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Abstract 

The FAIR (Findable, Accessible, Interoperable, and Reusable) workflow offers a 

scientific paradigm for qualify analysis in big data era. In recent years, Passive Acoustic 

Monitoring (PAM) data have been collected for underwater ecosystem research 

purposes. However, these data are often dispersed across databases following different 

ontology standards. In this study, we review these federated marine acoustic data and 

ontologies, summarize the main soundscape-based machine learning algorithms for 

marine biodiversity assessment, and, through FAIR workflow engineering, propose an 

optimized data pipeline for FAIR ecosystem research. The findings provide a solution 

for researchers to integrate federated acoustic data for ecosystem research efficiently 

and to foster greater cooperation. 

Keywords: FAIR Workflow, Data Pipeline, Marine Acoustic Data, Passive Acoustic 

Monitoring (PAM), Machine Learning, ontology 
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1   Introduction  

Passive Acoustic Monitoring (PAM) is a widely used method in marine research that 

uses underwater microphones (hydrophones) to continuously record ecological and 

biological sounds without disturbing marine life, providing accurate ecological data 

for studying marine ecosystems [1]. PAM allows researchers to monitor species 

presence, behavior, and population dynamics, as well as environmental conditions 

such as noise pollution or climate-related changes in the ocean. It significantly 

contributes to the assessment of biodiversity, detection of temporal cological shifts, 

playing a vital role in guiding conservation and management strategies [2]. Thus, the 

quantity of PAM data being collected has increased in recent years, with expanding 

spatial and temporal coverage. 

With the rapid growth of PAM data from different sources, there is an urgent need to 

develop methods to integrate different data formats and process the data streams. The 

use of ‘big data’ approaches, including Artificial Intelligence (AI) and Machine 

Learning (ML), is important for solving problems in ecosystem science, as these 

methods can extract valuable patterns from large amounts of acoustic data. However, 

to apply these techniques effectively, metadata and data must be clearly structured, 

annotated, and accessible, enabling researchers to access catalogs, observations, and 

alert services via the webpage [3]. Data formats also need to support machine 

readability, interoperability, and scalability to align with the demands of scientific 

research and multi-source data inputs. 

To meet the specific requirements of machine learning applications, it is also crucial 

to adopt suitable data frameworks that can handle preprocessing, feature extraction, 

analysis and annotation of the data in a consistent and automated way. These ML 

pipelines can quickly process large amounts of acoustic data to extract valuable 

information, assisting scientists to better monitor ecology and develop more effective 

conservation strategies. It is becoming a powerful tool and the main trend in 

ecosystem research. Some studies on ML architectures for PAM data exist, firstly on 

landscapes such as forests [24], and several studies have begun to apply this to marine 

acoustic data [3][17][24][25].  

With the expansion of related research, there also has been a growing call for Open 

Science practice for better ecological study. In this context, the FAIR principles 

(Findable, Accessible, Interoperable, and Reusable) are essential. Some studies have 
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called for the FAIRification of marine data including image [4], metagenomic eDNA 

[5], and acoustic [6] data, which are widely used to monitor and explore ocean 

habitats. These data types are often massive and possess unique characteristics that 

traditional data management methods struggle to handle. Marine data are becoming 

increasingly diverse and inconsistent, while some countries have developed their own 

detailed data standards and metadata documents, these often differ significantly and 

lack universal adoption. Thus, effective data stewardship requires efforts across the 

entire data lifecycle - from collection and metadata documentation to quality control, 

publication, and archiving. To ensure long-term usability and cross-disciplinary 

collaboration, marine datasets must comply with FAIR guidelines, providing 

researchers with easy access and long-term use to answer  new scientific questions [2]. 

Beyond the dataset, the computational workflow as digital object, is also important for 

Open Science. It outlines the multi-step processes in data collection, preparation, 

analysis, modeling, and simulation that produce new data products. The FAIR 

computational workflow [7] naturally aligns with FAIR principles by using existing 

metadata, generating new metadata during processing, and tracking data provenance. 

Such features improve the quality evaluation of ML data and support its reuse. 

Ensuring Open Science and FAIR is not only a technical consideration but also 

essential for equitable access to marine acoustic data. In some regions, limited 

research capacity and unequal access to resources restrict joint scientific work. This 

imbalance can also cause gaps in marine acoustic data coverage, biased research 

results, and underrepresentation of local ecosystems in global studies [8]. Promoting 

FAIR and open science helps make these data and computational processes more 

accessible, encourages broader participation in marine acoustic research, and 

supports fairer contributions to policy and decision-making. Stronger international 

cooperation is needed to address these challenges and ensure ocean science benefits 

globally. 

 

1.1 Problem Statement  

Despite the advancements in PAM and ML applications, analyzing marine ecosystems 

with different ML algorithms remains challenging, due to varying input feature 

requirements and data processing methods. While some researches provide clear 

methods for data processing [3][24][25], they often overlook the specific needs of 
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downstream ML tasks. Also, although there has been progress in developing various 

data architectures and some studies applying ML to marine acoustic analysis 

[1][6][13][16][17][20][21], these frameworks mostly focus on single ML task. There 

remains a need to develop more adaptable frameworks that address diverse ML 

requirements for ecosystem research. 

On the one hand, the raw acoustic data will be preserved separately by different 

organizations in different formats [2] (such as different databases and ontologies). 

There is a gap between standard ontologies and specific metadata definitions for 

machine learning tasks, such as the machine learning labels, etc. 

On the other hand, creating pipeline that can effectively serve multiple ML tasks 

requires careful consideration, particularly how to structure it for various analytical 

needs including acoustic fingerprinting and anomaly detection still remains a 

challenge.  Also, the complete computational pipelines are not always published, or 

are not always in a standard format with entire documents enabling reproducibility. 

Therefore, for better computational practice and co-research, it is necessary to study 

how to bridge the gap between the requirements of data framework for multiple 

soundscape ML tasks, with corresponding ontology contributing to federated data 

interoperability and reusability, and the existing frameworks and ontologies. Given 

the complexity of marine ecosystems and increasing need for efficient data processing 

and AI analysis in marine ecosystem research, challenges such as data inconsistency, 

limited interoperability, and inefficiencies in handling diverse ML tasks persist.  

Thus, the goal of this research is to explore how to optimize data ontologies 

and pipelines to meet the multiple needs of soundscape ML tasks for 

marine ecosystem research, and to reflect on how to improve data 

interoperability and reusability. 

 

1.2 Research Gap 

Three key gaps remain in the use of these techniques for ecosystem research: 

⚫ Incompatibility Between Data Ontology and ML Metadata: Acoustic data stored in 

a decentralized way lacks a unified metadata standard, hindering the 

interoperability and reusability of federated data. 
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⚫ Insufficient standardized Multi-task Process Design: Existing frameworks cannot 

adapt to multiple ML algorithms, and soundscape level studies do not fully 

consider the needs of downstream individual studies. There is a lack of optimized 

and standardized workflows for multi-task processes. 

⚫ Insufficient FAIR computational workflow: Currently we focus more on FAIR 

datasets and algorithms, however the whole computational workflow should also 

be considered. 

 

1.3 Research Objectives and sub objectives 

To fill this research gap, the main objective is to propose an ML-driven data pipeline, 

by extended ontology, to enhance the reusability and interoperability of acoustic data 

for ecological research. 

 Specifically, the study focuses on the following objectives: 

1) RO1: Integrate the marine soundscape data with optimized ontology to support 

subsequent ML tasks. 

2) RO2: Address inefficiencies and propose the optimization solution of the data 

pipeline to support further diverse ML tasks. 

3) RO3: In engineering, set up the pipeline and experiment to test its performance, 

and then document it. 

4) RO4: Use the FAIR principle to evaluate the data pipeline maturity, as well as the 

data consistency and quality. 

 

1.4 Research Question and sub-questions 

Based on the research objectives above, the question is: How can the marine acoustic 

data pipeline and ontology be designed to address data consistency, support various 

ML tasks, and align with the FAIR principles for effective ecosystem research? 

Following this main question, the key sub-questions are: 

1) RQ1: How can marine soundscape data be integrated, through ontology design to 

better support machine learning requirements? 
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2) RQ2: What are the key inefficiencies in current data pipelines to be optimized? 

3) RQ3: In practice, how does the optimized pipeline perform driven by the data 

models? 

4) RQ4: What degree of FAIR maturity does the data pipeline achieve?  

 

1.5 Location 

This research is conducted at the Leiden Institute of Advanced Computer Science 

(LIACS), Leiden University, as part of a master's thesis project. The study is literature-

based and code-based, involving publicly available academic paper platforms, datasets 

and cloud-based resources. The only data collection involving human participants in 

interviews, which are conducted either offline in Leiden or online via Zoom. The 

research is carried out under the supervision of academic advisors at Leiden University 

and includes discussions and interviews with researchers from Naturalis Biodiversity 

Center(Leiden) and San Diego Supercomputing Center. 

 

1.6 Relevance considerations  

This study addresses an important challenge in marine ecological research: how to 

better use sound data with modern AI tools. The relevance is in two aspects: 

⚫ Academic Relevance: This study helps improve ecological research by showing 

how marine acoustic data can be used in a machine learning workflow that 

supports different tasks. It provides a clear way for downstream tasks such as 

species or noise source identification, where sound clips can be directly extracted 

from continuous soundscape data without reprocessing long recordings. This 

makes it easier to use the same data for both biodiversity studies and detailed 

species analysis. It also contributes to discussions on how to make data and 

workflows more reusable, consistent, and aligned with machine learning methods. 

As a case study, it shows how FAIR principles can be applied in ecological science. 

⚫ Societal Relevance: By making marine ecosystem monitoring more efficient, this 

study supports analysts, conservation groups, and policymakers. It helps with 

faster biodiversity assessments, early warnings of environmental change, and 



 

 

10 

better conservation decisions. The workflow can also help build scalable and open 

tools to protect ocean ecosystems in the face of climate change. 

 

1.7 Philosophy of Knowledge  

This study mainly takes a positivist position, through engineering to verify the 

optimized design. This study is situated in a specific case — marine acoustic data and 

FAIRification for marine ecosystem monitoring — using real-world datasets and 

domain-specific ML tasks, which makes the context highly relevant. However, the 

proposed workflow is transferable and can be applied to broader federated data 

analysis tasks. 

 

1.8 Research Design  

This study combines a case study and exploratory design to investigate how the FAIR 

principles can support the development of a machine learning (ML) workflow for 

marine acoustic data. The case study works with real-world PAM datasets, identifying 

key data analysis requirements for ecosystem research. It includes qualitative research, 

such as expert interviews and literature reviews, to understand the essential problems 

and use cases. Based on the challenges identified in the case study, the exploratory 

part focuses on integrating the data into a metadata-driven FAIR pipeline and 

exploring how well it can support different ML tasks. The study examines key aspects 

of FAIRification, such as data linking, aligning ML tasks with available data, and 

designing the overall workflow. It also identifies practical challenges, including 

scalability issues and the lack of standardized, reproducible workflows for marine 

acoustic data analysis. 

 

1.9 Methods of data collection  

This study collects data in two methods: 

Method 1 - Qualitative research data: The qualitative data is collected through expert 

interviews and literature review. The interviews were conducted with researchers in 

the field of acoustics data, focusing on the integration of data into machine learning 

for biodiversity research. Additionally, a systematic literature review of relevant 
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academic papers and technical reports was carried out to summarize the existing 

frameworks and algorithms. Those documents are all from public databases (Google 

Scholar, ScienceDirect, ResearchRabbit). 

Method 2 - PAM marine acoustic data and metadata files: The soundtrack are all from 

publicly accessible platforms, one is reference published papers, and the others are 

from some national ocean sound databases including those in the United States, 

German, and Australia. All the metadata files can be downloaded with the soundtrack 

data. The entities for ontology design are from ontology webpages and portals such as 

BiodivPortal. Here is the summary of the data sources as Table 1: 

 
Data 
Source 

Year Location Data URL Metadata URL 

1 
NOAA-
ONMS 

2023 US 

https://console.cloud.google.com/stora

ge/browser/noaa-passive-

bioacoustic/onms/audio/fgb01/onms_f

gb01_20230714/audio;tab=objects?pag

eState=(%22StorageObjectListTable%2

2:(%22f%22:%22%5B%5D%22))&inv=1

&invt=AbtAZg&prefix=&forceOnObject

sSortingFiltering=false 

https://storage.goo

gleapis.com/noaa-

passive-

bioacoustic/onms/

audio/fgb01/onms

_fgb01_20230714/

metadata/ONMS_

FGB01_20230714.j

son 

2 
Williams 
et al paper 
[25] 

2024 
French 

Polynesia 
https://zenodo.org/records/10539938 

https://zenodo.org

/records/10539938 

3 PANGAEA 2020 German 
https://opus.aq/portal/recorder/ARKF

04-19_SV1088?timestamp=2020-01-

09T01%3A41%3A05.170%2B00%3A00 

https://doi.pangae

a.de/10.1594/PAN

GAEA.967512 

4 AODN 2018 Australia 

https://catalogue-

imos.aodn.org.au/geonetwork/srv/eng/

catalog.search#/metadata/e850651b-

d65d-495b-8182-5dde35919616 

*the same as data 

url 

Table 1: Summary of the PAM data sources 

 

1.10 Methods of data analysis  

For the literature review, the PRISMA method was used for systematic review. Expert 

interviews were analyzed by reviewing notes, extracting key insights, and summarizing 

core recommendations. For the acoustic data, data linkage with unified metadata files 

and machine learning algorithms were the main ways for data integration and analysis. 

More details will be explained in Chapter 3 - Methodology part. 

 

https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/MGG/passive_acoustic//iso/xml/NOAA-Navy-SanctSound_Raw_Data.xml&view=getDataView
https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/MGG/passive_acoustic//iso/xml/NOAA-Navy-SanctSound_Raw_Data.xml&view=getDataView
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1.11 Ethical and data management 

All datasets used in this study are publicly available and used only for academic, non-

commercial purposes. According to their terms of use and licenses, proper attribution 

and citation are provided for each source. Since the research does not involve any 

sensitive or personal data, it complies with relevant legal and ethical regulations 

regarding data use.  

To ensure FAIR findability, accessibility and reusability, all original datasets are 

uploaded and opened via Zenodo (https://zenodo.org/records/15185049). All 

experiment process data and source code used in the computational workflow have 

been published on GitHub (https://github.com/holeiden/fair_thesis), and the 

workflow is standardized with Snakemake and published in WorkflowHub  

(https://workflowhub.eu/workflows/1380). 

  

1.12 How can the knowledge to be generated be used 

This research produces knowledge that is both specific to a particular context and 

partly transferable. The specific context includes the datasets, ontologies, and machine 

learning algorithms specifically used for soundscape research. The transferable part is 

the standardized FAIRification workflow developed in the study. It follows four main 

steps: 1) integrate federated data into ontology-based metadata; 2) analyze the 

metadata requirements of multiple ML tasks as input features; 3) FAIRify the 

computational workflow; 4) perform a FAIR maturity assessment. This workflow 

could be referred to many other research areas that deal with non-sensitive data. 

The reliability of the findings is supported by the fact that the workflow follows the 

FAIR principles strictly. All data and code are shared openly, and the process is 

standardized using Snakemake, which makes it portable and reproducible in other 

environments. 

 

1.13 Timeline  

The research lasts for 9 months, and the timeline is as follow Table 2: 
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Oct 2024 - Kickoff, discuss with supervisor and PhD guide, define the 

research scope. 

- Start literature review and finding the research gap, consider 

about the topic. 

Dec 2024 - Finalize the topic and research scope, deliver a research proposal. 

- Plan the methodology for the whole experiment part. 

Jan 2025 - Data source, ontology & ML algorithm  study, use tools to design 
the ontology. 
 
- Start writing the Chapter 1 &2. 

Feb 2025 -  Data pipeline engineering on different soundscape ML models. 
 
- Start writing the Chapter 3. 

March 2025 - FAIR maturity evaluation. 
 
- Start writing the whole thesis, mainly on result chapters. 

April 2025 - First draft of thesis. 

- Poster presentation in Solid Symposium 2025. 

July 2025 - Finalize the thesis, defense and prepare for publication 

Table 2: Timeline of the research 
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2          Theoretical Framework 

This chapter presents the theoretical concepts and frameworks essential for 

understanding the integration of  metadata & ontology, machine learning, and the 

FAIR principles in the upcoming research. These components form the basis for 

developing efficient FAIR computational workflows, ensuring that data is structured, 

machine readable and actionable, and reusable for analysis. 

 

2.1 Metadata and Ontology 

Interoperability is the ability of data or tools from different, non-cooperating sources 

to integrate and work together with minimal effort. Metadata and ontology are key 

elements that enable this interoperability.  

Metadata is ‘data that provides information about other data’, it can help users find 

relevant information and discover resources (Wikipedia). In another word, ‘Metadata 

are contextual data about your experimental data. Metadata are the who, what, 

when, where, and why of these data. Metadata put these data into context’  

(https://microbiomedata.org/introduction-to-metadata-and-ontologies/). 

To ensure interoperability across different platforms, metadata terms should follow 

standardized vocabularies from the Semantic Web schemas, these schemas allow 

metadata terms to be consistently described, interpreted, and shared across various 

applications and systems. 

Triplestore: The metadata can be structured using a triplestore approach, which 

represents relationships using the format subject – predicate - object, the subject is 

the individual being described, the predicate defines a property or relationship, and 

the object gives the value or target of that relationship. Triplestore is particularly 

powerful for representing complex, linked information in a way that supports 

interoperability and reasoning, making them well-suited for semantic web and 

ontology-based applications. 

Ontology: is ‘a formal description of knowledge as a set of concepts within a domain 

and the relationships that hold between them. It ensures a common understanding 

of information and makes explicit domain assumptions thus allowing organizations 

to make better sense of their data’  
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(https://www.ontotext.com/knowledgehub/fundamentals/what-are-ontologies/). 

Ontologies help in organizing and linking metadata in a meaningful way, supporting 

more complex reasoning and data integration. This structure allows for semantic 

querying and reasoning, including class hierarchies, constraints, and logical rules. The 

Resource Description Framework (RDF) and Web Ontology Language (OWL) are 

widely used formats to represent ontologies in this triple-based structure. 

JSON-LD: JavaScript Object Notation for Linked Data (JSON-LD) provides a 

lightweight, web-friendly and human-readable version to contain the ontology 

information. It allows data to be semantically annotated and integrated with Linked 

Data principles, using a Dictionary as another format to represent the triplestore 

relationship. 

It has seamless integration with web technologies, such as being directly embedded in 

HTML pages or APIs, and also supports incremental construction and partial updates 

of metadata. This means that metadata can be progressively enriched or adapted to 

evolving research needs as new data is accumulated. Such flexibility is especially 

valuable in machine learning workflows for ecological data, as it changes such as 

updating the Anomaly Event labels, supporting sustainable data management and 

reuse. 

Semantic filters and data query: Metadata not only describes data but also serves as a 

semantic filter, helping users efficiently locate relevant datasets based on key 

attributes. It enhances the ability of machines to automatically find and use the data, 

in addition to supporting its reuse [9]. With data query languages like SPARQL, users 

can query and extract individual data records in a batch that meet specific criteria, 

enhancing efficiency in large-scale data selection. 

 

2.2 ML algorithms for marine acoustic data 

Institutions have gathered extensive ecosystem data over decades, with various 

sensors on various platforms. To handle the growing data volume, they now use big 

data analytics, including AI and machine learning, to support resource management, 

monitoring, and policy decisions. The missions of acoustic data collection and analysis 

have expanded from single-species identification & statistics to overall landscape 

biomass estimations. 
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As shown in Figure 1, ML tasks with acoustic data are generally in two directions. One 

focuses on the ecosystem, analyzing patterns at soundscape level to study biodiversity 

or detect unusual changes. On the soundscape level, researchers often apply 

unsupervised learning method to process data, using CNN-based feature extraction 

and clustering methods to assess fish biodiversity or coral reef biodiversity using large 

historical datasets. It also produces the sparse dot map called ‘sound fingerprint’, 

which shows the latent features of sounds across time and space.  

 

Figure 1: Different ML tasks of marine acoustic data for ecosystem 

Another key application of soundscape data is anomaly detection—spotting unusual 

events in the acoustic environment. This is done using methods like RNNs, K-means, 

or Gaussian Mixture Model (GMM). Detecting anomalies early allows for faster 

response to disturbances, helps reduce harm to species, and improves the resilience of 

marine ecosystems. This is critical for effective biodiversity conservation. 

The other focuses on individual-level analysis, such as identifying specific species or 

detecting noise sources, mostly are supervised learning methods. For individual-level 

tasks, many algorithms already exist to recognize particular species or classify 

different sound sources. However for individual-level machine learning, one common 

challenge is the sparsity of sound events (usually just 1-5% duration of the whole 

soundtrack). In long-term PAM monitoring, the actual sound events are often very 

short, and researchers usually need to extract these event windows from long 

recordings.  

Fortunately, in soundscape-level analysis, the data is already resampled into 

standardized short sound clips. Some of these clips contain the events and can be 
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shareable and reusable for individual-level tasks, this can turn one unified dataset 

serving multiple different tasks efficiently.  

 

2.3  FAIR principles 

The FAIR principles aim to overcome barriers to data discovery and reuse by helping 

all stakeholders like researchers, institutions and systems, more easily find, access, 

integrate, reuse, and properly cite large volumes of data produced by modern science 

[9]. 

FAIR concept [9]: The FAIR Principles were firstly introduced by Wilkinson et al. 

(2016) to improve the infrastructure supporting the reuse of scholarly data. FAIR 

stands for Findable, Accessible, Interoperable, and Reusable, aiming to ensure that 

data and metadata can be easily shared and reused by both humans and 

machines.FAIR principles emphasize: 

Findable: Data should be assigned a globally unique and persistent identifier (e.g., 

DOI) and be described with rich metadata indexed in searchable resources. 

Accessible: Metadata and data should be retrievable using standardized 

communications protocols, even when the data itself is no longer available. 

Interoperable: Data should use a formal, accessible, shared, and broadly applicable 

language for knowledge representation (such as RDF, OWL or JSON-LD, to enable 

integration with other datasets). 

Reusable: Metadata and data should be richly described with clear usage licenses and 

detailed provenance to support replication and further use. 

The FAIR principles are not a standard, but a set of high-level guidelines. They are 

widely endorsed in scientific domains, especially those dealing with complex and 

distributed data such as environmental and biomedical sciences. 

Data FAIRification process: Data and metadata formats and processes are often very 

different between fields and organizations, which creates information silos and makes 

it hard to share data across scientific communities. The ‘FAIRification’ is a method 

that follows a step-by-step, generic workflow for making data FAIR. It can be 

implemented through collaborative workshops or by teams of domain experts working 
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under the guidance of FAIR data stewards, as outlined by Jacobsen et al. at Leiden 

University Medical Center and the GO FAIR International Support and Coordination 

Office [11]. 

Federated Architecture: Federated architecture is a solution to manage data in 

different databases but can still be accessed and used together without loading to a 

centralized storage. After data FAIRification, users can quickly link and query data 

across different institutions and storage systems. This decentralized approach respects 

data ownership, supports different types of data structures, and helps share and reuse 

data smoothly across organizations and regions. 

FAIR computational workflow: is designed to manage complex, multi-step data 

analysis processes. They connect different pieces of code, software, and tools into a 

structured pipeline, and automatically manage how data flows between them. They are 

important because they improve efficiency, make research easier to reproduce, scale 

up better for large datasets, and support teamwork. With the rise of data-driven 

science, well-designed and FAIRified workflows help ensure quality, transparency, 

and the smart use of computing resources. Metadata plays a key role in describing 

what each step needs to run properly [12]. 

FAIR maturity: often referred to as ‘FAIRness’, represents the extent to which data 

objects, metadata, and associated workflows conform to the FAIR principles, that they 

are Findable, Accessible, Interoperable, and Reusable. FAIR maturity is commonly 

assessed using a set of structured indicators or levels, each corresponding to a specific 

sub-principle as Figure 2 below. These levels are derived from formal interpretations 

of the FAIR principles and provide concrete, measurable criteria for evaluation. By 

assessing FAIRness, institutions and data stewards can monitor the progress of their 

FAIRification efforts, benchmark against community expectations, and support 

interoperability and reusability across disciplines, platforms, and repositories. In this 

context, FAIR maturity model plays a role: they guide the implementation of FAIR-

aligned practices and provide the metrics necessary for transparent, reproducible, and 

trustworthy data stewardship.  
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Figure 2: FAIR Guiding Principles [9] 

 

2.4 Relationship between Ontology, Machine Learning, and FAIR Principles 

For the single-source data or an individual researcher, FAIR helps to make the dataset 

reusable for open science. Also, in a federated architecture, FAIR will be helpful to 

guide the integration process. When gathering different data source for marine 

biodiversity analysis, raw acoustic data needs to be processed into FAIR data so it can 

be reused effectively. This is especially important because data often comes from 

different institutions, which may use different recording equipment, file formats, or 

store data in different ways. Without standardization, it cannot be the inputs into the 

machine learning (ML) pipeline properly. 

FAIR helps bridge the gap between diverse federated data and the unified input 

requirements of ML. It ensures that datasets are resampled and combined with clear 

and consistent metadata, structured through an ontology. Ontologies provide a top-

down structure with shared vocabulary from semantic web, defining what each data 

element means, what is the unit, how it was collected, and how it connects to other 

datasets. This is essential to prepare data for ML workflows. 

As shown in Figure 3, the core logic of the framework is to take raw acoustic data, 

process it through a data calibration and standardized process, and link the data 

samples using ontology-based metadata. After this it is possible to resample data, 
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extract standardized features from different sources, enabling ML models to analyze 

the data more effectively, compare results, and adapt to various tasks.  

 

Figure 3: The framework of ML tasks for sound data in various ontologies 

To support supervised training and preserve the results of unsupervised learning in 

acoustic-based ML tasks, metadata plays a crucial role in structuring and labeling 

datasets. In supervised learning (at the individual level), models rely on labeled data 

— such as species names, behavior types, or noise categories for training. Therefore, 

clearly defined metadata fields are needed to standardize labels (e.g., using scientific 

species vocabularies). 

In contrast, unsupervised learning does not require labeled inputs, but updating 

metadata with anomaly detection results can provide a fast retrieval mechanism for 

subsequent individual-level analysis. From both perspectives, embedding machine 

learning labels directly within metadata ensures interoperability and reusability. 

In short, FAIR principles guide the method to integrate federated data, extend 

metadata/ontology to form the foundation for interoperable inputs and outputs for 

machine learning. After FAIRification, each individual data is represented in a 

standardized, machine readable format. For the federated architecture (a 

decentralized data infrastructure), such FAIR data can be stored in its original location 

while being accessed and queried via standardized protocols. This enables data sharing 

and reuse across institutions and locations without the need to physically centralize 

the data. 
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3          Methodology 

The FAIR principles provide a paradigm for managing data, extending the ontology, 

and ensuring data interoperability and reusability. This study start from data 

integration and the development of our ontology, followed by a review to identify 

various algorithmic applications. Then we design and implement the data framework, 

and finally evaluate the FAIR maturity of the data pipeline. 

Before starting the actual data integration, we need to first study the metadata 

information. The data sources contain two types of metadata, one is general metadata 

as ground true information, such as sampling depth. These can be integrated by simply 

unifying the terms and units. The another one relates to acoustic differences because 

of the background noises or variations in the hydrophones used across different 

projects. These bias are stem from the instance features of the noise or the 

hydrophones themselves, rather than from actual features in the soundscape.  

Thus when dealing with the second type of metadata, it is important to include relevant 

acoustic-related metadata during the FAIRification process at the start in Section 3.1, 

as this will support later data calibration. This remains information such as the 

original recording equipment, sampling frequency, and calibration details, providing 

important contexts for data calibration before data processing and ML in Section 3.2 

and Section 3.3 to adjust for variations introduced by different recording devices. 

 

3.1 Data source and ontology 

This research begins with identifying suitable data sources and ontologies as the first 

step of the data FAIRification process (Figure 4). The Data FAIRification process 

shows a detail guideline to address these challenges, providing a step-by-step 

approach to identify and analyze, then define the data and metadata and link them 

both together, finally public and assess it.  
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Figure 4: Standard data FAIRification process [11] 

Figure 4 illustrates the FAIRification process, structured into three phases: Pre-

FAIRification, FAIRification, and Post-FAIRification. The Pre-FAIRification phase 

involves defining the FAIRification objective (e.g., improving interoperability or 

metadata quality), and analyzing the current data and metadata, including their 

formats, semantics, and FAIR status. In the FAIRification phase, semantic models for 

both data and metadata are defined or reused, followed by transforming them into 

machine-readable, linkable knowledge graph representations. These are then hosted 

on platforms to ensure accessibility. Finally, in the Post-FAIRification phase, the 

FAIRness of the data is assessed to see whether the initial objectives have been 

achieved. This 7 steps’ order is not strict and can be iterative. 

In the Pre-FAIRification step, we focus on ‘Marine Acoustic Data’ as the core object to 

be integrated. To find widely adopted marine acoustic data sources and ontologies, we 

used three main methods: exploratory search using Google with keywords such as 

‘marine acoustic data’ and ‘marine PAM data’; review of academic literature to identify 

what datasets and ontologies have been used in previous studies; and interviews with 

acoustic and ontology experts, asking them to recommend data platforms they use and 

ontologies they follow. These expert inputs help validate our search and fill in the gaps 

that may have been missed. 

We conduct interviews with researchers in two areas: data sources and ontologies. The 

interviews were carried out both in-person and online, each lasting around one hour. 
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Before each interview, we prepare a structured list of questions to guide the discussion. 

The responses are recorded through written notes, from which key information is later 

extracted. 

In the FAIRification and Post-FAIRification step, after identifying several main 

marine acoustic datasets and ontologies, we select three representative datasets, each 

base on a different ontology structure. We then carry out these four steps of 

FAIRification: 

1) Define a semantic metadata, and use Protégé to define the ontology model. Reuse 

terms from existing semantic web vocabularies as much as possible, such as 

Schema.org (for general-purpose metadata) or domain-specific schemas like 

Dublin Core. When defining metadata, terms (such as Duration, Locations, Event, 

Frequency) are identified and linked using Uniform Resource Identifiers (URIs). 

These URIs provide globally unique references, enabling different datasets to refer 

to the same concept and thereby facilitating linked data. Ontology portal platforms 

can be used to efficiently search for existing terms and classes. If required terms 

are missing, we create our new terms as extension. Once the model is defined, 

output the ontology as a Turtle file (TTL). 

2) Check feature coverage: Prepare a checklist of important features and filters 

needed for ML tasks (e.g., location, duration, species label, frequency, sensor type). 

Verify whether these features and filters are already represented in metadata. If 

gaps exist, add ontology extensions to include the missing ones. The research on 

the FISHGLOB dataset [10] as shown in Figure 5, shows an example to consider 

the filters, which integrates fish biodiversity data from scientific bottom-trawl 

surveys, three types of filters can be used as selectors in data platforms. These 

filters allow users to navigate the data based on different aspects of the dataset, 

such as location, time, or species. The granularity of the filter directly enhances 

the precision of data selection, enabling more specific and tailored queries based 

on dimensions such as spatial and temporal scale, or taxonomic depth. By using 

these filters, users can easily find the data they need, making the dataset more 

accessible and useful for research.  
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Figure 5: Example to  create FISHGLOB datasets and three types of filters [10] 

It is important to note that some metadata such as result labels generated by 

machine learning models or anomaly event descriptions are annotated as 

assertions or statements. These labels different from the original background 

metadata of the data as provenance features, so they are not ground truth and 

should be clearly distinguished. From a data lifecycle perspective, before 

downstream machine learning tasks, these labels can be further refined through 

expert review or cross-validation with multiple data sources and evidences. This 

helps reduce the risk of downstream task failure caused by the inaccuracy of ML-

updated labels or manual event descriptions. These consideration should also be 

adopted in the Section 3.2 data framework design and the Section 3.3 practical 

pipeline engineering. FAIR is not static, by clarifying which labels are available for 

re-evaluation, the robustness of the entire data framework can be improved. 

3) Data & metadata linkage: After calibrating and standardizing the raw long acoustic 

data, link every standard data as individuals with the semantic metadata. Because 

the original metadata files contain a lot of background information such as 

location, time, equipment and signal information etc, but probably with different 

representations, we need to make mapping rules to preserve the relevant metadata 

values. The mapping rules should consider three aspects: term standardized (e.g. 
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deployment location & project location all transferred to ‘Location’); semantic 

standardized (‘Depth’ means hydrophone’s deployment depth not the seabed’s 

depth); unit standardized (Duration should always be in seconds). 

Once we have the mapping rules, we could transfer individuals’ original 

information into a unified table with standardized metadata. For instance, in the 

table format as Table 3, the value could be transfer into triples as <row><term 

(column)><grid value>: e.g. <id_1><Event>’1’, <id_2><Location>’Stetson Bank’. 

Here each row could be transformed into a series of triples, this structure provides 

semantic clarity, allows for data linking across datasets, and supports flexible 

querying in triplestores. 

 

Table 3: Example of a unified table 

Then we use a Python script finish the data & metadata linkage, transferring the 

metadata into JSON-LD format, combing the structured ontology information in 

TTL file and the individuals’ metadata values in the unified table. Now with the 

metadata as filter, data queries can be implemented. SPARQL is a powerful query 

language designed to work with RDF files like OWL and TTL data formats, and it 

allows for the querying of complex relationships and inference rules within the 

data. In contrast, JSON-LD is another kind of RDF file which does not require an 

inference mechanism, making it more suitable for faster and simpler queries. Thus 

when working with JSON-LD, queries can be performed by Python Dictionary 

methods or RDFLIB Python package similar to SPARQL. These approaches allow 

for data filtering through specific conditions, making it an efficient way to access 

relevant information. 

4) Host and test: Host the FAIRified datasets and metadata files. Test their 

interoperability and machine-readability using query techniques. 

 

3.2  Data framework design 

Through the above literature review, we obtained a foundational understanding of 

relevant research and algorithms. Based on the literature review findings, we further 

id Duration Location Event

1 5 Random 1

2 60 Stetson Bank 0
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examine the data frameworks used in the core papers [3][24][25] and critically analyze 

them against key standards, including multi-source data integration, support for 

multi-task learning, and potential for data reuse. Based on the identified limitations, 

we propose an optimized framework to address these gaps. Our framework should be 

built around two core components: 

1) Multi-source data integration & Multi-task ML support: We need to ensure 

comparability and compatibility with diverse acoustic data sources integration 

through a modular pipeline capable of processing datasets in varying data 

structures and formats. By standardizing the data, the framework enables acoustic 

calibration and seamless application of machine learning models.  

2) Cross-team data reuse for collaborative tasks: To facilitate data exchange and reuse 

across research teams, metadata file serves as a semantic bridge. Key results are 

stored in standardized, ontology-aligned labels for consistent updates. Because 

they are process-generated results, before going into the next step of the data life 

cycle, they need to be re-assessed and re-annotated. This validated metadata not 

only supports ML training, but also allows rapid extraction of anomalous events 

from lengthy soundtracks in downstream tasks. 

 

3.3 FAIR data pipeline engineering and testing 

In this phase we conduct the optimized framework through IT engineering, following 

the FAIR data workflow guideline. The main steps are as follows: 

1) According to the data framework, design the data pipeline and define the technical 

stacks for engineering. 

2) Use Python and machine learning algorithms in Pycharm IDE for building the 

pipeline. Load and split the long raw soundtracks into 60seconds flac files, and 

link the data with metadata as inputs. Each step is modularization as an 

independent python script so that it is easier debugging, testing, and future 

updates.  

3) During the computational process, the metadata file is continuously updated - 

especially the machine learning labels, to record analysis results and support 

further data querying. Before data sharing with the downstream teams or the 
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analysis results going to the next round of the data life cycle, there should be an 

extra step for reassessment.  

4) Once the Python pipeline is workable, translate the pipeline into Snakemake, a 

widely used workflow management system in scientific research. Define each 

pipeline step as a rule, with clear inputs, outputs, and processing code modules. It 

ensures the reproducibility across systems by setting up environments. Figure 6 

shows the structure of a FAIR computational workflow. A workflow clearly 

describes how data moves and how different components like datasets, scripts, or 

machine learning models are executed and connected. These components should 

be modularized and can often be reused or recombined in other workflows, 

thereby promoting efficiency, reproducibility, and methodological transparency. 

 

Figure 6: Example of a FAIR computational workflow [12] 

5) After finish testing,  upload and open the raw soundtrack data in Zenodo and the 

whole experiment documents in GitHub.  

*A note on the main engineering tools: 

Python: In this experiment, we chose Python, a widely used language for data analysis. 

It supports a rich ecosystem of libraries for big data processing and machine learning, 

and is compatible with formats such as JSON-LD, CSV, and various audio file types. 
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Snakemake: Executing a workflow involves standardizing this abstract specification 

using a workflow management system (WMS), which defines the execution by 

supplying necessary inputs (e.g., data files, parameters) and managing dependencies 

between tasks. As the workflow runs, each component is executed in order, producing 

outputs along with logs and metadata that record how the results were generated or 

updated [12].  

Among available WMS tools, Snakemake is widely used in data-intensive domains 

such as bio-informatics and environmental data science. Snakemake enables the 

creation of scalable, automated, and reproducible workflows, described using a 

concise and human-readable syntax based on Python. Workflows are encoded in a 

‘Snakefile’, where each rule specifies input and output files, the command or script to 

be executed, and optional resources or constraints. By handling job scheduling, 

dependency resolution, and parallel execution, Snakemake significantly reduces 

manual intervention and facilitates the development of robust and reuseful data 

pipelines. Comprehensive documentation and community support further contribute 

to its adoption in research and open science. 

 

3.4 FAIR assessment  

The FAIR assessment guideline provides specific sub-metrics to evaluate the 

FAIRification result. As shown in the Figure 2, each indicator is accompanied by a 

clear description, allowing it to serve both as an assessment tool and as a practical 

guideline for FAIRification. For example, F1 assesses whether data are assigned 

globally unique and persistent identifiers, while R1 focuses on whether data and 

metadata have rich description and accurate relevant attributes to be reused. The 

maturity model enables organizations and researchers to systematically identify gaps 

in their current data practices and prioritize improvements. 

An automation tool for the ontology is applied called ‘F-UJI’, it is a web service to 

programatically assess FAIRness of research data objects at the dataset level based on 

the FAIRsFAIR Data Object Assessment Metrics. These Metrics are similar to the 

thought of FIP assessment tool suggested by Prof.John Graybeal. For the 

computational pipeline we use the FAIR maturity degrees to manually assess. 
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4          Related Literature 

This chapter provides an overview of literature related to marine acoustic data, with a 

focus on key processing pipelines and machine learning models. Particular attention 

is given to data frameworks at the soundscape level, summarizing various 

preprocessing methods and ML algorithms relevant to our later-on design. Based on 

the review of 21 relevant papers, we synthesized common modeling strategies and 

algorithms across marine soundscape data machine learning workflows. (The full 

literature review process is shown in appendix A).  

 

4.1 Why applying machine learning for acoustic data 

The marine soundscape combines sound sources categorized as geophony, biophony, 

and anthrophony [29]. It is characterized by spectral, temporal, and spatial features 

that vary depending on the location and time [30]. In marine environments, the main 

biological sound producers include marine mammals, soniferous fish, and 

invertebrates. Soniferous fishes, a diverse group of vocal vertebrates, use acoustic 

signals for a range of social interactions and exhibit considerable variability in their 

life histories [14].  

According to the systematic review by D.A.Nieto et al. [13], three main methods for 

analyzing ecoacoustic, bioacoustic, and soundscape data were identified: manual 

examination of acoustic events through listening to recordings or visually inspecting 

spectrograms; the use of acoustic indices to summarize variations in acoustic energy; 

and automatic recognition of sonotypes using machine learning algorithms. In their 

study, acoustic indices were commonly used, including the Acoustic Complexity Index 

(ACL), Acoustic Entropy Index (H), Normalized Difference Soundscape Index (NDSI), 

Acoustic Diversity Index (ADI), Acoustic Evenness Index (AEI), Bioacoustic Index (BI), 

Spectral Entropy (Hf) Index, and Temporal Entropy (Ht) Index etc. These indices are 

frequently applied in biodiversity assessments and provide valuable insights into the 

acoustic characteristics of ecosystems, helping researchers understand environmental 

changes, biodiversity patterns, and species behaviors. However, the use of acoustic 

indices comes with certain challenges. They can be sensitive to noise, require expert 

knowledge to select the most suitable indices for a particular study, and there is no 
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consensus among researchers on how to interpret them. Additionally, these indices 

may vary in different ecosystems [13].  

Due to the limitations of using sound indices alone, some studies have started to 

incorporate ML as an additional analytical tool. Giuseppa Buscaino's research also 

indicates that analyzing long acoustic data series is challenging because each 

ecosystem has a unique soundscape signature that changes over time, such as 

variations within different times of the day, across seasons, or within 

multidimensional spaces. For better understanding to the ecosystem, collecting more 

data and improving automatic analysis, as well as other applying data analysis 

techniques are necessary [15]. 

ML has the potential to revolutionize PAM for ecological assessments [16]. Since 2008, 

ML methods have increased rapidly [13]. A more mature application of ML can be seen 

in terrestrial fields such as bird studies [1], from which the marine field has also 

adopted models and data management methods. In the study by Williams et al. [17], 

they created a bridge between sound indices and machine learning. The combination 

of sound indices was used as input features, and a supervised learning approach was 

employed to train a regularized discriminant analysis (RDA) algorithm, which 

classified sound recordings into either healthy or degraded habitat categories. This 

study provides the first evidence that using compound indices along with machine 

learning can outperform the use of single ecoacoustic indices in a tropical reef domain. 

This approach has the potential for other usages in marine and terrestrial habitat 

applications. 

 

4.2 Main ML Algorithms applied in marine acoustic data  

For soundscape level, most studies in this field employ supervised learning algorithms 

such as CNNs and RNNs. Roca and Opzeeland [18] applied twenty-three distinct 

acoustic metrics to develop a supervised approach for distinguishing between two 

different acoustic environments, using Random Forest for feature analysis and 

classification.  

However, unsupervised learning algorithms, such as K-Means, U-MAP, PCA and 

GMM, have recently became as new directions for acoustic data research. Vasudev P. 

Mahale et al. used K-Means and PCA to classify fish vocalizations [14]. Unsupervised 
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approaches can also be used to visualize and explore ecosystem data in feature space, 

directly predict ecosystem health and monitor it longitudinally over long periods in 

autonomous monitoring systems [24]. In the study by Sarab S. Sethi et al. [24], a 

combination of CNN for embedding and U-MAP was used to directly assess ecosystem 

health, and a GMM model was employed to automatically monitor anomalous sounds, 

enabling real-time monitoring. 

In marine aspect, unsupervised learning was mainly use in classify if the coral reefs 

and fishes have high or low diversity level by sound records, and to classify the overall 

landscape biodiversity level [3][25]. There are several promising future research 

directions in underwater acoustics using ML, including Physics-Informed Neural 

Networks (PINNs) for sparse data, transfer learning and domain adaptation for 

enhanced model generalization, ensemble and hybrid approaches to improve 

performance, active learning and data augmentation to address limited labeled data, 

and the development of explainable ML models for better interpretability and 

trustworthiness [26].  

The downstream tasks in individual levels, machine learning applications in marine 

PAM data primarily focus on species identification, such as for specific whale [19], fish 

[20], and noise source detection like vessel identification [21]. However, these types of 

identifications require high-quality datasets and corresponding annotations, which 

demand significant time and labor. While methods like few-shot training [22] and 

transfer learning with pre-trained models can help alleviate some data scarcity issues, 

such as using bird models for coral reefs [16], the available marine acoustic data is still 

insufficient to fully meet the training requirements [23]. Although semi-supervised 

and unsupervised learning methods will become promising directions, with a growing 

trend toward label-free approaches that can handle the large volumes of data collected  

[13], mature solutions for individual tasks are more using supervised learning 

algorithms. 

 

4.3 Review Findings 

The use of unsupervised algorithms for soundscape level ecological assessment 

becomes a new trend, including K-Means, U-MAP, PCA and GMM, while more 

individual level tasks still rely on supervised learning models such as CNNs, Random 
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Forests, and RDA for species identification and event classification. Therefore, the 

design of our framework needs to accommodate the requirements of both types of 

tasks.  

Among the reviewed literature, only three studies [3][24][25] fully align with our 

research focus, applying machine learning methods at the soundscape level, so we will 

mainly referring on the three studies when designing our pipeline. 

Additionally, these machine learning tasks rely heavily on the availability of sufficient 

high quality data. However, most of the reviewed paper focus on algorithm 

development, with relatively limited attention paid to the data management, 

interoperability, or reusability of the datasets used. Therefore, effective data 

acquisition and sharing, along with the establishment of standardized data structures 

across organizations are crucial. By using ontologies to unify data features and 

contextual indicators, research efficiency can be significantly enhanced. 
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5          Marine Data Source and Ontology Result 

To answer RQ 1, ‘How can marine soundscape data be integrated, through ontology 

design to better support machine learning requirements?’, we combine the findings 

from the data and ontology review with the results from the interviews. Based on this, 

we carry out the data FAIRification process.  

 

5.1 Pre-FAIRification results: Data source and ontology review 

5.1.1 Public data sources and ontologies 

To inform the ontology design and assess existing integration gaps, we first examine 

available public data sources and ontologies relevant to marine soundscape research. 

The open databases are mainly in two categories: 1) broad biodiversity databases that 

include marine or ecoacoustic data, and 2) specialized databases focusing on marine 

or exactly marine acoustic (PAM) data. GBIF and OBIS are two popular universal 

biodiversity databases: 

GBIF: Global Biodiversity Information Facility (GBIF) is a United Nations-sponsored 

global platform for sharing biodiversity information, providing free and open access 

to species and ecosystem data from around the world. It is based on the DwC standard 

and supports domain-specific extensions such as classification, occurrence and 

environmental measurements. GBIF emphasizes interoperability and ontologies such 

as biodiversity and environmental metadata. Updated to January 2025, related 

extensions registered here such as 'Audiovisual Media Description', 'Simple 

Multimedia', 'EOL Media Extension 1.0' just simply mentioned the data type might 

includes sound, and the 'Extended Measurement Or Facts' add more metadata on the 

measurement and environment background information, without focus on marine 

acoustic data design (https://rs.gbif.org/extensions.html). 

OBIS: With similar data types across marine species and ecosystem data, Ocean 

Biodiversity Information System (OBIS) works closely with GBIF, and it has the 

innovation that using the Event and Occurrence Core, with 'MeasurementorFact' and 

'extendedMeasurementOrFact' extensions to make sure more information is included 

(https://manual.obis.org/formatting.html#extensions-in-obis). 
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In addition, several regions and countries, including Europe, USA, Australia, maintain 

their open ocean data systems. Among these, the following platforms include 

underwater PAM data: 

IOOS-ONMS (USA): A key program under National Oceanic and Atmospheric 

Administration (NOAA). As part of NOAA's data ecosystem, it integrates observational 

data into NOAA portals like NOAA's Big Data Program and NCEI (National Centers 

for Environmental Information). IOOS also connects to global systems such as GOOS 

(Global Ocean Observing System) and has strong interoperability with OBIS. IOOS 

metadata standards are primarily based on the Darwin Core (DwC) vocabulary for 

biodiversity data and the Climate and Forecast (CF) metadata conventions and 

Attribute Convention for Dataset Discovery (ACDD) for netCDF formats. These are 

often supplemented with IOOS-specific extensions to meet ocean observation 

requirements.  

Beyond general marine data, IOOS provides specialized marine PAM (Passive Acoustic 

Monitoring) datasets and clear definition for PAM metadata with project mission & 

platform & recording equipment information. It is one of the leading data platforms 

for PAM data, and widely used by researchers. Under IOOS category, the exact PAM 

data project is called NOAA's Office of National Marine Sanctuaries (ONMS). 

EDMED and AtlantOS project (Europe): Both focus on Europe marine, EDMED focus 

on European marine data systems, designing ontologies like EDMED for 

interoperability.  In Europe, EDMED (European Directory of Marine Environmental 

Data) serves as a metadata catalogue developed under the SeaDataNet infrastructure, 

aiming to improve the interoperability of marine environmental datasets across 

European research institutions. EDMED uses standardized metadata schema (e.g., 

ISO 19115, SeaDataNet vocabularies) to describe datasets. While AtlantOS is more on 

Atlantic Ocean hydrographic information, without any acoustic data publication. It is 

a broader initiative aimed at building an integrated Atlantic Ocean Observing System, 

aligning regional efforts with the Global Ocean Observing System (GOOS). 

  

Soundlib (Netherlands): The Soundlib project, led by VLIZ, aims to create a FAIR 

underwater sound library of the North Sea for machine learning applications. It will 

collect and annotate long-term recordings, develop scalable database architecture, and 

use ML to efficiently classify and analyze sound events, supporting marine ecosystem 
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monitoring, ecological research, and noise impact assessment. But till the date of April 

25th, 2025, this dataset is not published yet. 

PANGAEA (German): An open-access repository for general environmental data, 

supporting various biodiversity-related ontologies. It includes the underwater PAM 

data we need. Data could be select by project, location, depth etc, and within the 

dataset detail page, platform provides a clear visual spectrograms for discover the 

sound data. 

NERC (UK): National Environmental Research Council (NERC) manages marine and 

other environmental data in the UK, and it provides access to ecosystem-focused 

controlled vocabularies such as NERC Vocabulary Server (NVS). 

AODN (Australian): The Australian Ocean Data Network provides open marine data 

access, focusing on regional marine ecosystems, such as the Great Barrier Reef and 

Southern Ocean. The platform is well organized, and with rich filters including project, 

location, depth range and very detail metadata file. Many datasets are accompanied by 

detailed metadata conforming to international standards (e.g., ISO 19115). 

On the ontology aspect, there are some mature ontologies on marine ecosystem and 

sound measurement aspects, the major marine public databases are organized by the 

standardized ontologies, with unified vocabulary in metadata.  Darwin-core is a 

foundation standard for sharing biodiversity data. Under this standard, there are some 

data sources and ontologies on marine (acoustic) data as table4. Ontologies focus on 

different aspects. For example, IOOS has PAM-specific vocabulary, but others like 

MMISW, NERC are more on general marine terms, OBIS’s is more on biodiversity 

terms, and SSN is on general sensors’ terms. And for datasets, some are aligned with 

their own organizations’ ontology extensions, such as IOOS and OBIS, but some are 

limited.  

Darwin Core (DwC) shares conceptual and practical similarities with the Dublin Core 

Metadata (DC) standard. As a result, DwC is built upon the Dublin Core Metadata 

standard, and should be seen as DC’s extension for biodiversity applications. 

Maintained by the Taxonomic Databases Working Group (TDWG), its latest version 

was released on 2023-09-18. According to its scope, DwC focuses on four aspects: 

collections of biological objects or data, terminology for biological collection data, 
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compatibility with other biodiversity-related standards, and facilitating the addition 

of components and attributes for biological data  

(https://www.tdwg.org/standards/dwc/#scope-of-darwin-core). Among 1,166 

terms, only 3 terms relate to acoustics (keywords: ‘sound’ and ‘audio’), and none 

directly describe sound. Therefore, creating extensions for emerging PAM 

technologies is essential to address applications and collaborations.  

Some global open ocean data sources, including GBIF and OBIS, have made their own 

extensions on biodiversity based on DwC and environmental knowledge, and some 

platforms provide extension registration service for public. The summary of data 

sources and their ontologies is as following Table 4: 

Data 

Source 

Region Ontology  

Standard 

Focus Notes 

GBIF global DwC General  

OBIS global DwC Marine  

IOOS-

NOAA 

US IOOS Metadata Profile 1.2 

(ISO 19115, NOAA NCEI 

NetCDF, ACDD1.3,  CF1.7) 

Marine Rich marine data, 

the ONMS project is 

focusing on PAM  

EDMED EU ISO 19115, SeaDataNet 

vocabularies 

Broad Marine 

data 

 

AtlantOS  EU various Atlantic Ocean 

hydrographic 

information 

No acoustic data 

Souhlib NL Unknown Marine Sound A project, but the 

data cannot be found 

yet 

PANGAEA GR Various (DwC, ISO 19115, CF 

and other extensions) 

Marine  Have some PAM 

sound, selected in 

the experiment in 

our study 

NERC UK NVS, various Marine  

AODN AUS ISO-19115-2 Marine Have some PAM 

sound, selected in 

the experiment in 

our study 

Table 4: Summary of marine and acoustic data source and their ontologies 
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5.1.2  Relevant ontologies in our research 

We also review widely-used environmental and biodiversity ontology portals for term 

searching. For example, EcoPortal is a global repository integrating various ontologies 

for ecological data, while BiodivPortal adopts the Darwin Core (DwC) standard, widely 

used for biodiversity datasets. EcoPortal is more general on ecological aspect, and 

BiodivPortal is frequently used by above data platforms and has more connection with 

DwC. These portals provide valuable references for aligning our acoustic metadata 

model with existing standards and practices. In this research, we will use BiodivPortal 

as the searching platform for vocabularies. Because our research requires 4 aspects of 

metadata, including metadata in general basic description, Marine, PAM acoustic and 

Machine learning, so here the combination of multiple ontologies terms is required as 

Figure 7. 

 

Figure 7: The sources of reference ontologies 
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Table 5: Summary of different potential relevant ontologies 

To support the integration and reuse of marine soundscape data for machine learning 

applications, a range of ontologies have been adopted or extended. Basic biodiversity 

and geospatial information is typically represented using Darwin Core (DwC),  ISO 

18405:2017 and GEO vocabularies. We adopt these mainly for ecosystem and spatial 

descriptions, forming the foundation for ecosystem-related datasets. 

For sound recording aspect, underwater acoustics  ISO 18405:2017, and the Semantic 

Sensor Network (SSN) ontology are for describing sensors and their observations, the 

involved procedures, the studied features of interest, the samples used to do so, and 

the observed properties, as well as actuators, based on DOLCE Ultra Lite (DUL) 

skeleton.  

Additionally, since ML is in a different domain from environmental and biological 

sciences, certain specific terms also required, such as EDAM and self-defined ontology. 

As model inputs, these extensions provide essential contexts, including related 

environmental features, event time, event duration, event classification/label and 

Main 

relevant 

ontologies 

Focus Usages 

DwC Core Biodiversity terms The foundational terms of biodiversity 

RDF-QB Statistical structure for 

RDF  

Some basic attributes for RDF files  

ISO 
18405:2017 

Geography The global standard to describe geographical 
terms (used in US and AU, but here we adopt 
GEO instead) 

GEO Geography  Similar as above, but XX different 

SWEET Environmental 
semantics 

Some semantic terms to describe environmental, 
Earth system, and observational processes 

ENVTHES Environmental 
thesaurus 

Some environmental terms for supplement 

SOSA Sensor observation 
(core) 

Some acoustic domain terms  

SSN Sensor system 
(extended) 

Some acoustic domain terms  

EDAM Big data management  Focuses on big data topic; useful for describing 

workflow elements, contains machine learning 

MAD ML labels and other self 
defined entities 

To have entities not in the above ontologies for 
our study 
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causation, or even textual description. As model outputs, the evaluation numerical 

results or classification labels, are valuable for tasks such as supervised or half-

supervised learning, experiment reproduction, and the use of union metrics for 

comparing results. WORMS [10] to label the marine species for sound events. 

 

5.2 Pre-FAIRification results: Interview insights 

In this study, we conducted two interviews: one focused on sound data sources and 

machine learning algorithms, and the other explored marine ontologies and 

FAIRification techniques. Here are the key insights extracted from the two interviews: 

Insights from Interview 1 (see details in Section 5.2.1):  

Data source such as NOAA and Tethys could be considered to implement in the further 

study. We will use PAM data in NOAA data platform in our further experiment. The 

individual-level machine learning models, typically based on supervised learning, rely 

heavily on accurate labels for both training and storing results. So when we design the 

metadata, relevant labels should be included. Since these individual-level models are 

often downstream tasks following broader soundscape-level analyses, researchers 

prefer to work directly with raw acoustic data. Therefore, in addition to numerical 

metadata, access to the original sound data should also be provided and clearly linked. 

Insights from Interview 2 (see details in Section 5.2.2):  

Widely used ontology related to our research including Darwin Core (DwC), EnvThes, 

SWEET, WoRMS, SSN, SOSA etc., are validated to be useful with high quality for our 

research. We will adopt most of these ontologies into our ontology design. Use 

ontology recommender and annotation: In BioPortal or BiodivPortal to search best 

match ontologies and terms, these tools help bridge the gap between domain-specific 

terms and available semantic resources. For example, new topic like ‘Machine 

learning’, could be searched in the recommender, to find the most relevant ontology.  

To build and manage an ontology, start by listing key terms aligned with metadata 

standards, track mappings to existing ontologies, and ensure long-term accessibility 

(even if marked obsolete), by publishing it in public repositories like GitHub. We will 

follow all these steps in the guideline to build our ontology. Also for the metrics, tool 
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like FIP according to the FAIRness standard, could be used in our final workflow 

assessment. 

5.2.1 The first interview on Dec 18th, 2024 

This interview was conducted at the Naturalis Biodiversity Center in Leiden. Two 

interviewees, Dr.Burooj Ghani and Dr.Vincent Kather, are researchers focused on 

long-term evolutionary studies and species-level classification using machine learning 

models trained on acoustic data, including bird sounds and those of other species. The 

one-hour interview was documented through detailed notes, from which we extracted 

key insights regarding data sources, metadata usage, machine learning models, and 

real-world applications. 

One commonly used source mentioned by Burooj was Xeno-canto (XC), a 

collaborative, open-access platform dedicated to sharing wildlife sounds globally. 

While XC primarily hosts terrestrial species data such as birds, it fosters a strong 

community where users contribute and discuss wildlife recordings. 

For marine acoustic data, they primarily turned to NOAA platforms due to their 

structured organization and rich acoustic archives. They also mentioned Tethys, a 

database designed for organizing and storing underwater PAM datasets. Additionally, 

they referenced the Detection, Classification, Localisation and Density Estimation 

(DCLDE) workshops, which provide access to whale PAM datasets open to expert 

discussions. However, they noted that while some metadata were publicly available, 

access to the actual sound data often required direct contact with data managers. 

Data integration and cleaning were described as highly time-consuming, with 

inconsistent formats and incomplete metadata being common issues. The 

interviewees emphasized that unified data and metadata formats would significantly 

streamline their work. Their primary focus in machine learning was species 

classification using models such as deep neural networks. As a result, they prioritized 

model accuracy, species taxonomy, and evolutionary insights over extensive metadata, 

since their supervised learning tasks typically required only the sound recording and 

its corresponding ground true label. 

They commonly converted acoustic signals into spectrograms or histograms and then 

applied CNN-based models for feature extraction. However, when asked whether they 

reused existing spectrograms or feature vectors prepared by other researchers or 
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platforms, they expressed a strong preference for starting from the raw acoustic data. 

This was because processing methods and parameters often varied by study, and 

specific approaches were essential to meet the specific needs of their analyses. 

5.2.2 The second interview on April 28th , 2025 

This interview was conducted online by ZOOM, along with Joëlle Stocker, we 

interviewed Professor John Graybeal for one and a half hours, it was documented 

through video record, detailed notes, and shared articles. Professor John now works 

in GO FAIR US Office and San Diego Supercomputer Center. He led the project on the 

Marine Metadata Interoperability community in the early 2000s, continually focusing 

on semantic web and ontology in a wide range of domains. He also developed BioPortal 

and Cedar as the leading tools for FAIRification. From this, we extracted key insights 

on metadata and ontology in the marine and acoustic domains, the tools and platforms 

supporting FAIRification, and the development and evaluation of FAIRification 

workflow. 

In our discussion, we started with how to identify suitable ontologies for our research. 

Professor John particularly highlighted several ontologies relevant to marine data, 

including NVS Vocabulary, Darwin Core (DwC), MMI, EnvThes, and SWEET. For 

marine species, WoRMS (World Register of Marine Species) is the main resource. For 

sensors and instruments, Semantic Sensor Network Ontology (SSN) and its 

lightweight counterpart SOSA are useful, though somewhat abstract. However, since 

no single ontology may fully satisfy all the requirements of a specific research project, 

it is essential to apply one's own criteria to assess what ontologies to investigate or 

adopt. 

Ontology Recommendation and Annotation Tools: For researchers uncertain about 

which ontology to use but who have a list of terms or concepts to define, tools like 

BioPortal offer ontology search functionality. Originally focused on biomedical 

domains, BioPortal has expanded to support a wide range of fields. It provides 

keyword-based search linked to relevant ontologies, making it a powerful entry point. 

The broader OntoPortal ecosystem includes domain-specific portals such as 

AgroPortal (agriculture), EcoPortal (ecology), EarthPortal (earth sciences), and 

BiodivPortal (biodiversity) etc. When entering keywords related to our area of research, 

these portals use a recommender to generate a ranked list of relevant ontologies. 

Rankings are based on factors such as ontology coverage, acceptance, knowledge detail, 
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specialization. This recommender system is especially helpful for beginners to identify 

suitable ontologies quickly. At a more granular level, annotation tools allow users to 

search vocabulary terms and return the most semantically relevant concepts, 

facilitating better linkage and reuse of data and terminology across systems. 

John also mentioned a project in development called ‘OntoChoice’, which aims to 

provide a more standardized and systematic guideline for selecting ontologies based 

on predefined criteria.  

To build and manage an ontology: A practical starting point for developing an ontology 

is to compile a list of key terms or term categories relevant to the project. These terms 

are often part of the project's metadata, so to aligned with metadata standards for 

interoperability, such as Darwin Core, Schema.org, and NetCDF CF conventions is 

important. The SKOS template provides a simple approach for vocabulary definition 

and allows for easy conversion from an Excel sheet to an RDF schema. CEDAR is 

another valuable tool that supports structured metadata creation. 

Throughout this process, it is important to track potential mappings to existing 

ontologies that include similar concepts. As the project becomes more rigorous, 

managing our own ontology usually becomes necessary to accommodate more specific 

and tailored terms. However, if maintaining the ontology long-term becomes 

unfeasible, it can still be valuable. You can mark it as obsolete, and it will still serve 

important purposes: As a reference for others seeking to understand or build upon 

your work; As a seed for future development by the community. The most critical 

aspect is ensuring the ontology remains findable and accessible, ideally by publishing 

it in a recognized ontology repository and on GitHub. 

Metrics (rules) to evaluation the ontology FAIRness: To assess the FAIRness of an 

ontology, the OBO Foundry provides a thoughtful set of principles - especially relevant 

if using GitHub (see: OBO Foundry Principles in 

https://obofoundry.org/principles/fp-000-summary.html). Similarly, the FAIR 

Implementation Profile Evaluator offers a checklist that closely overlaps with OBO 

principles. It includes key questions such as: 

⚫ Is the vocabulary representation compliant with established semantic web 

standards (e.g., SKOS, OWL, RDF)? 

⚫ Does the vocabulary provide labels and definitions for all its concepts? 
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⚫  Is the vocabulary openly maintained and accessible with rich metadata in a public 

repository? 

⚫ Does the vocabulary's public repository support persistent and resolvable 

identifiers, versioning information, and provenance tracking? 

⚫ Is the vocabulary endorsed or maintained by a community organization or 

standards body? 

⚫ Does the model integrate data from multiple sources seamlessly and define 

qualified relations between entities? 

In this context, a FAIR Implementation Profile (FIP) mini-questionnaire is available 

to guide us through the process of creating our own FAIR Implementation and 

assessment. 

 

5.3 FAIRification and Post-FAIRification results 

Our FAIRification process began with identifying suitable data for the experiment. We 

then defined metadata and ontology, checked feature coverage, and linked individual 

data files with metadata. Finally, we completed the FAIRification by hosting and 

testing the resulting data pipeline. 

Data Sources: Based on both internet searches and recommendations from expert 

interviews (summarized in Table 1), we selected three main data sources for this study: 

1) The experimental dataset published by Williams et al. [25]; 

2) The NOAA-ONMS platform; 

3) The PANGAEA data platform. 

We reused a subset of the dataset published by Williams et al. [25] as the baseline data, 

since it had already been successfully applied to soundscape-level machine learning 

models in marine ecosystem research, directly aligning with our research goal. This 

dataset was collected in French Polynesia at a shallow depth of 10–15 meters in 2021 

[25]. 

In addition, we added two more datasets for the purpose of data integration 

experiment. The NOAA-ONMS platform provides rich marine acoustic data, while the 
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German PANGAEA platform is one of European leading scientific data portal. These 

two additional datasets allow us to test the FAIRification workflow and machine 

learning models over a broader spatial range. 

From the NOAA-ONMS portal, we selected PAM data recorded at Stetson Bank, a mid-

shelf bank located 80 miles off the Texas coast. The recordings were taken in 2023 at 

a depth of 22 meters. 

From the PANGAEA portal, we selected PAM data from the FRontiers in Arctic marine 

Monitoring (FRAM) project, which includes detailed deployment documentation. The 

recordings were collected in 2020 from a deep sea location at 805 meters. 

The original sources for these three datasets are as follows: 

Williams’ [25]: https://zenodo.org/records/10539938 

ONMS: https://storage.googleapis.com/noaa-passive-

bioacoustic/onms/audio/fgb01/onms_fgb01_20230714/metadata/ONMS_FGB01_

20230714.json 

PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.967512 

So our experiment dataset is in 3 clusters [onms, pangaea, williams]. These original 

PAM data sources differ significantly in file format and recording duration. ONMS 

data are 4-hour continuous FLAC files, PANGAEA data are 10-minute OPUS files, and 

Williams data are 1-minute WAV files. The sampling rates also vary across the three 

projects. To create our experimental dataset, we finally randomly selected continuous 

soundtracks of fixed durations from each cluster: 1 hour of ONMS data, 10 minutes of 

PANGAEA data, and 1 hour of Williams data for the experiment. Later on these 

soundtracks will be resampled to 1-minute clips, in a total of 129 sound clips in our 

experiment (60 clips of ONMS, 9 clips of PANGAEA, 60 clips of Williams' [25]). These 

129 clips will be regarded as individuals to link our metadata into JSON-LD. 

*Additionally 2 5-second anomaly sound clips as ‘aodn’ cluster are also added when 

testing the anomaly detection model (1 is whale sound and 1 is vessel noise. ) 

When looking into the metadata files of these 3 data sources (Figure 8), there are huge 

differences in the whole ontology logic, e.g. structure, entities, units and complexity. 

Overall, the metadata differences are in 5 aspects: 
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⚫ Different metadata structural and design logic: Each dataset follows a totally 

different metadata structure and logic, including how the metadata is organized, 

the hierarchy of entities, and the way fields are distributed. 

⚫ Different metadata file formats and level: ONMS provides metadata in JSON 

format, PANGAEA uses TOML, while Williams’ only includes dataset-level 

metadata that describes the dataset's background, without detailed data content 

metadata. 

⚫ Semantic differences in terms: Even when referring to similar concepts, the 

datasets use different terms or labels or even not controlled vocabularies. For 

example, they may all describe ‘location’ but use different field names or structures 

to do so.  

⚫ Different coverage of metadata fields: ONMS and PANGAEA include relatively 

complete metadata, covering most fields about the PAM data, whereas Williams’ 

[25] lacks detailed metadata, with many fields left empty and not mentioned in the 

thesis. 

⚫ Differences in value representation and units: The datasets also differ in how they 

represent values, including units, data types, time format etc. 

To solve these problems, first of all our task is to identify and align the key metadata 

terms across the different metadata files, defining our own ontologies, and then 

conduct the mapping rule to unified metadata.  
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Figure 8: 3 datasets in 3 kinds of metadata formats 
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Define our metadata & ontology: Following the building ontology guideline from the 

second interview, we first list all the terms needed. Then categorize these terms into 

several domains, and search for suitable ontologies accordingly. From the existing 

marine PAM data ontologies suggested, Darwin Core (DwC), EnvThes, SWEET are 

used for marine ecosystem domain. For marine species, World Register of Marine 

Species (WoRMS)  is the main resource for event description. For sensors and 

instruments, Semantic Sensor Network Ontology (SSN) and its lightweight 

counterpart SOSA are used. 

For some new or uncertain terms, searching in BiodivPortal (one of the ontology 

portals also recommended in the second interview) is a method to find the suitable 

ontology. For example, when mentioning the ML concept, we search the keyword 

‘machine learning’ in the searching box on the BiodivPortal homepage, and it suggests 

that the term ‘Machine learning’ in the EDAM ontology could be the best fit. 

Combining these terms, we define our ontologies based on the above four aspects 

(Figure 12), and reusing the terms in these main existing ontologies. Shown in Table 

6, here we classify the data properties for every soundtrack into six categories, 

including project, platform, deployment, ML, sample and soundtrack information. In 

each category there are some data properties for further hosting values. The terms are 

ensured the alignment with Semantic Web, using the prefix such as ‘decterms’, ‘sweet’ 

to clarify to source of the terms. We build this tree-shape ontology in Protégé, and 

export the TTL file as the whole definition of the ontology. Here, we use Protégé 

instead of tools like SKOS or CEDAR as suggested by expert, because Protégé offers 

greater flexibility for building ontology with hierarchical structures, supports 

visualization, and provides better control and integration with the Semantic Web. 

To combine the three data sources with three metadata formats into our own ontology 

design, we need to also conduct a map rule table as table 6.  
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Table 6: Metadata definition and mapping rule table 

This mapping table helps connect the different metadata structures from the three 

original metadata files to the standard format we designed in our ontology. It shows 

how each field in the source metadata matches the properties in our ontology. This 

makes it easier to keep the meaning consistent across different formats and supports 

better data organization, searching, and integration based on Semantic Web 

principles. 

Once the mapping rules are defined, we can use Python code to help us efficiently 

process and align the metadata across datasets. Code scripts can transfer the unified 

metadata files format into JSON.  

Check feature coverage: As ML requires labels to store different models’ result, here 

we also list the labels as extension. Also considering the spatial & temporal distribution, 

and other geological information needed for better data storage, management and 

retrieval, these features are also included. So it is available and complete for the further 

data linkage as triples. 

Individual data linkage with metadata: This process involves two steps: 

First, we prepare an Excel spreadsheet where each row represents one sound clip 

individual, and each column corresponds to a data property defined in our ontology. 

Based on the mapping rules provided in Table 6, a Python script is used to 

automatically fill in this metadata grid. The script takes original values from the source 

metadata files and maps them to the appropriate classes and properties in the ontology. 

During this step, data values in the Excel file are also cleaned, including standardizing 

units and time format, filling in the missing values mentioned in the thesis, and 

handling missing values (which are set as 'None'). 
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Second, the cleaned metadata Excel sheet is then converted into JSON-LD format. The 

resulting JSON-LD file consists of two major parts: A context section at the top that 

declares the ontologies being used and referenced; The main body, which contains the 

linked data - the one entry per individual soundtrack, aligned with the ontology 

structure. 

As a result, each sound clip entry in the JSON-LD file includes all relevant properties 

under their respective ontology classes. The result is a unified metadata file where 

every resampled sound clip is described using semantically structured and 

interoperable metadata. An example of such a sound clip in the JSON-LD format is 

shown below in Figure 9: 

 

Figure 9: An example of N0.49 sound clip in JSON-LD 

When the JSON-LD file is uploaded to an online JSON-LD visualization playground 

(https://json-ld.org/playground/), the entire metadata structure can be visually 

explored as Figure 10. This tool allows users to clearly see how each sound clip 

individual is linked to ontology classes and properties, making the relationships, 

hierarchy, and semantics much easier to understand and verify. 
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Figure 10: Example of Individual data linked with metadata JSON-LD file 

*Trail on LLMs for metadata mapping: Additionally, we also experiment with a new 

approach to scale up metadata mapping using LLMs. For some metadata files, such as 

those from the popular PAM data portal AODN (Australian Ocean Data Network), the 

metadata is much longer and more detailed, often exceeding 1000 lines. To improve 

the efficiency of metadata integration, we test the use of large language models (LLMs), 

specifically GPT-4o-mini, combined with prompt engineering. The main idea is to 

provide the LLM with a prompt template that guides it to extract relevant metadata 

from the AODN metadata file and generate mapping rules aligned with our ontology. 

The output mapping example is as follows Table 7: 

 

Table 7: Example of LLMs auto-mapping the metadata 
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The result is generally promising. While not all mappings are perfectly accurate, the 

LLM significantly reduces the manual workload of parsing and aligning complex 

metadata. It serves as a powerful assistant in handling semantic tasks at scale, with 

final verification and adjustments made by domain experts. 

Host and test results: After generating the unified metadata file in JSON-LD format, 

we publish it via GitHub to ensure broad accessibility and long-term reusability. This 

open sharing approach allows researchers and developers to directly access, inspect, 

and integrate the metadata into their own projects, following FAIR data principles. 

The 129 1-minute sound clips are compressed into a ZIP file  for convenience and is 

uploaded to Zenodo, a trusted research data repository. Each sound clip is assigned to 

the same access link on Zenodo, which is referenced in the metadata under the 

property ‘mad:Slice_URL’. This ensures that the metadata and data remain connected, 

while being modular and scalable for different use cases. (*Note: In our actual 

computational process, the ZIP file should first be unzipped so that the script can 

process each clip individually. Moreover, in a real federated scenario, the resource 

links (mad:Slice_URL) should be unique for each clip, allowing them to be queried 

and processed as separate federated individuals). 

To verify the usability of the structured metadata, both data query tests including 

SPARQL querying and Python Dictionary querying work. For simpler usage, the 

JSON-LD file dictionary-based lookup and filtering is straightforward. This provides 

an efficient way to retrieve and process metadata in environments. Both methods 

prove functional and effective, confirming that the metadata can be flexibly queried 

and integrated into various research and analysis workflows.  

After these steps, the data is FAIRified and ready for machine learning analysis. 
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6          Data Framework Design Result 

To answer the RQ 2, in this chapter we point the key insufficiency in current marine 

soundscape level machine learning framework, and propose an optimized pipeline 

according to FAIR principles.  

 

6.1 Current framework insufficiency 

In this research, based on findings from the systematic literature review above, we 

mainly refer to three representative data processing pipelines [3][24][25] adopted in 

passive acoustic monitoring (PAM) studies of marine ecosystems. These pipelines are 

illustrated in Figure 11 and reflect a range of machine learning methods for ecological 

soundscape analysis. 

 

 

Figure 11: 3 main refer data pipelines (a. left, b.right, c.bottom) 



 

 

53 

Pipeline 1 (Figure 11a) [25] shows a best practice that begins with long-duration PAM 

recordings collected from multiple coral reef sites. The raw audio data is first 

transformed into a spectrogram using the Librosa library, a widely used Python toolkit 

for audio signal processing. This transformation is based on Fourier Transformation 

method, which converts the audio signal from the time domain to the frequency 

domain, allowing us to see how the signal’s frequency content changes over time as 

spectrogram. For some data platforms like PANGAEA, it directly provides the pre-

generated spectrogram for easy navigation of the acoustic data as Figure 12. 

 

Figure 12: 10-minute spectrogram visualization in PANGAEA data portal 

The spectrogram shows the distribution of acoustic energy over time (horizontal axis) 

and frequency (vertical axis). The color scale represents signal intensity, as warm 

colors indicating stronger intensity and cool colors indicating weaker, allowing a clear 

visual understanding of how sound varies across different frequencies over time. 

The resulting time-frequency spectrogram is then fed into a pretrained Convolutional 

Neural Network (CNN), such as VGGish to extract high-level feature embeddings. 

Below Figure 13 explains the process of CNN, it uses a series of filters (convolution and 

pooling layers) to scan the spectrogram and extract key feature patterns into feature 

maps. These filters capture local features at different layers and gradually represent 

the spectrogram characteristics using numerical matrices. The final output is a 

compact feature vector that summarizes the essential attributes of the sound signal, 

making it suitable for further machine learning analysis. 
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Figure 13: Convolution Neural Network Framework (CNN) [28] 

These feature vectors are subsequently processed using dimensionality reduction 

technique (UMAP) and unsupervised clustering algorithm, enabling the classification 

and comparison of soundscapes for biodiversity level assessment. 

Pipeline 2 (Figure 11b) [3] follows a partially different approach. It starts with spectral 

conversion through similar Fourier Transformations and optionally applies spectral 

whitening to enhance key frequency components and reduce bias from persistent 

background noise. From these transformed acoustic features, K-means clustering is 

used to cluster similar acoustic events and quantify diversity metrics. This pipeline is 

also designed for soundscape  level data for biodiversity assessment as pipeline 1. 

Pipeline 3 (Figure 11c) [24] shares methodological similarities with Pipeline 1 in its 

initial processing steps, including spectrogram generation and CNN-based feature 

embedding. However, it diverges in its end goal, utilizing Gaussian Mixture Model 

(GMM) instead of clustering for the purpose of unsupervised anomaly detection. This 

approach aims at identifying outliers or unusual acoustic patterns, which may 

correspond to rare biological events or anthropogenic disturbances (e.g., illegal fishing 

activities, sudden noises). 

Together, these pipelines highlight the growing convergence of signal processing ML, 

and ecological analysis in modern ecoacoustics. Pipelines 1 and 2 are primarily 

designed for assessing biodiversity levels, while Pipeline 3 focuses on anomaly 

detection. This single-task-oriented design leads to two inefficiencies: There is a 

disconnect between soundscape-level modeling and downstream tasks such as species 

identification, behavioral analysis, and event detection. The downstream tasks can not 

reuse the results from previous training and separate the target data clips from sparse 

long data. Moreover, the lack of a modular and unified workflow framework makes it 
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difficult for researchers to reuse existing models and processes across different 

research objectives.Processes such as data preprocessing, feature extraction, model 

training, evaluation, and deployment are often implemented through scattered scripts, 

without standardized workflow encapsulation. 

These two issues together shows that, although progress in task-specific modeling and 

data processing techniques, current machine learning research in soundscape analysis 

still lacks a unified, modular, and shareable workflow design. Open Science need to 

develop multi-task-oriented and FAIR machine learning workflows for ecoacoustic 

research, to improve flexibility in research design and the efficiency of data reuse. 

However, their application is often narrowly aiming at single-task objectives, and lacks 

a flexible, unified design capable of supporting diverse downstream tasks, like training 

species classification models. 

 

6.2 An optimized data pipeline framework 

To address the two key inefficiency identified above, insufficient standardized multi-

task process design and insufficient FAIR computational workflow, the optimized 

pipeline (as Figure 14) is designed.  

 

Figure 14: Overall data pipeline framework design 

Common data prepocessing: Starting from calibration and clipping the long raw 

soundtracks into unified-duration clips, in parallel standardized ontology and 

metadata mapping are applied. The data and the metadata are linked into a semantic 

RDF format (JSON-LD) using our ontology schema. This step ensures interoperability 

and prepares the data for machine readability. LLMs could be used for efficient 

metadata mapping. Then, spectrograms generation via Librosa is followed by CNN-

based feature extraction. This step standardizes acoustic data representation while 



 

 

56 

compressing information into feature vectors (N feature values) using dimension 

reduction technique, referenced in the research by Williams et al. [25].  

*A special note: in this work, we did not implement a detailed calibration procedure. 

Rather, our approach designs as a prototype for a broader macro-level solution. We 

only applied a basic standardization of the resample rate using Librosa. But in real 

world applications, there are a variety of advanced calibration methods being actively 

researched and implemented. 

Divergence in ML tasks: Once the standardized acoustic data vectors are obtained, 

they can be used in multiple ML tasks, including PCA/UMAP sound fingerprint 

visualization, biodiversity high/low clustering assessment using the K-Means 

algorithm, and GMM for anomaly detection. After anomaly detection identifies 

anomalies at the soundscape level, which can identify ecologically relevant events, 

these anomalies are explicitly labeled and updated in the metadata file, ensuring they 

are available for reuse in downstream ML tasks (e.g., training species classifiers on 

unusual events). 

Metadata file as a semantic bridge: The key here is a metadata-driven method. A 

metadata file is created, links data clips, and is updated throughout the process, 

especially with the biodiversity level clustering results and the anomaly detection 

result labels. Therefore, for downstream individual classification tasks, sound clips can 

be reused directly by querying for the 'Event' label set to 1, as in <[dcterms:Event] 

equals '1'> in the metadata.  

But as we mentioned before, the labels under the ‘edam:Machine learning’ class are all 

updated by the machine learning pipeline or observer's annotation, so they are not 

provenance features. Before the downstream teams query by these labels, these labels 

should be validated and could be regarded as changeable labels. 

Finally, the pipeline is ready for computational workflow FAIRification with a series 

of tools. This pipeline ensures the outputs from one soundscape-level task, particularly 

anomaly detection, can be flexibly reused in downstream tasks like species recognition 

or event classification.  
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7          Data Pipeline Engineering and Testing Result 

In order to answer the RQ 3, ‘how does the optimized pipeline perform driven by the 

data models?’, this chapter presents the construction of our optimized pipeline 

through code engineering, accompanied by testing of machine learning results and 

continuous creation and updating of metadata files. Once the entire pipeline is 

workable, we apply FAIR guidelines to FAIRify the computational workflow for reuse 

in Open Science. 

 

7.1 Pipeline Modules 

The overall pipeline is divided into eight modular script steps, all written in Python 

3.12. They will be executed by order: 

1) 0_toml2json: This script unifies the metadata files from TOML to JSON format 

for further processing. 

2) 1_clip_raw_sound: This script first clips long acoustic recordings into multiple 

60-second FLAC sound clips. It also creates a table to store metadata values, where 

each row represents one sound clip sample and the columns correspond to 

metadata terms, so the metadata values could be added into the table in next step. 

3) 2_add_metadata: With unified sound clips and the metadata table ready, this step 

applies the mapping rules (as defined in Table 4) to automatically insert metadata 

values into the unified table. During this process, data cleaning is also performed, 

including adjustments to units and time formats, and filling empty values with 

‘Null’. The output is a unified metadata table enriched with cleaned metadata 

values. 

4) 3_map_individuals: This script transforms the unified metadata table into a 

machine-readable JSON-LD format for interoperability. It has two main parts: 

first part uses the TTL ontology file generated in Chapter 5 with Protégé to extract 

hierarchical relationships and semantic web linkage information into the 

‘@context’ section of the JSON-LD. The second part, ‘@graph’, represents each 

sound clip entry using a dictionary structure aligned with the ontology. From this 

step onward, all sound clips are linked in the JSON-LD metadata file. 
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5) 4_query_individuals: This is the data querying script, supporting both SPARQL 

queries and Python dictionary-based queries. After testing some sample queries, 

the entire dataset is ready to be used as a rich source for further data engineering. 

6) 5_clip2features: This step is key to transforming the sound clips into numerical 

vectors. First, each 60-second sound clip is split into 12 segments of 5 seconds. 

Then, for each segment, the Librosa package is used to convert the acoustic data 

into a spectrogram. Due to varying sampling rates across different data sources, 

we follow the method in the work of Williams et al. [25] and parameters to 

standardize all audio files to a sampling rate of 32,000 Hz using Librosa. This rate 

is lower than the commonly used 44,100 Hz (CD quality), which helps reduce data 

size while retaining sufficient audio detail, thus balancing quality and performance. 

Next, we download a pretrained CNN model ('SurfPerch_v1.0')[25] for 

spectrogram feature extraction, which reduces the high-dimensional 

spectrograms into 1280-dimensional vectors. This deep learning model was 

trained on a large dataset of annotated environmental audio. As a result, each 60-

second sound clip is converted into 12 segments, each represented by a 1280-

dimensional feature vector. These vectors are essential for subsequent machine 

learning tasks. They are saved in a new vector table, indexed by the sound clip ID 

to ensure traceability back to the original audio data. 

7) 6_umap & 6.1_diversity: The UMAP script uses the UMAP algorithm to reduce 

the 1280-dimensional vectors into 2D, and visualize how the acoustic data features 

are distributed in the plane. A similar dimensionality reduction algorithm PCA, is 

also applied for cross-validation. We input the vector table here, and the script 

outputs the UMAP and PCA result figures as sound fingerprints. From these 

figures, we can make an initial judgment about the effectiveness of feature 

extraction and how well acoustic data from different sites can be separated. In 

parallel, we can also train a clustering classification model for biodiversity 

assessment (6.1_diversity script). Since we only classify the level as low or high, 

we use the K-Means algorithm with the number of clusters set to 2. It outputs a 

clustering result figure, and assigns each sample an output of 0 or 1, representing 

different biodiversity clusters. But we don’t know the biodiversity levels of the 

three datasets, and the result requires at least one known label to classify the 

others, this step is shown only as an example and is not implemented into the 

pipeline. 



 

 

59 

8) 7_gmm: Once the feature extraction works well, we can use the GMM algorithm 

for anomaly detection. We input the vector table and the metadata file. Using the 

GMM algorithm, it identifies anomalies based on differences in the Gaussian 

distribution of the vectors, selecting all log-likelihood values below the 2% 

percentile as the threshold for anomaly detection. For the detected anomalies, the 

corresponding clips in the metadata file will have their 'Event' label updated to 1 

(indicating anomaly), while the normal clips remain unchanged. 

 

7.2 Pipeline testing results: 

To evaluate the effectiveness of the machine learning data pipeline, we conduct a series 

of tests using three sample datasets, and also 2 whale call 5-seconds sound data are 

added as known anomaly clips. The results of feature extraction, clustering, and 

anomaly detection functions are workable with the summary below. (*Please note that 

in this experiment we did not conduct a detailed calibration research, so the following 

results show more about the functional workability of the whole data pipeline rather 

than the actual modeling effects). 

 

7.2.1 Feature Extraction 

Figure 20 below demonstrates that the feature extraction process (as from script0 to 

script6) is successful, which is capable of clearly distinguishing the acoustic features 

of different sound clips. Specifically, both the UMAP and PCA dimensional reduction 

techniques are applied to the 1280-dimensional feature vectors, projecting them into 

two-dimensional space for visualization. 

In the UMAP plot (Figure 15a), we observe well-defined clusters, indicating that the 

model has effectively captured patterns in the acoustic data. Similarly, the PCA plot 

(Figure 15b) confirms the effectiveness of the extracted features. Both plots shows that 

sound clips originating from different sources are well-separated in the reduced 

dimension feature space. This separation validates the success of the feature extraction 

process and provides a solid foundation for downstream analyses such as classification 

and clustering. 
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Figure 15: UMAP result(a.left), PCA result(b.right) 

 

7.2.2 Biodiversity 

To assess biodiversity levels based on the extracted features, a K-Means clustering 

algorithm was applied (as script 6.1). The goal is to classify the biodiversity level into 

two general categories (low and high), so the number of clusters is set to 2. The result 

is visualized in Figure 16, where each data point represents a 5-second sound clip 

segment, and the cluster labels (0 or 1) indicate their assigned biodiversity group. 

As shown in the plot, the model has effectively divided the data into two distinct 

clusters (0 or 1), different colors represent different data sources. Although no ground-

truth biodiversity labels are available for these datasets, this clustering result provides 

an exploratory perspective on potential biodiversity differences across soundscapes. 

With at least one known labels, this method could be extended for supervised 

classification or biodiversity index estimation. 
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Figure 16: Biodiversity level K-means clustering 

 

7.2.3 Anomaly detection 

The Figure 17 below presents the successful results of anomaly detection using the 

Gaussian Mixture Model (GMM) algorithm (as script 7). In this two-dimensional 

visualization, each point represents an acoustic feature vector after dimensionality 

reduction. The purple dots indicate ‘normal’ sound clips, while the light blue dots 

represent abnormal as potential anomalies or ‘events’.  

From the plot, we could see that the normal data forms three distinct and dense 

clusters, which align with the expected Gaussian components learned by the model. In 

contrast, the abnormal dots (in blue color) are generally scattered and tend to appear 

at the outskirt of these clusters regions. This spatial distribution suggests that the 

anomalies deviate from the Gaussian distributions that represent the typical acoustic 

patterns. The GMM algorithm models the overall data distribution as a mixture of 

multiple Gaussian distributions. It calculates the log-likelihood of each point 

belonging to the learned distribution. This probabilistic approach allows for flexible 

detection of unusual patterns without requiring labeled anomaly data in advance. 

Once these anomalies are identified, the corresponding clips in the metadata file are 

updated by setting the ‘Event’ label to 1 for anomalous, while retaining 0 for normal 

clips. This labeling is particularly useful for downstream applications such as 

ecological event detection and acoustic data quality control.  
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Listen back to the clips labeled as anomalous, we often find distinct sound 

characteristics such as ‘clicks’ or ‘Da’ sound, or sudden increases in sound intensity. 

These acoustic features might indicative of biological or anthropogenic events that 

deviate from the ambient background soundscape. To further validate the 

effectiveness of the GMM-based anomaly detection, we deliberately insert two known 

anomalous whale call clips into the dataset. The two clips are successfully identified by 

the model as outliers, confirming its capability to detect different acoustic events. This 

validation suggests that the GMM approach is so far robust and flexible for different 

event features. 

 

Figure 17: GMM Anomaly Detection result 

 

7.3 Computational workflow FAIRification 

As suggested by de Visser et al. [27], we have adopted the 10 tips provided as Figure 

18 to implement FAIRification. Our solution uses various tools and techniques to 

ensure that the computational workflow aligns with the FAIR principles as below: 

Findability: 

⚫ Workflow Registration: Register the workflow on platform WorkflowHub to make 

it findable and citable. 

⚫ Rich Metadata Description: Enhance the findability of the workflow by adding 

structured metadata using RO-Crate (Research Object Crate). Also when 
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uploading to Zenodo, the platform also asks for various description and generates 

the metadata automatically. 

Accessibility 

⚫ Open Source Code: Store the source code in public repositories GitHub to ensure 

its accessibility. 

⚫ Provide Sample Data: Use the Snakemake workflow management system to 

include sample input data and results for better understanding and validation. 

Interoperability: 

⚫ Standardized File Formats: Adopt standard file formats like FLAC, CSV, and 

JSON-LD to ensure smooth data exchange between different systems. 

⚫ Workflow Portability: Use Snakemake to enable the portability of the workflow 

across different computational environments. 

Reusability: 

⚫ Reproducible Computational Environment: Create a reproducible computational 

environment using Conda to ensure the workflow runs consistently across 

different setups. 

⚫ Default Configuration Files: Provide default configuration files in Snakemake to 

simplify workflow reuse. 

⚫ Modular Design: Implement a modular workflow with Snakemake to allow easy 

component reuse and customization. 

⚫ Comprehensive Documentation: Offer clear and concise documentation 

(Readme.md in GitHub and our thesis explanation) to ensure that others can 

understand and reuse the workflow. 
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[27] 

Figure 18: computational workflow FAIRification technique solutions 

Our solution effectively integrates various open-source tools and standardized 

practices to achieve FAIRification of research workflows, enhancing transparency, 

reproducibility, and collaboration in scientific research. 

Snakemake, as the key tool, automates and manages the computational workflow 

execution, providing a clear visualization of the process through Directed Acyclic 

Graphs (DAGs) that illustrate task dependencies and execution order. Figure 19 shows 

the Directed Acyclic Graph (DAG) of a sound data workflow built using Snakemake. 

The figure on the left provides a simplified view of the core components of the 

workflow and their dependencies, while the right one shows a detailed display of the 

specific input and output file paths for each step. 

The workflow is designed to process raw sound data, adding metadata, mapping 

individuals, extracting features, and ultimately generating UMAP dimensionality 

reduction visualizations and GMM clustering analysis results. Implementing this 

workflow requires 4 main steps: 

1) Configure Snakemake locally. 
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2) Rewrite the input and output paths in the existing 8 scripts to match Snakemake's 

standard (e.g., ‘sys.argv[1]’). 

3) Create a separate rule file to specify input/output and script execution, 

standardizing the process. 

4) Test the workflow to ensure it passes and generates the DAG for clarity. 

Once tested successfully, the workflow can be reused by simply opening it in the CMD 

environment and running the corresponding command. This process showcases the 

powerful capabilities of the Snakemake workflow management system: by clearly 

defining the input and output dependencies of each rule, Snakemake automatically 

constructs the execution DAG, ensuring the repeatability and traceability of the data 

processing. Each step is encapsulated as an independent rule, making it easy to 

maintain and reuse. The related files also uploaded in GitHub. 

 

Figure 19: Workflow graph auto-generated by Snakemake  
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8          FAIR Assessment Result 

For the final RQ 4, we conduct a FAIR assessment to evaluate the FAIRness in dataset 

and computational workflow level. The dataset shows a relatively high level of 

FAIRness, and the computational workflow is well aligned with the FAIR principles. 

Detail result is shown as 8.1 and 8.2. 

 

8.1 Dataset FAIR assessment result 

Here we use F-UJI, a web service to automatically assess FAIRness of research data 

objects (aka datasets) based on metrics developed by the FAIRsFAIR project. We select 

the latest metric v0.8 (based on the FAIR guideline in Figure 3), and input the Zenodo 

dataset URL link for assessment. Below Figure 20 is the summary of our dataset 

FAIRness assessment result: 

 

Figure 20: Our Dataset F-uji Score 

Overall our dataset FAIRness is good, but according some criteria it could be improved 

in following points: 

1) FsF-A1-01M-1  Information about access restrictions or rights can be identified in 

metadata: NO access information is available in metadata, thus it is unable to 

determine the access level. 

2) FsF-I2-01M-2  Metadata uses terms from registered vocabularies that are 

identified by their name-spaces: No known vocabulary name-space URI is found 

which is listed in the LOD registry, mainly a list of URL links not registered in 

Semantic Web. 

3) FsF-R1-01M-2  Information on the manner and form (file size and type or service 

(API) endpoint and protocol) in which data is delivered is provided: This part is 

missing. 
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4) FsF-R1-01M-3  Measured variables or observation types are specified in metadata: 

This information is missing. 

5) FsF-R1.3-01M-1  Community specific metadata standard is detected using name-

spaces or schemas found in provided metadata: This information is missing. 

For points No. 2,4,5, we have already uploaded the JSON-LD file for further 

explanation, as the Zenodo metadata creation spreadsheet does not provide an option 

to fill in or upload this information. However, when the F-uji tool executes the 

assessment, it cannot automatically detect the JSON-LD supplementary metadata file 

in the dataset. There is a gap between the real FAIRness and the automated assessment. 

For point No.1, Zenodo already provides an option for access control, and we have set 

it to ‘open’, but the tool ignores this information. For point No. 3, indeed, Zenodo does 

not offer this option either, so it could be further added in the JSON-LD metadata file 

as a supplement. 

From the automatic assessment test, the tool's evaluation is generally efficient and 

accurate, but there are still some discrepancies in the details, the platforms and tools 

are not fully compatible with each other. Adjustments may be needed based on the 

specific circumstances of the project. 

 

8.2 Computational workflow FAIR assessment result 

FAIR metrics are more standardized at the dataset level, while the FAIR metrics for 

complete computational workflows remain less clearly defined. This is because such 

assessments have mainly been emphasized within niche domains and still require 

broader community discussion and unify the standard. Due to the lack of widely 

accepted mainstream metrics for workflows, we follow the checklist of computational 

workflow FAIRification techniques (as shown in Figure 18) to address all relevant 

criteria. However, unlike dataset assessment, we do not assign detailed scores. 

Based on the engineering design, we have addressed all the listed criteria, fully aligning 

with all 10 FAIRification recommendations. According to this standard, our 

computational workflow shows a high level of FAIRness. 
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9          Discussion 

This study provides a practical solution for enhancing the FAIRness, interoperability 

and reusability of marine acoustic data for ecosystem research. In this chapter, we will 

discuss about the results we achieved, the strengths of the study, the limitations 

needed to be addressed in the future work. 

 

9.1 Interpretation of the results 

In this research, the research question is: How can the marine acoustic data pipeline 

and ontology be designed to address data consistency, support various ML tasks, and 

align with the FAIR principles for effective ecosystem research. To answer the question, 

our experiment approaches this question through four distinct aspects, which we 

discuss sequentially below. 

9.1.1 Data integration and ontology design 

Through a broad review and expert interviews, we found that the marine acoustic data 

sources are very federated with various data structures. So data was collected and first 

transformed into standard clips. For better data reuse, we also designed our ontology 

for this specific research. Because of the cross domain knowledge of marine, acoustic 

and machine learning, different domain ontologies were selected linked as well. Our 

ontology not only captures metadata and contextual information but also facilitates 

ML annotations. This supports downstream ML tasks by enabling consistent labeling 

and efficient data extraction across datasets. The FAIRification process guideline is 

the core to guide this design. 

9.1.2 An optimized data framework 

Through the literature review we identified three representative frameworks of 

soundscape ML applied in marine research. These frameworks served as key 

references from which we extracted a common data preprocessing pipeline, forming 

the basis for a standardized acoustic feature extraction workflow. Once raw audio was 

processed into unified vector representations, different ML tasks diverged from this 

point. 

For soundscape level ML, our framework includes commonly used unsupervised 

learning algorithms such as PCA, UMAP, K-Means, and GMM. Research teams 

focused on abnormal acoustic events can directly utilize the GMM-based anomaly 
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detection outputs. These results are updated in the metadata file under the event label 

field, enabling downstream team fast querying for model training. This design 

facilitates cross-team reuse of both data and ML workflows, significantly enhancing 

research efficiency, interoperability and reusability. 

9.1.3 Data Pipeline engineering and testing 

Once the framework was designed, the actual engineering process became 

straightforward, allowing for modular implementation in Python. Standardized 

acoustic clips and metadata files were used as inputs for testing. The successful test 

results (including feature extraction, biodiversity assessment, and anomaly detection) 

demonstrated that the pipeline functions effectively and fulfilled its intended multi-

functional purpose. Furthermore, by integrating Snakemake, the entire computational 

workflow was standardized, enabling pipeline level sharing and reuse. 

9.1.4 FAIR maturity assessment 

Finally, we conducted FAIR maturity assessments for both the dataset and the pipeline 

as key digital assets. The results indicated a high level of FAIR alignment, showing 

their readiness to be published and shared as contributions to open science. 

Through the above four steps, we explored a standardized process for building a FAIR 

pipeline. Although this study specifically focuses on the application of soundscape 

level ML with marine acoustic data for ecosystem research, the standardized process 

has high transparency and has the potential to be adapted to other domains. 

 

9.2 Strengths of the study 

A key strength of this study is its successful integration of marine soundscape data into 

a ontology framework. By aligning metadata with established Semantic Web 

vocabularies and combining ontologies from multiple domains, including marine 

ecology, acoustics, and machine learning, the metadata design enhances machine 

readability and supports cross research data reuse. This provides an important 

foundation for federated data integration, making it especially suitable for AI-driven 

applications in marine ecology. 

Additionally, our metadata design includes task-relevant labels to support result 

storage and data query for multiple machine learning tasks, such as biodiversity 
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assessment, anomaly detection, and species identification. Since the algorithms 

themselves are modular, the framework offers strong flexibility for integrating 

different new models in the future. 

This multi-task compatibility overcomes the common limitation in ecological data 

pipelines, which are often designed for single purpose tasks. It also offers a new 

rethinking for cross-team collaboration by identifying shared preprocessing needs 

across different research groups. This approach reduces redundant data preparation, 

with the metadata file as a bridge, linking to the same preprocessed data while 

supporting various analytical goals,  promoting interoperability and minimizing 

unnecessary duplication. 

Finally, not only the FAIRified dataset but also the computational workflow are 

significantly contribute to open ecological science. By building a pipeline aligned with 

the FAIR principles, this study provides a replicable and transparent experience for 

future implementations.  

 

9.3 Limitations 

While it shows several strengths, there are also limitations to be discussed.  

In this study, the main focus is on data FAIRification and data framework design. The 

calibration, as the specialized step in acoustic signal processing, is mentioned as a key 

procedure to reduce structural bias in data modeling caused by differences in devices 

and sampling methods. However, we do not compare or implement different 

calibration algorithms in detail. 

Addtionally, from a data lifecycle perspective, unlike other original metadata, the 

labels used in ‘edam:Machine learning’ class are process-annotated, and therefore are 

not provenance features. In our research, we only describe such labels in the paper, 

but did not establish a more standardized annotation method to distinguish them from 

other metadata (emphasizing that they are assumed outcomes), nor did we implement 

the annotation to update or record whether these labels have been reassessed by 

researchers. 

Also from the algorithmic perspective, some machine learning models - especially 

black-box types like neural networks, may lack of some explainability. To ensure 
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robustness and trust in the results, it is necessary to perform cross-validation and 

support model outputs with interpretable acoustic indices and external references 

such as historical literature or statistical records or even multi-modal images. These 

measures will help calibrate evaluation outcomes and strengthen the overall credibility 

and utility of the computational pipeline. 

This pipeline method has so far only been tested on small-sample centralized-stored 

datasets, and its scalability in larger, real-world scenarios requires further exploration. 

In theory, acoustic data can be streamed in real time into the data pipeline for dynamic 

analysis; however, due to the lack of relevant hardware and experimental setup, real-

time deployment remains untested and is an important direction for future 

implementation. 

From the perspective of source-level data handling, PAM datasets, which are often 

large in volume, are typically stored on cloud platforms such as Google Cloud Platform 

(GCP). In this context, the entire computational pipeline can be executed within the 

cloud environment. Compared to traditional workflow management tools like 

Snakemake, cloud platforms offer a more accessible solution, especially for users with 

limited coding experience, as Snakemake requires deeper knowledge of command-line 

settings and scripting. 

Alternatively, decentralized storage infrastructures such as FAIR Data Points (FDP) 

should also be considered. If participating institutions store acoustic datasets using a 

unified metadata structure, FDP enables seamless and efficient querying across 

distributed sources without copying data again, this would be a critical step toward 

enhancing data interoperability and reusability in future collaborative projects. 

 

9.4 Future work  

Regarding of the above limitation, more work is needed in future studies. Future work 

could therefore focus on three aspects: better calibration implement, better ML labels 

annotation standard and cross validation workflow, and further testing in a 

decentralized environment. 

As future work, more detail calibration methods can be explored to solve the structural 

bias caused by different recording devices and sampling ways. Also, developing a more 

standardized annotation format for ML labels, clearly distinguishing them from 
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provenance metadata and tracking reassessment status, will improve transparency 

and reusability. Cross validation workflow could be another important module to be 

embedded in the data framework. 

For the real-world use case scenario, improving scalability and exploring real-time 

streaming solutions is necessary, as well as leveraging cloud-based solutions, such as 

GCP, or decentralized infrastructures like FAIR Data Points for further testing. 
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10        Conclusion 

This study aims to optimize a FAIR machine learning data pipeline by extending an 

ontology to enhance the interoperability and reusability of marine acoustic data for 

ecological research. Our pipeline is well realized for integrating data for cross-task use 

and provides new ideas for more collaborative data-driven marine research. 

The following conclusions are drawn based on the research sub-objectives: 

RO 1: Integrate Marine Soundscape Data with Optimized Ontology to Support 

Subsequent ML Tasks 

This research successfully integrated marine soundscape data into an ontology-based 

framework, improving data interoperability and providing a standardized structure 

for future machine learning tasks. The optimized ontology enhances data reusability, 

ensuring that the data can be easily adapted for multiple ecological applications. By 

ensuring a semantically rich metadata schema, the integration supports seamless 

transitions between different ML tasks and use cases. 

RO 2: Address Inefficiencies and Propose the Optimization Solution of the Data 

Pipeline to Support Diverse ML Tasks 

The study successfully identified key inefficiencies in current marine acoustic data 

pipelines, such as limited support for diverse machine learning applications and 

insufficient FAIRification of the whole computational workflow. In response, the 

research proposed an optimized data pipeline that integrates federated data sources 

and applies standardized metadata through ontology extensions. Along with metadata 

file continually updated for data querying, it reduces data redundancy, ensures 

consistency, and enables more efficient reuse of the data for various ML tasks. 

Furthermore, the pipeline supports scalability, allowing it to accommodate research 

requirements and increasing data volumes. 

RO 3: Set Up the Pipeline and Experiment to Test Its Performance, and Document It 

An experimental setup was developed to test the performance of the optimized 

pipeline, focusing on its ability to handle various acoustic data and multiple machine 

learning tasks. The engineering result showed the pipeline’s efficiency in processing 

integrated datasets, its flexibility in supporting various ecological research tasks, and 

its ability to data reuse. The entire workflow, from data integration to ML model 
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application, was documented in FAIR standard, providing a blueprint for future use in 

marine ecosystem open science. 

RO 4: Use the FAIR Principle to Evaluate the Data Pipeline Maturity, Consistency, and 

Quality 

Under the FAIR principles guidance, the data pipeline was evaluated of maturity, 

consistency, and overall data quality. The assessment revealed that the optimized 

pipeline significantly enhances the FAIRness of marine acoustic data, ensuring that it 

is not only accessible and reusable but also easily discoverable and interoperable 

across different research platforms. The pipeline’s alignment with the FAIR principles 

supports its adoption for global ecological research collaborations. 

Overall, through responding the above research sub-objectives, we conduct our 

research and bring some novelties. First is the marine acoustic data FAIRificaiton, 

building a cross domain ontology and federated data integration for marine acoustic 

data. Second is the consideration of multi-task ML requirements and cross team 

cooperation. When applying ML, we also consider downstream tasks, and the bridge - 

metadata file enabling efficient querying and filtering. Third is the FAIR 

computational workflow, following the FAIR workflow process, we also make the 

entire computational pipeline FAIR for marine ecosystem Open Science. 

Although this study shows a practical solution to FAIRify marine acoustic data, more 

efforts should be made to improve the calibration procedure, and the robustness and 

interpretability of labels annotated by machine learning models by cross-validation 

with acoustic indices, historical references, multi-modal data or experts’ adjustment. 

These directions are important for transforming the pipeline into a real-world, 

scalable, and trustworthy architecture for marine ecosystem research. 

It has so far only been tested on small, centralized stored historical dataset. Future 

work should focus on real-time monitoring and decentralized storage solutions. 

Mature cloud infrastructures or decentralized data systems such as FAIR Data Points 

can further improve accessibility, interoperability, and collaborative efficiency.  

 

In conclusion, this research provides an optimized solution to enhance the integration, 

consistency, and application of marine acoustic data. By optimizing the data pipeline 

and ensuring alignment with the FAIR principles, this study supports the growth of 
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marine ecosystem research and facilitates the broader use of data in machine learning 

applications for biodiversity conservation and ecological studies. It represents a first 

step toward building a more practical and interoperable foundation for marine 

acoustic data, supporting both ecological understanding and future machine learning 

applications through a FAIR and collaborative approach. 
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Appendix 

Appendix A. literature review process 

This is the full literature review process conducted in Chapter 3, in three main steps: 

1) Conducted exploratory search in the beginning. Used the Google Scholar (GS) 

database, with core keywords 'soundscape marine machine learning biodiversity'. 

Sorted out the relevant papers in the top20 search result as the seed papers. 

Expand more relevant articles for reference in the process of reading seed papers. 

2) According to the systematic review method by D.A.Nieto et al.[13], we also selected 

ScienceDirect (SD) to carry out the systematic search because of the similar study 

fields. To define the search equation, Boolean filters provided by ScienceDirect 

were applied across three aspects: 1) terms in full articles; 2) terms in titles, 

abstracts, or keywords;  3) article types. The filter setting was performed according 

to Figure A1.  Then used the PRISMA flow method to manage the whole review 

process. During the paper screening step,  used AsReview tool to manually label 

all the papers into 'Relevant' or 'Irrelevant', according to the titles and abstracts. 

Sorted out all the 'Relevant' papers for further retrieval. 

 

Figure A1: Filter query setting in ScienceDirect 

3) Considering that there might be papers missing from the systematic search using 

only the ScienceDirect database, we also used ResearchRabbit (a database that 

searches for papers through the citation network, RR, 
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https://www.researchrabbit.ai/) for secondary supplementation. We put all 

GoogleScholar seed papers, extended reading papers and relevant papers screened 

in ScienceDirect as a batch, into ResearchRabbit to generate citation network 

top50 result, and then filtered papers manually in the same way with PRISMA and 

AsReview (https://asreview.nl/). 

The last literature search is conducted in March 9th, 2025. Although a large number 

of search results were obtained through keyword combinations, the requirement to 

meet all three criteria including ‘marine’, ‘soundscape’ and ‘machine learning’, led to 

a limited number of relevant articles, with their content being relatively concentrated. 

There are a total of 21 relevant papers in the systematic review result in 3 sources as 

Figure A2: 

1) Exploration search in GoogleScholar top20: 6 papers are relevant, and  extend 

another related 10 papers mentioned in them. 

2) Systematic search in ScienceDirect: 2 papers are relevant. (The manual screening 

result in AsReview is as Figure A3). 

3) Connection search in ResearchRabbit in top50: 3 papers are relevant. (The paper 

connection graph is as Figure A4, and the screening result in AsReview is as Figure 

A5). 

Most papers were excluded between the retrieval and eligibility steps because they did 

not apply machine learning, relying only on sound indices statistics methods. 

Additionally, some studies were excluded because they focused on individual species 

classification or animal behavior rather than soundscape level ecosystem assessment. 
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Figure A2:  PRISMA 2020 flow diagram for systematic review 

 

Figure A3:Screening of ScienceDirect result in AsReview 



 

 

82 

 

Figure A4: ResearchRabbit top50 paper network results 

 

Figure A5:Screening of ResearchRabbit result in AsReview 


