution. Thus, when the hop size is relatively small,
the time resolution will be greatly improved.

When the spectrogram size is fixed, the smaller hop size contributes a higher dis-
crete time period density in time resolution. Therefore, the information density is
easily increased in the spectrogram without increasing the spectrogram size itself. In
this paper, the hop length/window length ratio is 0.2, where the hop length is a reduced
number that is only 1/4 of the original setting. The spectrogram feature therefore is 4
times than the baseline method. Although the computational cost has increased during
spectrogram transformation, the image size of spectrogram maintains the consistency,
so no computational cost will be added on in the later machine learning process. With
such data quality improvement, the training result will be improved correspondingly.

With our implementation, we conducted experiments to determine the optimized
window length. See in section 3.1 for detailed theories.
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Figure 17: A detailed summary of the implementation of the evaluation of the methods
used in this paper. The green rectangles are the major improvement compared to the
baseline methods.

24



7 Experiment Setup

For the experiments, we used the original dataset as described in section 4 with the
subjective labelling, i.e., recordings of the categories based on the speakers’ target
intensity category. In our proposed method we used Pytorch implementations of both
ResNet34 and ResNet101. This will be indicated for the different experiments. The
training and evaluation of the model was conducted on a PC with an NVIDIA RTX4090
with 24GB DRAM running on Windows 11 and Anaconda environment.

7.1 Feature Extraction

The original recordings are processed using the feature extraction methods mentioned
in Section 3.1. The key parameter settings are listed below:

1. Spectrogram: the signals are sampled by the 25 ms Hamming window with a 5
ms hop length. The audio signals are processed to a 1024-point FFT represented
as a 513-D vector.

2. Mel-spectrogram: using 1024-point FFT and 128 mel-filters giving a 128-D vector
representing the mel-spectrogram.

3. MFCC: using a 39-D vector that included the delta and delta-delta coefficients,
following the procedure as described in Section 3.1.4.

Besides evaluating these 3 feature extraction methods, we also conducted exper-
iments to evaluate the influence of the labelling of the feature representations and
classification results. All the audio data in the experiment was processed using the
librosa library from Python.

7.2 GroupKFold Cross Validation

The training dataset used in our experiment is relatively small, whereas the ResNet
models have a large parameter. Therefore in our experiments, we adopted group 5-fold
cross-validation. The data set is separated into 5 portions of data with personal ID.
As shown in Figure 18. For cross-validation training, 1 portion is chosen as the test
dataset and the rest of the dataset is used as training data. This will be replicated 5
times until all the portions are considered as the test dataset once. When organizing
the result of the experiment, we will gather the overall 5 training-testing results.

7.3 Training and Hyper Tuning

The training includes 2 dataset tasks, the original label dataset task and the SPL label
dataset task. In the experiment, to optimize the model performance, there are a group
of hyperparameters to be tuned in Table 2 on ResNet34 upon the original label data.
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Original Dataset

Train Set 1

Train Set 2

Train Set 3

Train Set 4 Test Set 4

Test Set 5 Train Set 5

Test Set 3

Train Set 4

Test Set 2

Train Set 3

Test Set 1

Train Set 2

Loop

Figure 18: Cross Validation in the experimental dataset

Hyperparameters Notation in Code Search Space
Optimizer opt (Adam, SGD)
Learning rate LR (0.001,0.01, 0.02)
Momentum M 0.9
Weight decay WD 5e-4
Epochs Epochs [1,30]
Batch size Batch size 32

Table 2: Hyperparameters and range of values that have been considered in our Hyper
Parameter optimization Grid Search

In Table 2 the range of the hyperparameters considered for our experiment is listed.
We employed a Grid Search to find the optimal value within the search space defined
by these ranges.
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8 Experiemental Results

For the hyperparameter optimization, we used ResNet34 model. Table 3 summarizes the
performance of 3 types of spectrograms sets (mel, mfcc, spec) using the two considered
optimizers (Adam, SGD) across different learning rates (0.001, 0.01, 0.02) in terms of
accuracy, precision, recall, and F1-score.

Table 3: ResNet34 Results for Accuracy, Precision, and Recall using 30 epochs

Feature Optimizer Learning Rate Accuracy Precision Recall F1-score
mel Adam 0.001 0.6936 0.6886 0.6936 0.6863
mel Adam 0.01 0.6529 0.6827 0.6529 0.6548
mel Adam 0.02 0.5687 0.6117 0.5687 0.5629
mel SGD 0.001 0.7117 0.7170 0.7117 0.7101
mel SGD 0.01 0.7061 0.7165 0.7061 0.7074
mel SGD 0.02 0.7007 0.7119 0.7007 0.7001
mfcc Adam 0.001 0.6773 0.6989 0.6773 0.6808
mfcc Adam 0.01 0.5939 0.6253 0.5939 0.5870
mfcc Adam 0.02 0.5845 0.6367 0.5845 0.5830
mfcc SGD 0.001 0.6981 0.7017 0.6981 0.6980
mfcc SGD 0.01 0.7036 0.7103 0.7036 0.7038
mfcc SGD 0.02 0.7003 0.7128 0.7003 0.7017
spec Adam 0.001 0.7007 0.7072 0.7007 0.6988
spec Adam 0.01 0.6417 0.6548 0.6417 0.6356
spec Adam 0.02 0.6054 0.6296 0.6054 0.6001
spec SGD 0.001 0.7046 0.7134 0.7046 0.7045
spec SGD 0.01 0.7145 0.7317 0.7145 0.7171
spec SGD 0.02 0.6981 0.7200 0.6981 0.7023

Among the features, spectrogram consistently achieves the highest performance,
with the best accuracy (0.7145) and F1-score (0.7171) observed when using SGD with
a learning rate of 0.01. For mel-spectrogram, the best performance is achieved with SGD
and a learning rate of 0.001 (accuracy: 0.7117, F1-score: 0.7101), while for MFCC, SGD
with a learning rate of 0.01 yields the highest accuracy (0.7036) and F1-score (0.7038).

SGD generally outperforms Adam in terms of stability and performance, particu-
larly with the lower learning rates (0.001 and 0.01). In contrast, Adam performs poorly
at higher learning rates, with a noticeable degradation at 0.02. These results suggest
that spectrogram or mel-spectrogram paired with SGD at a learning rate of 0.001 or
0.01 might be the optimal configuration for achieving robust and consistent performance
across metrics. The optimized number of epochs is studied in Table 4.

27



Image Type Optimizer Learning Rate Epoch Accuracy
spec SGD 0.01 28 0.7145
spec SGD 0.01 26 0.7126
mel SGD 0.01 24 0.7117
mel SGD 0.001 23 0.7102
mel SGD 0.001 28 0.7090
spec SGD 0.01 15 0.7090
spec SGD 0.001 21 0.7088
spec SGD 0.001 25 0.7064
mel SGD 0.01 18 0.7061
spec SGD 0.001 27 0.7046

Table 4: Top 10 Performance metrics for different configurations of image type, opti-
mizer, learning rate, epoch and accuracy

In Table 4 the respective number of epochs with highest accuracy are listed. The
data corroborate the hypothesis that the model works great on the spectrogram or
mel-spectrogram with a learning rate of 0.01 or 0.001. Figure 19 also demonstrates the
accuracy over epochs upon the 4 potential optimal parameters. The 4 lines all show a
similar trend in the training process, where the mel-spectrogram with a learning rate
of 0.01 is relatively low performance.

Table 5 calculated the average last 10 accuracies of the 4 potential parameter set-
tings and the standard deviation of the last 10 accuracies to check the stability and
robustness of the parameter. The learning rate of 0.001 outperforms the learning rate
of 0.01 in standard deviation, but the mel-spectrogram and spectrogram yield highly
similar outcomes.

Due to time constraints, we did not conduct any further hyperparameters optimiza-
tion experiments and selected the parameter settingmel-spectrogram, learning rate
0.001, SGD optimizer as the optimal setting because of therefore the highest accu-
racy.

Parameter Set Average Accuracy Standard Deviation
mel 0.001 0.70562 0.004359
mel 0.01 0.69100 0.008050
spec 0.001 0.70008 0.003677
spec 0.01 0.70060 0.007564

Table 5: Average Accuracy and Standard Deviation of Accuracy for Each Parameter
Set of last 10 epochs
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Figure 19: Accuracy of best parameter settings over epochs

Table 7 summarizes the fine-tuned baseline models as reported in [15] and [16]. Our
proposed Spectrogram-ResNet method reaches a higher accuracy compared to the base-
line methods. ResNet34 increases more than 5% accuracy than the Baseline 1 method
and 2% than the Baseline 2 methods on the original subjective labelled vocal intensity
dataset. ResNet101 has a higher accuracy than ResNet34, and the Wav2vec2-LARGE
has a higher accuracy than Wav2vec2-BASE, indicating that the bigger networks are
able to detect and extract additional features.

The results on the SPL labelled dataset surpass all the respective results on the
target labels, which shows the effect of speakers’ subjective understanding on the vocal
intensity. In the following discussion in the confusion matrix and UMAP, we will discuss
deeply the impact of original labels and SPL labels. Table 6 shows the highly unbal-
anced labelling in SPL labels. Both of the labels are reasonable for research. Original
data shows the most realistic state of the data and provides hints for practical appli-
cations. SPL data shows a more realistic state of the data and effectively improves the
accuracy of the data. Note that, the SPL labels used in our ResNet model experiments
are different from the SPL labels in the baseline experiments [15] [16], due to the lack
of metadata for the SPL label calculation process. The SPL labels methodology in the
improved experiments are calculated as described in Section 4.2. It is evident that the
ResNet still performs well on SPL labels.

Figure 20 depicts the classification results in the confusion matrix about different
label methods on ResNet. As the complex matrix is shown in figure 20, the prediction
results have a similar distribution trend with the same label method. Figure 20a and
figure 20b are the objective label classification results, the accuracies are higher in cor-
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Category Original File Numbers SPL File Numbers
Soft 2500 1930

Normal 2500 2306
Loud 2500 3406

Very Loud 2500 2158

Table 6: Comparison of original and SPL-labeled datasets across categories.

ner cases like soft or veryloud than normal or loud. The normal and loud categories are
the intermediate transition zones and the vocal intensity in this zone is easily mixed up
because of the objective induction of the speaker. After the SPL label correction, the
SPL label results reinforced the soft category but averaged results among normal, loud
and veryloud categories.

Figure 21 depicts the UMAP clusters of the features classification used in this paper.
The presence of aggregated noise outside the clustering structure in all the images indi-
cates that the quality of the dataset feature engineering leaves something to be desired.
The figure of original label spectrogram 21a, original label mel-spectrogram 21b, and
SPL label spectrogram 21c show a similar cluster structure, as we see a similar pattern
in the previous dataset, where the spectrogram’s and mel-spectrogram’s feature are also
relatively similar in naked eye observation. In figure 21a, the data show clustering in
the center of each category but some of the data are also scattered to the side, con-
firming the problem of data mixing due to strong subjective judgments in the original
data. The main difference between Figure 21d and 21b is the aggregation intensity
among classes, where in SPL label mel-spectrogram the cluster layering is clearer the
soft class is reinforced while veryloud class is diluted. Meanwhile, original label MFCC
spectrogram 21c illustrated a very different cluster structure like crescent moon, and
the clustering hierarchy is not obvious.

Combining the above analyses, we can conclude that SPL’s distribution is more
conducive to local intensity classification, because the clustering of each class in his
distribution is stronger, and the similarity in features is higher, thus increasing the
possibility of correct classification. The original dataset received the influence of the
subjective judgement of vocalisation by the SPL, which resulted in the real vocal in-
tensity deviating from the objective value, and the data hierarchy was not as distinct
as that of the SPL. However, the significance of studying the raw data is to study the
validity and robustness of the modelling approach, i.e., whether it can still be effective
in real-life applications where there is a lot of noise.
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Table 7: Classification accuracy (in %) for both the baseline features and for the best-
fine-tuned features of all the four models, evaluated for the target intensity category
label and the SPL-based intensity category label.

Features

Original,
subjective
intensity

category label

SPL-based
intensity

category label

Baseline1
Spectrogram 66.08±2.77 81.00±2.36

Mel-spectrogram 65.41±2.11 68.65±4.00
MFCCs 63.19±2.63 66.62±4.8

Baseline2
Wav2vec2-BASE 68.10±2.10 78.98±4.63
Wav2vec2-LARGE 69.90±2.79 79.71±4.76

HuBERT 69.7±3.40 81.27±3.82
AST 68.10±2.10 77.98±3.24

Improved
ResNet34 71.17±5.72 * 78.20 ±2.40
ResNet101 72.17 ±2.63 * 78.13 ±3.75

* the SPL label are calculated using our own scheme as introduced in Section 4.2, which
differs from the original baseline papers

31



(a) Original Label ResNet34 (b) Original Label ResNet101

(c) SPL Label ResNet34 (d) SPL Label ResNet101

Figure 20: The spectrograms with 4 vocal intensity classification with ResNet
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(a) Original Label Spectrogram (b) Original Label Mel-spectrogram

(c) Original Label MFCC (d) SPL Label Mel-spectrogram

Figure 21: The UMAP of spectrograms on the different acoustic features
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9 Conclusion and Future

The paper investigates advancements in multi-class vocal intensity classification by
exploring a group of models and analyzing vocal intensity data. It begins with an in-
troduction to the concept of vocal intensity, its significance, and the rationale for its
study. The research evaluates various models, including traditional machine learning
approaches like SVM, deep learning architectures such as ResNet, and state-of-the-art
frameworks like Wav2Vec2, HuBERT, and AST. Each model is described in terms of
its functionality and application to vocal intensity classification.

Additionally, the paper delivers acoustic feature engineering focusing on spectrogram-
based techniques. It outlines the processes for generating spectrograms, Mel-spectrograms,
and MFCCs. And also discusses the methods for extracting features for classification.
A detailed labelling system SPL for vocal intensity is also presented.

To address the challenge of improving classification methods, the paper proposes an
enhanced approach leveraging all the spectrograms and ResNet. Experiments employ-
ing GroupKFold cross validation and hyperparameter optimization with GridSearch
were conducted to achieve optimal performance. The results demonstrate that the pro-
posed method improves classification accuracy by approximately 5% compared to the
baseline on effectiveness.

In this paper, we delivered a simplified method for Vocal Intensity classification using
classical acoustic feature engineering methods including spectrograms, mel-spectrograms
and MFCC, respectively, combined with a more fine-grained FFT window-step-size, and
subsequently adopting ResNet for image classification upon these spectrograms for vo-
cal intensity. Our simplified method performs better against SOTA methods based on
Transformers like Wav2Vec2, HuBERT, and AST with SVM as a classifier. As a result,
our simplified method reaches an accuracy of 71% beating the SOTA, while simplifying
the computing process and reducing computational complexity.

Although the final result is decent, there are many things that still can be improved.

1. Bigger Dataset: Contribute a bigger and more complete vocal intensity dataset
and improve the data quality in the dataset that can satisfy the high-volume data
requirements for SOTA and more complex models.

2. Better Hyperparameter Optimization: Incorporate advanced optimization
strategies, such as adaptive optimizers and learning rate schedules, to ensure
efficient training and prevent overfitting.

3. Other Methods Instead of ResNet: Explore innovative approaches like self-
supervised models or alternative architectures tailored for vocal intensity analysis,
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integrating advanced feature engineering techniques such as higher-dimensional
features and time-frequency analysis.

4. Multi-modal Models: Leverage multimodality models like CLIP [32] to inte-
grate audio, images (e.g., spectrograms), and text, enabling better feature repre-
sentations and capturing complex patterns across modalities.

5. Novel Visual Encoder-Decoder Models: Experiment and adjust with ad-
vanced encoder-decoder frameworks like ViT [24] for enhanced feature learning in
encoding and decoding.

6. Data Augmentation: Apply modality-specific augmentation techniques, such
as adding noise and shifting pitch for audio or image transformations on spatial
or pixel level, to enhance model robustness.

7. Domain-specific Fine-tuning: Fine-tuning on high-quality, task-relevant datasets
like Parkinson’s disease task [2] to tailor the model for specific problems, improv-
ing accuracy in the domain.

These future imrpovements aim to enhance the performance, robustness, and learn-
ing capabilities of the model, ensuring it is versatile and effective in analyzing vocal
intensity across applications.
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A The Task1 in AVID dataset recording text

The following table includes all the text for recording in Task 1 in AVID.

Sentences list extracted from TIMIT for Task1
We think differently.
He spoke soothingly.
They despised foreigners.
That is your headache.
Nevertheless, it’s true.
Leave me your address.
Come home right away.
Turn shaker upside down.
He makes me uncomfortable.
Did you eat yet?
Did anyone see my cab?
Push back up and repeat.
Hope to see you again.
This was easy for us.
Are you looking for employment?
Guess the question from the answer.
Orange juice tastes funny after toothpaste.
They all like long hot showers.
How do they turn out later?
Who is going to stop me?
All nut kernels are rich in protein.
Don’t plan meals that are too complicated.
They often go out in the evening.
It was time to go up myself.
Birthday parties have cupcakes and ice cream.

Table 8: Sentences used for Task-1 data collection.
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