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Abstract

HANAMIKOJI is a card game for 2 players where the player must attempt to gain more “Victory
Marks” and “Charm Points” than their opponent. The game ends when either player has obtained
a majority of either, or after 3 rounds, in which case the winner is decided by a tie-breaker. Between
rounds, the deck is reshuffled and the cards are dealt again. This research aims to apply various
algorithms based on the Monte Carlo system to discover which methodologies are ideal, how various
other techniques may further improve player accuracy, emergent patterns in computer play, and
the nature of the game’s state space.
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1 Introduction

The Monte Carlo system is a methodology for sampling outcomes in probabilistic situations. Rooted
in gambling and initially utilized primarily in nuclear weapons research [[X\W09], it has become a
popular method for discovering optimal plays in games with incomplete information.

To give an example of such, take the card game POKER [Sk199]. All a player knows is the cards in
their current hand. They do not know the hands of the other players, or the cards currently still in
the deck. Based on this information, they need to decide their next move. If they have a strong
hand, they will often opt to raise the bets. If they anticipate that another has a hand that exceeds
their own, they will be far more inclined to check or even fold.

All decisions are based on human intuition. An approach based on the Monte Carlo system would
be to play a set of completely random games, where the only constant between all of them is the
hand of one player. Based on the outcomes, the aforementioned player can forego intuition and
choose the play with the highest sampled probability of success. In the same vein, HANAMIKOJI
[Hmk17] is also a card game with incomplete information. The game was first released in 2013,
making it relatively new. The game, played by two people, has many variable aspects concealed
from either player, such as the hand of the opponent, the cards in the deck, etc. Many different
methods of random sampling are applicable for this.

In this research, we analyze some of these methods, observe their performance in the game,
and analyze trends within the results. We also analyze potential correlations between various
circumstances and game outcomes for the players. HANAMIKOJI is quite unexplored in terms of
optimal play, making the efficacy of Monte Carlo methodologies in the game a compelling topic
to research. The game has various traits worth analyzing, such as the relative value of individual
cards and the impact of turn order. Another interesting attribute is the nature of the game’s state
space, and how that may influence the utility of various algorithms.

Figure 1: The cards in the deck, sorted by type.



Thesis Goal

In this research, the primary goal will be to discover which methodologies and supplementary
techniques can be applied to achieve the most consistently optimal play within HANAMIKOJI. This
necessitates not only maximizing the size of a search but the information gain thereof as well, so
as to improve the quality of play while maintaining efficient runtimes. These techniques include
regular Monte Carlo methods, the use of pre-sampled information as well as complete information
of the current game state, recursively sampling multiple turns of the game at once, and lastly, the
MCTS and Minimax algorithms.

The secondary goal is to analyze trends within the game itself, such as the impact of turn order, the
average length of games, and the relative values of cards as opposed to their real value as described
by the game’s rules. Through this, patterns in play could translate to actual strategies in games
between human players.

The final goal is to examine the nature of the state space of HANAMIKOJI. If the state space is too
small, broad, or shallow, MCTS methods may prove ineffective as opposed to simpler algorithms.
The underlying objective here is to observe whether the Trade-Off between the more expansive
searches of MCTS justifies the potential improvement in the quality of play.

Thesis Overview

Firstly, we will highlight related works in Section 2. In Section 3, we will subsequently outline the
rules and modifications of the simulated games of HANAMIKOJI we will be researching. In Sections
4, 5 and 6, we will observe how the game is simulated and interacted with, how agents use the
aforementioned interactions to evaluate the decisions they make, and what underlying algorithms
and techniques are used specifically for this process. In Section 7, we will outline what parameters
the agents we will be testing can be configured with. In Section 8, we will observe the results of the
experiments performed in accordance with the goals stated prior. Lastly, in Section 9, we will draw
our final conclusions and speculate on what further research the results may invite.



2 Related Work

The Monte Carlo system is a popular avenue for optimization problems in game theory. In this
section, we will explore several examples of it being applied in research on famous games. We will
primarily examine applications in games meant for two players.

Monte Carlo Tree Search (henceforth referred to as MCTS) | | methodology has been
used to train models to play competitive POKEMON battles [ |. In this research, the oldest
games are used, presumably for their mechanical simplicity and lack of variance. In battles, each
player’s team and move choices are hidden until used in battle. The most relevant discovery in the
paper is an ostensible causal link between the depth of the agent’s searches and the average length
of matches it played, as well as how often it won.

MCTS has also been employed for POKER | ]. In this instance, it applies a variation
of the Minimax algorithm [D)M] to simulate games played between random and Al players, with
each layer of nodes representing the possibilities of moves in a turn. This paper explores key facets
of MCTS such as the Trade-Off between accuracy and sampling time and the balance between
exploration and exploitation (therein implemented through an Upper Confidence Bound | ])-

This methodology has been researched in games with no variance or obscured information
as well. One popular example is CHESS | ]. In a similar fashion to the POKER research, a
Minimax algorithm is applied to examine which board states are most compelling to the player
and their opponent on each turn. Since the state space of CHESS is far too large to fully examine,
MCTS remains compelling to approximate the desirability of sub-trees that would be impossible to
fully traverse. Another important concept of this paper is searching with heuristics. Because of the
aforementioned state space, unconditional random sampling will either be tedious or inaccurate. In
CHESS, concepts like material advantage, king positions, and pawn structures can, to an extent, be
evaluated programmatically to curtail this issue.

Another example of a game without variance or incomplete information is GO | |. In this
research, we see similar concepts from the prior examples in effect. Heuristic search is similarly
applied to alleviate the hurdle of the enormous state space of GO. The Upper Confidence Bound
algorithm is utilized to balance exploration and exploitation as well. Similar methods have been
applied by Google in their ALPHAGO Al model | ]

An indirectly related example of the utility of MCTS is its application in the game TETRIS
[ |. In the game, you can see the upcoming pieces as the next one falls onto the grid, which
allows for move planning on the basis of a tree which can be deepened in tandem with the revealing
of new pieces on the grid.

The Minimax algorithm can also be used without MCTS in a game where the state space is
sufficiently small, such as CONNECT 4. In this case, random sampling is not as informative as
simply deepening the search tree, and we see that Alpha-Beta pruning | | can even further
simplify said searches.

These examples highlight that MCTS methodology is not only suitable for HANAMIKOJI, but
that it is versatile and can make use of various ancillary techniques to be optimized for specific
use cases. Several of these concepts will be recurring within this research as well. They also allude
to an overarching correlation between the nature of the state space and the efficacy of searching,
sampling, and the balance between both.



3 Hanamikoji Rules

In Hanamikoji, six cards are dealt to two players each from a deck of 21, after which one card is
disposed from the deck for the remainder of the round. Up to three rounds may be played. Before
each player takes a turn, they draw another card from the deck. At the end of each round, each
player should have eight cards for scoring and two more discarded. These cards will belong to one of
seven suits or Geishas, each worth a certain number of Charm Points determined by how many
cards that match them are in the deck in total (2, 2, 2, 3, 3, 4, 5). Whichever player scores the most
cards of a certain type, earns the Victory Marker and Charm Points of the corresponding Geisha.
The game ends if a player gets four Victory Markers or eleven Charm Points by the end of a round.
If three rounds pass with no decisive winner, the player with the largest number of Victory Marks
or Charm Points wins the round. In both cases, Victory Marks take priority in deciding the winner.
In each round, four distinct actions must be taken across four turns (in no particular order):

e Secret: Conceal a card from your opponent for the remainder of the round. This card will be
scored.

e Trade-Off: Conceal and discard two cards from your hand for the remainder of the round.
They will not be scored.

e Gift: The player presents the opponent with three cards of their choice from their hand. The
opponent chooses one to score for themselves. The other two are scored for the player who
made the offer.

e Compete: The player presents the opponent with four cards of their choice from their hand,
in two pairs. The opponent chooses one pair to score for themselves. The other pair is scored
for the player who made the offer.

3.1 Modifications
In this research, some alterations were made to simplify programming and game logic for the agents.

e The “Compete” action does not work with two pairs of cards, but rather four separate cards
of which any disparate pair may be chosen.

e When drawing cards from the opponent’s offers, they are placed in the recipient’s hand rather
than their scored cards. Scored cards can not be used in future turns.

e Consequently, the players end every round with three cards still in their hand. These are
simply scored alongside the other cards at the end of the round.

e The round starts by dealing seven cards to both players and dealing more at the end of each
player’s turn, rather than dealing six and dealing more at the start of their turn.

The potential impact of these modifications is unclear. Analysis thereof is outside the scope of this
thesis. An example of a round of the simulated game can be found on the following page. Note
that the suits of the card are numbered 0-6. Furthermore, the indices in the deck and each player’s
hand and scored cards represent the quantity of cards of a particular suit. The indices in Trade-Off,
Secret and Card Offer represent one card each, the number corresponding to the suit.
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State: The cards in the hand and secret of both players are added to their scored cards. Player 1 wing with 4 Victory Markers of 7.

Figure 2: Examples of moves and game outcomes.

6



4 Game States

In order to represent games from start to finish for the agents, game states must be stored in a
manner that enables them to traverse through, copy, and compare them. These states include the
following properties:

1. The Victory Markers

2. The Action Markers

3. The players’ secret and discarded cards (if they have them)
4. The players’ current hands

5. The cards in the deck

6. What turn and round it is
7. The next action to be taken (playing or drawing cards) and which player must take it
8. The cards being offered to a player in a Gift or Compete (if applicable)

Between any given action, all but the first two change, and the nodes that mark the start of
a new round will change those two as well. The states at the end of a game also have a result
value a € {—1,0, 1} which indicates a victory by the second player, a draw, and a victory by the
first player respectively. We will henceforth denote a game state with G;,., where ¢t € {1,2,3,4}
represents what action or turn of the round it is, and r € {1,2,3, T} what round of the game it is,
with T denoting a tiebreaker.

The states must also be partially randomized when the agent interacts with them, to ensure
that the agent acts with incomplete information. Some experiments are performed without this
randomization, to analyze how the performance of an agent improves when it is given the ability to
“cheat” when choosing its move.

4.1 Randomizing States

When an agent is performing rollouts without cheating, it must randomize all parts of the board
it cannot see. These include the opponent’s hand, secret and discarded cards, and the deck. The
scored cards, Victory and Action Markers, and the agent’s own cards are not randomized, as those
are always visible to a real player of the game. To accomplish this randomization, the opponent’s
unscored cards are all returned to the deck. An equivalent number of cards is then dealt back to
the opponent, who then selects random cards for Secret and Trade-Off if applicable. An example of
this randomization can be seen in the figure on the following page.

This randomization keeps the agent’s information incomplete, and the impact thereof will be
examined in the experiments. The randomization is done before every rollout, to ensure the player’s
evaluation is not excessively influenced by one particular randomized state where one move may
be more desirable as opposed to another. When the agent is offered cards, the randomization also
does not affect the cards they are offered, as the offered cards are all visible to a real player. The
randomization does, however, affect cards the agent has offered the opponent on previous turns.

7



Card Offer Victory Markers
[ x [ x ] D e o [ [ x|
Hand Secret Trade-Off Scored Action Markers

[x[x] [x[a[ ]x[x[x]x] [N

Hand Secret Trade-Off Scored Action Markers

[ ] [x[x[x[+]x[+]x] [s[5]ele

Card Offer Victory Markers

[ x [ x [ ] [ x [ x [ x [ x x|
Hand Secret Trade-Off Scored Action Markers

x[x] [ [x[x[x[x] [siv]e[e]
Hand Secret Trade-Off Scored Action Markers

[ [ele] [xIx[x[a]x]]x] [SINMENE

State: Randomized. Player 1 is next io move.

Figure 3: Player 1 performs a rollout with player 2’s state being randomized.

5 Types Of Agents

Several kinds of agents have been programmed to emulate real players. The simplest one is one
that chooses its moves entirely randomly (henceforth referred to as the random agent), with
its only constraint being that it must play legal moves. The following agents all use the Monte
Carlo System, either exclusively or in conjunction with other algorithms for decision-making. The
underlying logic of each agent will be explained in the remainder of the section.

5.1 Simple Agent

The simple agent is the most rudimentary implementation of the Monte Carlo system for this game
and serves as a good foundation for the more complex agents. It works by making a copy of the
game state for every potential move it can make, performing n rollouts consisting of letting random
players finish the game from said states, and then evaluating the average outcome of every state,
selecting the move that led to the most desirable result. This agent does not look further ahead
than a single turn in the game.

The quality of these results will be determined by the promise value pu(a) € [—1, 1]. Depending
on the player, the state will be selected with either the highest or lowest value of u(a), which is
calculated as the mean of game outcomes a collected over n rollouts. The complete logic can be
seen in the pseudocode of Algorithm 1 on the following page.



Algorithm 1 simple agent Move Evaluation

1. stateList := [ |

2: for action in actions not yet taken do

3: for combination in card combinations in hand do

4: cloneState := clone(currentState)

5: makeMove(action, combination, cloneState)

6: stateList < stateList + cloneState

T

8: promiseValues := | |

9: for i = 1 to size(stateList) do

10: nextPromise Value = 0

11: bestState := 0

12: for j = 1 to sampleSize do

13: sampleOutcome := result(playrandomRound (stateList[i]))
14: nextPromise Value < nextPromiseValue + sampleOutcome
15: promise Values < promiseValues + nextPromiseValue | sampleSize
16:

17: if playerlD = 1 then

18: return stateList[max(promise Values)]

19: return stateList|min(promise Values)]

5.2 Tree Search Agent

The tree search agent, or the MCTS agent, utilizes MCTS to look further ahead than a single turn.
It composes a tree of states out of nodes consisting of five properties.

Game State

A node contains a state G, where r must always be equal to the value of its parent, as move
evaluations cannot extend between rounds, naturally limiting the potential size of a search tree as
the agents near the end of a round. the value of £ may either be the same as that of its parents, in
the case of a state not describing the final action in a turn, or one greater than the parent otherwise.
The root contains the present state of the game itself. States are only randomized within leaf nodes
if randomization is enabled. This does allow the agent to cheat to an extent, as all states above the
leaves are reachable states from the root. This is however necessary as randomizing internal states
can expand the tree with states that cannot be reached from the root.

State Transition Descriptor

A node contains a notation of the action that created its own state out of the state of its parent.
These actions exist within three categories:



1. Agent moves: These are any moves performed by the agent currently constructing a state
tree, which can be either an action taken on the agent’s own turn or a choice of cards to draw
from a Gift or Compete by the opponent.

2. Adversary Moves: These are any moves performed by the opponent. These include the
opponent’s moves and selections from the agent’s own Gift or Compete.

3. Random Moves: The only move in this category is drawing a card from the deck at the end
of either player’s turn, a move that is controlled by a separate random number generator.

The state transition descriptor of a node determines the states of its children, as well as the node
type. In the root, this descriptor is set to a null value.

Node type

A node, corresponding to the three types of state transition descriptors, can be marked as one of
three types. The chosen type corresponds to the state transition descriptors of the children of the
node. In the root, these will always be agent moves.

1. Max node: The highest evaluated child is selected in the final evaluation. The state transition
descriptors of the children must be agent moves. In other words, the agent is next to move in
the state being evaluated.

2. Min node: The lowest evaluated child is selected in the final evaluation. Functions identically
to a max node with adversary moves and the opponent being next to move.

3. Chance node: The mean value of all children is selected in the final evaluation. All children
will have random moves as state transition descriptors.

Since leaves do not have any designated type, their final value is determined with Algorithm 1.

Promise Value

After the leaves are all assigned a promise value p(a(Gy,)), these values are propagated back to
the root corresponding to the types and descriptors mentioned prior. After this, the agent chooses
the state with the best u(a) in the children of the root, performing the move that aligns with its
state transition descriptor. These properties enable a bottom-up implementation of the Minimax
algorithm [DM].

Depth

The root’s depth d,..; is set to the depth d of the agent. The depth dy of any node is set to d; — 1
with d; denoting the depth of its parent. All leaves must be of depth d < 1. The agent may extend
subtrees to negative d values in certain conditions to ensure that every leaf is a chance node. This
is done to ensure Algorithm 1 works correctly and in practice makes certain depths work identically.
This will be relevant in Experiment 8.7.

A top-down implementation of this algorithm is also possible, and would enable o — 8 pruning
[ |, likely on the basis of an Upper Confidence Bound | |, but due to constraints in the
simulator, a bottom-up method was chosen instead. The difference between the approaches is
beyond the scope of this research.
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5.3 Recursive Simple Agent

While the simple agent uses random agents in its rollouts, a possible method to perform searches
of increased depth without the use of MCTS is to let a simple agent perform rollouts with other
simple agents. These will be labeled recursive rollouts n; with simple agents with rollouts ny. The
recursive method can more closely imitate a top-down implementation of a minimax algorithm.
However, a recursive rollout consumes more runtime as it performs regular rollouts at every child
of a state. The nature of this growth in runtime potentially reveals information about the game’s
state space, which will be examined in greater detail in Experiments 8.7 and 8.8.

6 Pre-Sampled States

As the game state resets almost entirely between rounds, one method to reduce the length of
rollouts is to pre-sample all states {G4; | t > 1}. The only aspect of a state persistent between
rounds is the Victory Markers, which can have non-zero values only after the first round. The
amount of number arrangements can be mathematically deduced as 37, as there are 7 Victory
Markers, each with 3 possible states: claimed by player 1, claimed by player 2, and unclaimed.
Among these arrangements, many will have decisive outcomes that do not continue the game to
another round or tiebreaker. These arrangements are consequently not given a value p(a(Gy,)).
We will store the values of these arrangements in two ways.

Array

Since the arrangement of the Victory Markers, denoted by (my,...,mz), can be applied as an
integer in base-3, we can express the arrangement in base-10 as we index it into an array with the

following formula:
7
Z my; * 3i71
i=1

The use of an array could increase search times in memory. We can curtail this potential issue by
storing the values in a different structure.

Tree

Every Victory Marker can be mapped to a layer of ternary nodes in a tree, where each branch of a
node at depth i represents the value of the Marker m;. By traversing the according branches to
a leaf containing the promise value corresponding to the combination of Victory Markers in the
current game state, we can reduce the theoretical search time to 3 % 7 steps. Whether this impact is
noticeable is a minor point of interest in the experiments.

A pre-sampled rollout itself will only continue to the end of the round it started in, rather
than to the natural end of the game. It subsequently returns the sampled value of the attained
combination of Victory Markers as a. The difference in efficiency between a pre-sampled and regular
will be analyzed in detail in the experiments, as well as the results contained within the pre-sampled
database themselves.

11



7 Agent Configuration

We will now outline the full list of adjustable parameters for an agent as they will be applied in the
experiment:

¢ Rollouts: The number of games an agent will simulate to evaluate the likelihood of victory
from a state. A random agent will be reduced to a simple agent with 0 rollouts. Denoted by
n. In the case of the recursive simple agent, this is split into n; and ns.

e Depth: The depth of a tree of states being searched by the agent in its evaluations. A simple
agent will be reduced to a tree search agent with a depth of 1. Denoted by d.

e Cheating: A cheating agent performs rollouts without randomizing the game first, granting
it complete information about the game state.

e Pre-sampling: A pre-sampling agent will not require rollouts to go to the end of the game.
Instead, it will play them to the end of the round, and then compare the end state to a
pre-sampled list of values for its evaluation.

12



8 Experiments

8.1 Simple Agents vs. Random Agents

In this experiment, we let random agents play against simple agents with various rollout counts.

Simple Agent vs. Random Agent

—— player 1

| 2 LN
9 pover /\/\/\,/\,/\‘ B e~ e .
A7

© //\\/“\/

L

L

Games Won (% of 1000)
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Rollouts Per Move

Figure 4: Performance of the simple agent against random agents.

Figure 4 shows the performance of the simple agent when it is afforded incomplete information
in its rollouts. We can observe that as we increase n, the win rate (denoted by W,) improves
asymptotically. The upper limit in this case is approximately 96%. Note that the graph begins
fluctuating around this limit at fairly low rollout counts, progressively stabilizing near said limit
as the count grows. The simple agent with 20 rollouts will serve as our baseline performance
benchmark in subsequent experiments, as it already converges upon the perceived limit while being
far more efficient in runtime, seen in the table below.

n | W, Wy Runtime (s)
1 72.0% | 71.6% | 1.10

10 | 91.5% | 91.2% | 3.59

20 | 94.0% | 93.1% | 6.14

50 | 96.7% | 96.2% | 14.37

Table 1: Success rate and runtime for 1000 games against random agents

Note that these runtimes were achieved by agents without any ancillary evaluation techniques.
The next experiment will concern the efficacy of one such technique. Namely, pre-sampling game
states for future evaluations.
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8.2 Pre-Sampling Trends

In the following experiments, cheating simple agents with 50 rollouts per turn played 100 games
from the following states:

{Gir |t=1Are{2,3}}forall M € {(my,...,m7) | m; € {0,1,2}}

This represents all possible combinations of Victory Markers on the second and third rounds. p(a)
was gathered from 100 games for every combination. The results will serve as the pre-sampled data
for agents in subsequent experiments. In the graph below, the bars represent the mean of p(a)
where either player 1 or 2 held a specific Victory Marker at the start of the round. For player 2, the
signs of these results are flipped for simplified visualization. Furthermore, any state with a decisive
outcome (e.g.: M ={1,2,1,1,2,1,2}) was excluded from evaluation to avoid redundancy.

0s Relative Value Of Markers
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Mil=2r=2
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0.4 4

BN

0.3+

0.2

pia)
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Figure 5: Average outcome P respective to each Marker

The most prominent observation is how differently the agents evaluate states as a whole
depending on what round it is, with player 1 favoring round 2 and player 2 favoring round 3. This
indicates a potential disadvantage attributed to moving first. Additionally, Markers with an even
number of cards in the deck are generally valued higher than ones with an odd number. This is
potentially due to those Markers being easier to keep once claimed, as only half the cards of the
respective suit need to be scored. Another noteworthy trend is that the perceived value of Markers
generally becomes lower the higher their real value.

Player 1 notably deviates from these trends in round 3, attributing higher values to Markers with
odd-numbered real values, and higher values in general. This is presumably a result of tie-breaker
outcomes, where Charm Points will most often determine the victor. This implies that playing to
reach a tie-breaker may be an effective strategy for player 1 if the game reaches the third round.

The final trend worth noting is the generally more extreme evaluations attributed to games in
round 3. This is likely a result of the aforementioned turn order advantage as well as the potential
viability of playing for tie-breakers. With these values immediately accessible, the next experiment
will have the agents apply them to their rollouts.
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8.3 Impact Of Pre-Sampling

In this experiment, simple agents of 1-50 rollouts were tested against simple agents of 20 rollouts
in three different conditions: One where neither apply pre-sampling in their rollouts, another
where only the tested agent applies pre-sampling to its rollouts, and a final one where both utilize
pre-sampling simultaneously. The main point of interest is runtime improvement. Potential changes
in accuracy will also be analyzed.

Runtime Efficiency

Pre-sampling vs. Regular runtimes (1000 games)

—— None
Player 1

—— Player 2

—— Both

Runtime (s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 SO
Rollouts (n)

Figure 6: Average runtimes across scenarios

In all scenarios, the runtime grows in a roughly linear trend. The most noteworthy observation is

the difference in growth rates when only the tested agent applies pre-sampling, with the adversary
sampling as normal. We see that player 1 experiences a substantially larger decrease in runtime
than player 2 and that this benefit scales with the rollout count. This is potentially related to
tie-breakers and the average game length of games won by player 1 as opposed to player 2, an
implication further reinforced by the results of Experiment 8.2. Regardless, the benefits in runtime
are sufficiently desirable for both players.
The impact of storing the tables in a tree as opposed to an array was negligible, likely due to
the tables being too small for the search time to be significant. This could also be the result of
hardware-related behaviors such as values being cached and the associated cost of memory reads.
The searches through the pre-sampled data will use the array structure exclusively in subsequent
experiments.
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Influence on Accuracy

We can measure this by the quotient between the mean win rate of the tested agents, dividing the
mean outcome of pre-sampled games by the mean outcome of regularly sampled games.

Accuracy ratio

—— Player1
Player 2

Ratio

| \/\/\ﬁ ATY
AN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5
rollouts

Figure 7: Accuracy ratio between pre-sampling and regular sampling

The fluctuating ratio indicates that any perceived increase in accuracy is likely quite tenuous.
However, there are still observations worth mentioning. Firstly, at the lowest rollout counts, the
ratio is substantially higher. This is likely a result of a single pre-sampled rollout providing more
information than a regular rollout. Secondly, as the rollout count increases, the ratio visibly
converges towards 1. This is ostensibly due to the information gained from each rollout being
increasingly less important as more are performed, and the best moves become increasingly clear.
Finally, player 1’s ratio is markedly more consistent and generally higher than that of player 2.
Player 2’s accuracy when pre-sampling still remains consistently on par with its regular accuracy,
rarely falling below 0.95. In subsequent experiments, the agents will apply pre-sampling unless
otherwise specified, with the implicit expectation that the information benefits player 1 the most.
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8.4 Impact Of Incomplete Information

In this experiment, a simple agent of 20 non-randomized rollouts, which we will henceforth refer to
as a cheater, was tested against agents of increasing rollouts that remained randomized.

Cheater Agent vs. Regular Agents

—— P1vs. cheater
55 P2 vs. cheater

(% of 1000)

Games Won

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Rollouts Per Move

Figure 8: Performance of regular agents against a cheating agent.

n | 50 60 70 80 90 100
Wy | 47.8% | 51.1% | 51.1% | 52.8% | 53.4% | 54.0%
Wy | 43.7% | 45.1% | 47.5% | 47.3% | 49.6% | 49.0%

Table 2: Success Rates tested with higher rollout counts and no pre-sampling.

Beyond the expected result of the cheater outperforming any adversary with a rollout count

not substantially larger than its own, one incipient overarching trend can be observed within
both this and prior experiments. As the information gained within an individual rollout becomes
more complete, player 1 outperforms player 2 by an increasingly wide margin. Note that player 2
ostensibly needs over 5 times the rollout count of player 1 to achieve a win rate of 50% without
cheating (see Table 2), a ratio which is likely further amplified by pre-sampling. By contrast, player
1 only needs roughly double the rollouts to achieve the same result with pre-sampling, and 3 times
without it.
Another notable observation is a potential limit in win rate achievable against the cheater by a
regular agent, illustrated by the diminishing increase in win rate. This shows that a non-randomized
rollout is vastly more informative than a regular one, and that optimal play can be achieved with
them far more easily. In upcoming experiments, agents will not cheat unless otherwise specified.
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8.5 Rounds And Game Length

Now we will both observe results from prior experiments and perform trials to test the validity of
our observations thus far, to extrapolate potential correlations between game lengths and player
advantages. Firstly we will observe the dataset from the previous experiment for the average length
of a game won by each respective agent:

Average Game Length Based On Winner

—— PL1 Cheating

P2 Cheating
—— P1 Regular
—— P2 Regular

0 1 2 3 4 5 6 7 8 9 1011 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Rollouts Per Move

Figure 9: Mean round counts of games between a cheater and a regular agent.

We can immediately observe the points of convergence at the end of the graph, being approxi-
mately 2.15 rounds for player 1 and 2.3 rounds for player 2. Another prominent trend is player 1’s
propensity to play shorter games when it is the more optimal player, a trend not observed within
player 2. This further reinforces the assumption that player 1 makes an active effort to win before
round 3, while player 2 does not. Below are the results of trials between agents of equal rollouts
that are both cheating and pre-sampling. Note that n = 0 corresponds to a random agent. The
following table shows how the percentage of games that went to round 3 that were decided by

tiebreaker, denoted as T'B, as well as the win rates of player 1 and 2 in said games.

n 0 10 20 30 40 50 60 70 80 90 100
TB |2.38% | 3.25% | 3.35% | 4.21% | 4.62% | 4.73% | 4.51% | 5.26% | 5.06% | 5.65% | 4.85%
Wi(T) | 41.7% | 53.2% | 37.0% | 38.9% | 42.0% | 42.9% | 33.8% | 46.3% | 38.0% | 43.9% | 31.9%
Wo(T) | 58.3% | 46.8% | 63.0% | 61.1% | 58.0% | 57.1% | 66.2% | 53.7% | 62.0% | 56.1% | 68.1%

Table 3: Tiebreaker statistics

The table on the following page shows, for each agent, what percentage of their total wins took

place in each round, with u(l) denoting the mean length of their victories in rounds.
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n | pd) | Wi(1) | Wi(2) | Wi(3) | WA(T) n | p(l) | Wa(1) | Wa(2) | Wa(3) | Wa(T)
0 | 1.93]27.2% | 52.4% | 20.0% | 0.4% 0 | 1.92]27.6% | 52.5% | 19.4% | 0.6%
10 | 2.11 | 84% | 72.0% | 18.7% | 0.9% 10 | 2.28 | 13.8% | 44.3% | 40.9% | 1.1%
20 | 2.16 | 5.4% | 73.6% | 20.3% | 0.7% 20 | 2.38 | 10.5% | 40.9% | 47.0% | 1.7%
30 | 2.17 | 5.1% | 72.6% | 21.4% | 1.0% 30 | 242 | 8.8% | 40.5% | 48.6% | 2.1%
40 | 2.18 | 5.1% | 72.4% | 21.4% | 1.2% 40 | 2.44 | 8.8% | 38.0% | 50.9% | 2.3%
50 | 2.16 | 5.1% | 73.5% | 20.1% | 1.2% 50 | 248 | 8.1% | 36.2% | 53.4% | 2.3%
60 | 2.16 | 5.0% | 73.7% | 20.4% | 0.9% 60 | 247 | 8.6% | 36.0% | 52.8% | 2.5%
70 | 2.18 | 4.6% | 73.2% | 20.7% | 1.5% 70 | 2.50 | 7.5% | 34.8% | 55.1% | 2.6%
80 | 217 | 4.8% | 73.3% | 20.8% | 1.2% 80 | 2.50 | 7.7% | 34.6% | 54.9% | 2.8%
90 | 2.19 | 5.2% | 70.8% | 22.4% | 1.6% 9 | 2.51 | 7.2% | 35.0% | 54.9% | 2.9%
100 | 2.18 | 5.1% | 71.6% | 22.1% | 1.2% 100 | 2.52 | 6.3% | 35.3% | 54.7% | 3.8%
Table 4: Results of player 1 Table 5: Results of player 2

In Table 3 we can observe that as the rollout counts rise, the rate of tiebreakers does as well.
This growth does not appear to diminish within the tested range either. We can also see that player
2 is increasingly favored by tiebreakers as more rollouts are granted, disproving our hypothesis
from Experiment 8.2. However, the impact of tiebreakers remains resoundingly minimal, likely to
player 2’s overall detriment. In Tables 4 and 5 we can see that in round 1, player 2 is consistently
favored. However, the overall decline in both W3 (1) and (/) shows that more optimal agents will
less frequently end the game in the first round. We can see that player 1 is quite vastly favored in
round 2, presumably by virtue of them moving last. Round 3 also consistently favors player 2, and
as fewer games end in round 1, player 2’s victories become more frequent in round 3.

More generally, we can see that p(l) rises even further than initially observed for player 2 in Figure
9, up to approximately 2.5 rounds on average, while player 1 remains stable at 2.15-2.2 rounds on
average. Based on these results we can infer the following:

e Most games end in round 2. This is evidenced by the fact that even random agents win most
of their games in round 2 and that their u(l) is approximately 1.9. It also explains why player
1, whose (1) consistently remains closer to 2, outperforms player 2 in Experiment 8.4.

e As the agents become more optimal in their evaluation, player 1 will outperform player 2 by
an increasingly broad margin. This is implied by p(l) growing only for player 2, and Wi (1)
being far higher than Ws(1).

e There is an inherent advantage attributed to being the last to move in a round. Not only
is this further reinforced by results from Experiment 8.2, but it also aligns with player 2’s
growing values of u(l) and Wy (3). This implies that as fewer games end in round 1 and player
2 wins less frequently in round 2 where it moves first, it ostensibly more actively attempts to
force games to reach round 3, where it may once again be the last to move.

e While player 2 is consistently favored by tiebreakers, it cannot force them frequently enough
for this to be relevant to their success, further emphasizing player 1’s advantage that grows
in tandem with increasingly informed and extensive move evaluations.
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8.6 Preferred And Forced Actions

In the following experiment, we observe what moves the agents tend to prefer within a given turn of
a round, and how their performance changes should they be forced to deviate from said preference.
We will apply the notation of S, T, G, C for Secret, Trade-Off, Gift and Compete respectively. To
start, we will let two standard simple agents with 50 rollouts play a large number of regular games,
and aggregate the move distribution on each turn:

Preferred moves on each turn of a round.

I Secret
3 Trade-Off
Em Gift

I Compete

100 4

80

-3
3

Probability of play

S
8

204

& & & A

Figure 10: Most common moves on each turn.

The agents show an overwhelming preference for Trade-Off on the first turn, and Secret on

the second. They will choose to Gift on turn 3 marginally more often than Compete, though the
disparity is far less severe. This implies that moves that offer cards to the opponent are evaluated
lower in earlier turns. This could be due to various reasons, as these actions reveal cards to the
opponent, reduce the number of available moves on future turns by virtue of taking more cards
to play and give the opponent more immediate influence on the agent’s hand. By comparison,
Secret and Trade-Off seem to be regarded as less risky and more consistent early on. This does not
inherently confirm the optimality of this move order, it only shows that the simple agent’s logic
favors moves that do not offer cards.
With this precedent set, we will now test the agents in trials where one agent must play a set move
order every round, and the other does not. We will do this for every possible move order, and
evaluate which move order has the largest impact on performance. The agents are pre-sampling,
not cheating, and using 50 rollouts as they did before. The moves are ordered with the notation
mentioned previously.
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Order Wy Wy Julla=1)|pul|a=-1)
S-T-G-C | 58.0% | 45.9% 2.10 2.18
S-T-C-G | 56.0% | 48.4% 2.16 2.22
S-G-T-C | 52.7% | 41.4% 2.13 2.07
S-G-C-T | 57.6% | 54.8% 2.13 1.55
S-C-T-G | 47.9% | 41.4% 2.19 2.03
S-C-G-T | 57.5% | 57.2% 2.16 1.53
T-S-G-C | 55.5% | 41.9% 2.13 2.19
T-S-C-G | 54.8% | 42.7% 2.14 2.25
T-G-S-C | 58.7% | 44.3% 2.11 2.21
T-G-C-S | 50.4% | 42.3% 2.15 2.15
T-C-S-G | 56.5% | 44.4% 2.16 2.18
T-C-G-S | 55.6% | 47.1% 2.14 2.15
G-S-T-C | 54.3% | 42.3% 2.14 2.09
G-S-C-T | 56.7% | 55.2% 2.15 1.56
G-T-S-C | 53.6% | 41.9% 2.14 2.05
G-T-C-S | 47.4% | 40.1% 2.15 2.05
G-C-S-T | 53.2% | 57.9% 2.15 1.44
G-C-T-S | 33.7% | 29.5% 2.18 1.79
C-S-T-G | 48.5% | 39.7% 2.18 2.02
C-S-G-T | 55.2% | 54.8% 2.14 1.54
C-T-S-G | 46.9% | 36.9% 2.18 1.96
C-T-G-S | 45.0% | 39.8% 2.18 1.96
C-G-S-T | 54.0% | 59.2% 2.15 1.46
C-G-T-S | 33.5% | 29.9% 2.19 1.75

Table 6: Results achieved by different move orders

The most striking trend is the fluctuation of p(l | @ = —1) based on move order. Playing

Trade-Off last consistently improves player 2’s performance, leading to the shortest wins on average.
Player 1 is markedly less volatile, with (I | a = 1) stabilizing at approximately 2.1-2.2 and the win
rate remaining above 50% in the majority of cases. Also worth noting is that the two most severely
disadvantageous move orders for both players involve playing Trade-Off third and Secret last. The
perceived ideal plays on turns 2 and 3 are rather vague and depend on the moves chosen in turns
1 and 4. In turn 1, Secret is a very consistent and safe first move for both players, Trade-Off is
only desirable for player 1, Gift can be effective provided Secret is not played last, and Compete
is overall the least consistent, though player 2 performs better when it offers cards on its first 2
turns and does not play Secret last. In turn 4, the best move is Trade-Off by a very wide margin,
followed by Compete, followed by Gift, with Secret being decidedly the worst.
Overall, this shows that the simple agent’s evaluation is quite effective for player 1, but flawed for
player 2, as when this hard-coded move order was used, player 2 performed better than with the
preferred move order it evaluates naturally. The fluctuations in u(l | a = —1) imply that these
move orders are more conducive to first-round wins which greatly benefit player 2. We will not use
hard-coded move evaluation constraints or heuristics in upcoming experiments.
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8.7 Monte Carlo Tree Search

In the following experiment, we tested agents using the MCTS algorithm with pre-sampled rollouts
against various agents. We will first assess whether their performance and playing patterns diverge
from the simple agents in any significant way. For the entire experiment, the MCTS agent was
player 1. Note that an MCTS agent with a depth of 1 is equivalent to a simple agent. In this
experiment, we will be labeling agents by depth with C'(d) if they are cheating, and H(d) otherwise.
Due to hardware constraints, aggregating performance results for depths above 3 is not possible.

Playing vs Random Agents

d H1) [H?2) [HB) [C1) [CR) [C@)
W, 93.6% | 96.7% | 93.2% | 95.4% | 98.3% | 95.6%
p(la=1) 155 |142 |1.63 |153 |144 |1.65

Table 7: MCTS agents (n = 20) against random agents (1000 games)

The most key observation is that increasing depth beyond 2 appears detrimental to performance, as
while W remains similar between depths 1 and 3, the average round length rises by approximately
0.1. Additionally, the MCTS agent with depth 2 even outperforms the simple agent from Experiment
8.1, implying some benefit to one added layer of search depth. With this precedent set, we will now
run the same trials again, but against a simple agent with 20 pre-sampled rollouts.

Playing vs Simple Agents

d HA) [H@2) [HB) [C1) [C@) [CB)
Wi 53.6% | 31.1% | 29.9% | 68.4% | 44.7% | 33.6%
p(lJa=1) 206 |1.97 |207 |153 |1.83 |1.96

Table 8: MCTS agents (n = 20) against simple agents (n = 20) (1000 games)

These results contradict the hypothesis that an extra layer of search depth is beneficial but align
with the overarching trend that as an agent becomes more optimal as player 1, it will make an
active effort to keep games shorter. The MCTS agent appears to perform far more poorly in longer
games, see the table below:

Win rate | Wi (1) | Wi(2) | Wi(3) | Wi(T)
) 16.3% | 60.4% | 42.5% | 62.5%
H(2) 16.3% | 42.3% | 19.7% | 50.0%
H(3) 12.7% | 39.7% | 2.5% | 25.0%
) 59.7% | 77.6% | 50.8% | 0.0%
C(2) 31.7% | 53.6% | 21.9% | 0.0%
c(3) 21.6% | 45.4% | 15.8% | 0.0%

Table 9: MCTS agents vs. simple agents
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This shows that MCTS agents generally follow the same trends in game length and result as
simple agents. We will now observe the move order preference of an MCTS agent with a depth of 2
in the plot below:

Preferred moves on each turn of a round (d = 2).

I Secret
3 Trade-Off
B Gift

I Compete

100 1

Probability of play

< <

Figure 11: Most common moves on each turn (d = 2).

Similarly to the simple agent, a strong preference for Trade-Off first and Secret thereafter can
be observed. Unlike the simple agent, however, it also very strongly prefers Compete on the third
turn, whereas the simple agent only slightly preferred Gift on the third turn. In Table 6 we see that
the two orders make a negligible difference for both players. Furthermore, the MCTS agent will
sometimes play Compete on the second turn and Secret on the third. Although this move order
was shown to be marginally more effective than the naturally preferred orders, it does not appear
to significantly improve the MCTS agent’s performance. This could likely be a result of the topic of
the next section.

Search Tree Size

In a round, an agent will perform 6 actions. It will make 4 moves of its own, and take cards offered
by the opponent into its own hand in their Gift and Compete actions. This means up to 18 actions
are taken in a game. The player will draw three cards from the deck over the course of each round.
This means the player’s state changes 9 times every round, and the game state is changed 18 times
per round, 9 times by each player, and thus 54 in total.

Because we are not able to extend a search tree across multiple rounds, the theoretical maximum
depth is 18 for any given search tree. This is relatively shallow compared to other games where
MCTS is a viable algorithm. However, the combinations of possible cards and moves in a turn
are far larger, and this may lead to move evaluation with MCTS being overly complicated and
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possibly detrimental overall. In the following table, we can see the average size of a search tree
on action x of round r in state nodes. Note that due to the behaviors outlined in Section 5.2, the
agent functions identically on d = 3 and d = 4 Additionally, the sample sizes are rather small due
to hardware constraints, making the results less accurate.

re |d=1|d=2|d=3 d=5>5
1,1 529 |227.5 | 14138.4 | 587233.4
1,2 1313 | 101.1 | 2301.6 | 33934.0
1,319.6 |46.7 | 189.9 245.8
1,448 10.2 | 15.8 17.3
1,554 4.7 5.7 5.0

1,6 | 4.6 4.5 4.6 4.6

2,1 1528 |205.5 | 5256.4 | 118195.9
2,21290 |79.1 |563.8 5446.5
2,343 10.7 | 140.7 137.0
2,41376 | 725 |21.8 32.2

2,5 4.7 4.7 4.4 4.3

2,6 128 |10.0 |76 7.8

3,1 1516 |232.5 | 13439.6 | 548100.1
3,2129.9 |91.9 |1691.3 | 26289.0
3,3119.1 | 42.0 | 169.8 236.2
3,4 152 10.0 | 8.9 20.9
3,516.0 5.2 5.7 4.8
3,644 4.1 4.5 5.0

Table 10: Average search tree size per action across 100 games

The main point of interest is the sizes of trees in the first two actions of every round. We can
observe that they grow exponentially with every added layer. As the round progresses, both players
will have consumed more Action Markers and will have fewer cards in their hand, narrowing the
search tree immensely. This, in conjunction with the results of the prior experiments, implies that
larger search trees hinder the accuracy of move evaluations, as while the chosen move orders appear
correct, the cards chosen in each move may not be properly evaluated. It also implies that MCTS
as a whole may not be as suitable to HANAMIKOJI as initially perceived. The state space having a
shallow and fixed depth but an exponentially increasing breadth contrasts the examples in Section
2, consisting of games with state spaces that are narrower, due to fewer options being available
every turn, but also deeper, due to having a far higher turn limit, or lacking one altogether.

A final noteworthy observation is the smaller search trees in round 2, where these agents moved
last. This is more than likely due to the opponent sometimes offering a Gift or Compete on turn 1
or 2. Search trees with a card offer in the root node are generally far narrower, due to fewer options
being available for drawing than for making a move of your own.

Overall, move evaluations through MCTS appear to overall be worse than the regular Monte
Carlo evaluations performed by the simple agent. In the next experiment, we will analyze an
alternative method to perform searches of increased depth.
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8.8 Recursive Rollouts

In the next experiment, we will be testing a modified simple agent that performs n; recursive
rollouts, henceforth referred to as a recursive simple agent. These are rollouts that use two simple
agents of ny regular rollouts. We will perform trials against a regular simple agent with 20 rollouts,
adjusting ns between them.

Recursive Agent vs. Regular Agents

—— Playerl,n2 =1
Player 1, n2 =5
—— Player 1, n2 = 10
—— Player2,n2 =1
—— Player2,n2 =5
—— Player 2, n2 = 10

2 3 4 5 6 7 8 9 10
Recursive Rollouts Per Move

Figure 12: Recursive simple agents vs. simple agents (1000 games)

We see that ny remains the most significant parameter in the configuration of this agent, with
both players having relatively similar results between various values of ny. This could be due to
the fact that ny only contributes to the evaluation of individual options in a turn, whereas n;
defines the evaluation of said options in comparison to one another. In spite of this, the recursive
simple agent does outperform the simple agent with very few recursive rollouts, implying that these
rollouts are more informative than regular ones.

Another noteworthy observation is the persistent disparity in results between player 1 and
2. This further reinforces the notion that the simple agent’s move evaluation algorithm is more
suitable to player 1 than it is to player 2, as observed in Experiment 8.6, as well as the trend of
more informative rollouts consistently favoring player 1. To test this further, we will test how they
improve when cheating. ny will be set to 5 during these trials.
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Recursive Cheating Agent vs. Regular Agents

—— Player 1
Cheater 1

751 —— Player 2

—— Cheater 2

jon (% of 1000)

Games W

1 2 3 4 5 6 7 8 9 10
Recursive Rollouts Per Move

Figure 13: Cheating recursive simple agents vs. simple agents (1000 games)

The improved performance of cheaters aligns with the precedent set by Experiment 8.4, and
shows that the most accurate agent of the ones designed in this research without any heuristics is
the recursive simple agent. Despite this, it is not the most efficient agent. In the table below, All 4
agents are compared at their most optimal configurations in trials of 1000 games as player 1. All
the agents are cheating and pre-sampling, as those appear to be universally beneficial to all agents.

agent Parameters Wy pu(l | a=1) | Runtime (s)
random | none 6.9% | 2.15 6.138
simple n =50 76.7% | 2.07 11.481
MCTS n=>50,d=2 |49.0% | 1.97 22.139
Recursive | ny = 9,ny =5 | 77.1% | 2.02 808.963

Table 11: Performance statistics of each agent.

We can not observe any significant difference in performance between the simple and recursive
simple agents. Conversely, we can see that the recursive simple agent demands roughly 70 times
the runtime for a tenuous increase in accuracy. This implies that the simple agent is overall the
most effective of the agents designed in this research, as searches of extended depth are prone to be
either inaccurate, in the case of MCTS, or too slow, in the case of recursive rollouts. To conclude,
we will observe the move order preferences of the recursive simple agent.
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Immediately we can observe a vastly different preference in move order from the recursive
simple agent, almost exclusively choosing Compete on turn 1. This contradicts both the MCTS and
simple agents, which would rarely choose Compete before turn 3. It also contrasts the results of
Experiment 8.6, which showed that Compete was the least consistently successful first move. It also
rarely plays Secret last and plays Trade-Off last far more often. This is consistent with the results
of Experiment 8.6 which showed that Secret was the worst move to play last, and Trade-Off was the
best. In general, its move choices in the last 3 turns of the round are also far more varied, in stark
contrast to the other agents, which almost always played one of a very small set of move orders
that were consistently favored in evaluation. This implies that there may not be a strictly optimal
move order, but rather that there is a consistently “safe” move order for agents with simpler and

Preferred moves on each turn of a round (d = 2).

&

I Secret
3 Trade-Off
Em Gift

I Compete

Figure 14: Most common moves on each turn by recursive simple agent.

less granular move evaluation algorithms.
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9 Conclusion and Discussion

In this research, we implemented a modified game of HANAMIKOJI to be simulated by agents
utilizing various resources and algorithms to optimize their decision-making. We determined that
their performance far superseded that of an agent making moves at random and that their rollouts
could be shortened by way of pre-sampling with little downside. We saw that their evaluations of
moves, cards, and Victory Markers led to emergent patterns in play and performance that remained
consistent throughout nearly all experiments. These patterns primarily emphasized a disadvantage
for the player moving first in a given round, a general preference for even-valued Geishas over
odd-valued Geishas, and a substantial advantage for a player who is cheating. We saw that MCTS
is not as effective an algorithm as anticipated for the game, likely due to the breadth of its state
space being more significant than its depth. Lastly, we saw that using recursive rollouts led to
significantly different playing patterns, showing that there may not be one strictly ideal move order
for all games.

The most straightforward avenue for further research is to remove the modifications made to
the game in this research and observe how that may alter the results of the experiments performed.
Additionally, the pre-sampling database was made by agents who were not pre-sampling themselves.
Re-sampling the database, potentially numerous times, with different agents, could lead to the
agents performing a rudimentary form of unsupervised learning, and the database itself changing
noticeably. Agents with more advanced heuristics and optimization techniques could be made,
potentially with unique logic for both players. The utility of MCTS could be further investigated,
as the search depth remained limited in this research due to limited resources. Additionally, the
MCTS algorithm could be tested in a top-down, pruning approach, rather than the bottom-up
exhaustive search applied in this research, which was shown to be less effective than other methods.
Lastly, the breadth and depth of the game’s state space could be examined in more detail and
potentially clarified with mathematical deduction that accounts for variance between turns.
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Notation Glossary

Symbol Meaning Domain
t Turn in a round {1,2,3,4}
r Round in a game {1,2,3,T}
l Length of a game in rounds {1,2,3,T}
(o) Length of games with logical property ¢ {1,2,3,T}
p Player 1D {1,2}

n Rollouts used during a move evaluation N

d Search depth of a move evaluation N

Gt Game state at the end of turn ¢ of round r

a Result of a regular game {-1,0,1}
a(Gy,) Result of a game played from a fixed state ~ {—1,0,1}
m; Victory Marker i ie{l,2,...,7}m; € {0,1,2}
W, General win rate of player p 0, 100]%
W, () Win rate of player p in round r 0, 100]%
p(x) Mean value of aggregated data points x R
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