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Abstract

This thesis investigates the structural properties of the Bluesky follower-following network.
Bluesky is a decentralized social media platform designed to operate without centralized content
curation. This research investigates how users connect and organize on Bluesky by analyzing
a large-scale follower-following dataset collected via the platform’s official API. Through a
network science approach, the analysis focuses on key topological properties, including degree
distributions, clustering patterns, centrality measures, community structure, and assortative
mixing, to assess the underlying dynamics of user connectivity and influence. The analysis
shows a scale-free network with a densely connected core of highly followed users and a long
tail of sparsely connected accounts. Despite the platform’s decentralized architecture, the
network demonstrates considerable structural inequality, with influence concentrated in a
small subset of nodes. Community detection and homophily analysis further demonstrate
that users tend to form tightly knit clusters, with strong preferences for within-community
connections. These results suggest that social hierarchies and centralization of influence can
emerge organically in decentralized systems, sparking discussions about the extent to which
decentralization alone can address structural asymmetries in online networks.
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1 Introduction

Bluesky is a decentralized microblogging platform that was introduced in 2019 as an internal
project by Twitter and became an independent company in 2021. While it offers familiar features
such as posting short messages, following users, and engaging through replies or likes, its technical
foundation sets it apart. Bluesky is built on the Authenticated Transfer Protocol (AT Protocol),
which enables a federated network of independently operated services. This architecture gives users
more flexibility in how they interact with the platform, including how their data is stored and how
content is filtered and moderated.

Online social networks now play a central role in how people communicate, form communities,
and access information. Platforms like Twitter and Facebook influence what news users see, how
public conversations unfold, and which voices are amplified. These platforms operate using ranking
and recommendation algorithms that are typically hidden from users | |. These systems shape
content visibility based on predicted engagement, which often results in a focus on popular or
emotionally triggering content rather than balanced or diverse viewpoints.

This lack of transparency has raised concerns about fairness, manipulation, and the broader societal
role of large platforms. When algorithms determine what users see, they also influence what
conversations take place, which perspectives are elevated, and how communities are formed. The
fact that these systems are developed and controlled by private companies creates an imbalance
between the users who rely on these platforms and the entities that shape their experiences. It is
plausible to suppose that such dynamics may reduce diversity in public discourse, reinforce exist-
ing inequalities, or create filter bubbles where people are only exposed to views that match their own.

In response to these issues, alternative models of online interaction have seen a rise in public
attention. One of the most prominent approaches is decentralization, where control is distributed
rather than concentrated in a single organization. Platforms like Bluesky aim to shift power back to
users by letting them choose how their content is moderated, how recommendations work, and where
their data is stored. This model has the potential to increase transparency and autonomy, but it also
raises new questions. Without centralized systems guiding content visibility, how do communities
evolve? Does user engagement become more evenly distributed, or do some users still dominate
the network? Despite the growing interest in decentralized platforms, many important questions
about how they function remain unanswered. Most existing studies continue to focus on centralized
networks, where user data is more readily accessible and platform dynamics are better understood.
As a result, there is still limited empirical insight into how decentralized networks form, how users
engage with one another, and whether these systems lead to more equitable or democratic outcomes.

This thesis seeks to address this gap by examining the structural properties of the Bluesky follower-
following network. The goal is to understand how users connect and organize themselves in a
decentralized environment, and whether the resulting network structure differs meaningfully from
that of traditional, centralized platforms. Using methods from network science, the research analyzes
key features such as degree distribution, clustering, connectivity, and component sizes. Network
analysis has helped in understanding various kind of networks, including transaction networks
[ |, online social networks [ ], communication networks | |, co-authorship net-



works [S110], citation networks, and so on. Network science has also been used to model dynamic
processes taking place on these networks, such as influence propagation | |, dynamics of
influential leaders [ |, opinion modeling | |, influence blocking | |, and so on.
By focusing on the follower-following graph, this thesis contributes to a better understanding of
whether decentralization of social networks meaningfully impacts the structural dynamics of social
media networks.

1.1 Research Question

This thesis investigates how decentralized social networks, and more specifically Bluesky’s follower-
following network, function in the absence of centralized control and algorithmic curation. The
central research question guiding this study is:

How does user interaction and network structure manifest on a decentralized platform
like Bluesky, and how does this compare to traditional, centralized social networks?

To address this, the thesis is guided by the following main question:

1. What are the topological characteristics of the Bluesky follower-following network, and how
do these compare to those found in centralized social networks (e.g., Twitter), particularly in
terms of degree distribution, clustering, and connectivity?

1.2 Contributions

The contributions of this research are mentioned below.

e A topological analysis of the network, examining properties such as degree distributions,
clustering coefficients, and the size of the giant component to understand user connectivity.

e A qualitative comparison of these findings with existing literature on centralized platforms
like Twitter, to reflect on whether decentralization leads to more distributed engagement or
the persistence of dominant user clusters.

1.3 Thesis overview

The remainder of this bachelor thesis is structured as follows. Section 2 outlines the theoretical
foundation, introduces the core network analysis concepts used throughout the study, and reviews
relevant literature on social network structures. Section 3 presents the dataset and sampling
methodology. Section 4 reports the experimental results, while Section 5 interprets the findings and
compares them to Twitter as a representative centralized platform. Finally, 6 concludes the thesis
and reflects on potential directions for future research.



2 Related Work

2.1 Social Network Analysis

Social Network Analysis (SNA) focuses on examining the underlying structures that emerge from
interactions between actors within a network. A major part of SNA is the study of topological
metrics, including degree distribution, clustering coefficient, average path length, and centrality
indices such as betweenness and PageRank | ]. These metrics offer insights into phenomena
such as information diffusion, community formation and the emergence of influential users. Studies
of online social networks, particularly Twitter, have identified skewed degree distributions typically
following a power-law, where a few highly connected hubs exist among many sparsely connected
nodes. Grandjean’s analysis of Twitter demonstrated the presence of small-world properties, with
short average path lengths and high clustering| ], facilitating both rapid information diffusion
and the formation of tightly knit communities. However, the majority of existing research focuses
on centralized platforms, where governance and algorithms influence network formation. Recent
work by Quelle and Bovet on Bluesky users| | shows that small-world structures persist even
in decentralized settings.

2.2 Centralized Social Networks

Centralized social networks, such as Twitter and Facebook, are characterized by the governance of
the platform in shaping the formation of the network. In such environments, opaque algorithms
shape content recommendations and trending topics, directly influencing which users gain visibility
and how connections are formed. Thus, centralized platforms often reinforce preferential attach-
ment mechanisms, whereby already prominent users attract a disproportionate number of new
followers. Over time, this dynamic promotes the emergence if social hierarchies within the network,
concentrating influence among a small subset of highly connected users. Additionally, the platforms’
ability to moderate content and user behavior allows them to further shape the boundaries and
internal structures of their social graphs.

2.3 Decentralized Networks and Bluesky

Decentralized social networks aim to distribute control over content moderation, recommendation
algorithms, and network governance among third parties, rather than concentrating it within a
single platform provider. This model is intended to increase transparency and user autonomy. Two
recent examples of decentralized social networks are Mastodon and Bluesky, both microblogging
platforms.

An analysis of Mastodon’s follower-following network by Zignani, Gaito, and Rossi revealed heavy-
tailed degree distributions, high clustering coefficients, and a tendency for users to form tightly
knit communities within server instances| ]. Despite Mastodon’s federated structure and
the absence of global recommendation algorithms, its network topology mirrors the small-world
properties typically found in centralized platforms.



Similarly, a recent study by Quelle and Bovet investigated the interaction network of approximately
five million Bluesky users, analyzing follows, replies, likes, and reposts | |. Their findings
reveal that Bluesky also demonstrates heavy-tailed degree distributions, pronounced clustering, and
short path lengths. These results suggest that the emergence of small-world structures and social
hierarchies is a robust feature of online social networks, largely independent of platform governance
models. Thus, while decentralization transforms governance and moderation mechanisms, it does
not necessarily produce fundamentally different network topologies.

2.4 Relevance and Research Gap

While several studies have begun exploring decentralized platforms, analyses focusing on the
follower-following networks of those platforms remain rare. As already mentioned, Zignani et al.
and Quelle and Bovet offered insights into decentralized network topology. However, their work
remains limited, particularly in relation to large-scale follower-following structures | , ].
Moreover, prior studies often combine multiple interaction layers or focus on early-stage network
snapshots, leaving open questions regarding the evolving topological characteristics of decentralized
follower-following graphs at scale. Addressing the follower-following relationships within decentral-
ized environments requires deeper and more targeted analyses.

This thesis builds on existing work by offering a targeted, empirical analysis of Bluesky’s follower-
following network. The aim is to gain a better understanding of how decentralization influences the
network’s topological dynamics.



3 Data Collection

3.1 Data Acquisition

The follower-following network data was collected using the official Bluesky API. Two primary
endpoints were used: app.bsky.graph.getFollowers, which retrieves the list of followers for a given
user, and app.bsky.graph.getFollows, which retrieves the list of accounts that a user follows.

Data collection began by accessing the ”What’s Hot” feed, which lists the top trending posts on
Bluesky. The authors of the top ten posts were extracted to form the initial seed set of users.
Using the API, the followers and followings of each of these user were collected and incorpo-
rated into the dataset. The dataset was then expanded iteratively: at each step, a user who had
been discovered but whose follower and following lists had not yet been explored was selected
at random. By successively retrieving and incorporating the follower and following lists of un-
explored users, the dataset gradually expanded into a large and interconnected subset of the network.

Data collection was performed between February and June 2025, and included only publicly
accessible profiles. No private or restricted information was accessed.

3.2 Dataset Description

The complete dataset collected consists of 4,410,329 users and 25,056,375 directed edges, represent-
ing follower-following relationships across Bluesky. However, due to computational constraints, the
analysis presented in this thesis is performed on a sampled subgraph of 20,000 users, extracted via
random walk traversal.

This subgraph preserves key structural properties of the full network and serves as the base for the
experimental results discussed in subsequent chapters. The sampled subgraph is visualized in Figure
1. Nodes are sized and colored based on their in-degree scores, with larger and warmer-colored
nodes (e.g., red or orange) representing users with high follower counts. The visualization revealed
a densely connected core of high in-degree nodes, surrounded by a sparse periphery of low-degree
users. Several small, weakly connected clusters at the margins indicate structural fragmentation.
This pattern reflects the network’s scale-free topology, where a minority of users accumulate dispro-
portionate visibility despite the absence of centralized recommendation systems.

The data was stored as a two-column CSV file, with each row recording a directed connection: the
first column identifies the source node (the follower), and the second column identifies the target
node (the user being followed). This format, known as an edge list, reflects the directed nature
of the social graph and facilitates the application of network analysis methods, including degree
distribution studies, clustering coefficient measurements, and connectivity evaluations.



Figure 1: Visualization of a 20,000-node subgraph obtained via random walk sampling. Node
in-degree is encoded by size and color (blue = low, yellow = medium, red = high).



4 Network Topology Analysis

This section presents a comprehensive analysis of the structural properties of the Bluesky follower-
following network. Various network science metrics are employed to characterize user connectivity,
identify influential nodes, detect communities, and assess the overall structure of the graph.

4.1 Centrality Measures

Centrality metrics quantify the structural importance of nodes within a network. This thesis uses
the following centrality measures: degree | |, betweenness, PageRank, and closeness. These
measures are used to assess the influence, reachability, and network positioning within the Bluesky
follower-following graph.

4.1.1 Degree

Degree refers to the number of connections a node has. In directed graphs, in-degree measures
how many followers a user has, while out-degree measures how many users a given account follows.
These metrics reveal visibility and user activity within the network | ]

In-degree ki, (v) measures how many followers a user has. Formally, it is defined as:

kin(v) = {u €V : (u,v) € E}|

This captures the number of incoming edges to node v, representing how often the user is followed.

Out-degree k,,(v) measures how many users a given account follows:

kow(v) = [{u € V : (v,u) € E}|

This corresponds to the number of outgoing edges from node v, indicating user activity.

Analyzing degree distributions is fundamental to understanding how connectivity, influence, and
structural inequality emerge within a social network.

These distributions are known to reveal important topological signatures of social graphs, such as
scale-free structure and preferential attachment, both of which have been extensively observed in
large-scale online social networks like Twitter and Facebook| , |. To investigate
whether similar patterns are present in a decentralized setting, the in-degree and out-degree
distributions of the Bluesky graph were analyzed on a log-log scale.
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Figure 2: Log-log plot of the in-degree distribution in the Bluesky follower-following network. The
x-axis shows the in-degree k and the y-axis shows the probability P (k).
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Figure 3: Log-log plot of the out-degree distribution in the Bluesky follower-following network. The
x-axis shows the out-degree k and the y-axis shows the probability P(k).

4.1.2 In-Degree Distribution

Figure 2 shows that the in-degree distribution is heavy-tailed. The majority of users receive very
few followers, while a small subset accumulates a disproportionately large number. Some accounts
in the sample exceed 175,000 followers, acting as highly influential hubs within the platform.
This shape is characteristic of scale-free networks, where a small number of nodes dominate
connectivity[BA99]. The near-linear tail in the log-log plot supports the presence of a power-law
distribution. This pattern suggests that Bluesky exhibits preferential attachment, where users are
more likely to follow already-popular accounts[New05, KLPM10]. Despite its decentralized design,
the platform reproduces centralizing dynamics that are commonly found in mainstream social
media.



4.1.3 Out-Degree Distribution

Figure 3 shows that the out-degree distribution also follows a heavy-tailed pattern. Most users follow
only a small number of accounts, while a few follow tens of thousands. In some cases, users follow
over 70,000 accounts. These outliers likely represent automated or bot-like behavior, potentially
aimed at inflating visibility or engagement.

This distribution aligns with scale-free properties and reflects strong heterogeneity in user activity.
The concentration of highly active users indicates that connection patterns may be shaped by
activity-based biases or automated behaviors, which could distort the organic growth of the network.
Combined with the in-degree analysis, this reinforces that decentralization does not inherently
produce a more balanced or egalitarian structure.

4.1.4 Betweenness Centrality

Betweenness centrality measures how frequently a node appears on the shortest paths between
other nodes. This measure captures a user’s ability to control or mediate information flow between
otherwise unconnected parts of the graph. In online social networks, users with high betweenness
centrality often play structurally influential roles by connecting clusters or communities that would
otherwise remain isolated| ].

For a node v, betweenness centrality is defined as:

Cp(v) = Z 7ut(v)

g
sF#vF£L st

where o denotes the total number of shortest paths between nodes s and ¢, and o4 (v) refers to
the number of those paths that traverse node v.

The distribution of betweenness centrality scores is shown in Figure 4. The majority of users have
low or near-zero scores, while a small fraction exhibit significantly elevated values.

This pattern reflects a common finding in social networks: most users do not facilitate connections
between communities, while a small subset acts as critical intermediaries. These high-betweenness
users may not be the most followed or visible in the network, but their structural position grants
them potential influence over how information spreads across clusters. The long-tailed nature of the
distribution also highlights a persistent structural inequality in connectivity, a feature previously
documented in studies of centralized platforms such as Twitter| ]-
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Figure 4: Distribution of betweenness centrality scores in the Bluesky follower-following network.

Despite Bluesky’s decentralized design, the emergence of users with disproportionately high be-
tweenness scores suggests that decentralized governance alone does not prevent the formation of
hierarchical structures based on positional influence.

4.1.5 PageRank Centrality

PageRank is a centrality measure that assesses a node’s influence in a directed network by accounting
for both the number and the importance of its incoming links. Originally introduced by Brin and
Page in the context of web graphs] |, it has since been broadly adopted in social network
analysis to capture recursive importance. A node is considered influential not only if it receives
many links, but especially if those links come from influential nodes.

The PageRank score of a node v is defined recursively as:

PR(v) = +d Z R(u)

k (u)
ueN— out

where d is the damping factor (d = 0.85), N is the total number of nodes in the graph, N~ (v)
denotes the set of nodes linking to v, and koy(u) is the out-degree of node u. The damping factor
models the probability that a user will jump to a random node, preventing rank sink in disconnected
components.

The distribution of PageRank scores across the Bluesky network is presented in Figure 5. The
resulting scores were binned and plotted on a log-log scale, using a total of 400 logarithmic bins. This
distribution is characteristic of scale-free networks, where influence becomes highly concentrated
among a small subset of nodes. Although the majority of accounts exhibit low PageRank scores, a
small fraction of accounts possess disproportionately high centrality, resulting in a long right tail in
the plot. This is not solely a function of high in-degree, but also of the fact that these users are
followed by others who themselves hold significant structural importance.

10
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Figure 5: Distribution of PageRank scores in the Bluesky follower-following network.

The findings align with prior observations from centralized social media platforms, where PageRank
distributions similarly reveal pronounced inequalities in user influence. Notably, the emergence of
such concentration within Bluesky, despite its decentralized architecture, suggests that hierarchical
patterns of influence may arise within social networks, independent of centralized control mechanisms
such as algorithmic curation or content moderation. This raises important questions about whether
decentralization alone is sufficient to counteract structural inequalities in user visibility and influence.

4.1.6 Closeness Centrality

Closeness centrality measures how near a given node is to all other nodes in a network, based on
the shortest path distances between them. It reflects the potential efficiency with which a node can
spread information through the network, or alternatively, how quickly it can access information from
other users. | | In the context of online social platforms, users with high closeness centrality tend
to be structurally well-positioned to reach broad parts of the network with minimal intermediary
steps.

Formally, the closeness centrality Cc(v) of a node v is defined as:

1
C Yenigey A, t)

where d(v,t) denotes the length of the shortest path from node v to node ¢, and V' is the set of all
nodes in the graph. This formula assumes that all nodes are reachable; when applied to disconnected
graphs or samples, it is typically computed only over the largest connected component or adjusted
to exclude unreachable nodes.

Cc(v)

In this study, closeness centrality was computed using the reversed sampled graph of 20,000 nodes,
obtained via random walk traversal. The sampled graph was reversed in order to measure how
efficiently a user can be reached by others. Due to the nature of random walk sampling, the resulting
subgraph may not be fully connected, and thus contains nodes with undefined closeness, which are
assigned a score of zero.

11



The resulting distribution of closeness scores is displayed in Figure 6. The distribution of closeness
centrality values is distinctly bimodal, with two sharply separated clusters. The primary mass of
users has closeness centrality values concentrated tightly around 107!, while a separate group is
spread across extremely low values ranging from approximately 10-%® to 1073, Notably, there
is a clear gap between these two regions, with virtually no users occupying the intermediate

range between 1073 and 1072. This discontinuity suggests the presence of structurally distinct
subpopulations in the network.
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Figure 6: Distribution of closeness centrality values in the Bluesky follower-following network.

The dominant cluster near 10! represents users embedded within the largest connected component,
where average path lengths to others are short. These users occupy positions that allow them to
access much of the network with minimal intermediary steps. Conversely, the tail of nodes with very
low closeness centrality likely reflects users in disconnected or weakly connected components. This is
expected, given the limitations of random walk sampling in capturing all reachable components from

the perspective of inward paths. These users may represent isolated accounts, fringe communities,
or remnants of partial sampling.

These results highlight that structural centrality in Bluesky is unevenly distributed, with a few
nodes having topological proximity to most others. Despite the platform’s decentralized architecture,
the presence of such core nodes suggests that centrality of reach can still emerge without algorithmic
mediation, reinforcing the broader finding that social hierarchies are not solely the product of
centralized design.

12



4.2 Clustering Coefficient

The clustering coefficient measures the likelihood that a user’s neighbors are also connected to one
another, forming closed triads.| | Although the Bluesky follower-following network is directed,
the clustering coefficient is computed on its undirected form to capture local cohesion. The local
clustering coefficient of a node v in an undirected graph is formally defined as:

2T (v)
kv<kv - 1)

where T'(v) is the number of triangles that are passing through node v, and k, is the degree of v.
This measure quantifies the extent to which a node’s neighbors are also connected to each other,
capturing the presence of tightly knit groups in the network. High clustering coefficients indicate
locally cohesive structures, while low values suggest sparse or hub-like connectivity.

cV) =

To examine how local clustering varies with node connectivity, the average clustering coefficient was
evaluated across all nodes with the same degree k, resulting in the conditional expectation(C' | k).
As shown in Figure 7, the average shows a clear negative correlation with degree. Low-degree nodes
tend to be embedded within highly clustered local structures, suggesting the presence of tightly-knit
communities. Conversely, high-degree nodes often serve as bridges or hubs, linking distinct parts of
the network while remaining structurally isolated from cohesive local groups.

Average Clustering Coefficient vs. Degree

(Clk)

10° 10t 102 10°
k

Figure 7: Average clustering coefficient (C' | k) as a function of node degree k in the Bluesky
follower-following network.

This inverse relationship reflects a hierarchical organization of the network, where low-degree
nodes are part of tightly knit clusters, while high-degree nodes function as inter-community
connectors. Such structural patterns are typical of complex real-world networks, particularly online
social networks, where highly connected hubs facilitate integration by linking disconnected local
communities. | ]

13



4.3 Connectivity

This section examines the structural cohesion and navigability of the Bluesky follower-following
network by analyzing its connected components, local neighborhood properties, and reachability
dynamics. Together, these measures offer insights into how information may propagate and how
tightly users are embedded within the social graph.

4.3.1 Connected Components

In network analysis, a connected component is a group of nodes within which each node is reachable
from any other. In directed graphs, two types of components are typically distinguished. A strongly
connected component (SCC) requires that every node be reachable from every other via directed
paths, whereas a weakly connected component (WCC) allows reachability when edge direction is
ignored. A large WCC suggests that most users are part of a globally navigable structure, while
the distribution of SCCs reveals the extent to which users form tightly integrated subgroups or
remain isolated.

To assess the global connectivity of the Bluesky follower-following network, we analyze both SCCs
and WCCs in the sampled graph.

The network contains 2 weakly connected components, with the largest WCC including 99.99%
of all nodes (19,997 out of 20,000). This indicates that, structurally , the graph is nearly entirely
connected when directionality is disregarded. However, the picture becomes more fragmented when
considering direction. The network contains 2,828 strongly connected components, with the largest
SCC containing 85.38% of all nodes (17,076 out of 20,000). This implies that while the major-
ity of users form a mutually reachable core, a large number of users exist in more peripheral positions.

This structure is typical in directed online social networks, where popular accounts are dispropor-
tionately followed, creating an asymmetric topology. The existence of a large SCC reinforces the
view that the network is cohesively structured around a highly interconnected core, while large
WCC suggests the potential for wide information diffusion even among loosly connected peripheral
users. This aligns with the findings of Guille et al. | ], who highlight that online social
networks often exhibit a core-periphery structure that facilitates efficient information diffusion
across the network.

4.3.2 Average Neighbor Degree

To explore the local structural patterns of the network, the average neighbor degree k,,(v) is
computed, which captures whether users tend to connect with others who are more or less connected
than themselves. The average neighbor degree measures the average connectivity of a node’s
immediate neighbors.| | It is defined as the mean degree of all nodes directly connected to
a given node. For a node v, it is defined as:

1
Ko (0) = Y >k
ueN (v)
where k, is the degree of node v, N(v) is its set of neighbors, and k, is the degree of neighbor u. By

computing the average neighbor degree for nodes of degree k, we capture the network’s assortativity

14



profile. If average neighbor degree increases with node degree, the network exhibits assortative
mixing. A decreasing trend indicates disassortative structure, which is often found in hierarchical
social graphs.

The results of the analysis of the average neighbor degree are shown in Figure 8. The average neigh-
bor degree initially increases with node degree, peaks at intermediate values of k£, and then declines
for the nodes of higher degree. This bell-shaped distribution indicates that low and mid-degree users
tend to connect to highly connected hubs, whereas high-degree users mainly connect to lower-degree
nodes. This pattern reflects a disassortative mixing, in which a small set of influential users form
the core of the network while maintaining asymmetric links with a broader, less connected periphery.

Average Neighbor In-degree
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Figure 8: Average neighbor degree k_nn as a function of node degree k in the Bluesky follower-
following network.

The findings from the average neighbor analysis provide a more localized perspective on connectivity
patterns and align with the global assortativity analysis discussed in Section 4.4.2. While the latter
quantified overall degree correlations using Pearson’s correlation coefficient, the average neighbor
degree captures how these patterns emerge at the level of immediate connections. Together, both
analyses reveal consistent dissassortative tendencies and reinforce interpretation of the Bluesky
network as hierarchically structured around central, high-degree hubs.

4.3.3 Reachability via Snowball Sampling

Snowball sampling is a graph traversal method used to simulate the expansion of influence or
information through a network. Starting from one or more seed nodes, it iteratively collects all
direct neighbors at each layer, expanding outward in breadth-first order.| | This process is
typically repeated for a fixed number of layers or until growth saturates. The method is useful for
assessing reachability, identifying the size of connected regions, and understanding how quickly a
network can be traversed from arbitrary entry points.

To evaluate the network’s global expansion dynamics, a snowball sampling was conducted using
Breadth-First Search (BFS) from six randomly selected seed nodes, extending up to seven layers

15



from each origin. This approach simulates how influence or information would spread outward
from a user through successive layers of connections, revealing how quickly the network becomes
saturated as more users are reached.

As illustrated in Figure 9, the sampling curves show a two-phase pattern. In the early stages (depth
1-4), the number of newly discovered users increases rapidly, approximating exponential growth.
This behavior reflects the presence of high-degree hubs that serve as central channels, dramatically
increasing reachability in just a few steps. These hubs act as bridges between otherwise distant
parts of the network, facilitating fast expansion from local origins.

Growth of Sample Size in Snowball Sampling

- = Average Growth

Number of Sampled Nodes Ns(¢)
~

1 2 3 4 5 5 7
Extraction Distance (f)

Figure 9: Growth of sample size in snowball sampling.

In later stages (depth 5-7), the curves plateau across all trials, indicating that most reachable users
have already been discovered by this point. This pattern suggests the presence of a giant connected
component, in which most nodes are structurally embedded and accessible within a limited number
of steps from any given origin. Such a pattern is characteristic of small-world networks, which are
marked by short average path lengths and high navigability, even at scale.

These structural features suggest that the Bluesky network supports efficient information diffusion
and exhibits substantial global cohesion. Together with the connected component analysis, the
reachability results provide further evidence that the Bluesky possesses a small-world topology,
which is a common property of online social systems | ].

4.4 Community Structure

A community represents a densely connected group of nodes and sparsely connected with the rest of
the network, and there exists many different types of methods for identifying communities | ].
This section investigates the community of the Bluesky follower-following network by analyzing
three interrelated metrics: modular community detection, assortativity, and homophily. These
aspects provide insight into the degree to which users are embedded in tightly knit groups how
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such groups are organized at the network level, and whether users tend to connect to structurally
or categorically similar users.

4.4.1 Community Detection

Community detection identifies clusters or groups of nodes that are more densely connected inter-
nally than with the rest of the network. These structures help reveal latent groupings and social
segmentation in complex networks.

This thesis applies the Louvain algorithm, a widely adopted heuristic for detecting communities
by maximizing modularity. Modularity measures the difference between the observed density of
edges within communities and the expected density in a randomized network with the same degree

distribution [ |. This method optimizes modularity @), defined as:
1 kik;

where A;; represents the adjacency matrix, k; and k; are the degrees of nodes ¢ and j, respectively,
m is the total number of edges in the network, and d(¢;, ¢;) = 1 if nodes 7 and j belong to the same
community, and 0 otherwise. A higher value of ) indicates a stronger community structure, signify-
ing a greater concentration of intracommunity edges than expected in a comparable random network.

While clustering characterizes local cohesiveness, community detection focuses on identifying larger-
scale structures in which nodes are more densely connected internally than externally. To detect
such meso-scale groupings, the Louvain algorithm was applied to the undirected version of the
sampled Bluesky network.

The algorithm partitioned the network into 14 communities, with a modularity score of 0.3716,
indicating a moderate level of community structure. The detected communities vary widely in size,
from 2 to 5,754 nodes, as summarized in Table 1

The modular structure of the network is further illustrated in Figure 10, which presents a gephi-
rendered visualization with nodes colored by their community affiliation. In the visualization, the
largest communities occupy dense central regions, while smaller groups tend to be closer to the
edge. Moreover, despite color coordination between the different communities, it is difficult to
identify all 14 communities. Notably, the gephi visualization 10 revealed overlapping boundaries
between communities, which suggests limited modular separation and inter-community blending.
This observation aligns with the relatively modest modularity value and is further examined in the
next part, which investigates assortativity and homophily patterns.
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Community ID Size (nodes) Percentage of total

2 5,754 28.77%
4 4,263 21.31%
13 2,779 13.90%
0 2,397 11.99%
6 1,855 9.28%
1 1,242 6.21%
9 788 3.94%
8 574 2.87%
7 194 0.97%
12 98 0.49%
5 29 0.15%
10 20 0.10%
3 4 0.02%
11 2 0.01%

Table 1: Community sizes identified by the Louvain algorithm.
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Figure 10: Community Structure visualization using Gephi.

4.4.2 Degree assortativity

Assortativity describes the tendency of nodes in a network to connect with others that are similar
in some respect. In directed networks, assortativity can be measured along different dimensions,
most notably degree-based and attribute-based assortativity.| ]
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Degree assortativity measures the statistical correlation between the degrees of nodes on either
side of a directed edge. Typically, in directed networks, the assortativity is computed separately
for in-degree and out-degree using the Pearson correlation coefficient. Positive assortativity values
indicate a tendency for nodes to connect with others that have similar degree characteristics.
Conversely, negative values suggest dissasortative mixing, where high-degree nodes tend to connect
to low-degree nodes, often demonstrating hierarchical-like structures.

In the sampled Bluesky network, the in-degree assortativity was calculated as -0.0424, and the out-
degree assortativity as -0.0812. Both values are slightly negative, indicating a weak but consistent
dissasortative trend. This pattern reflects the tendency of high-degree nodes (hubs) to attract
connections from peripheral, low-degree users, rather than forming reciprocal links with other highly
connected nodes.

4.4.3 Community-Based Assortativity (Homophily)

Attribute-based assortativity, or homophily, captures the extent to which nodes connect to oth-
ers with similar attributes. In this analysis, homophily was assessed based on community labels
produced by the Louvain algorithm. A high level of homophily indicates that users tend to form
connections within their own community, reflecting cohesive and internally clustered groupings.

The resulting coefficient of 0.4732 indicates a moderate-to-strong preference for intracommunity
connections. This means that users are significantly more likely to follow users within their own
community than outside of it. This result reinforces the earlier observation of partially overlapping
but internally cohesive communities. While the modularity score of 0.3716 indicates only a moderate
separation between communities, the homophily coefficient of 0.4732 suggests that users have a
clear preference for intracommunity connections. Thus, users predominantly engage with others
within their assigned clusters, although intercommunity interactions remain present.

Metric Value Interpretation

In-degree assortativity = —0.0424 Weak disassortative mixing

Out-degree assortativity —0.0812 Weak disassortative mixing

Homophily 0.4732  Moderate-to-strong intra-community preference

Table 2: Summary of assortativity and homophily metrics.
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5 Discussion

The structural analysis of Bluesky’s follower-following network reveals several characteristics
commonly associated with centralized social platforms. Degree distributions are heavily skewed,
with a small number of users accumulating the vast majority of followers. Centrality metrics confirm
that influence is concentrated in a limited set of structurally dominant nodes, while clustering
and community detection indicate the formation of tightly knit local groups. Despite Bluesky’s
decentralized infrastructure, these patterns reflect the emergence of hierarchical ordering and
structural inequality. This chapter interprets the topological implications of the analysis, examines
how decentralization interacts with emergent centrality, and positions Bluesky’s network structure
in comparison with prior analyses of centralized platforms.

5.1 Topological Implications

The structural properties of the Bluesky follower-following network reveal that its decentralized
architecture does not eliminate the formation of hierarchy or concentrated influence. Despite the
absence of centralized recommendation systems or algorithmic ranking, the network’s degree distri-
butions are heavy-tailed. A small fraction of users accumulate over 175,000 followers while most
have very few. This reflects a classic power-law structure, with preferential attachment dynamics.
Similarly, the out-degree distribution follows a skewed pattern. Some users follow tens of thousands
of accounts, a behavior likely driven by strategic engagement practices intended to boost visibility.

Centrality measures reinforce this concentration of influence. Users with the highest PageRank
scores are not only those with high in-degree but are also followed by others who themselves hold
substantial centrality, reflecting the recursive nature of influence in the network. The PageRank
distribution reveals that centrality is highly unequal, with a small number of accounts exhibiting
disproportionately high scores. Closeness centrality results show that a small subset of users can
reach the rest of the network through relatively short paths, indicating their central positioning
within the overall topology. Betweenness centrality also identifies a limited group that functions as
critical intermediaries, connecting otherwise distant or disconnected clusters. The convergence of
these different centrality dimensions, visibility, reachability, and brokerage, shows that structural
dominance in the Bluesky network is not only present but multidimensional. This pattern is
further reinforced by the network’s slightly negative degree assortativity scores, which indicate that
highly connected nodes tend to form links with low-degree users rather than with each other. This
disassortative mixing strengthens hub-periphery dynamics and deepens the asymmetry in influence
distribution.

The community structure analysis further illustrates how localized cohesion coexists with broader
network segmentation. The Louvain algorithm partitioned the network into 14 distinct communities,
with a modularity score of 0.37, reflecting a moderate level of internal clustering. Community
sizes vary substantially, ranging from isolated clusters of just a few nodes to a dominant group
of more than 5,000 users. This distribution suggests that while users form tightly-knit groups,
the overall network maintains a loose modular configuration rather than sharp fragmentation
[ |. Clustering coefficients were highest among low-degree users, reinforcing the presence of
dense local triads in smaller sub-networks. The homophily coefficient of 0.47 further supports this
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pattern, indicating a moderate-to-strong preference for intracommunity connections. This tendency
strengthens internal cohesion but may reduce exposure to content or interactions originating outside
one’s immediate social group.

The network also exhibits strong small-world properties, remaining globally navigable. Reachability
analysis using snowball sampling confirms this, showing that most users can be reached within five
to seven hops from random starting points. This suggests relatively short average path lengths
throughout the network. Global connectivity is further supported by a giant weakly connected
component that includes 99.99% of sampled users | |. At the same time, a more nuanced
core-periphery structure becomes visible when directionality is considered. The largest strongly
connected component, comprising 85.38%, forms a mutually reachable core, while the remaining
users are positioned at the network’s periphery, likely experiencing more limited integration. Ul-
timately, although the system is technically decentralized, network access and content diffusion
appear largely mediated through this core of highly connected nodes.

In sum, the findings demonstrate that decentralization at the protocol level does not guarantee
egalitarian network structures. The topology of Bluesky replicates several properties associated with
centralized platforms, including concentrated visibility, network-driven hierarchy, and fragmented
but cohesive sub-communities. The absence of central control does not prevent the emergence of
structural power, which arises through user interaction dynamics and network effects.

5.2 Bluesky vs. Other Social Networks

As previously established, Bluesky’s follower-following network exhibits structural patterns com-
monly observed in centralized platforms such as Twitter. This section compares Bluesky’s network
structure to findings from Kwak et al.| ], Grandjean | ], and Myers et al.| ],
in order to assess whether decentralization meaningfully alters the topological outcomes typically
observed in large-scale social graphs.

The concentration of influence on Bluesky, as reflected in its heavy-tailed degree distributions and
sharply unequal centrality scores, closely mirrors the structure described by Kwak et al. | .
Their analysis of Twitter follow graph revealed that a small number of users received most incoming
connections, producing a pronounced power-law distribution. Bluesky exhibits a similar pattern,
with a few users dominating in-degree and PageRank centrality, while betweenness and closeness
metrics highlight their strategic roles as bridges within the network. Myers et al. | | found
weakly dissassortative degree correlations in Twitter’s graph, which is consistent with Bluesky’s
own negative assortativity values for both in-degree (-0.0424) and out-degree (-0.0812). These
values suggest the presence of a hub-periphery structure, where highly connected nodes tend to
attract links from peripheral users rather than from each other.

Community formation dynamics show additional similarities. Grandjean [ |, in his analysis of
Twitter’s digital humanities community, observed the emergence of modular subgroups based on
shared academic interests. Bluesky’s network structure follows a similar trajectory. The Louvain
algorithm identified 14 distinct communities, with a modularity score of 0.3716 and a homophily
coefficient of 0.4732. These results indicate that users have a tendency to cluster internally, favoring
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intracommunity connections over external ones. High clustering coefficients among low-degree users
also support the presence of dense, localized triads within the network. Such modular structures,
existing in both Bluesky and Twitter, seem to be an outcome of user interactions rather than a
feature dictated by the platforms’ underlying design.

Network connectivity and navigability also reflect similar properties. Kwak et al. [ | reported
that 99.97% of Twitter users were part of a single weakly connected component, while the largest
connected component was significantly smaller. Bluesky shows a near-identical structure, with
99.99% of the sampled users belonging to the WCC and 85.38% to the SCC. Snowball sampling on
Bluesky revealed that the majority of users could be reached within five to seven hops from random
seed nodes. While this figure is slightly higher than Twitter’s reported average path length of 4.12
[ ] and Grandjean’s community-level estimate of 2.29 | ], the result remains consistent
with the small-world property. Although snowball sampling and average path length measure
reachability differently, both reflect the network’s overall navigability. These findings suggest that
Bluesky, like Twitter, supports rapid information spread and efficient connection between users,
despite differences in platform architecture.

Overall, these comparisons suggest that decentralization at the protocol level does not inherently
reshape the emergent structure of large-scale social graphs. Bluesky mirrors key structural patterns
observed in centralized platforms like Twitter, including concentrated influence, modular community
formation, and a pronounced core-periphery topology. These findings raise broader questions about
the limits of decentralization as a corrective to structural inequality and segmentation in digital
social networks. These findings further imply that user-driven interaction dynamics may play a
more decisive role in shaping network structure than the underlying platform architecture.

22



6 Conclusions and Further Research

This thesis examined the structure of the Bluesky follower-following network to assess how decen-
tralized platforms evolve at scale and whether their topologies differ meaningfully from those of
centralized systems. While Bluesky operates without centralized control, its network architecture
exhibits features commonly associated with traditional social media platforms, such as highly visible
hubs and cohesive communities.

The results of this analysis point to an important distinction between decentralized design and
decentralized outcomes. Protocol-level decentralization does not automatically produce uniformly
distributed social structures. Instead, the findings suggest that even in the absence of centralized
recommendation systems, interaction dynamics, such as preferential attachment, visibility loops,
and localized clustering, continue to drive hierarchical and modular patterns. This challenges the
notion that decentralized protocols can exclusively mitigate the concentration of influence, similarly
observed on major social media platforms.

Although this study offers a snapshot of Bluesky’s early-stage network, it also highlights several
limitations and directions for future research. The analysis focused exclusively on the topological
features of the follower graph. Future work could incorporate temporal dynamics, interaction layers,
and content diffusion, extending beyond static connectivity to actual patterns of influence and
communication. One promising direction would be to combine structural analysis with content-based
engagement studies. For instance, Quelle & Bovet | ] show that the network structure can
reinforce exposure biases even without traditional algorithmic curation, highlighting how user-driven
sorting and platform design features together influence the dynamics of online discourse.

Looking beyond Bluesky, comparisons with other decentralized platforms such as Mastodon could
clarify whether the patterns observed here reflect something unique about Bluesky’s design or point
to more general trends in decentralized networks. This kind of research could help unpack how
platform architecture, governance, and user behavior interact to shape visibility and influence online.

In short, the findings presented here show that decentralization changes the architecture of control,
but not necessarily the structure of influence. Understanding how social networks form and stratify
in decentralized environments remains a critical challenge that requires further empirical, theoretical,
and design-focused research.
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