
Bachelor Programme
Datascience and Artificial Intelligence

Enhancing Principal Component Analysis-assisted Bayesian

Optimization through Local Embeddings

Adela Gregáňová

Supervisors:
Dr. Elena Raponi & Ivan Olarte Rodriguez

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 01/06/2025

www.liacs.leidenuniv.nl

Abstract

Bayesian Optimization (BO) is a technique used for optimizing expensive black-box functions,
using a surrogate model constructed from prior evaluations and guided by an acquisition
function. To improve BO’s scalability to high-dimensional spaces, Principal Component
Analysis (PCA) can be used to project the search space onto a lower-dimensional subspace
that retains the most relevant information. However, PCA-assisted BO (PCA-BO) can suffer
from intrinsic biases that impair convergence, especially in multimodal landscapes with weak
global structure. This thesis investigates whether incorporating trust regions and localized
PCA strategies can reduce these biases and enhance BO performance. We propose Localized
PCA-assisted Bayesian Optimization (LPCA-BO), an algorithm that apart of dimensionality
reduction, dynamically adapts the search to different regions of the search space. In LPCA-BO,
trust region defines a localized manifold around the current best solution, with PCA applied
only to points within these regions to capture locally relevant variance. We evaluate LPCA-BO
using the COCO BBOB benchmarking suite, comparing its performance to PCA-BO. Results
indicate that LPCA-BO improves both convergence rate and CPU efficiency. By focusing
the search in locally informative subspaces and reducing the impact of globally misleading
variance, LPCA-BO avoids unnecessary evaluations and constructs more accurate surrogate
models, especially when non-uniform variance across parameters is present. LPCA-BO shows
significantly improved convergence rates on unimodal functions and performs comparably to
state-of-the-art PCA-BO on multimodal functions with strong global structure. Moreover, the
algorithm shows significant improvement on multimodal functions with weak global structure,
except for function F24. In terms of CPU time, the trust region approach is considerably
faster than PCA-BO. These results highlight LPCA-BO’s potential as a scalable and robust
BO strategy for complex optimization tasks.

2

Contents

1 Introduction 1
1.1 Thesis Overview . 2

2 Related work 3
2.1 Bayesian Optimization . 3

2.1.1 Initial Design of Experiments (DoE) . 5
2.1.2 Gaussian Process Regression Model . 5
2.1.3 Acquisition Functions . 7
2.1.4 Expected Improvement (EI) . 8
2.1.5 Limitation of BO . 10

2.2 Principal Component Analysis assisted Bayesian Optimization (PCA-BO) algorithm 10
2.2.1 Dimensionality Reduction via Principal Component Analysis 13
2.2.2 Intrinsic Biases of PCA-BO . 14

2.3 TuRBO addressing BO limitation . 15
2.3.1 Proposed Integration of TuRBO and PCA-BO 15

3 Methodology 16
3.1 Local Optimization using Trust Region . 16
3.2 Local PCA-BO . 16

3.2.1 Trust Region Restart Strategy . 18
3.2.2 Trust Region Point Filtering . 18
3.2.3 Rank-Based Weighting for PCA Projection 19
3.2.4 Dimensionality reduction with Principal Component Analysis 19
3.2.5 Fitting PCA within the Trust Region . 19
3.2.6 Calculating Reduced-space Bounds . 20
3.2.7 Projecting Points to Reduced Space . 21
3.2.8 Training Gaussian Process Regression model and Optimizing Acquisition

Function . 21
3.2.9 Acquisition Function: Selecting Next Point Using Penalized Log Expected

Improvement . 21
3.2.10 Inverse Mapping and Evaluation . 23
3.2.11 Updating the trust region size . 23

3.3 Experiments . 24
3.3.1 Justifying adjustments for 2D visualizations 24

4 Results 28

5 Discussion and Future Research 32

6 Conclusion 35

References 36

Acknowledgments

I would like to express my deep and sincere gratitude to my thesis supervisor Dr. E. Raponi, for
giving me the opportunity to explore this topic for my thesis, providing guidance throughout the
course of the semester. In addition, I would like to extend my thanks to my second supervisor I.
Olarte Rodriguez for their support and input throughout this journey. I am also sincerely grateful
to my friends for their support during challenging times and for making this process more enjoyable.
Special thanks goes to Ivan and Luis, who were willing to listen and engage in thoughtful discussions
about my thesis topic, helping me stay motivated and go deeper in the topic. I would also like
to thank every thesis group members who were there listening to my presentations and asking
questions thanks to which I could identify gaps in my knowledge.

4

1 Introduction

Bayesian Optimization (BO) is a versatile global optimization method suitable for settings where
black-box function evaluations are expensive and gradient information is unavailable, making
derivative-based algorithms such as gradient descent or Newton’s method inapplicable. A common
example is hyperparameter optimization for deep neural networks, where the influence of individual
parameters or their combinations on model performance is unknown, and evaluation requires fully
training and validating the network. By sampling efficiently in the search space, BO is able to
minimize the number of costly function evaluations needed to find global optima.

In BO we typically assume an unknown but equal variance as the prior assumption of the model,
meaning that each parameter’s effect on the objective function is initially treated as equally
uncertain, without assuming prior knowledge about parameter relevance. Additionally, the noise
in function evaluations is assumed to be homoscedastic, meaning the variance is assumed to be
constant across the search space. In this work, we assume noise-free setting.

Rather than exhaustively sampling the search space, Bayesian Optimization performs optimization
over a feasible set A ⊆ Rd by fitting a probabilistic surrogate model, typically a Gaussian Process
(GP) regressor, to the available data and then uses an acquisition function to strategically select the
next evaluation point. Since the function is expensive to query, it is necessary to sample efficiently
and avoid wasting function evaluations on less informative regions. The acquisition function balances
exploring regions with high uncertainty to learn more about the function behavior in unexplored
regions and exploiting points near known promising areas to refine the search for the global optimum.

The aim of this research is to investigate how to improve the robustness and scalability of PCA-
assisted Bayesian Optimization (PCA-BO) in high-dimensional and complex search spaces. Our
central research question is: How can trust regions and localized dimensionality reduction improve
the CPU efficiency and convergence reliability of PCA-BO, particularly in settings with non-uniform
variance across parameters or where the shape of optimal regions varies strongly across directions
(anisotropic basins of attraction)? Traditional PCA-BO methods can suffer from intrinsic biases
introduced by global linear projections, which may fail to capture the local structure of the search
space, especially in the presence of multiple local optima or highly non-linear interactions, from
which the traditional PCA-BO cannot escape. To address these limitations, we propose augmenting
PCA-BO with two key components. First, a trust region mechanism that dynamically adjusts the
search area based on optimization progress. Second, a localized PCA strategy that recomputes the
projection matrix using samples filtered from within the trust region. Together, these extensions aim
to enhance PCA-BO’s adaptability and resilience to poor global structure, reducing the likelihood
of convergence stagnation. In addition, we hypothesize that this approach can lead to improved
computational efficiency in terms of CPU time.

In summary, this thesis investigates whether and how the limitations of PCA-BO can be overcome
by incorporating insights from TuRBO’s trust region methodology, potentially combining the
benefits of both approaches while minimizing their individual drawbacks.

1

1.1 Thesis Overview

In this bachelor thesis, conducted at the Leiden Institute of Advanced Computer Science (LIACS)
under the supervision of Dr. Elena Raponi and Ivan Olarte Rodriguez, we investigate whether
incorporating trust regions and localized PCA strategies can enhance BO performance in complex
high dimensional spaces. Chapter 1 provides a short general introduction and an overview of
the thesis. We begin by reviewing relevant background in Chapter 2, including general Bayesian
Optimization (BO), PCA-based dimensionality reduction, PCA-assisted BO, and Trust Region
Bayesian Optimization (TuRBO). Chapter 3 presents a detailed description of our proposed trust-
region-based Local PCA-BO (LPCA-BO) algorithm, along with the experimental setup. Chapter 4
reports the empirical results, while Chapter 5 interprets the findings, discusses their implications,
and suggests directions for future research. Finally, Chapter 6 provides concluding remarks.

2

2 Related work

Bayesian Optimization (BO) is a widely used sample-efficient strategy for optimizing expensive black-
box functions with many tunable parameters. This work investigates whether the use of Principal
Component Analysis (PCA) [F.R01] as a dimensionality reduction strategy, when combined with
Trust Region Bayesian Optimization (TuRBO) [EPG+20], enhances the effectiveness of BO in
high-dimensional spaces. While PCA-assisted BO (PCA-BO) [RWB+20] helps to address some
limitations of standard BO, it introduces inherent biases that may compromise optimization
performance. TuRBO, on the other hand, addresses the challenges posed by objective functions
lacking global structure by partitioning the search space into adaptive trust regions, within which
optimization is localized.

2.1 Bayesian Optimization

Bayesian Optimization (BO) is a probabilistic, derivative-free optimization framework designed
for expensive-to-evaluate black-box functions. The target function f is assumed to be at least
continuous but lacks exploitable structural properties such as convexity or linearity. Given the
high computational cost of function evaluations, the optimization process must strategically select
evaluation points to maximize information gain. The primary objective is to locate the global
optimum x∗ = maxx∈A f(x) within a predetermined evaluation budget B, where A ⊆ Rd represents
the feasible search domain. This set is usually defined as a hyper-rectangle x ∈ Rd : ai ≤ xi ≤ bi or
a d-dimensional simplex x ∈ Rd :

∑
i xi = 1 [Fra18]. The function evaluations f(x) might be noisy,

in that case assumed independent and normally distributed, with common but unknown variance.
In practice, Bayesian Optimization works best and is therefore used for real life applications for
problems in lower-dimensional spaces usually up to 20 dimensions.

It effectively handles stochastic noise in function evaluations by creating a surrogate model for
the objective function and quantifying the uncertainty in that surrogate using Gaussian process
regression. This surrogate model is then used to derive an acquisition function that determines
the next sampling points. To do this, we use a Gaussian Process Regressor as a surrogate model.
Apart of providing us predictions of the function values, it also gives us a measure of uncertainty,
how confident the model is in different regions of the space. Then, we use this model to define an
acquisition function, which tells us where to sample next, taking into account exploring uncertain
areas and exploiting promising ones.

The general Bayesian Optimization algorithm is formalized in Algorithm 1 . In summary, the
algorithm begins by collecting an initial dataset of n0 function evaluations using a space-filling
experimental design and placing a Gaussian process prior on the unknown function f . Subsequently,
while the budget is not exhausted, the algorithm updates the posterior distribution over f using
all available data (the surrogate model), optimizes the acquisition function to determine the next
evaluation point x, sample this point, evaluate f(x) and and incorporates this new observation into
the dataset.

3

Figure 1 shows three example iterations of the Bayesian optimization procedure. Each plot
displays the posterior mean (dark blue) and confidence intervals (light blue) estimated by a Gaus-
sian Process model. The plot also shows the acquisition function (green). The acquisition is high
where the model predicts a high objective function value (exploitation) and where the prediction
uncertainty is high (exploration). As we can see, the chosen point to sample (vertical red dotted
line) has strong potential to improve upon the current best observation. In contrast, other regions
with similarly high uncertainty are not selected, as they are correctly predicted to offer little
improvement. [SSW+16]

Algorithm 1 Pseudo-code for Bayesian optimization [Fra18]

1: Place a Gaussian process prior on f
2: Observe f at n0 points according to an initial space-filling experimental design. Set n = n0.
3: while n ≤ N do
4: Update the posterior probability distribution on f using all available data
5: Let xn be a maximizer of the acquisition function over x, where the acquisition function is

computed using the current posterior distribution.
6: Observe yn = f(xn).
7: Increment n
8: end while
9: return a solution: either the point evaluated with the largest f(x), or the point with the largest

posterior mean.

(a) (b) (c)

Figure 1: Illustration of Bayesian Optimization over three iterations. Red points indicate evaluated
locations, and the red dotted line shows the true (unknown in practice) objective function. The
blue curve represents the GP posterior mean, with shaded regions denoting ±2 standard deviations.
The green curve is the acquisition function. [Rai22]

4

2.1.1 Initial Design of Experiments (DoE)

To provide the surrogate model with informative initial data that captures the underlying func-
tion’s behavior across the design space, it is essential to strategically select and distribute initial
sample points before the iterative acquisition process begins. Common design of experiments (DoE)
techniques used for this purpose include Latin hypercube sampling [FLS05] and Sobol sequences
[Sob67], which promote good coverage of the input space.

The initial set of points for Bayesian Optimization used in this thesis is generated and subsequently
evaluated using an Optimal Latin Hypercube Sampling (OLHS) [FLS05] strategy, performed in the
original high-dimensional search space as part of the Design of Experiments (DoE).

OLHS, derived from stratified sampling, ensures that each input variable’s range (each dimension
of the parameter space) is evenly partitioned into equally probable strata [FLS05]. A single sample
is then drawn from each stratum, resulting in a well-distributed set of initial points that promotes
broad and uniform exploration of the parameter space capturing the general structure of the
objective function early on.

This sampling strategy is particularly effective in cases where the objective function is governed
primarily by main effects and low-order interactions. Under such conditions, LHS significantly
reduces the variance of the estimates by filtering out variance from additive noise components. As a
result, LHS is widely used in surrogate modeling frameworks such as Gaussian Processes in Bayesian
Optimization, where efficient use of limited function evaluations is critical due to a budget constraint.

The points sampled are denoted as X = [x1, . . . ,xn0]
⊤ ∈ Sn0 and its corresponding function

values as y = (f(x1), . . . , f(xn0))
⊤, n← n0.

2.1.2 Gaussian Process Regression Model

In Bayesian Optimization, we place a prior distribution over the objective function we wish to
optimize, and use a surrogate model to infer a posterior predictive distribution over the objective
values at all feasible points in the search space. A commonly used surrogate model is the Gaussian
Process (GP) regressor, which provides a way to model uncertainty in the function being optimized.

A Gaussian Process (GP) is a type of stochastic process that enables us to build a probabilistic
model of an unknown function by incorporating prior knowledge. In regression tasks such as fitting
a function to the available data, GPs offer an elegant solution to the problem of fitting a function to
observed data. Given a set of known function values at specific input points, there are potentially
infinitely many functions that fit this data. A GP addresses this uncertainty by assuming that
the function values at any finite collection of input points, x1,x2,x3, . . . ,xk ∈ Rd, follow a joint
Gaussian distribution, meaning each individual value is normally distributed, and any subset of
values has a multivariate normal distribution. The collection of the input points can be expressed
together as the unknown vector

f =
[
f(x1), f(x2), . . . , f(xk)

]
∈ Rk,

5

where each input xi ∈ Rd is a d-dimensional vector.

The multivariate Gaussian distribution is characterized by a mean vector µ and a covariance
matrix Σ:

f ∼ N (µ,Σ).

The mean vector describes the expected values of the function constructed by evaluating a mean
function µ0 at each xi, and the covariance matrix captures the variability and correlation between
values at different input locations [GKD19]. Instead of fitting a fixed function, GP regression makes
predictions at new (test) inputs by conditioning the joint Gaussian distribution of the training and
test points. The outcome is a predictive distribution for each test point, providing both a mean
prediction (the most probable function value) and a measure of uncertainty (the variance). This is
a key advantage of GPs, they do not just make point predictions but quantify uncertainty.

Mathematically, the joint distribution over the training outputs Y and the test outputs T is
modeled as a single multivariate Gaussian. The conditional distribution P (T | Y) (in our case
trained on Zr, y), which is central to prediction, is also Gaussian due to the closure property of the
multivariate normal distribution under conditioning [GKD19].

The covariance matrix Σ is defined using a kernel function k(x, x′), which encodes prior assumptions
about the properties of the underlying function, such as smoothness, periodicity, or stationarity.
The kernel quantifies the similarity between any two inputs xi and xj; when inputs are similar,
their corresponding outputs f(xi) and f(xj) are expected to be similar as well. In this way, the
kernel determines how information from the training data generalizes to new, unseen points. This
behavior is governed by kernel hyperparameters, such as the length scale, which controls how
strongly function values at nearby inputs influence each other, or the smoothness parameter α in
the power exponential kernel, which controls how rapidly the function can change.

Figure 2 shows random functions sampled from a Gaussian process prior with a power ex-
ponential kernel, for different values of the smoothness parameter α (decreasing from left to right).
Lower values of α result in less smooth, more rapidly changing functions, reflecting different prior
beliefs about the function’s local variability. [Fra18]

Figure 2: Random functions drawn from a GP prior with a power exponential kernel. Each plot
uses a different value of the smoothness parameter α (decreasing left to right), affecting how rapidly
f(x) varies.[Fra18]

In practice, we only need to define a distribution over the function values at a finite set of

6

inputs x1, . . . , xN . Given some observed input-output pairs (x, f(x)) and new input locations x∗

where we wish to make predictions, we assume that the joint distribution over the training outputs
f and the test outputs f ∗ is Gaussian. From this joint distribution, we can derive the conditional
distribution:

f ∗ | f ∼ N (µ∗,Σ∗),

where µ∗ and Σ∗ are the posterior predicted mean and covariance, respectively. This provides a full
probabilistic description of the function at the test points, including both the predicted values and
the associated uncertainty. This relationship generalizes to the multivariate setting in Gaussian
Processes, allowing for sampling from predictive distributions and quantifying uncertainty.

Typically, the objective function is modeled using a Gaussian process prior with zero mean:

f ∼ GP(0, k(·, ·)),

where k : S × S → R is a positive definite function (kernel) that computes the autocovariance of
the process. When a Gaussian likelihood is assumed, the resulting posterior remains analytically
tractable and is itself a Gaussian process:

f | y ∼ GP(f̂(·), k′(·, ·)),

where f̂ and k′ denote the posterior mean and covariance functions, respectively. At a test point
x, the mean f̂(x) provides the maximum a posterior (MAP) estimate of f(x), while the variance
ŝ2(x) := k′(x,x) captures the uncertainty of this prediction. This posterior defines the Gaussian
Process Regression (GPR) model. [RWB+20]

Finally, training a GP regression model involves optimizing the kernel hyperparameters, such
as length scale and variance, to maximize the marginal likelihood of the observed data, fitting the
prior assumptions to the structure of the actual observations.

2.1.3 Acquisition Functions

Acquisition function is a heuristic used in BO that guides the selection of the next points for
evaluation, helping to balance the trade-off between exploring new regions of search space and
exploiting regions with high predicted values. It uses the posterior distribution generated from the
surrogate model (predicted mean and variance of the surrogate model prediction) to determine
where to sample next, in order to use the available budget effectively and find the global optimum
of the objective function.

There are many other types of acquisition functions, each with its own way of heuristics about
improvement or uncertainty. One of the most commonly used acquisition functions is Expected
Improvement (EI). EI assumes sampling is valuable if it improves over the best observed value
by quantifies the expected gain, and selects points likely to yield improvement, balancing mean
and uncertainty. Probability of Improvement (PI) on the other hand focuses on the probability
that f(x) exceeds the current best, regardless of how large the improvement is. Another type of
acquisition function is Upper Confidence Bound (UCB), which selects points with the highest com-
bination of mean and uncertainty, weighted by a tunable parameter β. It offers a flexible trade-off

7

between exploration and exploitation, favoring points with high predicted value and high uncertainty.

Unlike EI, which assumes sampling is valuable if it improves over the best observed value, there are
more advanced methods that don’t assume improvement is the only goal. These include: Knowledge
gradient, Entropy Search and Predictive Entropy Search, Multi-Step Optimal Acquisition Func-
tions. These approaches, on the other hand, aim to maximize information gain (Entropy Search
and Predictive Entropy Search) or long-term decision quality (Knowledge Gradient), rather than
immediate improvement.

Another popular acquisition strategy is Thompson Sampling, which unlike the other acquisi-
tion functions samples a full function from the surrogate model rather than points and selects the
next evaluation point by optimizing this sampled function.

When optimizing an acquisition function, the next point to evaluate is chosen by either max-
imizing or minimizing the acquisition function, depending on the optimization task and the specific
type of acquisition function used. The Expected Improvement (EI) function is computationally
inexpensive to evaluate and supports efficient computation of both its first- and second-order
derivatives. This makes it well-suited for use with continuous optimization methods relying on
gradient information. Consequently, implementations of the EI algorithm often involve gradient-
based optimizers to efficiently identify the next point to evaluate. Common optimizers include
L-BFGS-B [LN89], and SLSQP [MZL22] (Sequential Least Squares Programming), frequently used
in constrained optimization settings.

2.1.4 Expected Improvement (EI)

The general intuition behind Expected Improvement (EI) is to identify, among all candidate
points, the one that offers the highest potential to surpass the best function value observed so far.
This can occur either because the model predicts a high objective value at that point (exploita-
tion), or because there is significant uncertainty in that region (exploration). The improvement is
defined as the difference between the function value at the candidate point and the current best value.

As discussed earlier, Bayesian Optimization is particularly suited for optimizing expensive black-box
functions where the number of evaluations is limited. In such cases, each evaluation must be
strategically chosen to extract the most useful information.

Suppose that, after n evaluations, we have observed input-output pairs

{(xi, yi)}ni=1,

and let f ∗
n denote the best function value observed so far. The challenge is to decide where to

evaluate next in order to maximize the benefit of the remaining evaluations.

To formalize this, consider sampling a new point x, and define the improvement as:

Improvement(x) = max(f(x)− f ∗
n, 0) = [f(x)− f ∗

n]
+.

8

However, the true value f(x) is unknown before evaluation. Instead, since we model the objective
function f with a Gaussian Process (GP), we have a posterior distribution over f(x), characterized
by a predictive mean µn(x) and variance σ2

n(x). We therefore treat f(x) as a random variable and
compute the Expected Improvement (EI), defined as:

Expected Improvement (EI)n(x) = En

[
[f(x)− f ∗

n]
+
]

where En[.] is taken under the posterior distribution of the GP conditioned on the data x1:n, y1:n.

This quantity represents the expected amount by which the function value at point x exceeds the
current best observation f ∗

n, and is used to guide the next sampling decision. The next evaluation
point is then selected by maximizing the expected improvement.

This choice balances exploitation, which is sampling where the predicted mean µn(x) is high,
and exploration, sampling where the uncertainty σn(x) is large, high posterior standard deviation.
The expected improvement value is 0, at locations where the objective function has already been
evaluated. This is due to the fact that at those points, the posterior standard deviation vanishes,
and the posterior mean cannot exceed the best function value observed thus far. Evaluating points
with high uncertainty helps reduce model uncertainty and explore unknown regions of the search
space. On the other hand, evaluating points with high predicted mean relative to the current best
is advantageous, as such points are more likely to contain a good approximation of the global
optimum. We define the expected difference in quality between a candidate point x and the best
previously observed point as ∆n(x) := µn(x)− f ∗

n.

Figure 3 illustrates how the expected improvement EIn(x) increases with both µn(x) and σn(x).
Contours of equal expected improvement in the (µn(x), σn(x))-plane show how EI balances ex-
ploration and exploitation: higher µn(x) targets promising regions, while higher σn(x) encourages
evaluations in uncertain areas.

Figure 3: The contours of EIn(x) in terms of the expected difference in quality between the proposed
point and the best previously evaluated point and the posterior standard deviation. [Fra18]

9

2.1.5 Limitation of BO

Although Bayesian Optimization (BO) is a popular framework for black-box function optimization
problems, it is most effective in input spaces up to around 20 dimensions. As the dimensionality of
the input space increases, BO becomes less effective due to several inherent challenges. The most
notable is the curse of dimensionality, where the volume of the search space grows exponentially with
the number of dimensions. This growth makes effective exploration more expensive and increases
the risk of encountering many local optima, while the global optimum becomes harder to identify.
Furthermore, many high-dimensional objective functions exhibit heterogeneous behavior, meaning
that the function’s properties can vary significantly across different regions of the domain. Standard
BO typically uses a global surrogate model, such as a Gaussian Process (GP), which assume
stationary properties such as constant variance throughout the space. This assumption often fails
in practice, leading to poor predictive performance in complex, high-dimensional landscapes.

2.2 Principal Component Analysis assisted Bayesian Optimization
(PCA-BO) algorithm

One approach to address these issues is PCA-BO algorithm [RWB+20], which combines BO with
Principal Component Analysis (PCA). The purpose of this method is to identify a low-dimensional
linear subspace that captures the directions of greatest variance in the data. Formally, the objective
function is defined as f : S ⊂ RD → R, where S = [xmin, xmax] represents the domain with box
constraints. PCA-BO projects the original D-dimensional space onto a reduced r-dimensional
subspace (r < D), and BO is conducted within this lower-dimensional space. This dimensionality
reduction makes surrogate modeling and acquisition function optimization more efficient and
scalable.

In order to scale Bayesian Optimization (BO) to higher-dimensional and more complex parameter
spaces, we apply Principal Component Analysis (PCA) [F.R01] for dimensionality reduction. PCA
iteratively performs an orthogonal linear transformation of the original search space, projecting it
into a new feature space where the data become more separable. The features are selected to retain
the maximum possible variance from the original space. The advantage of this transformation is
that it enables the most computationally intensive steps of BO, Gaussian Process model fitting
and acquisition function optimization to be carried out in a lower-dimensional space, significantly
reducing the computational resources needed to find the next promising point to sample next.
The selected point is then mapped back to the original space, evaluated, compared to the current
optimum, and added to the set of evaluated points along with its corresponding function value.

Algorithm 2 presents the PCA-assisted Bayesian Optimization procedure. The algorithm be-
gins by generating an initial DoE of n0 points using optimal Latin hypercube sampling in the
original D-dimensional space S and evaluating the objective function f at these locations. The core
optimization loop incorporates several key steps that distinguish PCA-BO from standard BO: first,
the algorithm centers the data by subtracting the mean µ and applies rescaling through matrix W
to normalize the feature space (lines 5-6). Next, PCA is performed on the preprocessed data to
obtain the principal components Pr and the reduced-dimensional representation Zr ∈ Rr where
r ≪ D (lines 7-8). The Gaussian Process Regression model is then trained on this lower-dimensional

10

representation rather than the original space (line 9). The acquisition function is optimized in the
reduced space S ′ to find the next query point z′ (line 10), which is subsequently mapped back
to the original D-dimensional space using the inverse PCA transformation (line 11). Finally, the
objective function is evaluated at this reconstructed point, and the dataset is augmented with the
new observation (lines 12-13). This process continues until the stopping criterion is met.

PCA-BO can significantly reduce computational cost on high-dimensional problems while main-
taining competitive convergence rates on functions with a strong global structure. On multimodal
benchmark problems where such structure is present, the algorithm achieves state-of-the-art Bayesian
Optimization performance. However, its effectiveness degrades on multimodal problems with weak
or fragmented global structure.

In terms of computational efficiency based on the CPU time required to complete each optimiza-
tion run, except for lower-dimensional problems, where standard BO remains efficient, PCA-BO
consistently reduces average CPU time. This improvement arises from conducting the most com-
putationally intensive steps, namely, training the Gaussian Process model and optimizing the
acquisition function in a lower-dimensional search space, which is significantly more efficient than
performing them in the full-dimensional domain.

Algorithm 2 PCA-assisted Bayesian Optimization [RWB+20]

1: procedure PCA-BO(f , A, S) ▷ f : objective function, A: infill-criterion, S: search space, S ′:
lower-dimensional search space

2: Create X = [x1,x2, . . . ,xn0]
⊤ ⊆ Sn0 with optimal Latin hypercube sampling

3: y← (f(x1), f(x2), . . . , f(xn0))
⊤, n← n0

4: while the stop criteria are not fulfilled do
5: Centering: X̃← X− 1nµ
6: Rescaling: X′ ← X̃W
7: µ′,Pr ← PCA(X′)
8: Mapping to Rr: Zr ← Pr(X− 1nµ

′)⊤

9: GPR training: f̂ , s2 ← GPR(Zr,y)
10: z′ ← argmaxz∈S′ A(z; f̂ , s2)
11: Mapping to RD: x′ ← P⊤

r z
′ + µ′ + µ

12: y′ ← f(x′)
13: X← X ∪ {x′}, y← (y⊤, y′)⊤, n← n+ 1
14: end while
15: end procedure

11

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4: Visualization of the 1st, 21st, and 54th iteration of the PCA-BO algorithm applied to a low or
moderate conditioning Rosenbrock function (BBOB suite F8). Each column corresponds to one iteration.
Rows represent: (a-c) the weighting of points used for fitting the PCA line, (d-f) the true objective
function landscape with sampled points, (g-i) the fitted Gaussian Process (GP) models, and (j-l) the
corresponding acquisition functions (Penalized LogEI). The weights indicate the relative influence of points
in computing the principal component direction at each iteration. A complete example of this run, along
with additional examples illustrating the behavior of the algorithm on various BBOB functions, is available
in the accompanying Github repository.

12

https://github.com/IvanBanny/para-ortho-pca-bo/tree/adela/examples2D

2.2.1 Dimensionality Reduction via Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised dimensionality reduction technique that
projects high-dimensional data onto a lower-dimensional subspace, capturing the most informative
aspects of the data. After weighting our data points, PCA is applied to identify a linear transfor-
mation from the original space to a lower-dimensional latent space by selecting the top d′ << d
principal components. This is particularly valuable in high-dimensional settings, as it helps limit
the curse of dimensionality by discarding less informative directions while preserving the maximum
variance possible. In summary, PCA learns a linear transformation from the points evaluated so far
and selects only the dimensions that capture most of the variance.

The procedure involves computing the sample mean µ (µ = 1
n

∑n
i=1 X

′
i1, ...,

1
n

∑n
i=1X

′
id) of data

matrix X ′ and centering the data by subtracting the mean of each variable to obtain the mean-
centered matrix X ′′ = X ′ − 1nµ

′. Here 1n is an n-dimensional vector of ones. Subtracting the
mean centers the data around the origin, which is essential for PCA to correctly identify the
directions of maximum variance (i.e., the principal components). Now that we centered the data
around the origin, we can compute the covariance matrix C (C = 1

n−1
X ′′⊤X ′′) which captures

the pairwise relationships between variables. Positive covariance indicates that variables increase
or decrease together. The next step involves calculating the eigenvalues and eigenvectors of the
covariance matrix by performing eigendecomposition of the covariance matrix C = PDP−1. The
column vectors of P are the eigenvectors (principal components) that define directions of maximum
variance. On the other hand, the corresponding eigenvalues are contained within the diagonal matrix
D = diag(σ2

1), ..., σ
2
d. Each eigenvalue σ2

i represents the variance of the data along the principal
component pi (the i-th column of P), i.e., σ2

i = var(X ′′pi). The eigenvectors within the orthogonal
matrix P rotate the space to transform the standard basis of RD into a new basis that aligns with
the directions of maximum variance. To reduce dimensionality, we sort the principal components by
their variances (eigenvalues) in descending order and select the top r components. The value of r is
chosen such that the cumulative variance explained by these r components is at least a predefined
threshold α; we use α = 95% in our experiments. Based on these most significant components, we
reduce dimensionality while retaining most of the original data’s structure.

Finally, the data X along these principal components is then projected onto this new r-dimensional
subspace Zr by first centering the matrix X (which already has subtracted mean) via subtraction
of the mean matrix product 1nµ

′ (which is the mean from PCA), and then multiplying the result
(transposed) with the eigenvector matrix Pr:

Zr = Pr(X − 1nµ
′)⊤

In this PCA-based dimensionality reduction approach for the dimensionality reduction we do not
work with the scaled data, rather the original function values since scaling X with weights W
would make the inverse mapping no longer a simple linear transformation. Furthermore, the reason
why we subtract the sample mean of the PCA is that it makes the reduced representation more
meaningful and structured for optimization since in this way, the principal axes of these contours
will be parallel to the principal components after applying Pr.

13

2.2.2 Intrinsic Biases of PCA-BO

Although PCA-BO improves computational efficiency by reducing the dimensionality of the search
space, it is inherently limited by its reliance on a linear projection of the original domain. Because
the optimization is restricted to the linear subspace defined by the principal components, the
algorithm may overlook promising regions that lie outside of this manifold. This limitation becomes
particularly problematic when the objective function exhibits complex nonlinearities or lacks a
well-defined global trend. In such cases, PCA-BO may struggle to detect meaningful isocontours
within the function landscape and can become trapped in suboptimal regions.

Figure 5 demonstrates the effectiveness of PCA in learning the underlying manifold structure for
functions with contrasting optimization landscapes. More specifically a function with multimodal
landscape 5b and a function with unimodal landscape 5a . We compare PCA’s performance on
the unimodal Rosenbrock rotated function (F9) from the bbob test suite against the multimodal
Gallagher 101 peaks function (F21), which exhibits weak global structure. For the unimodal function,
PCA effectively captures the relevant search direction with the first principal component (orange
line) aligning closely with the valley structure that leads toward the global optimum. The search
points naturally span the single basin of attraction. In contrast, the multimodal function presents
significant challenges for PCA due to its complex landscape of multiple peaks and valleys. The
principal components fail to capture meaningful search directions because the irregular distribution
of local optima prevents the identification of coherent global structure, resulting in projections that
do not effectively guide the optimization process toward the most promising regions.

(a) PCA projection on a unimodal, Rosenbrock
rotated (F9) function.

(b) PCA projection on a multimodal, Gallagher
101 peaks (F21) function.

Figure 5: Comparison of PCA-derived manifolds for different function types. For the unimodal function
(left), standard PCA captures the relevant search directions because the sampled points span the single
basin of attraction. For the multimodal function (right), PCA fails to capture the global structure if no
samples are placed within the major basins of attraction, leading to misleading directions.

14

2.3 TuRBO addressing BO limitation

To address the limitations of global surrogate modeling in high-dimensional settings, Trust Re-
gion Bayesian Optimization (TuRBO) algorithm was introduced [EPG+20]. Rather than relying
on a single global model, TuRBO maintains several local models, each associated with its own
trust region, a hyperrectangle polytope centered around the current best solution. These models
operate independently using Gaussian Processes (GPs) and apply Thompson Sampling to propose
new candidate points. At each iteration, the algorithm performs Thompson Sampling across all
trust regions by drawing posterior samples from each local GP and selecting the most promising
candidates based on these samples. Sample allocation among the trust regions is governed by an
implicit multi-armed bandit strategy, which favors regions demonstrating recent improvement. This
algorithm achieves global optimization through maintaining several independent local models.

Each trust region is initialized with a base side length Linit, which is adapted during the op-
timization process. The side lengths in each dimension are scaled according to the Automatic
Relevance Determination (ARD) [ARD] lengthscales inferred by the GPIf the algorithm achieves a
series of improvements within the region, the region is expanded. Conversely, consecutive failures
result in the region being shrunk. When a trust region becomes too small, it is discarded and
re-initialized at a new location in the input space after a new Design of Experiment points.

The general TuRBO algorithm maintains multiple trust regions in parallel, each with an in-
dependent GP surrogate model. However, a simplified variant known as TuRBO-1 maintains only a
single trust region and is especially relevant to this work due to its efficiency and simplicity. The
TuRBO-1 optimization loop begins by sampling n init points using Latin Hypercube Sampling
(LHS) and evaluating the objective function at these locations. A GP model is then fitted to
the collected data. The trust region is defined around the current best point and managed using
ARD-weighted box constraints. If optimization improves, the trust region is expanded. Otherwise,
it shrinks.

2.3.1 Proposed Integration of TuRBO and PCA-BO

Inspired by both PCA-BO [RWB+20] and TuRBO-1 [EPG+20], this research proposes integrating
trust-region dynamics into the PCA-BO framework. At each iteration, a trust region is defined
around the best observed solution, and PCA is applied locally within this region to identify the
most informative directions. A new candidate is then sampled within the resulting low-dimensional
subspace. This approach aims to combine the scalability of PCA-based dimensionality reduction
with the robustness to noise and advanced reasoning about uncertainty, of a local trust-region-based
exploration. By performing dimensionality reduction within a localized region of the search space,
the method seeks to overcome PCA-BO’s limitations on functions with weak global structure, thus
improving performance in complex and challenging optimization landscapes.

15

3 Methodology

Our approach began with the implementation of the PCA-BO algorithm using BoTorch. We then
extended this implementation by developing Local PCA-BO (LPCA-BO) algorithm, which intro-
duces a dynamically updated trust region centered around the best observed point at each iteration.
Within this localized region, we perform dimensionality reduction using Principal Component
Analysis (PCA), followed by a Gaussian Process (GP) model optimizing the acquisition function
in the resulting lower-dimensional subspace. Our implementation of Local PCA-BO algorithm is
publicly available in this GitHub repository.

3.1 Local Optimization using Trust Region

In heterogeneous multi-modal objective functions that lack global structure such as those encoun-
tered in Reinforcement learning problems with sparse rewards, the function is assumed close to being
constant. Traditional Gaussian Process (GP) models assume stationarity, meaning the length-scale
and signal variance are treated as constant throughout the domain. This assumption becomes
problematic in such settings. Moreover, the curse of dimensionality introduces large regions of the
search space with inherently high posterior uncertainty. When combined with myopic acquisition
functions, such as Expected Improvement (EI), which do not consider the long-term impact of
sampling decisions, this often leads to excessive exploration and insufficient exploitation of promising
regions.

Each trust region defines a local model that executes an independent optimization run. PCA
is applied to the points within the region, enabling more efficient GP modeling and acquisition in a
lower-dimensional manifold. In our implementation, the trust region is defined as a hyperrectangle
centered around the best observed solution, with bounds updated based on the optimization progress.

Global optimization is achieved through dynamic adjustment of the trust region’s size and position
within the search space balancing exploration and exploitation. A smaller trust region encourages
local exploitation by focusing the search near the current best solution, while a larger trust region
performs more exploratory behavior. To prevent stagnation in local optima, if the trust region
shrinks below a predefined minimum size, it is restarted, allowing the algorithm to explore new
areas of the search space. This adaptive mechanism guides the search process by allowing the trust
region to progressively explore larger search space, increasing the likelihood of escaping local optima
and converging to the global optimum, even in complex high-dimensional landscapes.

3.2 Local PCA-BO

The complete pseudocode of the algorithm can be found in Algorithm 3 . At the start, lists for
tracking sampled points and their corresponding function evaluations are initialized. Those initial
points are generated using Latin Hypercube Sampling (LHS), as described earlier in section 2.1.1,
which creates a space-filling design within the unit hypercube. The number of initial samples is set
to three times the problem’s dimensionality (3D).

16

https://github.com/IvanBanny/para-ortho-pca-bo/tree/adela

Within this dataset, the trust region is initialized as a hyperrectangle centered around the point
with the best observed function value. To focus the search within this trust region, points lying
inside the trust region are filtered before performing PCA ensuring the dimensionality reduction is
applied only to this local subset.

After performing PCA on the filtered points, which includes weighting using the ranking scheme
and centering the points within the trust region the points are projected into a lower-dimensional
manifold. The Gaussian Process (GP) model is then trained within this reduced space, and the ac-
quisition function (Log Penalized Expected Improvement) is optimized to select the next candidate
point. The bounds of the trust region are also projected into the reduced space to correctly restrict
the search.

In terms of the optimization of the acquisition function, the candidate points sampled from
the acquisition function in the reduced space are mapped back to the original space. Instead of
checking if these points lie within the global domain bounds (as in the original PCA-BO algorithm),
we verify if they lie inside the trust region. Points whose counterimage lies outside the trust region
are not feasible and are therefore penalized in acquisition value proportional to their distance from
the trust region bounds, discouraging sampling outside the region. On the other hand, if the point
is feasible, the algorithm calculates the Expected Improvement value of this point. The candidate
with the highest (penalized) acquisition value is selected, evaluated, and appended to the list of
sampled points. We then update the trust region size and proceed to the next iteration. The main
optimization loop runs until the evaluation budget is used up or the trust region becomes too small.
In case the trust region shrinks too much, we restart the whole process.

The optimization loop begins by initializing the trust region and continues performing itera-
tions, until either the evaluation budget is exhausted or the trust region size falls below a predefined
minimum. If the trust region becomes too small before the budget is exhausted, the algorithm
re-initializes the trust to its initial size, new DoE points, and empty history of evaluated points,
allowing for multiple local optimization runs within the overall budget.

Each iteration includes filtering points within the trust region, fitting PCA, calculating bounds in
the reduced space, transforming points to the reduced space, training GP and optimizing acquisition
function, choosing next point to sample based on linear inequality constraints, transform the chosen
point from the reduced dimension to the original dimension, evaluate the chosen point and append
it to the list of points and their function values. Finally, at the end of each iteration, the trust
region is updated and a local DoE point sampling is performed (1D) within it unless not enough
budget is available, in which case the algorithm terminates.

A few example iterations of LPCA-BO algorithm are visualized in Figure 6 , illustrated on a
multimodal function F21. In the first iteration, the algorithm explored a misleading region of the
search space. However, following a restart, it successfully identified the relevant region, where the
PCA-reduced manifold captured the global optimum. Subsequent samples were concentrated near
this manifold. Moreover, it can also be seen how after iteration 28, the trust region adjusted its
center to be centered around the newly discovered best point.

17

3.2.1 Trust Region Restart Strategy

The inner optimization loop continues as long as the evaluation budget has not been exhausted and
the trust region remains above a minimum size. When the trust region shrinks below a predefined
minimum length, the loop exits and triggers the initialize restart() function. Upon restarting,
the trust region length is reset to its initial value, and all locally collected points and their corre-
sponding function evaluations are cleared. In addition, success and failure counters are reset, and a
new initial design is generated using Latin Hypercube Sampling (LHS) within the full search bounds.

The evolution of the length of the trust region balances two competing objectives. The region must
be sufficiently large to contain promising solutions, yet small enough to ensure that the local model
remains accurate within its bounds. A restart of the trust region is triggered when it becomes too
small to be effective. Specifically, the trust region is considered inefficient when its length falls below
a predefined minimum threshold. The restart is triggered when self.length < self.length min,
where self.length min = 0.57 ≈ 0.0078125.

3.2.2 Trust Region Point Filtering

Before applying PCA, we filter the points to include only those that lie within the current trust
region. Let X ∈ Rn×D denote the matrix of previously evaluated points, where D is the problem’s
dimensionality. The trust region T is defined by lower and upper bounds lb, ub ∈ RD, such that
T = [ub, lb]. The algorithm extracts the subset of points xi ∈ X that satisfy xi ∈ T :

XF ← {xi ∈ X : xi ∈ T}

for all i.

If the number of filtered points is less than the minimum required for a stable PCA fitting,
which we set to be max(D, 2), we augment this subset XF by including as many points as needed,
based on Manhattan distance to the trust region, to reach the required size.

This filtering procedure is implemented in the filter points method, which returns a boolean
mask over X indicating which points are to be included for PCA fitting. This method ensures that
PCA has sufficient data to perform meaningful projection, making it robust to temporary sparsity
due to stochastic sampling of points and, moreover, the fitted model remains localized to the trust
region. The corresponding function values are filtered analogously:

yF ← {yi ∈ y : xi ∈ XF}

This procedure ensures that sufficient and localized data is always available for fitting the PCA
projection reliably, even when sampling sparsity within the trust region is high.

18

3.2.3 Rank-Based Weighting for PCA Projection

Since the goal of PCA in this context is to identify directions in the original high-dimensional space
along which the objective function is most sensitive, it is important to incorporate information
about the function values. To do this, a weighting scheme is applied that rescales the data points
based on their corresponding function values. By applying the weighting scheme, we are able to
adjust the importance of each point. Points with a better function value are associated with a
larger weight, moving less compared to points with a worse function value that get a smaller weight
assigned. The weighting scheme used is known as the rank-based weighting scheme, where the
weight assigned to each data point is calculated as

wi = lnn · ln ri

with ri representing the rank of the i-th point in X based on its function value y. The variable n
denotes the total number of data points, and the ranks ri are assigned in ascending order of the
function values. After calculating the pre-weights, we normalize them to ensure they sum to one:

w̃i =
w̃i∑n
i=1 w̃i

This normalization ensures that the total weight is distributed proportionally across all data points.
This weighting scheme ensures the weights of less informative points decrease as better points are
discovered over iterations, introducing a self-adjusting discount factor. We begin by centering the
original data matrix X by subtracting its sample mean. This is achieved by subtracting the mean
of all the data points, so the rescaled data becomes: X ′ = X −X where

µ =
1

n

n∑
i=1

Xi1, ...,
1

n

n∑
i=1

Xid and 1n =

1...
1


⊤

∈ Rn.

The calculated weights are stored in a diagonal matrixW , where each diagonal entry corresponds
to the weight of a data point. Finally, the weighted and mean-centered data is given by:

X ′ = XW.

3.2.4 Dimensionality reduction with Principal Component Analysis

After weighting our points, we perform PCA on the weighted points to extract principal components.
We obtain a linear map from the high-dimensional space to a lower-dimensional latent space.

3.2.5 Fitting PCA within the Trust Region

We fit Principal Component Analysis (PCA) within the current trust region. The trust region is
centered around the current best solution and is bounded in each dimension based on a relative
scaling factor. Only points within the trust region are used to compute the PCA projection.

However, when fitting PCA only on the points inside the trust region, the algorithm can eas-
ily run into a situation where too few points fall inside the trust region, making the PCA unstable

19

and meaningless.

Let XF ⊂ X denote the set of filtered points lying within the trust region (as defined in Sec-
tion 3.2.2), and let yF ⊂ y be the corresponding function values. If |XF | < max(D, 2), the subset is
augmented with the closest available points in Manhattan distance until this condition is satisfied.

Once XF is established, we compute the sample mean of the filtered points:

µ′
F ←

1

|XF |
∑
x∈XF

x.

To incorporate information about the objective values into the PCA fitting, we assign weights based
on rank. For each xi ∈ XF , let ri = rank(yi), where ri ∈ {1, . . . , |XF |} and rank 1 corresponds to
the best (lowest) function value. The weight for point i is given by:

wi ←
log |XF | − log ri∑|XF |

j=1 (log |XF | − log rj)
.

We then center the filtered points with respect to the global mean µ ∈ RD of all data:

XF ← XF − 1|XF |µ,

and rescale the centered matrix using the diagonal weight matrix:

W ← diag(w1, . . . , w|XF |), X ′
F ← XFW.

Finally, PCA is computed on the weighted, centered data:

µ′
F , Pr ← PCA(X ′

F),

resulting in projection matrix Pr ∈ RD×r used in subsequent dimensionality reduction steps.

3.2.6 Calculating Reduced-space Bounds

calculate reduced space bounds computes bounds in the reduced PCA space that correspond
to a trust region defined in the original input space. The function takes as input the trust region
bounds tr bounds (a matrix of shape [D, 2], where each row specifies the lower and upper bounds
for one of the D dimensions) and a fitted PCA object. It begins by computing the center of the
trust region C as the midpoint between the lower and upper bounds in each dimension. Assuming
symmetric bounds, the radius is defined as the distance from the center to either the lower or
upper bound. The center point C is then projected into the reduced PCA space to obtain its
reduced representation Cr. Using this center and the radius, the function constructs axis-aligned
bounds in the reduced space as Cr ± r along each principal component direction. The resulting
reduced-space bounds, denoted as z bounds, define the feasible region used for optimization within
the lower-dimensional subspace.

20

3.2.7 Projecting Points to Reduced Space

After fitting PCA on the filtered points, we project these centered points into the reduced subspace
Rr using the top-r principal components Pr that sum to 95% of variance. Given the centered matrix
XF ∈ R|F |×D and their mean µ′

F ∈ RD, the projection is computed as:

Zr ← Pr(XF − 1|F |µ
′
F)

⊤

This operation maps the original points XF ∈ R|F |×D into the reduced space Zr ∈ Rr×|F |. For
each point xi ∈ XF , the mapping is defined as:

zi = Pr(xi − µ′
F)

⊤

This step enables acquisition optimization in a lower-dimensional space while preserving as
much variance (and structure) of the local region as possible.

3.2.8 Training Gaussian Process Regression model and Optimizing Acquisition Func-
tion

In each iteration of the algorithm similarly to PCA-BO, a Gaussian Process Regression (GPR)
model is trained on the reduced-dimensional dataset to approximate the expensive black-box
objective function. Given the reduced inputs Zr and corresponding function values y, the model
produces a predictive mean f̂ and variance ŝ2:

f̂ , ŝ2 ← GPR(Zr, y).

This surrogate model prediction is then used to guide the selection of the next query point
by maximizing an acquisition function. In our implementation, we use the Log Expected Improve-
ment (LogEI) heuristics criterion. To ensure feasibility in the original space, the optimization is
constrained such that the reconstructed point lies within the trust region T . A candidate point
z ∈ S ′ in the reduced space is mapped back to the original space using:

x = P⊤
r Z + µ′

F + µ,

where Pr is the projection matrix, and µ′
F , µ are the means of the filtered and full point sets,

respectively.

3.2.9 Acquisition Function: Selecting Next Point Using Penalized Log Expected
Improvement

After fitting the Gaussian Process Regression (GPR) model, our algorithm proposes a new candidate
point by optimizing an acquisition function in the reduced subspace. Given a candidate point
z ∈ Rr, it is mapped back to the original high-dimensional space RD using the linear map L:

L : Rr → RD, z 7→ P⊤
r z + µ′ + µ.

21

where Pr denotes the PCA projection matrix, µ′ the local PCA mean, and µ the global data mean
used during point pre-processing. Since the linear map L is injective each candidate point z in the
reduced space corresponds to a unique point y in the original space. The means µ and µ′ are added
back since they were previously subtracted from X when mapping to the lower-dimensional space.

After evaluating a candidate point, we augment the dataset in RD by appending the new point:

X ← X ∪ {L(z)}, y ← y ∪ {y},

and then re-compute the projection matrix (linear map) Pr using the procedure described earlier.

To select the next candidate, the next point to evaluate s selected based on the GP posterior
process, balancing f̂ with ŝ2 (exploitation with exploration). While improving numerical stability in
regions where significant improvement is unlikely where standard Expected Improvement (EI) may
fail, we use the Single-outcome Log Expected Improvement (LogEI) acquisition function [ADE+25].
This acquisition function is defined as:

LogEI(x) = logE [max(f(x)− fbest, 0)] ,

where fbest stands for the best function value observed so far. The expectation is taken with respect
to the GP’s predictive distribution at point x.

Unlike traditional Expected Improvement (EI), which finds optimization in parallel and multi-
objective settings challenging and may suffer from vanishing numerical values in many regions of
the search space, LogEI operates in the logarithmic domain, providing better gradient behavior and
optimization performance, especially in regions with low probability of improvement. Moreover, as
the number of observations, dimensionality, or constraints increases, the challenge becomes even
more significant, leading to inconsistent and often sub-optimal performance of standard EI.

LogEI lessens these issues by maintaining numerically stable acquisition value and its gradi-
ent even in regions with a low probability of improvement, while retaining optima equivalent to
those of its standard EI. Hence, LogEI facilitates stable and effective optimization across various
settings.

Points that when projected back end up within the domain are feasible points, however it can also
be the case that when we project a point that is inside a domain of the reduced space, but not
within the domain of the original space. This is due to the rotational operation performed by PCA.
To ensure feasibility, is to apply a penalty P (x) for infeasible points. This penalty is proportional
to the degree of infeasibility of the point. If the projected point is outside the problem bounds, we
assign a penalty for it when calculating the expected improvement value of a point during sampling
of the points for the optimization of the acquisition function.

The acquisition function proposed is penalized expected improvement (PEI). This acquisition
function is defined as:

22

LogPEI(x) =

{
E [max (0,min y − f(x)) | y] , if x is feasible

E [max (0,min y − f(x)) | y]− P (x), if x is infeasible
(1)

The selected point x∗ should be the one, which maximizes the Expected Improvement value.
In the calculation of penalty it finds the closest point in the original space to the point in ques-
tion, calculates its EI value and subtracts the distance from this. However, Penalized Expected
Improvement (PEI), does not guarantee that the chosen point is also feasible when projected to
the original space. Choosing the closest point in the original space is not the closest point in the
reduced space bounds due to the fact that it can be itself outside of the reduced space bounds.
Hence, to deal with this problem, if the selected point is outside of the bounds, the point gets
clipped to the bounds in order to guarantee that no point outside of the bounds is sampled to avoid
encountering a problem of having the center of the trust region outside of the bounds. Although,
by doing this x∗ might not be the point with the largest LogEI value.

3.2.10 Inverse Mapping and Evaluation

Finally, we map the selected candidate point back to the original space by transforming the selected
low-dimensional candidate point back to the original high-dimensional space using the inverse
PCA transformation. After this we evaluate the objective function at this new point by adding the
new sample and its function value to the dataset. In case termination criterion is not met (e.g.,
convergence, budget limit), we repeat this loop and start with updating the weighting scheme,
reapply PCA, retrain the GPR etc. again. A few representative iterations of our PCA-BO algorithm
are visualized in Figure 4 , illustrating how the surrogate model, acquisition function, and PCA
weighting evolve over the course of the optimization process on a 2D Rastrigin function (F15).

3.2.11 Updating the trust region size

At the beginning of a given local optimization run, we initialize the base side length of the TR,
capturing 80 percent of the domain. Every next point candidate is sampled from the reduced
space of the trust region. To balance exploration and exploitation, the trust region size is dy-
namically adjusted throughout the optimization process based on the observed improvement in
function evaluations. At the end of each iteration, the newly evaluated function value is compared
with the best value found so far. The process is defined inside the update trust region() function.

The improvement is defined as a decrease in the function value (assuming minimization) by
at least a small threshold ϵ:

y′ < ybest − ϵ|ybest|

with ϵ = 10−3. If the new function value found in the region improves upon the current best by at
least ϵ margin, we consider this a successful step. Otherwise, it is counted as a failure. The small
threshold ϵ is there to account for potential numerical noise or small fluctuations in function values.
If the number of consecutive successful steps reaches a threshold, which we defined as 3, the trust
region shrinks by half its size. This corresponds to exploration by widening the region to consider
more global area, helping escape a potential local minimum. On the other hand, if the number

23

of consecutive unsuccessful steps reaches a threshold, which we defined to be 3, the trust region
expands by doubling its size, bounded above by a maximum length. This represent exploitation of
a promising area, in which the improvement is found.

Following each trust region adjustment, whether shrinking or expanding, we perform additional
sampling within the updated trust region boundaries. Specifically, we generate 1×D new sample
points using optimal Latin hypercube sampling, where X = [x1, . . . ,xn0]

⊤ ∈ Sn0 represents the
sample matrix. All sampling operations are conducted subject to computational budget constraints.

3.3 Experiments

We empirically evaluate the performance of both PCA-BO and LPCA-BO by testing both of the
agorithms on the multi-modal functions taken from the COCO/BBOB benchmark suite [FHRA09]
and compare each of them to the state-of-art PCA-BO. The BBOB problem set includes a wide
variety of challenging problems that might resemble real world applications. Specifically, special
attention is given to functions with an adequate structure (F15-F19) and functions with weak
global structure F20-F24.

Each algorithm is tested on these functions at three different dimensionalities, D = {10, 20, 40}.
For each problem, we set a total evaluation budget of 10D + 50 function evaluations. The initial
Design of Experiments (DoE) consists of 3D samples, with the remaining budget allocated to the
iterative optimization process. All experiments are repeated over 30 independent runs per function
instance, and executed on an ALICE CPU machine. The recorded metrics include the best-so-far
function value as a measure of convergence quality and CPU runtime in seconds as a measure of
computational efficiency.

Both PCA-BO and LPCA-BO are implemented in Python using the BoTorch farmework. For
settings in which we use constraints, at each iteration, the Log Expected Improvement (Lo-
gEI) acquisition function is optimized under inequality constraints using the Sequential Least
Squares Programming (SLSQP) [MZL22] optimizer, rather than the default Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS-B) [LN89] algorithm. The optimization is performed
within the feasible region defined by the constraints. On the other hand, turning of the constraints
we can switch to using Penalized Expected Improvement (PEI) instead. The surrogate model used
is a Gaussian Process (GP) with a Matérn 5/2 kernel.

3.3.1 Justifying adjustments for 2D visualizations

In order to produce interpretable visualizations of PCA-BO and LPCA-BO in a 2D setting, the
maximum number of principal components is reduced to one. Therefore, the optimization problem
substantially increases in its difficulty due to the one principal component capturing significantly
less variance than the typical 95% threshold used in high-dimensional settings. In fact, it can get
low as 50% variance captured. As a result, the model often fails to fit the data and instead produces
nearly flat predictions. To counteract this, we tune the trust region parameters by reducing the
initial trust region length to 0.5 and setting the success count threshold required for expansion to 1.
These changes encourage more localized and conservative exploration, which helps compensate for

24

Algorithm 3 Local PCA-assisted Bayesian Optimization (LPCA-BO)

1: procedure LPCA-BO(f,A, S) ▷ f : objective function, A: infill-criterion, S: search space, S′:
lower-dimensional search space

2: while budget not exhausted do
3: ℓmin ← 0.57, ℓmax ← 1.6, ℓ← 0.8 ▷ Reset for trust region restart

Initialize counters: succcount← 0, failcount← 0
Initialize constants: succtol← 3, failtol← 3, ϵ← 10−3

Create X = [x1, . . . ,xn0]
⊤ ∈ Sn0 with optimal Latin hypercube sampling subject to budget constraints

y← (f(x1), . . . , f(xn0))
⊤, n← n0

4: while budget not exhausted and ℓ ≥ ℓmin do
5: Trust region bounds: T← [xbest − ℓ

2 · (ub− lb),xbest +
ℓ
2 · (ub− lb)] ∩ S ▷ lb,ub← lower and

upper bounds of S and xbest ← xi⋆ where i⋆ = argmini yi
6: Filter points in trust region: XF ← {xi ∈ X : xi ∈ T}
7: if |XF| < max(d, 2) then
8: Augment XF with closest points from X \XF until size is max(d, 2)
9: end if
10: yF ← {yi ∈ y : xi ∈ XF}
11: Compute sample mean of all points: µ← 1

n

∑n
i=1 xi

12: Compute sample mean of filtered points: µ′
F ←

1
|XF|

∑
x∈XF

x

13: Weighting: Let ri = rank(yi) where ri ∈ {1, . . . , |XF |} (1=best), then wi ← log |XF |−log ri∑|XF |
j=1 (log |XF |−log rj)

14: Centering filtered points: XF ← XF − 1|XF|µ

15: Rescaling: W← diag(w1, . . . , w|F |), X
′
F ← XFW

16: µ′
F ,Pr ← PCA(X′

F)
17: Mapping to Rr: Zr ← Pr(XF − 1|F|µ

′
F)

⊤

18: GPR training: f̂ , ŝ2 ← GPR(Zr,y)
19: z′ ← argmaxz∈S′ LogPEI(z)
20: Mapping to RD: x′ ← P⊤

r z+ µ′
F + µ

21: if x′ /∈ T then x′ ← clip(x′,T)
22: y′ ← f(x′)
23: X← X ∪ {x′}, y← (y⊤, y′)⊤, n← n+ 1
24: if y′ improves by > ϵ|ybest| then ▷ TR update (lines 18 - 27)
25: succ count← succ count + 1, fail count← 0
26: else
27: succ count← 0, fail count← fail count + 1
28: end if
29: if succ count = succ tol then
30: ℓ← min(2ℓ, ℓmax), succ count← 0 ▷ Expand trust region
31: else if fail count = fail tol then
32: ℓ← ℓ/2, fail count← 0 ▷ Shrink trust region
33: end if
34: Additional 1xDimensionality sampling within the trust region: X = [x1, . . . ,xn0

]T ∈ Sn0 with
optimal Latin hypercube sampling subject to budget constraints

35: end while
36: end while
37: end procedure

25

the information loss caused by aggressive dimensionality reduction.

Despite these adjustments, this issue of producing flat GP predictions is still relatively frequent.
This issue arises whether the GP is trained using all available data or only the data within the trust
region. The problem is even more present when the true objective function is complex and highly
non-linear, such as in Gallagher’s Gaussian 101-me Peaks Function. In these cases, the reduced
subspace lacks sufficient information to enable a reliable GP fit, and the added DoE points often
appear as noise since they lie far from the principal component axis.

Moreover, when running more DoE after trust region adjustment in the case of LPCA-BO, many of
the new DoE points make the GPR model fitting very hard because they are much more likely to ap-
pear as noise because they are not on the pc line and instead somewhere completely different in space.

A potential solution could be increasing the noise variance of the GP to improve robustness
to the outlier-like behavior of off-manifold points. However, this issue may be inherent to low-
dimensional visualizations as projecting complex high-dimensional landscapes into 1D leads to
unavoidable information loss. Therefore, these challenges should be interpreted as limitations of 2D
demos rather than fundamental problems of the algorithm.

Another important consideration in the 2D visualizations is the mismatch between the prin-
cipal component direction, in this case PC1, and the actual feasible domain defined by the bounds.
The acquisition function optimization is performed along the full extent of the PC1 line, under the
assumption that this represents the reduced search space. However, the actual legal area that lies
within the bounds can sometimes not correspond to the length of the PC1 line. As a result, this
is not always accurate as the true feasible region in the reduced space is actually the portion of
the PC1 line that intersects with the box constraints (Figure 7). In summary, the true reduced
space bounds area, which satisfies the constraints represented by the intersection between PC and
bounds, is not always corresponding to the length of PC1, which is considered for the acquisition
function optimization.

26

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: Visualization of the 1st, 28th, and 30th iteration of the LPCA-BO algorithm applied to a 2D
Gallagher 101 Peaks function (BBOB F21). Each column corresponds to one iteration. Rows represent:
(a-c) the weighting of points used for fitting the PCA line, (d-f) the true objective function landscape with
sampled points, (g-i) the fitted Gaussian Process (GP) models, and (j-l) the corresponding acquisition
function (Penalized LogEI) landscape. A complete example of this run, along with additional examples
illustrating the behavior of the algorithm on various BBOB functions, is available in the accompanying
Github repository.

27

https://github.com/IvanBanny/para-ortho-pca-bo/tree/adela/examples2D

Figure 7: A simple sketch of the mismatch between the intersection of the PCA line with the bounds and
the feasible sampling region.

4 Results

We now present the performance outcomes of PCA-BO and LPCA-BO, evaluated on the functions
from the COCO/BBOB benchmark suite, with a focus on two categories of multi-modal functions
with adequate global structure (F15–F19) and those with weak global structure (F20–F24). For
each setting, we report the average best-so-far function value as a measure of convergence quality
(Figure 8 , Figure 9 , Figure 10) and the average CPU runtime as an indicator of computational
efficiency (Figure 11). All results are averaged over 30 independent runs. Each algorithm is tested in
dimensionality 10, 20 and 40. Performance comparisons are made against PCA-BO implementation
as a baseline, allowing us to quantify the improvements achieved by the proposed LPCA-BO
approach.

In 10 dimensions, LPCA-BO demonstrates improved performance over PCA-BO across all bench-
mark functions, with the exception of the two multimodal cases F19 and F24. On the high-
conditioning unimodal function F18, both methods exhibit nearly identical convergence behavior. A
similar trend is observed in 20 dimensions: LPCA-BO consistently outperforms PCA-BO except on
F19 and F24, while the convergence on F18 remains almost identical. Function F11, which shows
high variance under PCA-BO in 20 dimensions, shows greater stability in the 40-dimensional case,
but with almost identical convergence rate. In the 40-dimensional setting, LPCA-BO continues to
outperform PCA-BO on all functions except F19 and F24. Across all three problem spaces, the
performance gap between the two algorithms tends to widen as the dimensionality of the search
space increases. This suggests that LPCA-BO scales more effectively and exhibits greater robustness
in high-dimensional optimization problems.

In terms of CPU time, the trust region approach is faster compared to PCA-BO and scales
better in higher dimensions. Figure 11 shows the CPU time (in seconds) required by PCA-BO
(blue) and LPCA-BO (red) across all 24 test functions for three different dimensions: 10D, 20D, and
40D. Overall, across all three dimensions, LPCA-BO consistently shows lower median CPU times
compared to PCA-BO. This computational advantage becomes more pronounced as dimensionality
increases. The time difference is particularly evident in 20D and especially in 40D, where PCA-BO
often incurs substantially higher runtimes. The spread of the box plots also indicates reduced
variance in LPCA-BO’s runtimes at higher dimensions, suggesting more stable and predictable
performance as the problem dimensionality increases.

28

Figure 8: Average target precision (relative to the optimum) as a function of iteration count for
BO (red) and PCA-BO (blue), evaluated on the functions from the BBOB benchmark suite in
10D. The results are based on 30 independent runs, with shaded regions denoting 95% confidence
intervals. Iteration count corresponds to the number of function evaluations including the initial
design (DoE).

29

Figure 9: Average target precision (relative to the optimum) as a function of iteration count for
BO (red) and PCA-BO (blue), evaluated on the functions from the BBOB benchmark suite in
20D. The results are based on 30 independent runs, with shaded regions denoting 95% confidence
intervals. Iteration count corresponds to the number of function evaluations including the initial
design (DoE).

30

Figure 10: Average target precision (relative to the optimum) as a function of iteration count for
BO (red) and PCA-BO (blue), evaluated on the functions from the BBOB benchmark suite in
40D. The results are based on 30 independent runs, with shaded regions denoting 95% confidence
intervals. Iteration count corresponds to the number of function evaluations including the initial
design (DoE).

31

Figure 11: Comparison of CPU time (in seconds) for PCA-BO (blue) and LPCA-BO (red) across
three different problem dimensions (from left to right: 10D, 20D, and 40D).

5 Discussion and Future Research

The overall improvement on all functions can be explained by performing PCA only on samples
within the trust region, capturing the local manifold structure more accurately and identifying search
directions that are relevant to that particular subregion. The search is more focused, eliminating
potentially irrelevant samples that could mislead the PCA projection. Trust regions naturally
provide a mechanism for balancing local exploitation (region shrinkage) with exploration (region
expansion). This dynamic adaptation prevents the algorithm from getting stuck with outdated
global projections. The advantage is particularly visible in multimodal functions, where global PCA
might average across multiple basins of attraction, preventing capturing meaningful directions. In
such settings, the algorithm is more likely to escape from local optima as the trust region size
iteratively adapts and helps with PCA projection reveal new promising directions that global PCA
might miss, avoiding possible convergence plateaus. Additionally, the incorporation of randomly
sampled points after every trust region update contributes to exploration by enabling the trust
region to recenter around newly identified promising area, even if it lies outside the current PCA
subspace.

The consistent underperformance of LPCA-BO on F19 and F24 reveals fundamental limita-
tions of localized search on specific landscape types. Function F19 (Griewank-Rosenbrock F8F2)
is a highly nonlinear, non-separable, and non-convex function characterized by a curved and
narrow valley, flat regions, and numerous local optima. This landscape challenges LPCA-BO,
as its localized search mechanism can limit exploration. In particular, the success threshold for
trust-region updates (set to 3) may need to be lowered to allow more frequent exploration. Once
the algorithm exits the valley, it may struggle to re-enter it and effectively explore promising regions.

On the other hand, multimodal function F24 (Lunacek bi-Rastrigin) is characterized by a double-
funnel structure. The global landscape consists of two major basins of attraction (funnels), with
a superimposed cosine modulation introducing many local optima. The global optimum lies in

32

a narrow basin, while a broader local optimum occupies approximately 70% of the search space
volume within the domain [−5, 5]D. The cosine modulation introduce many local optima. To realize
the search is happening in a wrong funnel, the algorithm needs to escape this local minimum by
expanding more. As a result, localized methods such as trust-region-based approaches can struggle,
as they can become trapped in the dominant local basin and fail to explore globally. Again, this
might be due to too high success count threshold.

Additionally, function F11 (Discus function) is a unimodal function with high conditioning, meaning
that optimization requires careful navigation along steep and narrow valleys. In 20 dimensions,
the projection introduced by PCA-BO may intermittently capture misleading directions due to a
limited number of informative samples, resulting in inconsistent performance and high variance.
As dimensionality increases to 40, the curse of dimensionality may cause the PCA projection to
become increasingly dominated by noise or misleading variance in the data, leading the optimizer
to settle into a more consistent but suboptimal search trajectory. In higher dimensions, PCA-BO
may fail to align the principal components with these sensitive directions due to the global nature
of its projection, especially when most directions contribute equally little to variance. As a result,
while the optimization appears more stable in terms of variance, it may fail to exploit the true
landscape of the objective function, thus preventing further convergence.

Overall, the observed improved scalability of LPCA-BO compared to PCA-BO, seen as emphasized
improvements in higher dimensional space compared to lower dimensional space, might be due
to the algorithm’s use of localized projections and trust regions better capturing relevant local
structures, making search in complex, high-dimensional landscapes more efficient.

Regarding CPU times, incorporating additional design-of-experiment (DoE) points between trust
region updates may further improve the efficiency of LPCA-BO. However, increasing the number
of DoE samples could also influence the dimensionality reduction process. Since DoE points are
sampled across the full original space, the resulting PCA may require a larger number of principal
components to meet the variance retention threshold. This, in turn, could reduce the effectiveness
of the dimensionality reduction and increase computational cost per BO iteration, potentially
offsetting the intended speed-up. However, by adding more DoE, we perform less BO iterations,
therefore, the algorithm takes less time.

Future research could explore whether the localization principles applied here can be extended to
nonlinear dimensionality reduction techniques, such as Kernel PCA (KPCA), which may better
capture nonlinear correlations in complex landscapes such as the curved valleys that challenge
LPCA-BO in F19. It would be interesting to combine this approach with other methods such as
sampling points in the orthogonal space of the reduced dimension space, which could help with
exploration beyond the reduced space. Another potential direction involves refining the PCA fitting
procedure, for instance by employing a truncation scheme that selects a fixed percentage of the
best-performing samples rather than using a weighting scheme [RWB+20]. Furthermore, parameter
tuning, such as adjusting the initial and minimum trust region sizes, success and failure thresholds,
could help optimize the algorithm’s performance. Moreover, adding multiple trust regions would
also be an interesting way to explore the possibilities of LPCA-BO and its performance on chal-
lenging multimodal functions by allowing concurrent local searches. Possibly replacing PCA-BO’s

33

acquisition function with TuRBO’s Thompson sampling would also be an interesting direction to
explore and compare. It would also be valuable to conduct more extensive testing, particularly
in high-dimensional settings, where challenges differ significantly from those in low-dimensional
spaces, for example in terms of GP training or acquisition function optimization.

34

6 Conclusion

Our results show improvements in both CPU time and convergence rates. In conclusion, incorpo-
rating trust regions and localized dimensionality reduction improves the efficiency and reliability of
PCA-BO, particularly in settings with non-uniform variance across parameters or anisotropic basins
of attraction. By applying PCA within dynamically updated trust regions, LPCA-BO captures
the local structure of the search space more effectively, aligning search directions with locally
informative dimensions while avoiding misleading global variance. The dynamic nature of the trust
region allows the algorithm to adapt over time, balancing exploitation within known regions and
exploration into new areas as the region expands and re-centers. This prevents stagnation associated
with outdated global projections, a critical factor in escaping local optima in multimodal functions.

However, while LPCA-BO shows consistent improvements and better scalability in higher di-
mensions, limitations remain on complex multimodal functions (F19 and F24). Further tuning
of trust region parameters, various other adjustments in the algorithm and additional testing to
evaluate the impact of such adjustments may be necessary to overcome these challenges.

35

References

[ADE+25] Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan
Bakshy. Unexpected improvements to expected improvement for bayesian optimization,
2025.

[ARD] Automatic Relevance Determination, chapter Chapter 4, pages 59–75.

[EPG+20] David Eriksson, Michael Pearce, Jacob R Gardner, Ryan Turner, and Matthias Poloczek.
Scalable global optimization via local bayesian optimization, 2020.

[FHRA09] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter
black-box optimization benchmarking 2009: Noiseless functions definitions. Technical
Report RR-6829, INRIA, 2009. Updated version as of February 2019.

[FLS05] Kai Tai Fang, Runze Li, and Agus Sudjianto. Design and modeling for computer
experiments. CRC Press, October 2005. Publisher Copyright: © 2006 by Taylor Francis
Group, LLC. All rights reserved.

[F.R01] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[Fra18] Peter I. Frazier. A tutorial on bayesian optimization, 2018.

[GKD19] Jochen Görtler, Rebecca Kehlbeck, and Oliver Deussen. A visual exploration of gaussian
processes. Distill, 2019. https://distill.pub/2019/visual-exploration-gaussian-processes.

[LN89] D. C. Liu and J. Nocedal. On the Limited Memory BFGS Method for Large Scale
Optimization, pages 503–528. Mathematical Programming, 1989.

[MZL22] Yingjie Ma, Nan Zhang, and Jie Li. Improved sequential least squares program-
ming–driven feasible path algorithm for process optimisation. In Ludovic Montastruc
and Stephane Negny, editors, 32nd European Symposium on Computer Aided Process
Engineering, volume 51 of Computer Aided Chemical Engineering, pages 1279–1284.
Elsevier, 2022.

[Rai22] Tom Rainforth. Chapter 7: Bayesian optimization, 2022.

[RWB+20] Elena Raponi, Hao Wang, Mariusz Bujny, Simonetta Boria, and Carola Doerr. High
dimensional bayesian optimization assisted by principal component analysis, 2020.

[Sob67] I.M Sobol’. On the distribution of points in a cube and the approximate evaluation of
integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86–112,
1967.

[SSW+16] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas.
Taking the human out of the loop: A review of bayesian optimization. Proceedings of
the IEEE, 104(1):148–175, 2016.

36

	Introduction
	Thesis Overview

	Related work
	Bayesian Optimization
	Initial Design of Experiments (DoE)
	Gaussian Process Regression Model
	Acquisition Functions
	Expected Improvement (EI)
	Limitation of BO

	Principal Component Analysis assisted Bayesian Optimization (PCA-BO) algorithm
	Dimensionality Reduction via Principal Component Analysis
	Intrinsic Biases of PCA-BO

	TuRBO addressing BO limitation
	Proposed Integration of TuRBO and PCA-BO

	Methodology
	Local Optimization using Trust Region
	Local PCA-BO
	Trust Region Restart Strategy
	Trust Region Point Filtering
	Rank-Based Weighting for PCA Projection
	Dimensionality reduction with Principal Component Analysis
	Fitting PCA within the Trust Region
	Calculating Reduced-space Bounds
	Projecting Points to Reduced Space
	Training Gaussian Process Regression model and Optimizing Acquisition Function
	Acquisition Function: Selecting Next Point Using Penalized Log Expected Improvement
	Inverse Mapping and Evaluation
	Updating the trust region size

	Experiments
	Justifying adjustments for 2D visualizations

	Results
	Discussion and Future Research
	Conclusion
	References

