
Master Computer Science

The Impact of AI on Enhancing Software Testing

Name: Xiaolin Gu
Student ID: s3790398

Date: 20/05/2025

Specialisation: Advanced Computing Systems

1st supervisor: Marcello M. Bonsangue
2nd supervisor: Joost Visser

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Introduction 4

2 AI in Documenting Software Testing 5
2.1 AI integration in Documentation Overview 6
2.2 Methodology . 6

2.2.1 Data Privacy . 6
2.2.2 AI Input Processing . 6
2.2.3 Output Validation . 8

2.3 Experiments . 8
2.4 Analysis of the Results . 10

3 AI in Test Case Design 12
3.1 AI integration in Test Case Design Overview 12
3.2 Methodology . 12

3.2.1 APIs Utilized in Experiments . 13
3.2.2 Upload Wiki . 13
3.2.3 Send Request Description Generated by SwisscomGPT 14
3.2.4 Study With Different Request Accuracy 15

3.3 Experiments . 15
3.3.1 Upload Wiki . 15
3.3.2 Prompt Generated by SwisscomGPT 16
3.3.3 Test Cases Designed by SwisscomGPT Chat 17
3.3.4 Test Cases Designed by Cursor Chat 17
3.3.5 Request Accuracy . 17

3.4 Analysis of the Results . 19
3.4.1 Test Case Validation . 19
3.4.2 Invalid Test Cases Overview . 19
3.4.3 Test Cases Expectation . 19
3.4.4 Test Cases Designed By Different Methods 20
3.4.5 Test Cases Designed Using Different Request Accuracy 22

4 AI for Automated Test Code Generation 23
4.1 AI integration in Test Code Generation Overview 23
4.2 Methodology . 23

4.2.1 Exploration of Cursor Capabilities . 23
4.2.2 Project Structure . 24
4.2.3 Design of Test Code Generation Prompts 25
4.2.4 Validation of Generated Test Code 27

4.3 Experiments . 28
4.3.1 Manual generation . 28
4.3.2 Code generated by GPT-4o . 28
4.3.3 Code generated by Claude-3.5-Sonnet 31

4.4 Analysis of the Results . 34

2

5 Broader Discussion 37
5.1 Interplay Between Human and AI Contributions 37
5.2 Privacy and Security Concerns in AI-assisted Testing 37
5.3 Handling Multilingual and Outdated Data . 37
5.4 Specialized AI Models for Niche Applications 38
5.5 Integration of AI Tools into Industry Settings 38
5.6 Potential Risks of AI-generated Testing Beyond Technical Aspects 38
5.7 Generalization Beyond the EsBill Project . 39

6 Conclusion 39

A APIs Utilized in Experiments 42

B Example AI response for test case design 43

C Test cases designed by AI 50

3

Abstract

Software testing is a crucial phase in software engineering, essential for ensuring the
quality and reliability of complex systems. With the rise of increasingly sophisticated AI
tools, AI-assisted software testing has gained momentum, offering promising support in
automating and enhancing testing processes. This study investigates the synergy be-
tween AI and human testers, focusing on how AI can handle testing-related tasks and
how human expertise complements its limitations. Using the EsBill project at Swisscom
as a case study—a real-world enterprise billing system—the research evaluates the ef-
fectiveness of tools like SwisscomGPT and Cursor in retrieving legacy documentation,
designing test cases, and generating test code. The experiments were assessed by expe-
rienced software testers from the EsBill team. Key research questions address the extent
to which AI can process legacy knowledge, the impact of model and prompt variations
on test case quality, the comparative performance of AI-generated versus human-written
test code, and the role of human oversight in the AI-assisted workflow. While the find-
ings are contextual to the EsBill project, they offer valuable insight for other enterprise
environments aiming to integrate AI into their testing practices.

1 Introduction

Testing is a very important stage in software engineering as it guarantees the quality of the
project. As software systems become increasingly complex, the importance of automating
software testing continues to grow. With the rapid development of AI tools in recent years,
more and more software projects have introduced AI as a support, especially in software
testing stage. AI-assisted software engineering is not a novel idea. Many studies have explored
how possible this idea can be. The study by Ahmad et al. [1] suggested that ChatGPT can
complete the work as an architect, but human oversight and decision support for collaborative
architecting is still required. Bareiß et al. [2] studied how Codex performs in code mutation,
test oracle generation from natural language documentation, and test case generation tasks.
This study focuses on AI-Human Synergy, exploring AI’s ability to deal with testing knowledge
and tasks, and how humans supplement AI’s work. We conducted the experiments on the
basis of the EsBill project from Swisscom. Swisscom is one of the leading telecommunications
and IT companies in Switzerland. EsBill is the billing system of B2B and creates invoices for
Swisscom’s Business Customers on the one hand and serves as an application and information
system for employees and the peripheral systems on the other. EsBill mainly uses Swisscom
Wiki to store knowledge. Some other document is stored in sharepoint and Microsoft Word.
The project is developed using Java and Python, and code is pushed to GitLab and uses
postgresDB as database tool. We used SwisscomGPT and Cursor to conduct experiments
for testing documentation, test case design, and test code generation. The results of the
experiment were evaluated by experienced EsBill team testing engineers. It is important to
note that the methods and findings in this study are based on the specific context of the

4

EsBill project and are not intended as general-purpose solutions. However, its methods and
findings are also inspiring for other enterprise projects.
The main research questions of this study are as follows.

• RQ1: To what extent can LLMs retrieve information from legacy documentation to
support software testing tasks?

• RQ2: How do different AI models and input detail levels influence test case generation?

• RQ3: How does AI-generated test code improve performance and usability over human-
written code?

• RQ4: How can humans complement and collaborate in the AI-assisted testing process?

The thesis contains 7 chapters. Chapter 2 shows the relation of this study to existing LIACS
courses. Chapter 3 introduces the application of AI in documenting software testing, focusing
on analyzing SwisscomGPT’s processing capabilities and limitations for structured and unstruc-
tured documents. Chapter 4 explores and compares the performance of different AI models
in designing API test cases. Chapter 5 studies the quality and efficiency of AI-generated test
code compared to manually written code. In chapter 6 we discuss the synergy between AI and
humans in the testing process, pointing out the shortcomings of current technology and direc-
tions for improvement. The final chapter summarizes the experimental findings and proposes
suggestions for industry applications and future research.

2 AI in Documenting Software Testing

There are multiple challenges in documentation from software projects. Normally, different
documents will be stored on different platforms. For example, codes are usually stored on
GitLab or GitHub. Project management documents are mainly stored on Jira. Design and API
docs will be stored on Sharepoint or wiki. Many of these documents may be incomplete or
outdated, particularly those from older software projects. Different types of documents contain
distinct terminologies and data formats that require preprocessing.
Documents for EsBill include API docs, requirement docs, architecture docs, design docs,
development docs, testing docs, project management docs, etc. These documentations are
used by people from EsBill team, external teams and upstream and downstream teams. A key
challenge in data collection for the EsBill project is its age, as it has been in operation for over
20 years. We need to validate outdated data in documents to prevent incorrect AI-generated
responses in the future. Additionally, there is a huge amount of knowledge on many different
platforms such as Wiki, Sharepoint. Wiki alone contains more than a hundred pages. We note
that all this knowledge is written in English or German, making it harder for project participants
to find the information they need.
Swisscom developed our own AI called SwisscomGPT, which is an instance from OpenAI. In
SwisscomGPT, we don’t need to worry about privacy issues, as data uploaded will not be fed
to public AI. Meanwhile, it is still a new product that is not widely used in Swisscom, so it
would also be valuable for the company to explore the potential of this tool. Considering these,
we decide to choose SwisscomGPT as our tool.
In this chapter, we will use SwisscomGPT to study how AI can help engineers organize doc-
uments and collect the information needed from a huge number of documents, and how AI
performs in this task.

5

2.1 AI integration in Documentation Overview

Previous works have explored different technologies to use AI to assist information retrieval.
SimplyRetrieve[3] is an open-source RCG platform that leverages a Private Knowledge Base
Constructor and a Retrieval Tuning Module. A recent study[4] investigated a new approach
to enrich document representation during indexing using generative AI and demonstrated
that generative AI can efficiently fill the knowledge gap in document representation. KE4IR
system[5], which utilizes a document retrieval approach that takes advantage of Linked Open
Data and Knowledge Extraction techniques, has better retrieval performance than exploiting
only textual information. Knollmeyer et al.[6] enhanced RAG systems by integrating a Knowl-
edge Graph (KG) constructed from the document structures to break limitations when users’
questions extend beyond the text content of the documents.

2.2 Methodology

2.2.1 Data Privacy

EsBill is a project deals with B2B customers, so data privacy is an important issue.
Since all externally accessible data outside Switzerland has been anonymized, we do not need
to address additional data privacy concerns.
To test how AI works on different types of documents, we fed AI with Wiki pages containing
tables and images, and the database structure of esBill databases. Since SwisscomGPT only
accepts documents in PDF form, we export wiki pages in PDF.
For database information, we exported the command of creating the command by selecting
tables directory and clicking ”SQL Scripts”, ”Generate DDL to Clipboard”. We deleted all
grant commands and transferred the DDL to PDF. By processing this PDF, the AI can extract
information about the structure and fields of the database tables.

2.2.2 AI Input Processing

We created an AI instance named “EsBill Helper” and uploaded all knowledges from esBill
wiki to this instance.
To improve the AI’s performance in satisfying our needs, we conducted a preliminary study
and held internal meetings to gather team members’ opinions on the rules the AI should
follow during information retrieval. Based on these discussions, we formulated the following
five prompts and applied them to our AI instance:

1. Use Documentation as the Primary Source:
When responding to queries, base your answers strictly on the information provided in my
documentation. Avoid using external or general knowledge unless specifically instructed
to do so.

This prompt ensures that the AI’s responses are strictly grounded in the documentation from
the team. The goal is to avoid introducing irrelevant or potentially misleading external infor-
mation that could conflict with the project requirements.

2. No Fabrication of Information:
Do not generate information that isn’t explicitly found in my documentation. If you cannot
find the necessary details in the provided material, avoid making assumptions or fabricating

6

data.

This prevents the AI from making up information that is not present in the documentation,
as fabricated information can lead to work errors. EsBill team needs AI to act as an accurate
reflection of the documentation, not as a source of unverified information. If the documentation
lacks the necessary information, the AI should not guess or fabricate answers.

3. Proposal of Alternatives:
If a question is asked that is not covered by the documentation, notify me by stating,
”This information is not available in the provided documentation.” Afterward, you may
suggest a potential answer or approach, but only if you make it clear that the suggestion
is not based on the documented material.

This prompt ensures transparency about the AI’s limitations while still providing users with
potentially helpful ideas. If a query falls outside the scope of the documentation, the AI should
notify the user that the information isn’t available. It may then suggest alternatives, but must
clarify that they are not derived from the documentation. It balances accuracy with creativity.

4. Transparency:
Always distinguish between responses based on the documentation and those that are
speculative or outside the scope of the provided information. Use phrases like ”Based
on your documentation” or ”This suggestion is outside the documented material” when
appropriate.

We need to know which parts of the AI’s output are verifiable within the provided knowledge
and which are speculation. The AI should clearly differentiate between answers based on the
documentation and speculative or external suggestions. Using explicit phrases such as “Based
on your documentation” ensures clarity.

5. Handling Uncertainty:
If you are uncertain about the answer based on the documentation, explicitly say so before
proposing any further steps or alternative information.
If you get the request to display some API request or some details of API request, please
display the HTTP request details in the following structure:
URL: {request url}
Method: {http method}
Headers: {request headers}
Body: {request body}”
When providing this instruction, replace {request url}, {http method}, {request headers},
and {request body} with the actual data you want GPT to format for you.
If you need GPT to generate or construct an HTTP request based on certain criteria you
provide, you can give it detailed information about what you’re looking for. Here’s an
example instruction for that scenario:
”Generate an HTTP POST request that includes the necessary headers for a JSON con-
tent type and an authentication token. Fill in the body with data for a new user registra-
tion. Please display the request as follows:
URL: {provide specific endpoint here}
Method: POST
Headers:
Content-Type: application/json

7

Authorization: Bearer {your auth token here}
Body:
Replace placeholders such as {provide specific endpoint here} and {your auth token here}
with real values. The AI will then structure the HTTP request in a readable format you’ve
provided.
jsonCopy code{”username”: ”new user”,”email”: ”newuser@example.com”,”password”:
”SecurePass123!”}“‘”

AI should acknowledge when it is unsure or when the documentation lacks the necessary infor-
mation, explicitly stating this before proposing any solutions. This helps avoid overconfidence
in the AI’s responses, ensuring that users aren’t misled into assuming incorrect information is
definitive.
For the database knowledge, we created another AI instance named ”DB Helper”. Prompts
are the same as ”EsBill Helper” without the API form restrictions in the last instruction (5.
Handling Uncertainty).
During the data feeding process, we recorded the number and size of documents and measured
the time required to assess the effectiveness of AI-assisted documentation management. We
also tracked the upload success rate and analyzed any files that failed to upload.

2.2.3 Output Validation

To validate the capability of AI to understand knowledge and collect information, we will ask
the skilled employees of the esBill team who have worked with this knowledge for years to design
some questions based on the uploaded documents. By the ground truth created by them, we
were able to make the analysis more theoretically rigorous. Questions will be generated based
on different documents, from different data type such as table in the documents. We will
analyze the correct rate of AI’s answer. For the wrong answers, we will further analyze the
reasons and think about solutions to train AI to better answer the question.

2.3 Experiments

We fed AI with EsBill system documents. These documents come from three different places
in EsBill wiki: pages under How-to-guides page which includes trouble shooting for EsBill
testing work; pages under Schnittstellen page which includes introduction of interfaces about
account and bill; pages under Knowledge Sharing page which includes knowledge of different
components in EsBill system. To upload all this wiki pages to SwisscomGPT, we exported
these pages to PDF. There were in total 78 documents, with a total size of 67.8MB. 25
documents among them are written in Germany and remains are written in English. It took
around 1 hour to export all these PDFs.
The documents needed to be uploaded one by one. We had to upload the documents individ-
ually, which took approximately ten minutes. Once uploaded, the AI processed them within
seconds. During the upload process, one page (”Process eInvoices — Transfer files to ECC”)
disappeared after we clicked the upload button. This page included a screenshot displaying
the ECC ”Rechnungsnummer” and eight steps for transferring files to ECC. We decided that
pictures inside are no important and copied all texts in one PDF to upload this page.
For database knowledge, there are in total 20 PDFs. All PDFs were uploaded successfully in
approximately ten minutes.
We created some questions related to the pages uploaded to test how this AI instance worked.
The experiment results are as follow:

8

Source Question Result Solution

Wiki

How to remove UC4
jobs

Answered cor-
rectly

What is the main flow
to process file with
UNISS job (create
OTC)

Answered cor-
rectly

Could you please write
all informations about
esBill account?

Answered knowl-
edge only listed in
Acount page

We changed the question to “Tells
me everything about esbill accounts
without listing the section of ac-
count page” and AI answered the
question comprehensively

Which user group in es-
Bill do you know?

Answered cor-
rectly

Could you provide all
code and meanings for
MESSAGE STATE CD
in TOMESLG?

AI can’t provide
knowledge about
this

We observed that the AI struggled
to process information embedded
within tables. So we copied the con-
tents inside the table in a new PDF
and uploaded it again. After reu-
ploading AI answered the question
correctly

In which directory
has to be dateMu-
tatorOrderFile for
layouts?

Answered cor-
rectly

Do we need to ad-
just the configuration
file for datemutator?

Answered cor-
rectly

How to do rater step by
step?

AI didn’t reply We changed the question to “How
to work with Rater? step by step”
“how to do Rater? step by step”
“how to do Rater step by step”
“how to do rater? step by step” and
AI answered all these questions cor-
rectly

List all the API requests
you know related to es-
Bill

Replied “no spe-
cific API requests
related to esBill
have been men-
tioned”

Is MsgId mandatory
field in the input of the
searchEMailAddress?

Answered cor-
rectly

9

Source Question Result Solution

Database

Can you provide all ta-
bles that have contr id?

This information is not
available in the pro-
vided documentation.
The provided document
does not contain any
information about ta-
bles with a ”contr id”
attribute.

We asked the same question
again. See AI’s response in
the next row

Can you provide all ta-
bles that have contr id?

I do not know. The pro-
vided document does
not mention any tables
with a ”contr id” at-
tribute.

We asked the same question
again. See AI’s response in
the next row

Can you provide all ta-
bles that have contr id?

AI answered 10 correct
tables, but that’s not
all tables that includes
contr id.

We continued to ask AI about
this issue. See AI’s response
in the next row

Are there any more
tables that contain
contr id?

AI repeated 7 tables
from the previous an-
swer and added two
more tables, but these
are still not all tables

We suggested that this is be-
cause the database is too
complex, so we selected one
file containing field contr id
and deleted all the database
privilege management com-
mands inside as data source
to test again

Can you provide all ta-
bles that have contr id?

AI gave 9 tables which
contain contr id, how-
ever there are 15 tables
contain contr id in total

We continued to ask AI about
this issue. See AI’s response
in the next row

Are there any more
tables that contain
contr id?

AI provided the same 9
tables as previous an-
swer and added ”I can’t
find any further in-
stances of ’contr id’ in
other tables within this
document”. We gave
up this experiment

2.4 Analysis of the Results

To better evaluate the result, we introduce precision, recall, F1-score, average attempts to
correct answer and one-shot accuracy for analysis. We define concepts as follow:
True Positive(TP): The number of questions AI answered correctly finally(for wiki-based
knowledge) / The number of tables that the AI answered correctly finally(for database knowl-
edge)
False Positive(FP): The number of questions AI tried to answer but gave wrong or irrelevant
answer(for wiki-based knowledge) / The number of tables that the AI answered incorrectly(for

10

database knowledge)
False Negative(FN): Questions that AI did not answer or refuse to answer(for wiki-based
knowledge) / The number of tables that the AI missed(for database knowledge)
Average Attempts to Correct Answer: The average number of times AI required to answer
the question correctly
One-shot Accuracy: The proportion of questions that AI answered correctly on the first try
And we calculate precision, recall and F1-score using formulas:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× Precision×Recall

Precision+Recall

During the validation phase for wiki-based knowledge, the AI correctly answered 6 out of
10 questions. 2 unanswerable questions were answered correctly after a further process of
documents. 1 question was not answered well at the beginning but got a better answer after
revising the question. For database knowledge, AI answered 9 tables and missed out 6 tables.
It failed to answer all the tables at the end of the experiment.

Precision Recall F1-Score
Average Attempts
to Correct Answer

One-shot
Accuracy

Wiki-
based
Knowl-
edge

90% 100% 94.74% 1.4 times 60%

Database
Knowl-
edge

100% 60% 75% 0 times 0%

Table 1: Performance of AI in Documenting Software Testing

For wiki-based knowledge, AI can extract correct information in most cases. It showed good
modifiability and answered correctly after we modified the question. But we found that Swiss-
comGPT cannot process knowledge within tables and images. This might not be general for
all AIs, since the original ChatGPT can analyze tables and pictures. For SwisscomGPT, we
developed methods to convert this information into a format that could process by extracting
the information in the tables and pictures and converting it to texts. This highlights the im-
portance of verifying the types of information an AI system can process before relying on it
for retrieval, ensuring that critical data is not overlooked.
However, AI performed relatively poorly when dealing with database knowledge. It had a low
precision and could not answer all tables even after we simplified the document. Database often
contain more structural and formatted data. These findings suggest that we need to further
refine database knowledge by providing contextual information, such as table descriptions,
attribute meanings, and field explanations, to improve AI comprehension. In addition, AI in
this stage might not be eligible for handling database knowledge in a real software project, as
database in actual project are always large and complex.

11

3 AI in Test Case Design

In esBill we work mainly on API testing. Our experiments focused on testing APIs from esBill
and analyzing how AI works during this process. We tested 6 APIs including 3 GET requests
and 3 POST requests. We used SwisscomGPT and Cursor Chat to generate test cases based
on the request description and compared their performances. For SwisscomGPT, we conducted
the experiments by uploading the API wiki pages directly and by directly uploading the API
wiki page and sending it a description of APIs in text.

3.1 AI integration in Test Case Design Overview

Today, the use of LLMs in test case design is a widely researched topic. Many studies
have explored methods and developed test case design tools that integrate LLM capabili-
ties. EvoSuite[7] is one of the most well-known tools for test case generation. Written in Java,
it can automatically generate test cases with assertions for various classes. Gao et al. focused
on prompt engineering and introduced MAPS, an LLM-tAilored Prompt generation method, to
improve test case generation using LLM[8]. ChatUniTest[9] harnesses the capabilities of LLM
and uses a generation-validation-repair mechanism to improve the quality of generated test
cases. JCrasher[10] generates test code based on Java class type information, while SUSHI
leverages symbolic execution to generate test cases.
All of these studies explored different methods for AI to help with software testing and have
laid a solid foundation for this area. However, our research will not focus on exploring and
evaluating these tools. Instead, we would leverage SwisscomGPT and Cursor to assist in the
test case design task. We will explain these tools and their value for research in the next
section.

3.2 Methodology

We kept using SwisscomGPT in this study, as it is an AI developed and used only by Swisscom
and is not widely used by developer now, making it valuable for research.
There is another AI tool that is now widely used in IT industry called Cursor. Cursor is a
code editor integrates AI-assisted functions such as code completion, real-time suggestions,
and automatic test case generation. It is built on top of Visual Studio Code (VS Code), thus it
has interfaces and functionalities similar as VS Code. One of Cursor’s key features is test code
generation, which we would study about in the next chapter. For test case design, the Chat
function in Cursor is a good assistance for this task. It provides an interactive chat interface
that the developer can chat with AI to receive coding assistance from AI.
In conclusion, Cursor Chat is more professional in coding and software development, while
SwisscomGPT is a more general AI assistance. To ensure a more streamlined and integrated
workflow, we decided to choose Cursor as another AI tool and compared their performance
during the study.
We generated test cases using the following three approaches:
1. Uploaded the wiki page of tested API to SwisscomGPT and asked it to generate test cases.
2. Send complete descriptions to SwisscomGPT with all request details of the API tested from
Wiki in chatbox to generate test cases.
3. Sent complete descriptions to Cursor Chat with all request details of the API tested from
wiki in chat to generate test cases.

12

The quality of the generated test cases was evaluated by experienced testers at esBill. Using
these three different approaches, we compared the effectiveness of API description uploads
and evaluated which AI model performed better.
Additionally, we conducted a small experiment to analyze AI performance under different
request accuracy levels and included the results in the analysis section.

3.2.1 APIs Utilized in Experiments

To conduct the experiments in this chapter, we selected four APIs that we had previously
tested during daily work. Two of the APIs, Read Contract History and Read Ust-Id, use the
GET method, while the remaining two, Change Address V2 and /ustId/v1, use the POST
method. Detailed descriptions for these APIs are listed in Appendix A.

3.2.2 Upload Wiki

Similar to the operations described in the Documentation section, we created a SwisscomGPT
instance called Test Case Designer (Upload) and uploaded the wiki pages for all requests. We
gave this instance instructions as follow:

Please provide me test cases by completing the following task and ensure the response
follows the specified format:
Understand the APIs in the file and provide test cases.
Test Case ID
- **Test Case Description**: [Describe what function of the API is going to be tested
here]
- **Test Steps**: [Include test data here, don’t provide test data that parameter type is
HEADER]
- **Expected Result**: [What result do you expect?]
—
Important Notes
- Ensure all sections (Test URL and Test Cases) are clearly formatted.
- The generated content must align closely with the language and structure above.
Build more test cases like this one to cover varied scenarios and achieve complete coverage.

This part ensures that each test case follows a consistent format, so the context and purpose
of each test case can be easily understood and test steps can be clearly followed to execute.
By specifying which parameters to include or exclude in test data (e.g., avoiding HEADER
parameters in the test steps), the instruction ensures clarity in the test case setup and focuses
on the relevant parameters, making test data management simpler and more efficient. At the
end of the instructions, we aimed to improve API test coverage by generating test cases for
various scenarios.
When asked SwisscomGPT to design test cases for me, we provided the name of API, accoun-
tId/contractId in the prompt. For example:

Give me test cases for Read Ust-Id API with accountId 13004204

13

3.2.3 Send Request Description Generated by SwisscomGPT

To send request description to SwisscomGPT and Cursor Chat, we first created a Swiss-
comGPT AI instance called Test Case Prompt Generator and uploaded wiki pages of all re-
quests. The final version of instructions after multiple experiments are as follow:

Write detailed instructions for designing comprehensive test cases for the specified API.
Follow these requirements:
API Details:
HTTP Method: Only use POST or GET.
Endpoint: Provide the exact endpoint, including the prefix https://stesbonline01:<port>/
JaxRsWeb.
Parameters:
List all parameters, including headers, path, query, JSON payload, and nested fields. For
each parameter, provide:
Name: Include nested JSON fields explicitly.
Type: Data type (e.g., String, Integer, ListEnum>).
Mandatory/Optional: Clearly specify whether required or optional.
Max Length: For string fields, specify maximum lengths.
Description: Briefly explain the purpose of the parameter.
Examples: Include realistic sample values for each parameter.
Expected Output:
Success Response:
HTTP Code 200 with an example JSON response.
Error Responses:
List possible error scenarios, including invalid/missing parameters or unsupported values,
with sample codes and messages.

We gave the instance some requirements based on previous experiments. For HTTP methos,
since AI often provided PUT instead of POST, we restricted the HTTP method it could
provide. For endpoint, we gave it the prefix in order to receive a complete API endpoint. In
the parameters part, we asked it to provide all kinds of parameters mentioned in the wiki to
prevent it from omitting any parameters and informations. Additionally, we set rules for output
part for generating detailed output information for coding part.

Test Case Design Requirements: Coverage Goals:
Test all valid scenarios with complete and minimal data.
Test all combinations of optional parameters.
Include invalid and edge cases (e.g., max lengths, unsupported values).
Cover security aspects (e.g., unauthorized access).
Include performance tests (e.g., high-volume requests).

The purpose of these instructions is to ensure that using the generated test case prompts,
testing code can fully cover the API’s functionality, boundaries, error handling, security, and
performance, which help improve the quality of test cases.

Structure:
Test cases must include:
Test Case ID: Unique identifier.

14

Description: Purpose of the test.
Preconditions: Setup or requirements.
Steps: Detailed execution steps.
Input Data: All parameter values.
Expected Results: Define the output for success or failure.

Same as the instructions in last sections, these make the test case prompts clear and easily
and easier to understand.

Critical Instructions to Avoid Errors: Only use POST or GET as the HTTP method.
Include all JSON payload parameters, including nested fields.
Provide the full endpoint without omissions.
Ensure parameter details are complete and accurate.
Follow the format for inputs, outputs, and test case structure.

At the end of the instructions, we emphasized my requests regarding the AI’s mistakes and
omissions during the experiment again to ensure the AI fully understand my requirements.

3.2.4 Study With Different Request Accuracy

To change the request accuracy, we assumed the request description generated by Swiss-
comGPT Change address v2 API in the previous section is of 90% accuracy, and asked AI to
generate other two request descriptions with 30%, 60% accuracy.
A request with 90% accuracy contained all necessary details, including parameter lists, exact
field formats, and suggested input examples. It provided guidance on security and performance
testing, and took account boundary conditions and error handling into consideration. A request
with 60% accuracy also contained all parameters and provided some suggested input examples,
but field description is brief. It mentioned security and performance testing but did not provide
specific methods. It also did not explicitly stress all boundary conditions. A request with 30%
accuracy contains only basic test steps and a limited number of test points. It didn’t list
all parameters and their meanings in detail. The descriptions of error handling, security, and
performance testing were vague, and they lacked verification for boundary conditions.
Same as other test case design experiments, we sent these prompts to SwisscomGPT chat to
obtain test cases.

3.3 Experiments

To enhance readability, we provided one API test case as example and a table a table listing
the test cases descriptions for all APIs in each sections.

3.3.1 Upload Wiki

AI responded all APIs first with a sentence containing the name of API and the accoun-
tId/contractId we specified, then followed by 4 different test cases. Each test case contains a
description, test data, test steps, and expected results. Example AI response can be found in
Appendix B.

15

3.3.2 Prompt Generated by SwisscomGPT

In 4.2.3, we created a SwisscomGPT instance called Test Case Prompt Generator to generate
prompts that asks AI to design test cases. To generate these prompts, we specified the name
of the API and accountId/contractId, and asked the instance to give me the prompt. For
example:

Write a prompt to design test cases for the API ”Change Address v2” with accoun-
tId=13004204.

Test Case Prompt Generator would give me prompts beginning with the aim of testing.
After obtaining the prompt from this instance, we sent the prompt to SwisscomGPT and Cursor
Chat and asked them to give me detailed test cases based on information inside the prompts.
Follow are test steps, including HTTP method, original URL, and headers. Then it listed input
data, including HTTP method, URL with specific accountId/contractId, headers, and JSON
payload if needed. Next in expected results part, the prompts described what would happen
when a request executed successfully, and under which circumstances the request would fail.
In the end, the prompts stressed some additional testing scenarios such as negative testing,
security testing, performance testing, etc.
Example prompt is as follow:

Create a test case to evaluate the ”Change Address v2” API functionality which is in-
tended to modify the address associated with a specified accountId.
Steps:

1. Establish a secure connection with the server.
2. Prepare a POST request for the given endpoint: https://stesbonline01:<port>

/JaxRsWeb/account/{accountId}/address/v2, where accountId must be replaced with
”13004204”.

3. Include necessary headers in your request:
* endUserId (Mandatory): It can be any String. For instance, ”tgdgalu1”.
* correlationId (Optional): It can be any String like ”8c38500e-2de8-11ed-a261-

0242ac120002”.
4. Construct a JSON Payload for your POST request including:
* Mandatory fields: name1 and cityTown.
* Optional fields (if needed): street, houseNo, zip, and countryCd.
5. Send the POST request to the server.

Input Data:
* HTTP Method: POST
* URL: https://stesbonline01:<port>/JaxRsWeb/account/13004204/address/

v2

* Headers:
* correlationId - ”8c38500e-2de8-11ed-a261-0242ac120002”
* endUserId - ”tgdgalu1”

* JSON Payload:
* name1 - ”John Doe”
* cityTown - ”New York”
* street - ”235 E 46th St”
* houseNo - ”235”

16

https://stesbonline01:<port>/JaxRsWeb/account/{accountId}/address/v2
https://stesbonline01:<port>/JaxRsWeb/account/{accountId}/address/v2
https://stesbonline01:<port>/JaxRsWeb/account/13004204/address/v2
https://stesbonline01:<port>/JaxRsWeb/account/13004204/address/v2

* zip - ”10017”
* countryCd - ”US”

Expected Results:
1. If the request is successful, you’ll receive an HTTP Status Code 200 along with a

JSON
response which should contain the new addressId.

2. If the accountId is not valid, or does not exist, or if mandatory parameters are
missing, you’ll

receive an appropriate error response.
Additional Testing Scenarios:

* For security testing, try to send the request without authentication or insufficient
permissions

(expect to receive error codes like 401 or 403).
* For performance testing, send a high volume of requests within a short timeframe

and observe
system performance like response time and error rate.

* Develop negative testing scenarios like providing invalid parameters, exceeding data
length,

incorrect formats, etc. to validate API’s robustness and error handling.
* For functional testing, cover all potential combinations of optional parameters to

ensure API
behaves as expected in different scenarios.

3.3.3 Test Cases Designed by SwisscomGPT Chat

We created a chat using GPT 4-Turbo model, and sent prompts to obtain test cases. AI gave
5-7 test cases per API. Each test case includes test case ID, test case description, test steps,
input data and expected results. Example AI response can be found in Appendix B.

3.3.4 Test Cases Designed by Cursor Chat

In Cursor Chat, there are 6 different AI models that can be chosen. During this experiment we
chose claude-3.5-sonnet. We gave Cursor Chat the same prompt generated by SwisscomGPT.
Cursor Chat provided classified test cases. Each test case includes description, test data, test
steps, and expected results. Example AI response can be found in Appendix B.

3.3.5 Request Accuracy

Generated test cases are as follows. To better show the difference between test cases generated
by different API description accuracy, we put all contents of positive test cases in the table.
To enhance readability, we only put title for all other test cases and lay test cases of same
objective in the same line.

17

90% Accuracy 60% Accuracy 30% Accuracy
Description: Verify that the
API updates the user’s
address with all mandatory
and optional fields correctly.
Preconditions: User must be
authenticated and have
permission to change the
address.
Account with accountId
13004204 must exist.
Test Steps:
1. Authenticate the user and
establish a secure connection.
2. Send a POST request to
”https://stesbonline01:
<port>/JaxRsWeb/account/
13004204/address/v2”.
3. Add a header for
endUserId with value
”tgdgalu1”.
4. (Optional) Include a
header for correlationId
with the value ”8c38500e-2d
e8-11ed-a261-0242ac120002”.
5. Set the JSON Payload to:
{
”name1”: ”John Doe”,
”cityTown”: ”New York”,
”street”: ”235 E 46th St”,
”houseNo”: ”235”,
”zip”: ”10017”,
”countryCd”: ”US”
}
6. Review the request for
accuracy and completeness.
7. Send the POST request to
the server.
Input Data:
Headers and JSON payload
as described above.
Expected Result:
The response is HTTP 200
OK.
Response JSON includes a
new addressId.

Objective: Verify that the
API successfully modifies
the address for a valid and
existing Bill AccountID
when provided with valid
data.
Prerequisites: Ensure the
user is authenticated and
authorized.
Confirm the accountId
exists in the system.
Test Steps:
1. Establish a secure
connection to the server.
2. Send a POST request to
‘https://stesbonline01:
<port>/JaxRsWeb/account
/accountId/
address/v2‘ with the
following details:
Headers:
endUserId: ”tgdgalu1”
accountId: 11223344
Request Body:
name1: ”John Doe”
3. Ensure the server
responds with a 200 OK
status.
4. Verify the response
contains a non-null
‘addressId‘.
Expected Results: The API
returns a 200 OK status and
the response includes a new
‘addressId‘.
Input Data:
“‘json
{
”name1”: ”John Doe”
}

Objective: Verify that the
API correctly changes the
address for a valid Bill
Account ID.
Input Data:
endUserId: ”tgdgalu1”
accountId: 11223344
JSON body:
“‘json
{
”name1”: ”John Doe”,
”street”: ”123 New Avenue”,
”city”: ”Metropolis”,
”zip”: ”12345”,
”country”: ”Wonderland”
}
Steps:
1. Connect to the server at
‘https://stesbonline01:
<port>‘.
2. Construct a POST
request with the URL
‘https://stesbonline01:
<port>/JaxRsWeb/account
/11223344/address/v2‘.
3. Add required headers:
‘Content-Type: application
/json‘
‘endUserId: ”tgdgalu1”‘
‘accountId: ”11223344”‘
4. Send the prepared JSON
body in the request.
5. Validate that the response
status code is 200.
6. Confirm the response
includes a new ‘addressId‘.

18

90% Accuracy 60% Accuracy 30% Accuracy

XSS attack prevention No such test case provided

Invalid data types in JSON No such test case provided

Unauthorized User

Invalid AccountId

Performance Test

Mandatory Field Missing in JSON
30% accuracy didn’t pro-
vide such test case, but a
test case for SQL injection

Table 2: Test cases generated using different request accuracy

3.4 Analysis of the Results

3.4.1 Test Case Validation

To validate generated test cases, I held a meeting with senior DevOps Engineers who work on
these APIs and asked their opinions about all test cases generated. We classified test cases
into four categories: correct test cases, redundant test cases, non-API test cases, and error
(incorrect) test cases.

3.4.2 Invalid Test Cases Overview

We set up three types of invalid test cases. In this section, I will basically describe why those
test cases were determined as invalid test cases.
In esBill, users have access to all accounts. So all cross-account access here are redundant.
We determined all test cases for validating the data format that will not be encountered in
real world usage as redundant test cases. Test case that have overlapped functional validation
with positive test case is also determined as redundant.
All performance test cases were classified as non-API test cases in our study, including test
cases for load testing, response time, and concurrent access.
Test cases that evaluated non-existent functions in esBill were classified as incorrect test cases.
For example, esBill doesn’t have other systems connected or audit logging, so test case for
cross-system verification and audit trail are wrong test cases.
This classification enables us to clearly see the quality of test cases. It not only shows the
proportion of available test cases, but also focus on the common issue when using AI to
generate test cases. In this way, we can analyze the performance of AI models better.

3.4.3 Test Cases Expectation

To evaluate how complete the test cases designed by AI are, we discussed and listed all the
test scenarios that should be included when testing each API:
Change Address V2:
1. Basic update with only mandatory fields
2. Complete update with all fields
3. Missing accountId
4. Missing endUserId
5. Missing JSON payload or incorrect JSON format

19

6. Missing mandatory(name1/zip/cityTown) field in JSON
7. JSON mandatory data field exceeds the maximum length
8. JSON mandatory data field with maximum length
9. JSON mandatory data field is empty
10. Mandatory data field with special characters
11. Invalid accountId
12. Authorization test
13. Multiple updates

/ustId/v1:
1. Basic update with only mandatory fields
2. Complete update with all fields
3. Missing accountId
4. Missing endUserId
5. Missing ustId
6. UstId exceeds the maximum length
7. UstId with maximum length
8. Empty ustId
9. Invalid ustId
10. UstId with special characters
11. Invalid accountId
12. Authorization test
13. Multiple updates

Read Ust-Id: 1. Basic retrieval with only mandatory fields
2. Complete retrieval with all fields
3. Missing accountId
4. Missing endUserId
5. Retrieve Ust-Id with specific refDate
6. Invalid refDate format
7. Invalid accountId
8. Authorization test

Read Contract History: 1. Basic retrieval with only mandatory fields
2. Complete retrieval with all fields
3. Missing contractId
4. Missing endUserId
5. Invalid contractId
6. Authorization test
7. Output data structure completeness
8. Data sequence verification

3.4.4 Test Cases Designed By Different Methods

To evaluate the performance of different methods, we use metrics presicion and recall. Their
calculation are as follow:

20

Precision =
Number of Valid Test Cases

Total Test Case Number

Recall =
Number of Scenarios Test Cases Cover

Expected Number of Test Scenarios

Full test case classification listings for each API are provided in Appendix C. All test cases
generated by Test Case Designer(Upload) instance were valid test case. Among all test cases
generated by SwisscomGPT(GPT 4-Turbo), TC6-7 of Change address v2 and TC5 of other
three APIs are non-API test cases. Remainings are all valid test cases. The classification results
of all test cases generated by Cursor Chat are as follows:

Figure 1: Test cases designed by Cursor Chat(Claude 3.5) classification

Cursor Chat considered most of the aspects that need to be tested when designing test cases,
giving it a high recall. In our daily work, we did not consider about authorization and permission
problems. We seldom design multiple test cases to verify data validity. Cursor Chat designed
test cases for these for every APIs. Although SwisscomGPT generated only four or five test
cases per API, it included test cases related to permission handling. Comparing AI-generated
test cases to those created by developers, we observe that AI can produce more comprehensive
test cases.
Comparing these three methods, SwisscomGPT(Upload) has a precision of 100%, which means
every test cases it generated are valid. But a 26.16% recall means it missed out most of
the required testing scenarios. It is only suitable when the testing errors are costly. Swiss-
comGPT(GPT 4-Turbo) lacked test cases that verify the validity of data formats. This is not
a big issue for our APIs, as our APIs will not have a big impact on the system even if it is not
fully tested. But when the test object is related to the stability and availability of the entire
system, it would not be the best option to use SwisscomGPT(GPT 4-Turbo) to design test
cases.
However, there is also drawback to the comprehensiveness of Cursor Chat(Claude 3.5). The
precision is only 57%, which means almost half of the test cases need to be reviewed and
deleted by human beings. These overcomplete and unnecessary information will consume a lot
of manpower and time. I held two meetings with 3 DevOps Engineers to decide the validity
of test cases. They spent more time understanding those invalid test cases than valid test

21

cases, as invalid test cases are rare so that they required more time to fully read the texts
and think. DevOps engineers thought that this overcomplete is as bad as incomplete in real
software engineering.
Considering this factor, we concluded that SwisscomGPT(GPT 4-Turbo) had a better perfor-
mance and could better assist our daily testing work, as it balanced between precision and
recall, which means it provides enough test cases to ensure the testing objectives can be used
normally, while it does not provide too many test cases, avoiding time wasting on selection
and improving the efficiency. But at the same time, we could leverage the advantage of Cursor
Chat when we need to test important APIs that need to be fully tested. It is suitable for
exploratory testing and early of testing to discover potential issues. A better strategy is to ask
Cursor Chat to provide points that need to be tested instead of complete test cases at first.
After checking test points required, we can then ask Cursor Chat to provide detailed test cases
including input and test steps.

SwisscomGPT
(Upload)

SwisscomGPT
(GPT 4-Turbo)

Cursor Chat
(Claude 3.5)

Total Number of
TC

16 22 51

Precision 100% 77.27% 54.90%

Recall 26.19% 38.10% 73.81%

Table 3: Test cases designed by different methods

3.4.5 Test Cases Designed Using Different Request Accuracy

We can see from the answer from AI that test cases based on 90% accuracy contains detailed
information, such as fields in JSON payload, correlationId and specific accountId. Test cases
based on 60% accuracy didn’t contain such detailed information, but it also had clear structure
and contained information that is detailed and clear enough for testing. However, it lacked
enough boundary value testing and had fewer testing scenarios. Test cases based on 30%
accuracy covered basic functions, but it didn’t organize in a neat structure. For example, it did
not provide preconditions and expected results. Additionally, it had fewer testing scenarios, and
the logic of some test scenarios is not complicated enough. For instance, the JSON payload
in SQL injection case is:

{
”name1”: ”’; DROP TABLE Address;–”,
”street”: ”hacked’ OR ’1’=’1”
// ...other required fields
}

But this does not mean the best test cases should be designed based on 90% accuracy and
we can’t use test cases designed based on 30% accuracy. Instead, in real-world software en-
gineering, we also need to consider time and human resource under this case. Writing highly
detailed instructions requires significant time. In my experiment, we spent more than one week
to restructure the API descriptions based on original Wiki page, find suitable test data and
apply instructions inside prompt. This process took more time than simply providing a prompt

22

and generating test cases using AI. When testing a more complex object, requirements for
implementation costs and testing resource can be very high.
Based on all considerations above, we suggested to use 90% accuracy test cases if the tested
objects are very crucial that need to be fully evaluated regarding their functions, error handling,
security and performance. 60% accuracy test cases contains enough information for most test
requirements. If tested objects just need a quick and basic functional check, then 30% accuracy
test cases is enough, but there is a risk that you will miss out critical issues.

4 AI for Automated Test Code Generation

4.1 AI integration in Test Code Generation Overview

There are a lot of other AI tools that have been developed to assist with code generation and
have been revealed in other studies. FreqCCS, ArCCS, and BMNCCS[11] are systems that can
complete code by learning existing code repositories. Study from Barke et al. used grounded
theory to reveal how programmers interact with code generation tool, Github Copilot[12].
Randoop[13] is a unit test code generation tool for Java which uses feedback-guided random
test generation. TestSpark[14] is a plugin for IntelliJ IDEA that enables users to generate
unit tests with a few clicks by creating a feedback cycle between the IDE and the LLM.
Raychev et al.[15] simplified the code completion problem into a natural language processing
problem to predict the probabilities of sentences and managed to solve the code completion
problem. Although my study does not directly utilize these tools, they lay a solid foundation
for AI-assisted test code generation and give me an overview and understanding in this area.
Today, some popular AI code generation tools that we took into consideration include Copilot,
Cursor, Tabnine, and Amazon CodeWhisperer. Tabnine’s understanding of code is limited
compared to more advanced models like GPT-4o[16], which have broader context awareness.
Amazon CodeWhisperer is mainly for AWS ecosystems. Copilot is one of the most popular AI
tools, as it has OpenAI models and can be used in various IDE such as VSCode as plug-in.
But to use Copilot you need a paid subscription. Cursor also need to pay if you want to try its
full functions, but there are some basic AI models that can be used freely. Meanwhile, we can
chat with AI when using Cursor and it has its own IDE. Since we can use advanced models
and chat freely in Cursor and also it has a familiar IDE, we used Cursor in our study.

4.2 Methodology

4.2.1 Exploration of Cursor Capabilities

In Cursor, there are three AI functions: Chat, Composer and Bug Finder. We used Chat during
test case design section, which is quite the same as other AI Chat. In this section, we would
use Composer, which can help us to generate code directly in the project.
There are 6 AI models available in Cursor Composer, which are Claude-3.5-sonnet, Claude-3.7-
sonnet, Claude-3.7-sonnet-thinking, GPT-4o, GPT-4o-mini and o1. However, the high demand
making Claude-3.7 often unavailable, and we can’t use o1 if we are not using Cursor Pro. Due
to these constraints, we chose Claude-3.5-sonnet and GPT-4o for our experiments.
Claude-3.5-sonnet is developed by Anthropic. It has great support to developing language
such as Python, Java, and SQL. It is outperformed in test code generation and context under-
standing. GPT-4o is developed by OpenAI. It is cheaper and faster than GPT-4o-Turbo, and

23

supports multimedia input.
In Cursor Composer, we can select specific documents in project to AI when using Composer.
Since the test code will be generated in our existing testing project which already has a clear
project structure and test code for other APIs, we would utilize this function to let AI better
understand the project and organize generated code.

4.2.2 Project Structure

The existing code analysis ability of Cursor can analyze the currently visible files and distinguish
structures such as functions, classes, and modules. It does not require human training to
understand the project structure. But we can specify the files needed when using Cursor
Composer to let AI focus on those files. In this chapter we are going to briefly introduce our
project structure to have a clearer overview to the project.
Before the experiment, the project only contained test code for webhook APIs that are used to
invoke functions in another system, which means that these test code follow a different calling
mechanism from our APIs. In this case, AI should not generate test code by simply modifying
parameters in the existing test code, but it needs to understand and generate a different code
structure to properly invoke our APIs.
The testing project uses a pytest framework and PostgresSQL as database. As shown in Figure
2, the project contains two subdirectories, which are /src and /tests. /tests includes python
scripts that invoke test functions and assert results. /src contains all other elements needed for
the testing, including database configuration under /db, test data under /constants, request
functions under /request, and other helper methods. Authentications and URLs are stored in
main config.py under /src. Since main config.py contains privacy data that give access to both
the EsBill system and the database, we faked authentication data in this file when we opened
the project in Cursor and used real data to test our code in IntelliJ IDEA.

Figure 2: Project Structure

24

4.2.3 Design of Test Code Generation Prompts

We have generated test cases for these APIs in the previous section. We would use the same
four APIs for test code generation, and prompts used here section were modified based on test
cases from the last section. For consistency, the same initial prompts were used for both AI
models. Subsequent modifications were recorded and analyzed separately.
To ensure reusability of test cases and modularity, we organized prompt by separating it to task
introduction, API description, database verification and test case part. In this way it would be
easier for developers to understand and reuse this prompt in the future. Additionally, unified
the format for API testing and ensured each test case follows the same structure to enhance
consistency of prompt. Following is the final version of prompt for Change Address V2:

Read these files and understand how to write API tests and connect the database in this
project. Then write code based on the following test case for the API change address
v2. Set verify=False in the request. Don’t put all codes in one file, but put test script in
/tests, test data in /src/constants, request functions in /src/requests, database configu-
ration in /src/db/db config.py , access and URL in /src/main config.py, headers and json
transformation in src/util/util.py

Task introduction and code organization requirement Here, we describe our task to AI.
We selected existing code files(/tests/test customer replication.py,
/src/request/customer replication req.py, /src/db/db config.py, /src/constants/test addresses.py,
/src/util/util.py, and /src/main config.py) that show how the existing test code is organized
inside the project and asked AI to learn how to organize the test code. To avoid SSL connection
error, we specified “Set verify=False in request” in the prompt. As AI tended to put all test
code inside one Python script, we described the contents inside different files and asked it to
put code separately at the end of this paragraph.

URL: https://stesbonline01.corproot.net:26443/JaxRsWeb/account/:accountId/address/v2
(please form it using the variants in main config.py)
HTTP method: POST
Authentication:
{
ESB ACCOUNT: “esonline”,
ESB ACCOUNT PSW: “esonline”
}

API description Here we give information of API to AI. We stress again to put URL in
main config.py. The authentication data here are fake data.

For test cases with status code 200, add a database assertion to verify that all fields are up-
dated in database. Table constants.ENV.tadsupp has timestamp, address id, location id,
name1, name2, first name(firstName), name addr suppl(nameSupplement), co remark
(coRemark), po box no(postfach). Table constants.ENV.talocda has location id, coun-
try id, zip, city town(cityTown), street, house no(houseNo), location suppl
(locationSupplement), zip6, residence descr(residenceDescr). Table constants.ENV.tadrusg
has address id, usage integer1, user id. Table tacodat has country id and country short iso
(countryCd). Our data is the latest record by filtering user id and usage integer1. The
user id should match endUserId, and usage integer1 should match accountId. When coun-

25

tryCd in test data is None, country short iso in database will be set as ‘CH’. location suppl
in database is always None. po box no in database only takes postfach in the test data
from the 9th letters. Please write a correct database verification code based on this infor-
mation.

Database Verification EsBill system is connected to a Postgres database. All information
updated to the system will be updated in the database at the same time. After discussing with
colleagues, we included a database test in our test code to check that the POST APIs were
fully working. The project had already included the database in constants.ENV variable, so we
told AI which tables contain the relevant fields, which fields need to be checked, and how to
validate them.

TC1: Basic Address Change
Description: Verify successful address update with mandatory fields
Test Data:
AccountId: 13004204
Headers:
{
Content-Type: “application/json”,
endUserId: “TAAGUXI1”
}
- Payload:
{
”name1”: ”John Doe”,
”zip”: “3011,
”cityTown”: “Bern”
}
Test Steps:
Set up POST request with headers
Add mandatory payload fields
Send request
Verify response
Expected Results:
Status code: 200
All fields updated correctly in database
TC2: Complete Address Update
. . .

Test case Here are valid test cases selected from test case design section. We edited expected
results to let AI to check to the API.
The prompts for other APIs follow the same structure, but GET APIs did not contain database
check, since they did not update information in the system. All test cases we used are as follow:

26

Test
Case ID

Change address
v2

/ustId/v1 Read Ust-Id Read Contract
History

TC1
Basic Address
Change

Basic UstId Up-
date

Basic Ust-Id Re-
trieval

Basic Contract
History Re-
trieval

TC2
Complete Ad-
dress Update

Field Length
Validation

Invalid Account
ID

Invalid Contract
ID

TC3
Missing Manda-
tory Fields

Invalid Account
ID

Unauthorized
Access

Unauthorized
Access

TC4
Invalid Account
ID

Missing UstId
Inactive account
ID

Multiple Con-
tract Data
Completeness

TC5
Field Length
Validation

Missing Account
ID

- -

TC6
Special Charac-
ters

Unauthorized
Access

- -

TC7
Authorization
Test

Inactive account
ID

- -

TC8
Inactive Ac-
count ID

- - -

Table 4: Test cases used to generate test code

4.2.4 Validation of Generated Test Code

Before asking AI to generate the test code, we first wrote all test code myself and recorded
the time spent. In this way, we found errors that needed to be told to AI in advance(such as
set verify=False) and was able to compare the efficiency of AI and human beings.
After generating test code using AI, we first checked if all test cases had been included and
if there were basic code organization problems. If these situations occurred, we would directly
tell AI the problem and solution of its code and ask AI to generate the test code again without
executing the code.
To verify the validity of the test code, we used the command ”pytest” to execute all generated
test code in IntelliJ IDEA. If serious errors show up, we would ask AI to correct the code again.
If the errors were small and can be corrected in minutes, we would correct the bugs myself.
We regenerated and corrected the code multiple times until all test cases passed and recorded
the total time spent.
During the eight verifications, only test code for Read UstId generated by Claude-3.5-Sonnet
passed after the first generation. We had to deal with bugs or improve our prompts in most
cases. Test code generated by AI had many big and small errors, that need to be run and
modified repeatedly before the code can be run correctly. We needed to check not only code
logic and grammar but also code organization and execution information. This is a cumbersome
process and cost us about half of our AI experiment time.

27

4.3 Experiments

4.3.1 Manual generation

As mentioned before, we first wrote the test code manually. The first API we wrote the test
code is Change Address V2. We spent most time on the first test case to deal with SSL
verification problem (which is what set verify=False in the prompt deals with) and database
field checking. In default, requests library will check the validity of the SSL certificate. If we
didn’t set verify=False, test request will fail directly which is not the problem of code logic,
and the experiment could not continue. Since the error did not give us a clear instruction
to set verify=False, we spent a lot of time searching solutions for this issue on the Internet.
Disabling SSL verification in a production environment is risky, but in the test environment
this is acceptable. These two parts cost 5 hours. In retrospective, the SSL verification issue
can be handled more efficiently by controlling the verify option using environment variables or
let all APIs reuse the same session, so we do not need to set it separately in every request.
After figuring out these problems, the remaining test cases were quite simple and cost only 1
hour in total.
The test code for other APIs were also easy after writing code for Change Address V2. Read
UstId cost 1 hour to form the frame of testing GET API, and Read Contract History only cost
0.5 hour. /ustId/v1 cost 2 hours as it is also a POST API that requires database checking.

4.3.2 Code generated by GPT-4o

Cursor generated code with a brief explanation and step-by-step breakdown which shows files
and part of codes it modified. Below is an example of Cursor’s reply:

I’ll help create the test structure for the UstId retrieval API. I’ll break this down into
multiple files.First, let’s update the main configuration:
// code modified in main config.py
Let’s create test data for UstId:
// code modified in test ustid data.py
Let’s update the util.py to include headers for UstId:
// code modified in util.py
Let’s create the request handler for UstId:
// code modified in ustid req.py
Finally, let’s create the test file:
// code modified in test ustid.py
This implementation:
Creates a dedicated test data file for UstId tests
Adds a new header utility function for UstId requests
Creates a request handler that:
Measures response time
Handles authentication
Provides proper error handling
Creates test cases that:
Verify successful retrieval with response time check
Validate response format and UstId format
Test error cases (invalid account, unauthorized, inactive account)

28

Use consistent error handling across all tests
The code follows the project’s patterns and reuses existing infrastructure while adding
UstId-specific functionality.
Let me know if you need any clarification or have questions about specific parts of the
implementation!

As mentioned before, we asked AI to correct bugs inside the code multiple times until the code
only contained flaws that we could correct manually. The prompts used, the bugs identified in
the generated code, and the corresponding corrections are as follow: /UstId/v1

Item Prompt Bugs
AI’s 1st
genera-
tion

Initial prompt with
API description and
test cases

AI set accountid/ustid = ” in functions
test missing ustid()/test missing account id()
instead of accountid/ustid = None

Manual
work

Set accountid/ustid = None

Time
spent

Prompt preparation & file selection 15min
Code generation 5min
Debug & execution 5min

Table 5: GPT-4o code generation for /UstId/v1

Change Address V2

Item Prompt Bugs

AI’s 1st
genera-
tion

Initial prompt with API description and test
cases

AI put all test code in one file
(test address change.py)

AI’s 2nd
genera-
tion

Don’t put all codes in one file, but put test
code in /tests, test data in /src/constants,
request functions in /src/requests, database
configuration in /src/db/db config.py, access
and URL in /src/main config.py, headers
and json transformation in src/util/util.py

Separated most test code, but didn’t
clean up unused database function in
test address change.py

AI’s 3rd
genera-
tion

Please put test data in /src/constants,
and clean up unused functions in
test address change.py

Put test data in the right file, but
didn’t clean up unused database
function in test address change.py
Test case test inactive account id
didn’t use request function in
address change req.py but rewrote
another request function

Manual
work

1. Deleted redundant function verify database in test address change.py.
2. Corrected country id to country short iso in database verification part.
3. Modified test inactive account id to use request function in address change req.py.

Time
spent

Prompt preparation & file selection 30min
Code generation 25min
Debug & execution 35min

Table 6: GPT-4o code generation for Change Address V2

29

Read Contract History

Item Prompt Bugs
AI’s 1st
genera-
tion

Initial prompt with API description and
test cases

Didn’t generate code for test case Con-
tract Data Completeness but generated
test data for this test case

AI’s 2nd
genera-
tion

You didn’t provide test code for Con-
tract Data Completeness

Provided test code for Contract data com-
pleteness, but had errors in response as-
sertion: it asserted ‘status’ and ’details’
which were not exist in the response and
asserted contractId is string which is in
fact integer

AI’s 3rd
genera-
tion

[
{
”contractId”: 6096298,
”foreignContractId”: ”6096298”,
”accountId”: 8413466,
”scn”: 1439,
”validFrom”: ”2024-08-01”,
”validTo”: ”9999-12-31”,
”userId”: ”DKTMKEC5”,
”timestamp”: ”2024-08-30 08:59:00.9170
00000”
},
{
”contractId”: 6096298,
”foreignContractId”: ”6096298”,
”scn”: 1439,
”validFrom”: ”2013-03-01”,
”validTo”: ”2024-07-31”,
”userId”: ”DHUZKW35 “,
”timestamp”: ”2024-08-30 08:59:00.8960
00000”
}
]
This is the response when status code=
200. Could you add fields and data form
check for test case with status code =
200?

Corrected fields and data form
checking for test function
test contract data completeness(),
but didn’t add for test function
test basic contract history retrieval()

AI’s 4th
genera-
tion

Please also add these checks to
test basic contract history retrieval

Added same code to
test basic contract history retrieval()

30

Item Prompt Bugs

AI’s 5th
genera-
tion

These codes seem to be redundant,
could you put the fields and form check
inside one function?

Put fields and form check inside one func-
tion and called the function in both test
cases. However, there is no accountId in
second history record if one contractId
contains multiple contract history records,
but AI verified for every record, which
caused test to fail

Manual
work

Deleted the logic of checking accountId in every records

Time
spent

Prompt preparation & file selection 10min
Code generation 5min
Debug & execution 25min

Table 7: GPT-4o code generation for Read Contract History

Read Ust-Id

Item Prompt Bugs

AI’s 1st
genera-
tion

Initial prompt with
API description and
test cases

AI asserted if response.json() contains ‘error’ for
negative test case, which is redundant since we
checked HTTP status code to check status
AI put authorization in function test
unauthorized access() instead of main config.py

AI’s 2nd
genera-
tion

You didn’t delete the
authorization in test
unauthorized access()

AI corrected it and test passed

Time
spent

Prompt preparation & file selection 15min
Code generation 5min
Debug & execution 5min

Table 8: GPT-4o code generation for Read UstId

From the execution results, we can see that GPT-4o actually improves the efficiency for test
code generation, and it gave quite clear descriptions and hints to the generated code. GET
APIs had very few errors after the first generation. It had code organization problem at the first
generation of the first API, but it immediately corrected it at the next generation. But there
was a lot of redundant code during generation, which suggests that we need to carefully check
how the generated code organized to improve code quality even when there is no error inside
the code. Notably, those errors caused by incomplete API or test case information indicated
us that the prompts still need to be checked and include more information. Overall, GPT-4o
matches our expectation that it reduced the workload of developers.

4.3.3 Code generated by Claude-3.5-Sonnet

When experimented with Claude-3.5-Sonnet, we improved our prompt based on the experi-
mental results of GPT-4o, and we spent less time on the experimental process, as we were
already familiar with the process. However, the Claude-3.5-Sonnet experiment was not as effi-
cient as we expected, as the code it generated had a lot of logic error. We will further compare

31

the performance of two AI models in the next section. The prompts used, the bugs identified
in the generated code, and the corresponding corrections are as follow:
Read UstId

Item Prompt Bugs
AI’s 1st
genera-
tion

Initial prompt with API descrip-
tion and test cases

Test passed

Time
spent

Prompt preparation & file selection 5min
Code generation & check 5min
Debug & execution 5min

Table 9: Claude-3.5-Sonnet code generation for Read UstId

Read Contract History

Item Prompt Bugs

AI’s 1st
genera-
tion

Initial prompt with API description and
test cases

Returned imestamp from
database has 9 digits’ nanosec-
ond but datetime.strptime()
can only fit in 6 digits’
nanosecond

Manual
work

Deleted last 3 digits in nanosecond for assertion

Time
spent

Prompt preparation & file selection 5min
Code generation & check 5min
Debug & execution 15min

Table 10: Claude-3.5-Sonnet code generation for Read Contract History

Change Address V2

Item Prompt Bugs

AI’s 1st
genera-
tion

Initial prompt with API description
and test cases

Used ODBC instead of
PostgresDB
Didn’t provide test case without
authorization
Put test data in wrong test data
file

AI’s 2nd
genera-
tion

Please:
1. use psycopg2 instead of pyodbc in
db config.py
2. provide the code for test
authorization
3. put test data in other place instead
of test customers.py, as it’s not
customer data

Fixed all bugs mentioned, but ad-
dress data still in wrong file

32

Item Prompt Bugs

AI’s 3rd
genera-
tion

Also put TestAddressData in other
place instead of test customers.py, as
it’s not customer data

Moved TestAddressData to right
file, but didn’t generate code for
function get headers with user()
in util.py it used

AI’s 4th
genera-
tion

You have error at headers = util.
get headers with user
(customer[”user id”]) in
address change v2 req.py. Please
check

Added util.get headers with user()
and logs in address change v2 req.py.
Remaining bugs:
1. Changed import sentence ’from src
import constants’ to ’from src.
constants import constants’ which is
wrong
2. Used ? in query. In postgres it
should be %s
3. Didn’t use fetch one() or fetch all()
in the query, so the query always
returned None
4. Results from db is dict, but was
asserted as a list

AI’s 5th
genera-
tion

The query result is dict but your as-
sertion assumes it’s a list, please cor-
rect your code

1. Prompt: “take postfach from the
9th letter in test data, while code is:
assert db data[’po box no’] ==
expected data[”postfach”][8:]
2. Wrong status assertion: exc info.
value.status code is a string error
message but it was handled as a int

AI’s 6th
genera-
tion

exc info.value.status code is a string
with the form as ”AssertionError
(’PUT request failed:\n Status code:
400\n Error: 400 Client Error: Bad
Request for url: https://
stesbonline01.corproot.net:26443/
JaxRsWeb/account/13004204/
address/v2’)”. Please correct your
code of verifying all test cases with
status code != 200

1. Put a invalid user credentials in
test case “without authorization”(set
user id = ”INVALID USER”) which
is wrong
2. with pytest.raises(HTTPError) as
exc info: can’t catch error message
correctly

Manual
work

1. Corrected import sentence to ’from src import constants’.
2. Corrected ’?’ in database query to ’%s’.
3. Added fetch one() in database query.
4. Changed with pytest.raises(HTTPError) as exc info to raises(Exception)

Time
spent

Prompt preparation & file selection 5min
Code generation & check 60min
Debug & execution 40min

Table 11: Claude-3.5-Sonnet code generation for Change Address V2

33

/UstId/v1

Item Prompt Bugs
AI’s 1st
genera-
tion

Initial prompt with
API description and
test cases

Didn’t provide standard UstId test data

Manual
work

Set UstId test data

Time
spent

Prompt preparation 5min
Code generation & check 7min
Debug & execution 8min

Table 12: Claude-3.5-Sonnet code generation for /UstId/v1

4.4 Analysis of the Results

Figure 3: Test cases designed by Cursor Chat(Claude 3.5) classification

Comparing time spent by AI models and generating code manually, we can observe that AI
is more efficient than humans, particularly when handling POST APIs. While existing code
quality issues, such as logic errors and code redundancies required manual debugging, leading
to a trade-off between speed and accuracy, AI still provided an overall efficiency compared to
manual coding.
However, manually generating code took almost the same time as using AI when dealing with
Read Contract History. The reason why manual work and AI cost similar amount of time is
due to the simplicity of GET API test. Unlike complex APIs such as POST APIs, GET APIs
require fewer test cases and do not require database verification, which significantly reduce
the effort for developers when writing test code. However, when using AI, it requires additional
time on prompt generation, code checking, and output verification. This offset its potential
time savings of fast code generation. Considering about this, we would not recommend using
AI if you only need to test very few GET APIs.

34

To better analyze the bugs that occurred when using AIs and compare these AI models,
we divided the bugs into six different categories. Configuration Error are errors related
to incorrect configurations. Test Case Omission represents the situation in which the test
cases were provided on the prompt but AI did not generate code for these test cases. Code
Redundancy refer to unnecessary or duplicate code in the project. Code Organization Issue
shows code placed in the wrong location that did not match the project structure. Logic Error
are errors with the code’s logic. Test Case Design Flaw are errors that occurred due to the
imperfect description of the prompt.

Bug Type GPT-4o Claude-3.5-sonnet

Logic Error

1. Mistook country short iso and
country id
2. Put authorization in
test unauthorized access()
3. Didn’t add data form check for
test basic contract history retrieval()
4. Set accountid/ustid = ‘’ in
test missing ustid and
test missing account id instead of
None

1. No get headers with user() in
util.py as it used
2. from src import constants is wrong
3. Used ’?’ in query instead of ’%s’
4. No fetch one() or fetch all() in
query
5. Results from database were dict
but were asserted as list
6. Prompt: ”takes postfach in test
data from the 9th letters”; code:
assert db data[’po box no’] ==
expected data[”postfach”][8:]
7. Wrong status code assertion:
exc info.value.status code is a string
error message but it was treated as a
int
8. Put wrong invalid user credentials
in ”without authorization”
9. Used with pytest.raises
(HTTPError) as exc info that can’t
catch error message correctly

Code
Redundancy

1. didn’t clean up unused database
function in test address change.py
2. test inactive account id() didn’t
use request function in
address change req.py but rewrite
function
3. Asserted ’error’ in response.json()
after HTTP status code check
4. Same code in test basic contract
history retrieval() and
test contract data completeness()

-

35

Bug Type GPT-4o Claude-3.5-sonnet

Code Orga-
nization
Issue

1. AI put all test code in one file
(test address change.py)

1. Put test data in wrong test data
file
2. Address test data still in wrong
file

Test Case
Design Flaw

1. Asserted ’status’ and ’details’
which were not exist in the response
and asserted contractId is string
which is in fact integer
2. No accountId in second history of
same contractId, but AI verify for
every history

1. datetime.strptime(timestamp,
”%Y-%m-%d %H:%M:%S.%f”) can
only assert 6 digits nanoseconds but
returned timestamp has 9 digits
2. Didn’t provide standard UstId

Configuration
Error

-
1. Used ODBC instead of
PostgresDB

Test Case
Omission

1. Missed multiple contract history
test case

1. Didn’t provide no authorization
test case

Total 12 15

Table 13: Bugs analysis during test code generation

We can see that the code generated by GPT-4o has fewer errors than the code generated by
Claude-3.5-sonnet. We tested Claude-3.5-sonnet later than GPT-4o and were more familiar
with the process and had better prompt at that time, but we did not feel more efficient.
Instead, we felt that we spent a lot of time dealing with basic grammar mistakes. In Cursor,
the default model is Claude-3.5-sonnet. We highly recommend to change the model before
using it.
Another issue worth noting is test case design flaw errors exist with code generated by both
models. These errors were mainly caused by our carelessness and could theoretically be avoided.
These prompts were modified based on the test cases generated by AI. We mentioned the over-
complete problem of test cases generated by AI in the previous chapter, and these prompts
were iteratively optimized according to discovered errors during the process of code generation.
We can say that the information in the prompts was very complete, but test case design flaw
errors still exist. When generating a prompt in a real project, we should pay attention to not
only the test objectives but also the data format of different data during the whole process,
including input data, output data, and even intermediate data. But it is very hard for humans
to cover all these details at first. Many details need to be discovered during the process of code
generation and testing. We think that using AI for test code generation can improve efficiency
compared to manually generating code, but it still requires a lot of human work nowadays.
Our findings indicate that AI significantly improves the efficiency of test code generation,
especially for complex testing objectives such as POST APIs. Although GPT-4o has better
performance with fewer logic errors, both GPT-4o and Claude-3.5-sonnet require careful human
work for prompt generation and correctness verification. We conclude that AI is a valuable
assistant for test generation, but is not yet a fully automatic tool. For further research, it is
valuable to let third party experts evaluate test code generated by human and AIs without
letting them know code author to provide more convincing qualitative assessments.

36

5 Broader Discussion

In this section, we are going to discuss the application of AI tools like SwisscomGPT and
Cursor in real-world software testing, and concerns such as security and data handling when
using AI.

5.1 Interplay Between Human and AI Contributions

From our study, we can see that AI has some advantages over developers in software testing.
For example, when generating test cases, AI tends to cover all exceptions and edge cases,
which can give developers more design inspiration. When it comes to test code generation, AI
has great efficiency if a large number of similar and cumbersome business codes are needed.
It can analyze and understand code in large projects at high speed.
However, AI still has shortcomings. We still need human developers to analyze business logic
and user scenarios and handle data that AI cannot understand and analyze. AI output also
requires human quality control, such as test case selection and optimization, and test code
optimization and bug fixes.
Considering about this, future research for AI-assisted software testing can focus on rein-
forcement learning with human feedback, to let AI study the optimization strategies of human
beings. By introducing human optimization strategies, AI should improve its ability to optimize
the selection of test cases, the detection and correction of bugs, the adjustment of the test
strategy based on business requirements, and adaptive learning to reduce the cost of testing
time.

5.2 Privacy and Security Concerns in AI-assisted Testing

We didn’t need to deal with data privacy in this study, since all data outside Switzerland are
fake data. But most of the time, when using AI to assist in software testing, a great amount of
sensitive data is involved, especially in the government, medical care, and finance areas. There
are potential risks in exposing sensitive data. The introduction of privacy regulations such as
GDPR also makes it challenging to ensure that AI systems comply with these regulations.
To improve these issues, we should use advanced encryption techniques to protect data during
storage and transmission. Data anonymization and de-identification techniques still need to
be further improved. To let users clearly understand how the data is handled, everyone should
engage in improving the interpretability of AI models and strengthening supervision and audit
of AI. It will be better if AI is deployed on-premises, but not in the cloud.

5.3 Handling Multilingual and Outdated Data

EsBill team faces these issues, and this situation is widespread throughout the world. In the era
of globalization, more and more companies have to handle multilingual data. However, existing
AI models are mainly trained on English datasets, and support data in other languages not as
well as English. To solve this issue, we should introduce more multilingual data to AI training
data and use multilingual pre-train models such as mBERT and XLM-R to train AI. AI should
also be specially trained combining local culture background.
Meanwhile, software products, especially those in large and stable companies, have gone
through decades of iteration. This involves a lot of outdated data. On the other hand, in

37

today’s fast-developing society, information is constantly updated, and AI also has the prob-
lem of outdated training data. Retraining a large AI model is very costly and companies may
not update training data in time. Considering about this, AI knowledge base needs to be
updated regularly, and use dynamic training methods such as online learning to train AI in
real-time streaming. Combining internet search and utilize user feedback can also improve this
problem.

5.4 Specialized AI Models for Niche Applications

Specialized AI models are playing an important role in several industries such as medical diag-
nosis, legal analysis, financial risk assessment, etc. However, these industries involve relatively
niche markets, which leads to problems such as insufficient data sources, small capital invest-
ment, and strong task-orientation. AI models have high development and maintenance costs
and weak cross-domain migration capabilities.
With the rapid development of AI infrastructure, we will have more powerful cloud computing
and automated machine learning capabilities that reduce the deployment cost of AI in niche
applications. Meanwhile, modular AI components also contribute to this issue.

5.5 Integration of AI Tools into Industry Settings

Nowadays AI tools are developing rapidly. While I was writing this paper, a new AI from China,
DeepSeek, came out. It achieved the performance of top AI models such as GPT-4, Claude 3,
and Gemini 1.5 with significantly lower training costs, and is open source, shocking the whole
world.
Even though we have seen that AI can improve the efficiency of software testing, industry still
faces challenges besides all concerns discussed above. For example, how to compatible with
existing CI/CD pipelines and how to seamlessly integrate with DevOps processes, trade-off
between computing power and cost, and issues regarding industry standard setting.
AI should be designed to be more modular and flexible. AI platform can support DevOps tools
and technology stacks, and provide plugins and API interfaced for popular CI/CD platforms
such as Jenkins and GitLab. AI tools can balance computing power and cost by load balancing
and cloud services. Meanwhile, AI companies can collaborate with industry standardization
associations to push industry standards setting forward.

5.6 Potential Risks of AI-generated Testing Beyond Technical
Aspects

Current research on AI-assisted testing focus more on technology side, such as coverage and
accuracy. However, with further deployment of AI in the testing area, the potential risks in
organization and legality are worth to discuss.
From organizational aspect, AI-assisted testing may weaken the skill accumulation of test
engineers. For example, test engineers may rely more on prompt engineering instead of test
case design itself, which will affect the work division and capacity building of the team.
From legality aspect, there is no clear legal framework to clarify the responsible person for
errors caused by AI. For example, if the code generated by AI causes huge losses, should the
AI developer, or the AI user and operator be responsible for this issue?

38

Therefore, future research should not only explore the technological improvement, but also legal
compliance, human-machine collaboration ethics, and organizational structure adjustment.

5.7 Generalization Beyond the EsBill Project

Although the study is based on the EsBill project, the methodologies and findings still take
implication in other projects. The AI application module have great inspiration on other similar
enterprise project, especially those with a long development history, have knowledge of dif-
ferent languages on different platforms. For example, how to leverage LLM model to retrieve
knowledge from legacy documents, design test cases and generate test codes.
In addition, the study about the analysis to performance of different AI models, provides
a reference for enterprises when choosing AI tools as assistance. The study indicates that
the usability and accuracy of AI-generated content is limited by the structure of context.
Therefore, when promoting the methodologies in other scenarios, it is necessary to make
personalized adjustments according to specific systems. For example, modern web systems
based on microservice architecture contain a lot of API interfaces, which is suitable for the
test case generation method proposed in this study. However, it needs to integrate the CI/CD
process to ensure the test code can adapt to quick interface changes. In traditional ERP
systems or banking systems, interfaces are stable but projects are highly dependent on legacy
documents. These systems are suitable for the knowledge retrieval techniques proposed in this
study.

6 Conclusion

The study suggests that, for documenting software testing, AI performs better on structured
Wiki text but cannot process tables, images, or database DDL files. In the test case design,
Cursor Chat is good at exploring test scenarios, but SwisscomGPT is good at providing essential
test cases. The accuracy of the request has a great impact on the generated test cases. In
terms of test code generation, AI can quickly understand the project framework and generate
a test code draft, but human work is still required for prompt generation and correctness
verification.
Based on the experimental findings, the advantages of AI are significant time savings, stan-
dardized output, and suitability for first draft generation. However, AI has difficulty processing
knowledge of specific structures, such as complex database DDL files and tables. The gener-
ated test cases still need to be manually screened, and the correctness of the generated test
code cannot be guaranteed. Although this study is based on EsBill project, the experimen-
tal results still provide inspiration on how to integrate AI into the software testing process.
Therefore, we propose some practical suggestions for integrating AI into the software testing
pipeline.

1. Pre-process knowledge with data types that AI cannot process into a more accessible
format to ensure AI can effectively process and generate relevant information.

2. Choose AI tools developed by the enterprise for the extraction of information from
internal documents.

3. When designing test case, leverage general AI to explore potential test scenarios for
critical APIs or complex systems, and then use enterprise AI to generate structured and

39

clear test cases.

4. The accuracy of the request should be selected based on the criticality of the system. For
critical systems, we recommend writing prompt with 90% description accuracy. For less
critical systems, 60% accuracy is sufficient for most tests. For basic functional checks,
30% accuracy can be considered.

5. AI should be used to speed up the process and generate first drafts, but manual verifica-
tion and refinement are crucial to ensure the generated test code is executable and meets
the required standards. GPT-4o performs better on this task than Claude-3.5-sonnet.

6. For each stage of AI participation, human review of the generated results is required
before they are applied to the project.

Although we conducted experiments on the entire testing process, this study still has limi-
tations. This study is based on backend API testing and does not cover areas such as GUI,
mobile, and embedded systems. Moreover, the study is based on the specific context of EsBill
project. Its conclusions and scope of application are still limited and cannot be fully generalized
to all types of AI-assisted software testing.
Based on the findings and improvements made during this study, we suggest several key
areas to explore in future research on AI-assisted software testing. For AI tools, reinforcement
learning with human feedback, modularization of AI systems and their integration into CI/CD
platforms and DevOps tools can greatly improve the overall efficiency of AI-assisted testing
systems. In addition, how to use cloud services to balance computing power and cost is worth
studying. Moreover, future work should explore AI-assisted testing in different fields, including
GUI, mobile, and embedded systems to expand the generalizability of AI testing tools. At the
same time, encryption and data anonymization technologies need to be continuously developed
to address data security and privacy issues. By integrating these improvements, AI can reduce
the cost and complexity of software testing, making it a more powerful tool for a wider range
of applications.

References

[1] Aakash Ahmad, Muhammad Waseem, Peng Liang, Mahdi Fahmideh, Mst Shamima Ak-
tar, and Tommi Mikkonen. Towards human-bot collaborative software architecting with
ChatGPT. In Proceedings of the 27th international conference on evaluation and assess-
ment in software engineering, pages 279–285, 2023.

[2] Patrick Bareiß, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. Code generation
tools (almost) for free? a study of few-shot, pre-trained language models on code. arXiv
preprint arXiv:2206.01335, 2022.

[3] Youyang Ng, Daisuke Miyashita, Yasuto Hoshi, Yasuhiro Morioka, Osamu Torii, Tomoya
Kodama, and Jun Deguchi. SimplyRetrieve: A private and lightweight retrieval-centric
generative AI tool. arXiv preprint arXiv:2308.03983, 2023.

[4] Sara Bouzid and Löıs Piron. Leveraging generative AI in short document indexing. Elec-
tronics, 13(17):3563, 2024.

40

[5] Marco Rospocher, Francesco Corcoglioniti, and Mauro Dragoni. Boosting document
retrieval with knowledge extraction and linked data. Semantic Web, 10(4):753–778,
2019.

[6] Simon Knollmeyer, Muhammad Uzair Akmal, Leonid Koval, Saara Asif, Selvine G. Math-
ias, and Daniel Gromann. Document knowledge graph to enhance question answering with
retrieval augmented generation. 2024 IEEE 29th International Conference on Emerging
Technologies and Factory Automation (ETFA), 2024.

[7] Simon Knollmeyer, Muhammad Uzair Akmal, Leonid Koval, Saara Asif, Selvine G Math-
ias, and Daniel Großmann. Document knowledge graph to enhance question answering
with retrieval augmented generation. In 2024 IEEE 29th International Conference on
Emerging Technologies and Factory Automation (ETFA), pages 1–4. IEEE, 2024.

[8] Shuzheng Gao, Chaozheng Wang, Cuiyun Gao, Xiaoqian Jiao, Chun Yong Chong, Shan
Gao, and Michael Lyu. The prompt alchemist: Automated LLM-tailored prompt opti-
mization for test case generation. arXiv preprint arXiv:2501.01329, 2025.

[9] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin.
ChatUniTest: A framework for LLM-based test generation. In Companion Proceedings
of the 32nd ACM International Conference on the Foundations of Software Engineering,
pages 572–576, 2024.

[10] Christoph Csallner and Yannis Smaragdakis. JCrasher: an automatic robustness tester for
Java. Software: Practice and Experience, 34(11):1025–1050, 2004.

[11] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to improve
code completion systems. In Proceedings of the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on the foundations
of software engineering, pages 213–222, 2009.

[12] Shraddha Barke, Michael B James, and Nadia Polikarpova. Grounded Copilot: How
programmers interact with code-generating models. Proceedings of the ACM on Pro-
gramming Languages, 7(OOPSLA1):85–111, 2023.

[13] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing for
Java. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented pro-
gramming systems and applications companion, pages 815–816, 2007.

[14] Arkadii Sapozhnikov, Mitchell Olsthoorn, Annibale Panichella, Vladimir Kovalenko, and
Pouria Derakhshanfar. TestSpark: IntelliJ IDEA’s Ultimate test generation companion.
In Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engi-
neering: Companion Proceedings, pages 30–34, 2024.

[15] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical lan-
guage models. In Proceedings of the 35th ACM SIGPLAN conference on programming
language design and implementation, pages 419–428, 2014.

[16] Swimm. AI tools for developers: Copilot vs. Tabnine – 6 key differences,
2025. https://swimm.io/learn/ai-tools-for-developers/copilot-vs-tabnine-go-head-to-
head-6-key-differences.

41

A APIs Utilized in Experiments

1. Change Address v2 API

• Description: The Change Address v2 API is used to update the address for a given
billing account.

• Endpoint: POST https://stesbonline01:<port>/JaxRsWeb/account/{accountId}
/address/v2

• Parameters:

– correlationId (HEADER, Optional): Used for tracing the call.

– endUserId (HEADER, Must): User for mutation history.

– accountId (PATH, Must): Billing account ID.

– roles (QUERY, Optional)): Comma-separated list of address roles. Defaults to
ADI, ADF, ADK, ADM if omitted.

– address(JSON payload, Must): Include details like name1, name2, firstName,
street, houseNo, zip, cityTown, countryCd, etc., with specific formats and
lengths for each field. Among them, name1, zip, and cityTown are mandatory
fields.

• Output:

– On success, the API returns HTTP Code 200, includes the newly created
addressId (e.g., {”addressId”: 9508150}).

– In case of errors, default error handling applies, and an appropriate error re-
sponse is returned.

2. /ustId/v1 API

• Description: The /ustId/v1 API allows updating the VAT ID (Ust-ID) for a specific
billing account.

• Endpoint: POST https://stesbonline01:<port>/JaxRsWeb/account/write/
{accountId}/ustId/v1

• Parameters:

– correlationId (HEADER, Optional): Used for tracing the call.

– endUserId (HEADER, Must): User for mutation history.

– accountId (PATH, Must): The billing account ID where the VAT ID will be
updated.

– ustId (QUERY, Must): The new VAT ID, with a maximum length of 20 char-
acters.

• Output:

– HTTP Code 200: Indicates successful update of the VAT ID.

– HTTP Code 404: Returned if the specified account is not found.

– Default error handling applies in other scenarios.

3. Read Ust-Id API

42

• Description: The Read Ust-Id API retrieves the VAT ID (Ust-ID) for a given billing
account.

• Endpoint: GET https://stesbonline01:<port>/JaxRsWeb/account/{accountId}/ustid/v1
• Parameters:

– correlationId (HEADER, Optional): Used for tracing the call.

– endUserId (HEADER, Must): User for mutation history.

– accountId (PATH, Must): The billing account ID where the VAT ID will be
retrieved.

– refDate (QUERY, Optional)): Reference date in the format YYYY-MM-DD
(defaults to the current date).

• Output:

– HTTP Code 200: Indicates successful retrieval of the VAT ID with a JSON
array containing the ustId (e.g., CHE-114.047.304).

– HTTP Code 404: Returned if the specified account is not found.

– Default error handling applies in other scenarios.

4. Read Contract History API

• Description: The Read Contract History API retrieves the contract history for a
specified contract.

• Endpoint: GET https://stesbonline01:<port>/JaxRsWeb/contract/{contractId}/
history/v1

• Parameters:

– correlationId (HEADER, Optional): Used for tracing the call.

– endUserId (HEADER, Must): User for mutation history.

– contractId (PATH, Must): The unique ID of the contract.

• Output:

– HTTP Code 200: Indicates successful retrieval with a JSON list containing the
contract history, include information like contractId, accountId, description,
timestamp, etc.

– Default error handling applies in other scenarios.

B Example AI response for test case design

Example test cases designed by SwisscomGPT(Upload):

Prompt: Give me test cases for Read Ust-Id API with accountId 13004204
SwisscomGPT: Sure, here are the test cases for the ”Read Ust-Id” API with the accountId
13004204:
Test Case ID: TC1
- **Test Case Description**: Validate successful retrieval of Ust-Id for the given accountId
13004204.
- **Test Steps**:
1. Create the request URL as ’https://s[p|i|t]esbonline01:<port>/JaxRsWeb/

43

https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1

account/13004204/ustid/v1’
2. Execute the GET method on the above-constructed API endpoint.
3. Check the HTTP response code and message.
- **Expected Result**: HTTP status code 200 and the response body should contain the
Ust-Id related to the accountId.

Test Case ID: TC2
- **Test Case Description**: Test the API’s response when a non-existing accountId is
supplied.
- **Test Steps**:
1. Construct the request URL as ’https://s[p|i|t]esbonline01:<port>/JaxRsWeb/
account/<non-existent-accountId>/ustid/v1’
2. Execute a GET method on the above endpoint.
3. Analyze the HTTP response code and message.
- **Expected Result**: HTTP status code 404, indicating that the accountId was not
found.

Test Case ID: TC3
- **Test Case Description**: Test API response when an incorrect HTTP method (like
POST) is used instead of GET.
- **Test Steps**:
1. Set the request URL as ’https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/
13004204/ustid/v1’
2. Make a POST request to the API endpoint.
3. Check the HTTP response code and message.
- **Expected Result**: HTTP status code 405 (Method Not Allowed), indicating that
the POST method is not supported for this endpoint.

Test Case ID: TC4
- **Test Case Description**: Test the behavior of the API when required headers (like
proper authentication tokens) are missing.
- **Test Steps**:
1. Construct the API endpoint as ’https://s[p|i|t]esbonline01:<port>/JaxRsWeb/
account/13004204/ustid/v1’
2. Make a GET request to the URL without providing required headers. 3. Analyze the
HTTP response code and the response message. - **Expected Result**: HTTP status
code 401 (Unauthorized), indicating that the request lacks valid authentication credentials.
These test cases aim to provide comprehensive coverage of potential conditions for the
’Read Ust-Id’ API.

Example test cases designed by SwisscomGPT(GPT 4-Turbo):

Here are the detailed test cases for the ”Read Contract History” API using the structure
and scenarios provided:
Test Case ID: TC RCH 001 Description: Verify that the ”Read Contract History” API
retrieves contract history successfully for a valid contractId.
Preconditions:

* The user ”tgdgalu1” is authenticated and authorized to access the contract history.
* A contract with contractId 1340676 exists.

44

https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/<non-existent-accountId>/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/<non-existent-accountId>/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1
https://s[p|i|t]esbonline01:<port>/JaxRsWeb/account/13004204/ustid/v1

Test Steps:
1. Authenticate the user ”tgdgalu1” and establish a secure HTTPS connection.
2. Compose a GET request with the endpoint, replacing contractId with ”1340676”.
3. Include a mandatory header, endUserId, and an optional correlationId.
4. Send the GET request to the server.

Input Data:
* HTTP Method: GET
* URL: https://sitesbonline01:<port>/JaxRsWeb/contract/1340676/history/

v1

* Headers:
* endUserId: ”tgdgalu1”
* correlationId: ”8c38500e-2de8-11ed-a261-0242ac120002”

Expected Result:
* The response is HTTP Status Code 200 OK.
* The response body contains a JSON payload with the contract’s history details.

Test Case ID: TC RCH 002 Description: Verify that the API returns an error when
called with an invalid contractId.
Preconditions:

* The user ”tgdgalu1” is authenticated and authorized.
Test Steps:

1. Authenticate the user ”tgdgalu1”.
2. Send a GET request with an invalid contractId.

Input Data:
* URL with an invalid contractId, e.g., https://stesbonline01:<port>/JaxRsWeb/

contract/invalid_contract/history/v1.
Expected Result:

* The response is a HTTP Status Code 400 Bad Request or 404 Not Found, indicating
the contractId is not valid.
Test Case ID: TC RCH 003 Description: Verify that the API returns an error when the
mandatory endUserId header is missing.
Preconditions:

* The contract with contractId 1340676 exists.
Test Steps:

1. Establish a secure HTTPS connection.
2. Prepare and send a GET request lacking the endUserId header.

Input Data:
* Headers without endUserId.

Expected Result:
* The response is HTTP Status Code 400 Bad Request due to the missing required

header.
Test Case ID: TC RCH 004 Description: Verify that the API handles unauthorized
access, missing user credentials (Security Testing).
Preconditions:

* Invocation of the API with missing or invalid user credentials.
Test Steps:

1. Attempt to connect to the server without user credentials.
2. Send the GET request with required headers except for the authorization token.

45

https://sitesbonline01:<port>/JaxRsWeb/contract/1340676/history/v1
https://sitesbonline01:<port>/JaxRsWeb/contract/1340676/history/v1
https://stesbonline01:<port>/JaxRsWeb/contract/invalid_contract/history/v1
https://stesbonline01:<port>/JaxRsWeb/contract/invalid_contract/history/v1

Input Data:
* Correct header information but no authorization token.

Expected Result:
* The response is HTTP Status Code 401 Unauthorized or 403 Forbidden.

Test Case ID: TC RCH 005 Description: Verify the API behavior under heavy load condi-
tions (Performance Testing).
Preconditions:

* The contract with contractId 1340676 exists, and the user ”tgdgalu1” is prepared
for load testing.
Test Steps:

1. Use a load testing tool to simulate multiple requests to the API.
2. Monitor the response time and error rates of the API.

Input Data:
* Utilize a load testing tool to generate a large volume of valid requests.

Expected Result:
* The API maintains a consistent response time and has an error rate within acceptable
limits under heavy load.

Ensure to replace <port> with the actual port number before running the test cases.
Moreover, during performance testing, ensure that the test environment mirrors the pro-
duction environment as closely as possible and that the test does not impact actual users
or production systems.

Example test cases designed by Cursor Chat(Claude 3.5):

I’ll create detailed test cases with specific input data and steps for the ”/ustId/v1” API.
Positive Test Cases
TC1: Basic Valid Request
Description: Verify successful retrieval of VAT ID with valid inputs
Test Data:

• AccountId: 13004204
• Headers:

endUserId: ”tgdmith4”
correlationId: ”8c38500e-2de8-11ed-a261-0242ac120002”

Test Steps:
1. Set up request with valid headers
2. Send GET request to endpoint
3. Capture response code and body
4. Validate JSON structure
5. Verify ustId format

Expected Results:
• Status code: 200
• Response contains valid ustId
• JSON format is correct
• Response time < 1 second

TC2: Request with Optional Parameters
Description: Verify request works with all optional parameters

46

Test Data:
• Same as TC1 plus:

refDate: ”2024-12-31”

Test Steps:
1. Set up request with all parameters
2. Execute GET reque
3. Validate response
4. Compare ustId with expected value for given date

Expected Results:
• Status code: 200
• Correct historical ustId returned
• All response fields present

Negative Test Cases
TC3: Missing Mandatory Header
Description: Verify error handling for missing endUserId
Test Data:

• AccountId: 13004204
• Headers:

correlationId: ”8c38500e-2de8-11ed-a261-0242ac120002”
// endUserId intentionally omitted

Test Steps:
1. Set up request without endUserId
2. Send GET request
3. Verify error response

Expected Results:
• Status code: 400
• Error message: ”Missing mandatory header: endUserId”

TC4: Invalid Account ID
Description: Test handling of non-existent account
Test Data:

• AccountId: 99999999
• Headers: Same as TC1

Test Steps:
1. Send request with invalid AccountId
2. Capture response
3. Verify error details

Expected Results:
• Status code: 404
• Error message indicating account not found

Security Test Cases
TC5: Unauthorized Access
Description: Verify authentication requirement
Test Data:

• AccountId: 13004204

47

• No authentication token
• Headers: Same as TC1

Test Steps:
1. Remove authentication token
2. Send request
3. Verify security response

Expected Results:
• Status code: 401
• Authentication error message

TC6: Cross-Account Access
Description: Verify account access restrictions
Test Data:

• AccountId: Different from authorized user
• Valid authentication token
• Headers: Same as TC1

Test Steps:
1. Use token for Account A
2. Try to access Account B’s ustId
3. Verify access denied

Expected Results:
• Status code: 403
• Access denied message
• Data Validation Cases

TC7: Invalid Date Format
Description: Test date format validation
Test Data:

• AccountId: 13004204
• Headers: Same as TC1
• Query params:

refDate: ”31-12-2024” // incorrect format

Test Steps:
1. Send request with invalid date
2. Verify error handling

Expected Results:
• Status code: 400
• Date format error message

TC8: Future Date
Description: Test future date handling
Test Data:

• AccountId: 13004204
• Headers: Same as TC1
• Query params:

refDate: ”2030-12-31”

48

Test Steps:
1. Send request with future date
2. Verify response

Expected Results:
• Status code: 400
• Future date error message

Performance Test Cases
TC9: Response Time
Description: Verify API performance
Test Data:

• Same as TC1
• Number of requests: 100

Test Steps:
1. Send 100 sequential requests
2. Measure response times
3. Calculate average, min, max times
4. Check for errors

Expected Results:
• All responses < 1 second
• No errors
• Consistent response times

TC10: Concurrent Access
Description: Test concurrent request handling
Test Data:

• Same as TC1
• 50 concurrent requests

Test Steps:
1. Prepare 50 concurrent requests
2. Execute simultaneously
3. Monitor responses
4. Check for failures

Expected Results:
• All requests successful
• No timeout errors
• Response time < 2 seconds

Integration Test Cases
TC11: Data Consistency
Description: Verify ustId consistency across systems
Test Data:

• AccountId with known ustId
• Headers: Same as TC1

Test Steps:
1. Get ustId from API
2. Query backend database
3. Compare values
4. Verify timestamps

Expected Results:

49

• Matching ustId values
• Consistent timestamps
• No data discrepancies

Each test case includes:
• Clear description
• Specific test data
• Detailed steps
• Expected results

Additional considerations:
• Log all test executions
• Capture response times
• Document any deviations
• Track test coverage

These test cases should be executed in different environments (DEV, TEST, PROD) with
appropriate data sets for each environment.

C Test cases designed by AI

API
Change address

v2

/ustId/v1 Read Ust-Id
Read Contract

History

TC1 Ensure success-
ful execution

Verify successful
retrieval

Test successful
retrieval

Test successful
reading

TC2 Test with a non-
existent accoun-
tId

Check with a
non-existing
accountId

Test with a non-
existent accoun-
tId

Test with an in-
valid contractId

TC3 Using GET in-
stead of POST

Using POST in-
stead of GET

Using POST in-
stead of GET

Test with miss-
ing contractId

TC4 Test with insuf-
ficient required
fields

Give incorrect
correlationId

Test with
incorrect autho-
rization header

Using POST in-
stead of GET

Table 14: Test cases designed by Test Case Designer(Upload) instance

50

Case
Type

Change address
v2

/ustId/v1 Read Ust-Id Read Contract
History

Valid
TC

TC1: Successful
address change
TC2: Missing
authentication token
TC3: Test with
non-existing
accountID
TC4: Missing
mandatory fields in
JSON
TC5: Invalid data
types in JSON

TC1: Verify
successful write
TC2: Test with
non-existing
accountId
TC3: Test without
an endUserId header
TC4: Test with
invalid ustId format

TC1: Verify
successful retrieval
TC2: Test with an
invalid accountId
TC3: Test without
an endUserId header
TC4: Test without
authentication
credentials

TC1: Verify
successful retrieval
TC2: Test with an
invalid contractId
TC3: Test without
an endUserId header
TC4: Test without
authentication
credentials

Non-
API
TC

TC6: Verify system
behavior for XSS
attack
TC7: Verify API
behavior under high
load

TC5: Verify API
behavior under high
load

TC5: Verify API
behavior under high
load

TC5: Verify API
behavior under
heavy load
conditions

Table 15: Test cases designed by SwisscomGPT(GPT 4-Turbo)

API Valid TC Redundant
TC

Non-API TC Wrong TC

Change
address

v2

TC1: Basic Address
Change
TC2: Complete Address
Update
TC3: Missing Mandatory
Fields in JSON
TC4: Invalid Account ID
TC5: Field Length
Validation
TC6: Special Characters
TC7: Authorization Test
TC12: History Tracking

TC8: Cross-
Account Access

TC9: Load
Testing
TC10:
Sequential
Updates

TC11: Data
Consistency

51

API Valid TC Redundant
TC

Non-API TC Wrong TC

/ustId
/v1

TC1: Basic UstId Update
TC2: Update with
Optional Fields
TC3: Invalid Account ID
TC4: Missing Mandatory
Header
TC5: UstId Format
Validation
TC6: Maximum Length
Tests
TC7: Authorization
Verification

TC8: Cross-
Account Access
TC13: Special
Characters

TC9: Load
Testing
TC10: Rapid
Sequential
Updates

TC11: System
Synchronization
TC12: Audit
Trail

Read
Ust-Id

TC1: Basic Ust-Id
Retrieval
TC3: Invalid Account ID
TC4: Missing Mandatory
Header
TC5: Unauthorized Access
TC6: Insufficient
Permissions
TC13: Account Status
Changes

TC2: Request
with Different
Account
TC7: Ust-Id
Format
Validation
TC8: Special
Characters

TC9: Response
Time
TC10:
Concurrent
Access

TC11: Data
Consistency
TC12: Audit
Trail

Read
Contract
History

TC1: Basic Contract
History
Retrieval
TC3: Invalid Contract ID
TC4: Missing Mandatory
Header
TC5: Unauthorized
Access
TC6: Insufficient
Permissions
TC7: Contract Data
Completeness
TC8: Large History
Dataset

TC2: Contract
with Multiple
History Records
TC13: Special
Characters

TC9: Response
Time
Verification
TC10:
Concurrent
Access

TC11: Cross-
System
Validation
TC12: Audit
Trail
Verification

Total 28 8 8 7

Table 16: Test cases designed by Cursor Chat(Claude 3.5)

52

	Introduction
	AI in Documenting Software Testing
	AI integration in Documentation Overview
	Methodology
	Data Privacy
	AI Input Processing
	Output Validation

	Experiments
	Analysis of the Results

	AI in Test Case Design
	AI integration in Test Case Design Overview
	Methodology
	APIs Utilized in Experiments
	Upload Wiki
	Send Request Description Generated by SwisscomGPT
	Study With Different Request Accuracy

	Experiments
	Upload Wiki
	Prompt Generated by SwisscomGPT
	Test Cases Designed by SwisscomGPT Chat
	Test Cases Designed by Cursor Chat
	Request Accuracy

	Analysis of the Results
	Test Case Validation
	Invalid Test Cases Overview
	Test Cases Expectation
	Test Cases Designed By Different Methods
	Test Cases Designed Using Different Request Accuracy

	AI for Automated Test Code Generation
	AI integration in Test Code Generation Overview
	Methodology
	Exploration of Cursor Capabilities
	Project Structure
	Design of Test Code Generation Prompts
	Validation of Generated Test Code

	Experiments
	Manual generation
	Code generated by GPT-4o
	Code generated by Claude-3.5-Sonnet

	Analysis of the Results

	Broader Discussion
	Interplay Between Human and AI Contributions
	Privacy and Security Concerns in AI-assisted Testing
	Handling Multilingual and Outdated Data
	Specialized AI Models for Niche Applications
	Integration of AI Tools into Industry Settings
	Potential Risks of AI-generated Testing Beyond Technical Aspects
	Generalization Beyond the EsBill Project

	Conclusion
	APIs Utilized in Experiments
	Example AI response for test case design
	Test cases designed by AI

