+ Universiteit
k4] Leiden

Master Computer Science

On the Application of State Space Models to
Partially Observable Markov Decision Processes

Name: T.J.W. van Gelooven
Student ID: 51853686
Date: 25/07/2025

Specialisation: Artificial Intelligence

1st supervisor: Dr. Thomas Moerland
2nd supervisor: Ir. A. Serra-Gomez

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

iii

Declaration of Authorship

I, TJ.W. van GELOOVEN, declare that this thesis titled, “On the Application of State
Space Models to Partially Observable Markov Decision Processes” and the work
presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed: é

Date:

25/07/2025

tom.v.gelooven@gmail.com
Signature

“We live in capitalism, its power seems inescapable but then, so did the divine right of kings.
Any human power can be resisted and changed by human beings. Resistance and change
often begin in art”

Ursula Le Guin

vii

LEIDEN UNIVERSITY

Abstract

Faculty of Science
LIACS

Master of Science

On the Application of State Space Models to Partially Observable Markov
Decision Processes

by T.J.W. van GELOOVEN

Modeling long-range temporal dependencies efficiently is a central challenge in rein-
forcement learning (RL), and is of particular importance in partially observable envi-
ronments. Structured State Space Models (SSMs), grounded in control theory, have
recently demonstrated state-of-the-art performance in sequence modeling tasks by
combining low inference latency with parallelizable training. In this work, we im-
plement several modern SSM variants, including LSSL and S5, and a SSM-inspired
streamlined GRU adaptation (minGRU). We evaluate the performance of SSMs in
partially observable on-policy RL tasks using Jax implementations of environments
from the POPGym benchmark suite and a custom long-memory environment, the
Memory Corridor. Our results show that S5 models match or exceed the perfor-
mance of GRU-based baselines while offering improved computational efficiency
and memory handling capabilities. These findings suggest that SSMs are a promis-
ing direction for sequence modeling in RL. We provide code at https://github.
com/Tom-v-G/SSMs-for-PO-RL

HTTPS://WWW.UNIVERSITEITLEIDEN.NL/
http://faculty.university.com
https://www.universiteitleiden.nl/wiskunde-en-natuurwetenschappen/informatica
https://github.com/Tom-v-G/SSMs-for-PO-RL
https://github.com/Tom-v-G/SSMs-for-PO-RL

Acknowledgements

I would like to express my sincere gratitude to the many people who have con-
tributed to the completion of this project, whether through guidance or through en-
couragement. First of all my thanks to Koen and Felix, who were instrumental in
shaping the project and without whose support and patience for my (many) ques-
tions neither a line of code nor a paragraph of text would have been written. Also
my thanks to Thomas, for providing insightful observations and giving constructive
feedback on my work, and to Jacopo, whose presence has always brightened my
day. Many thanks to the entire RL group for creating a welcoming and intellectually
stimulating environment. The paper discussions were always a pleasure to attend.
To my roommates, thank you for provding welcome distractions when they were
needed, and for creating a home I enjoy returning to. To my parents and brother,
thank you for your unconditional support which you have extended not only these
past few months but for as long as I can remember. I would also like to extend my
gratitude to myself, for only a few years ago I would not have had the mental for-
titude to see a project of this size through to the end. And finally, thank you, for
taking the time to read my work.

Contents

Declaration of Authorship

Abstract

Acknowledgements

1 Introduction

2 Background

21 StateSpaceModels L L o
2.1.1 DiscretizatonMethods

2.1.2 The Linear State Space Layer
Application to Deep Learning

Matrix initialisation

2.1.3 Diagonalizing the state matrix

214 ParallelScan

215 Mamba e

2.1.6 S5 . e

217 RelationtoRNNs

2.2 Reinforcement Learning
221 PPO. . . e

2.2.2 Partially Observable MDPs

223 PPOwithSSMs e

3 Related Work
3.1 Structured State SpaceModels. oo oL
32 SequencemodelsinRL
4 Experiments

41 Deep network Architecture
4.1.1 S5 .. e

412 minGRU e

413 Baselinemodels.

42 CodingLevel Decisions
4.3 Sensitivity AnalysisS5 Lo oo
4.4 Model Comparison Across Environments
45 Memorysizeefficiency L o oo

5 Results & Discussion
5.1 Hyperparameter Sensitivity,
5.2 Comparison Across Environments
53 Memory Capacity

xi

iii

vii

ix

Xii

6 Conclusion
6.1 Limitations and Future Work

Bibliography

A Sequential MNIST

Al Architectures.
A1 LSSLE . . . e
General Bilinear Transform

A2 S5 .. e e

A13 LSSLf-diag

A2 Hyperparameters,
A3 Results e

B Model Comparison on Individual Environments

35
36

39

43
43
43
44
45
45
46
48

49

xiii

List of Figures

2.1

2.2

2.3

4.1

4.2

51

52

53

54

SISO SSM design using two LSSLs and a linear mixing layer. The
input u is broadcast to the H parallel SSM kernels each instantiated
with a different sampling interval At. Activation functions are used
to introduce non-linearity. L 0L 6
MIMO SSM design. Each sequence element in u is encoded to a H di-
mensional feature vector on which sequence transformations are per-
formed. Feature mixing is performed within the sequence transfor-
mations. Seperate mixing layers are not required. Activation func-

tions are used to introduce non-linearity. 10
Agent-environment interaction loop in an MDP. Figure by Sutton, Barto,
etal 2018 12

Architecture of a residual S5 block. The first block requires a linear
encoder to cast the u € RI®! input to RY. Subsequent blocks do not
require an encoder. Non-linearity is introduced by the activation func-
Hon. . . o 24
Mean normalized returns on the NoisyStatelessCartpoleEasy environ-
ment for a S5 RL agent using action embedding (orange curve) and an
agent not using action embedding (blue curve). Results are averaged
over 5 runs. The shaded region represents the standard deviation over
theseruns. L 25

A comparison of S5 model performance on the NSCM (blue line) and
SCPE (orange line) environment. 50 models with different hyper-
parameter configurations were trained on both environments. The
curves show the percentage of models that are able to achieve a (nor-
malised) reward level in their respective environments. 29
Average S5 model runtime (top row) and maximum achieved reward
during evaluation (bottom row) during hyperparameter search on the
SCPE (left) and NSCM (right) environments. Both metrics are plotted
as a function of the amount of residual layers in the network architec-
ture and the dimension of the feature space (H). Standard deviations
of the results are displayed as black lines. 30
Mean evaluation rewards achieved by the S5, minGRU, GRU and FF
models (from best performing to worst performing) as a function of
environment steps achieved on the environments from the popjaxrl
suite. e e 31
Normalized MMER achieved by the S5, minGRU, GRU and FF mod-
els (from best performing to worst performing) as a function of envi-
ronment steps achieved on the environments from the popjaxrl suite.
The colored shaded regions denote standard deviations. 31

Xiv

55

5.6

57

Al
A2

A3

B.1
B.2

B.3

B.4

Comparison of S5 (full) and GRU (dashed) model performances on
the Memory Corridor environment for different latent dimension sizes.

Maxmimum achieved model performance on the Memory Corridor
environment for S5 and GRU models with different latent space di-
MENSIONS. . . .« v v vt et e e e e 32
Comparison of S5 models with hidden state size N = 8 (bottom) and
N = 256 (top) on the Memory Corridor. A single run of each model is
shown. 33

Architecture of a residual LSSLfblock. 44
Architecture of a residual S5 block. The first block requires a linear
encoder to cast the u € RI®l input to R¥. Subsequent blocks do not
require an encoder. Non-linearity is introduced by the activation func-

ton. . . . 45
SSM model training and valuation performance on the sSMNIST dataset
plotted as a functionofepochs. oo L. 48
Results on the Auto Encode and Battleship environments 50
Results on the Count Recall, Higher Lower and Multi Armed Bandit
environments 51
Results on the Multi Armed Bandit, Noisy Stateless CartPole, Repeat

First and Repeat Previous environments. 52

Results on the Repreat Previous environments 53

XV

List of Tables

4.1

4.2

51

Al

A2

A3

A4

Search space of the S5 model- and PPO hyperparameters on both the
SCPE and the NSCM environment. Hyperparameters are either logar-
itmically spaced, linearly spaced or of integer type. The steps column
refers to the amount of steps taken in the search space. If a hyperpa-
rameter is of integer type steps are taken by multiplying with a factor

Of 2. o e 26
PPO and S5 Hyperparameters used in the experiments of section 4.4
and section 4.5. 27

Comparison of final model performance and training runtimes on all
tested environments. Best achieved results are bolded. 32

Hyperparameters for the training of LSSLf on the sequential MNIST
dataset. Parameters were chosen to conform with the models used in
(Guetal,2021) e 46
Hyperparameters for the training of S5 on the sequential MNIST dataset.
Parameters were chosen to conform with the models used in (Smith,

Warrington, and Linderman, 2023). 46
Hyperparameters for the training of LSSL{-diag on the sequential MNIST
dataset 47

Model performance and runtime on the SMNIST dataset. Bold values
are the best achieved results. Models below the dashed line represent
the currentstate of theart. 48

List of Abbreviations

SSM
LTI
LSSL
LSSLf
HiPPO
NPLR
DPLR
PPO
MVM
MDP
POMDP
FF
GRU

Linear State Space Model

Linearly Time Invariant

Linear State Space Layer

Fixed Linear State Space Layer

Higher Order Polynomial Projection Operators
Normal Plus Low Rank

Diagonal Plus Low Rank

Proximal Policy Optimization

Matrix Vector Multiplication

Markov Decision Process

Partially Observable Markov Decision Process
Feed Forward

Gated Recurrent Unit

xvii

Xix

List of Symbols

~

PTARTOHRCSL Tz x e <>PUNT >

|

state matrix

input matrix

emission matrix

feedthrough matrix

discretized matrices
eigendecomposition of normal state matrix
eigenvalues of normal state matrix
input sequence

hidden/latent state

sequence length

hidden state dimension

feature dimension

MDP State Space

POMDP Observation Space
MDP Action Space

MDP Transition Function
POMDP Emission function
MDP Reward Function
MDP Discount Factor

RL Agent Policy

RL Agent Parameters

PPO Clipping Constant

Chapter 1

Introduction

One of the large problems in machine learning at the present time is modeling long
sequential datastreams in an efficient manner. Traditionally RNN’s (Rumelhart, Hin-
ton, Williams, et al., 1985), along with extensions such as LSTMs (Hochreiter and
Schmidhuber, 1997) and GRU’s (Cho et al., 2014), were employed. More recently,
Transformers have revolutionized the field with their attention-based mechanisms,
achieving state-of-the-art results on a wide range of benchmarks (Vaswani et al.,
2017). Transformers do however require significant computational power and are
limited in scalability to long sequence lengths. As a result, alternative architectures
continue to be explored. One promising direction is found in the structured state
space models (S5SMs). Recent works have shown that these foundational scientific
models, inspired by control theory and signal processing theory, can outperform
RNN- and Transformers-based models on even the most challenging sequence mod-
eling benchmarks, such as the Long Range Arena (Tay et al., 2021).

SSMs provide a mathematical framework, both in continuous- and discrete-time,
for modeling the evolution of a system over time by propagating system informa-
tion through latent states in a linearized manner. Notably, RNNs can be seen as a
special case of an SSM (Gu and Dao, 2024). While standard Transformer architec-
ture’s per step runtime scales quadratically with sequence length, SSMs maintain
constant memory and runtime per step, making them a more suitable option for
long-sequence tasks. Although RNNs and LSTMs have this same property, they
lack the parallelizable training capabilities enabled by the linear time-invariant (LTI)
structure of SSMs, instead relying on (sequential) backpropagation through time
(BPTT) for training. SSM based architectures might thus be poised to overtake
RNNSs, LSTMs and Transformers as the de facto choice for long-range sequence
learning.

The constant time complexity of SSMs during inference might be of benefit in
a reinforcement learning (RL) setting, where inference is repeatedly used to collect
rollout trajectories from the environment. Transformers generally have poor runtime
performance in RL tasks (Parisotto and Salakhutdinov, 2021). In contrast, RNNs
continue to be widely used in partially observable (PO) RL tasks, where memory
capacity and the ability to handle episodic boundaries via hidden state resets are
important. Recent work has proposed a modification to SSMs that allows for a sim-
ilar hidden state reset (Lu et al., 2023), making them suitable for RL as well.

In this work we implement and evaluate these next generation models in par-
tially observable RL environments using the JAX implementation of the Partially
Observable Process Gym (POPGym) (Lu et al., 2023), (Morad et al., 2023). Specifi-
cally, we implement several variants of the first-generation Linear State Space Layer

2 Chapter 1. Introduction

(LSSL) (Gu et al., 2021) and the later S5 architecture (Smith, Warrington, and Lin-
derman, 2023). LSSL variants include the LSSLf, which updates latent states using
fixed matrices optimized for online function approximation (Gu et al., 2020), regular
LSSL, which allows the update matrices to be trained with gradient descent, and
LSSLf-diag, a novel architecture which uses diagonalized update matrices in combi-
nation with parallel scan to efficiently compute latent states in a way similar to the
S5 model. We also implement minGRU, a SSM-inspired streamlined version of the
traditional gated recurrent unit (GRU) architecture that is fully parallelizable during
training (Feng et al., 2024). We compare the performance of SSM-based architec-
tures against baseline implementations to see if SSMs can replace older architectures
as the de facto choice for reinforcement learning tasks. Additionally, we also im-
plement the MemoryCorridor environment (Moerland et al., 2024) in Jax to test the
memory efficiency of SSMs in comparison to baseline models such as the GRU.

Concretely, our research questions are the following.
RQ 1 How sensitive are SSMs to hyperparameter tuning in the RL setting?
RQ 2 How does SSM performance compare to baseline models on PO RL tasks?

RQ 3 What is the influence of the latent space dimension on the effective context
window size of the model?

We find that while LSSL-based architectures are not suitable for RL tasks due
to their memory complexity, S5-based models outperform baseline models in the
partially observable RL setting in both performance (FF, GRU, minGRU) and speed
(GRU). When evaluating model performance, the sensitivity of the S5 architecture to
hyperparameters can vary depending on the environment. While individual tuning
per environment remains important, we have identified a hyperparameter configu-
ration that allows for reasonably consistent performance on most environments. In
the case of long-memory tasks we have found that performance is only limited by
model latent space dimensionality in the high-update regime.

The remainder of this work is structured as follows. Chapter 2 provides an exten-
sive background on the development of structured state space models, starting from
the linear state space layer (LSSL) up to the more recent Selective SSM architecture
(Mamba). This chapter also covers the adaptation of SSMs to reinforcement learn-
ing tasks. Readers who are already familiar with reinforcement learning and those
seeking only the essential background may wish to focus on section 2.1.1, section
2.1.2, section 2.1.4, section 2.1.6 and section 2.2.3. Chapter 3 discusses related work
on SSMs and on solving long-sequence RL problems. Next, chapter 4 presents our
experimental setup and the deep neural architecture used, followed by an analysis
of the experimental results in chapter 5. Finally, chapter 6 summarizes our findings,
discusses the limitations of our study and suggests directions for future work.

Our contributions include implementations of LSSL, LSSLf (Gu et al., 2021), LSSL{-
diag (own), S5 (Smith, Warrington, and Linderman, 2023), and minGRU (Feng et al.,
2024) models using the Equinox framework (Kidger and Garcia, 2021), together with
an implementation of the the MemoryCorridor environment (Moerland et al., 2024)
in the Gymnax framework (Lange, 2022) !.

LCode is available under the MIT license at https://github.com/Tom-v-G/SSMs-for-P0O-RL

https://github.com/Tom-v-G/SSMs-for-PO-RL

Chapter 2

Background

In this chapter we will explain how deep learning state space models (SSMs) can be
derived from their linear control theory counterparts. We will show how the appli-
cation of HiPPO matrices makes the use of SSMs a viable alternative to transformer
models for sequence learning. We summarize the history of the use of SSMs in deep
learning, starting from the linear state space layer, and discuss the different insights
and philosophies which have led to later models such as S5 and Mamba. We will
also introduce PPO, expand upon the (minor) extension of PPO to partially observ-
able Markov Decision Processes and explain the modification one can make to adapt
SSMs to the RL setting.

2.1 State Space Models

As mentioned above, the deep learning SSMs are derived from linear control the-
ory. Control theory is a mathematical field studying the problem of feedback control
design. Given an internally stable closed physical system, control theory tries to
design methods to make the influence of external disturbance inputs as small as
possible (Trentelman et al., 2002). As we will show, the linear systems used to de-
scribe problems in the control theory setting happen to hold a deep connection with
recurrent neural network architectures, allowing us to leverage much of the mathe-
matical tools developed by this field to the deep learning setting.

Control theory model systems as continuous ordinary differential equation. Sim-
ilarly, we define a linear, time-invariant, finite-dimensional state-space system (LTI
SSM) in the following way. Let u € RM be an input variable, x € RY be the (hidden)
state variable and y € R” be the output variable. The equations of the corresponding
control system are given by

x(t) = Ax(t) + Bu(t) (2.1)
y(t) = Cx(t) + Du(t) (2.2)

where A : RV - RV, B: RM - RN, C: RYN - RPand D : RM — RP are
linear maps (Trentelman et al., 2002). Note that this system is called time-invariant
because the maps A, B, C and D do not depend on t.

We can view this system of equations as mapping an input function u through
a hidden state x to an output function y, where equation 2.1 defines the differential
equation that governs the behaviour of the hidden state variable x and equation 2.2
describes the relation between the output, the state variable and the input variable.

4 Chapter 2. Background

To solve equation 2.1 and 2.2 numerically it is necessary to discretize the input,
hidden state and the linear maps. This being the case, any implementation of LTI
SSMs is not limited to continuous inputs, but can instead be used for any generic
sequence. Discretizing the LTI control system thus allows us to use it as a black-
box representation in a deep sequence model, where the linear maps are the model
parameters learned via gradient descent (Gu et al., 2021).

2.1.1 Discretizaton Methods

,,,,,

gether with a time sequence T = (t1)yeq1,.,1) such that u;, = u(t,). One can
think of T as points on which we sample the continuous function u. For the rest
of this chapter we will assume that u is sampled uniformly with a sampling rate
of At such that u;, = u(ty+ n - At) given a starting sample time f. To solve our
system of equations in the discretized case, we need to find valid approximations
of each x(t,). Note that for any differential equation x(tf) = f(t,x(f)), we have
X(tiv1) = x(t) + ftf”l f(s,x(s))ds by the fundamental theorem of calculus. The
system can thus be discretized by choosing an appropriate approximation of the in-
tegral on the right hand side of this equation. When using a linear approximation
scheme the discretized control system can be written as

x; = Axs_1 + Buy (2.3)
yt = Cx; + Duy (2.4)

where A and B are the (now) discretized state- and input matrices approximat-
ing the linear maps A and B over an interval At.

There are many different ways to discretize linear maps. Earlier SSM mod-
els used General Bilinear Transform (see appendix A). Later models use the Zero-
order Hold (ZOH) method. ZOH discretization, also called "Matched Z-transform
method", preserves system stability but keeps unstable poles and does not preserve
the time- or frequency response of the system it discretizates. Its implementation is
however fast, and it is unclear if the drawbacks of the ZOH method matter in the
deep learning setting. Equations for the ZOH method are given by

A =exp(At-A) B=A1A-1)-B. (2.5)

where the exponent is understood to be taken element-wise. Note that, for any
discretization scheme, A and B are the same for any ¢ as long as we assume a uniform
sampling rate. Note also the C and D do not need to be discretized, as they are not
part of a differential equation. Using equations 2.3 and 2.4 we have transformed
our continuous time system to a recurrent set of equations. We will see that this
recurrence allows us to train SSM models in a time-efficient manner thus allowing
us to use them for deep learning applications.

2.1. State Space Models 5

2.1.2 The Linear State Space Layer

The Linear State-Space Layer (LSSL) introduced by Gu et al., 2021 was the first ap-
plication of the state-space paradigm to deep learning models. They noted that the
linearized structure of the discretized SSM allowed for a recurrent network architec-
ture that could be trained efficiently without the use of backprogation through time.
The LSSL functions in the intersection of three paradigms, from each of which it can
benefit.

* The LSSL is based on an implicitly continuous-time based model family. By
discretizing with different timescales At the LSSL can work on differently / ir-
regularly sampled datapoints. This is of particular note in the audio processing
domain, where datasources with different sampling intervals are common.

e The LSSL is recurrent. Model inference can be applied efficiently and with an
unbounded context window.

¢ The LSSL can be trained convolutionally. Models can be trained by convolv-
ing the LSSL-kernel with sequence data. This allows for depthwise parallel
training based on local signals.

Whereas the first two of these statements can be inferred directly from the previ-
ous section, the last statement requires further justification. Given a sequence u and
initializing our hidden state to x_; = 0, equations 2.3 and 2.4 become

xo = Ax_1 + Buy = Buy yo = Cxg + Duy = CBug + Du
x1 = Axg+Bu; = ABug+Buy y;3 = Cxy + Duy = CABug + Buy + Dy

In general the k-th LSSL output is given by

xp = ABug + A" "Buy + - - - + ABuy_1 + Buy (2.6)
v = C(A)"Bug + C(A)* 'Buy 4 - - - + C(AB)uy_1 + CBuy + Duy. (2.7)

We can thus view the LSSL output as a (non-circular) convolution

y = K.(A,B,C) xu+ Du (2.8)
where K (A,B,C) = (Cxiﬁ)iem € R is called the Krylov function.

Application to Deep Learning

To use LSSLs in a deep learning model one instantiates many SSM kernels at once.
Each kernel is discretized with a different sampling interval At to detect different
features in the input data u. The amount of kernels, called the feature dimension
H, is a hyperparameter set by the user and depends on how many patterns one as-
sumes to detect in the signal 1. The sequence u is then simply broadcast to each of
the kernels. Since the main operation in each kernel consists of a convolution and a
linear mapping, each kernel can be run in parallel. Non-linear activation functions
are applied after the linear kernel operations. In a deep learning setting the output

6 Chapter 2. Background

Input
sequence

| L8SL(Atw) o A LSSLAt) o)
P 7 e R W ; .
g

linear mixing
layer

LSSL(Atmax) [~0 — LSSL(Atmay) [0~

FIGURE 2.1: SISO SSM design using two LSSLs and a linear mixing layer. The
input u is broadcast to the H parallel SSM kernels each instantiated with a different
sampling interval At. Activation functions are used to introduce non-linearity.

from the kernels can be mixed for feature interpolation. The paradigm of instantiat-
ing many parallel SSM kernels is colloquially refered to as single-input single-output
(SISO) method. Multiple LSSLs to be stacked and mixed with other layers to form a
deep architecture. See figure 2.1 for reference.

In theory, LSSLs can be trained efficiently, with quasi-linear time- and space com-
plexity ~ O(N + L) (Gu et al., 2021). In practice (i.e. using floating point arithmatic),
LSSL algorithms can be numerically unstable and require large amounts of memory.
There are two core issues. The first is the matrix-vector multiplication (MVM) with
the discretized state matrix. Matrix discretization requires calculating the inverse of
said matrix, which can be costly for non-specialized matrix forms. The second is that
computing the Krylov function requires taking L-th power of the matrix A, which
can result in unstable values and large computations.

To mitigate the issues mentioned above, Gu et al., 2021 also proposed the fixed
Linear State Space Layer (LSSLf). This model fixes the state matrix A, input matrix
B and sampling time At such that the Krylov functions can be precomputed save for
the factor C. This results in significantly faster training and inference speed. Given
proper matrix initialisations, the LSSLf model performs similarly, albeit slightly worse,
to the full LSSL model on pixel-by-pixel classification problems and vital-sign pre-
diction benchmarks.

Matrix initialisation

In practice, initialising an LSSL with a random state matrix A does not give rise to
an effective sequence model (Gu et al., 2021). The gradient landscape is too complex
too learn a suitable memory transition function within feasible timeframes. Gu et al.,
2020 set out to solve this problem by phrasing memory retention as a the problem
of online function approximation. Given a function f(t) : Ry — R, one can generate
a (finite) summary of f by projecting f onto a (finite) family of orthogonal poly-
nomials. The polynomial coefficients that most resemble the original function with
respect to a given measure are deemed optimal. The resulting high-order polyno-
mial projection operators (HiPPO) framework produces operators that can project
arbitrary function to the orthogonal polynomial basis in a recurrent fashion, thus al-
lowing incremental updates of the optimal polynomial coefficients on each timestep.

2.1. State Space Models 7

Gu et al., 2021 found that initialising A and B to projection matrices from the
HiPPO framework drastically improves performance. Depending on the measure
one chooses to optimize for, the values of the projection matrices change. A measure
can, for example, assign uniform weight to the a sliding window of the function
history or assign exponentially decaying weight to function history. The measure
we will focus on is the scaled Legendre measure (Leg-S) designed by Gu et al,,
2020. This measure assigns uniform weight to the entire function history. The Leg-S
projection matrices are given by

(2n+1)V2(2k+1)V2 ifn >k
Ay = n+1 ifn==k B, = (2n+1)"2 (2.9)
0 ifn <k

2.1.3 Diagonalizing the state matrix

While LSSLf model fixes the numeric instability issues plaguing the LSSL model,
the fact that the hidden state update equation 2.3 is no longer learnable is too large
a price to pay. The main bottleneck for any implementation of equation 2.3 are the
L succesive multiplications with A. Simplifying the structure of A can thus lead to
more efficient algorithms. The most obvious route is to diagonalize the state matrix
directly. As shown by Gu, Goel, and Ré, 2022, conjugation with a change of basis
matrix V is an equivalence relation on SSMs (A, B,C) ~ (V-!AV,V~1B,CV). Di-
agonalizing A would thus not incur any penalty in expressive power. However, to
diagonalize A one needs a change of basis matrix V with entries up to magnitude
24N/3 (Gu, Goel, and Ré, 2022). Direct diagonalization would thus lead to numerical
instability for any decently sized latent space dimension.

To circumvent this issue we can first construct the Normal plus Low Rank (NPLR)
form of A, which can be done for any HiPPO matrix according to theorem 1 of Gu,
Goel, and Ré, 2022. This form is given by

Apirpo = ANemal _ pQT — VAV — PQT = V(A — (V'P)(V*Q)*)V* (2.10)

where V € CN*N jg a4 unitary matrix, A € CN*Njsa diagonal matrix and P, Q €
RN*" are low-rank factorization matrices (r = 1 or r = 2 for all HiPPO matrices).
The right hand side of this equation shows that the normal matrix can be further
decomposed to generate a Diagonal plus Low Rank (DPLR) representation of the
HiPPO matrix. This result can be extended to show that the HiPPO-LegS matrix can
be written as (Goel et al., 2022)

ALegS = AII:]e(gén al— PLegSPEegS (2.11)
where
(m+D2k+1)2 n>k
At = — 03 n=k 2.12)
+D2k+ 1) n<k

)2, (2.13)

8 Chapter 2. Background

Note that the eigendecomposition of Aﬁ‘ggml results in a complex diagonal state
matrix A and change of basis matrix V with values that do not scale exponentially
w.r.t. the latent space dimension. Gupta, Gu, and Berant, 2022 have shown that
SSMs using only this diagonal component of the state matrix (disregarding the low
rank corrections) perform comparatively to SSMs instantiated with the full DPLR
state matrix form.

It should also be noted that the eigenvalues of the of the eigendecompositon for
a diagonalizable real matrix always occur in conjugate pairs. During training this
conjugate symmetry in A may be lost. Given that A is an approximation of the
(real-entried) LegS projection matrix, we can opt to enforce conjugate symmetry on
A during the training process effectively halving the number of used eigenvalues
and the latent space dimension.

This diagonal form can be incorporated into the LSSL and has been incorporated
into the later S4 model (Gupta, Gu, and Berant, 2022) with succes. The reduced mem-
ory complexity of the diagonalized state matrices also unlocked a previously un-
feasible path to increasing training speeds, reducing sequence transformation time
complexity of the next generation of SSMs from O(NL) to O(N log L) by replacing
convolutional computations with parallel scans.

2.1.4 Parallel Scan

Let o be a binary associative operatori.e. (aob)oc = ao (boc) with time complexity
T. Given a sequence [a1,4; ..., 4], the parallel scan algorithm computes the prefix
sum

[(11,0110(512,...,((110az,O---OElL)] (2.14)

in O(Tlog L) by computing intermediary results in parallel (Blelloch, 1990). Com-
pared to a sequential computation method, with time complexity O(TL), the com-
putational speed the parallel scan offers on long sequences cannot be overstated.

Recall that we are interested in computing the hidden state x; for each sequence
element 1. This hidden state is given by equation 2.6, repeated here for convenience.

x, = A'Bug + A "Buy + - + ABuy_1 + Buy

One can note that the computation of the hidden state uses only associative op-
erators (multiplications and additions with the matrices A and B). Any combination
of these operators will thus remain associative. Let us now define, for each sequence
element, the tuple ¢, = (cx1,¢k2) := (A, Buy) consisting of the state matrix and the
input matrix multiplied with uy. This sequence of tuples cy, ... c;—1 will be what the
parallel scan algorithm operator over. We define our operator as

ci®cj = (cj1®ci1, 1 @iz +Cjp) (2.15)

where ® denotes matrix multiplication. We see that, as the parallel scan progresses,
the first element in the tuple holds a power of the state matrix equal to the amount of
operations already performed. The second element in the tuple contains the (inter-
mediary) results of the hidden state computation we wish to perform. Many of these
computations can be performed in parallel. Note for example that in the following

2.1. State Space Models 9

computations
1 =coeci = (A Bug)e (A Bu) = (A", ABug + Buy)
g3 = cyec3 = (A, Bu) (A, Buz) = (A°, ABuy + Bus)
r3="r1eq43 = (K , —I—BM1) (A2,ABL£2+BL£3)
NN ﬁuo + A Buy + ABuy + Bus)

result r; and intermediary result g3 do not depend on one another and can be
computed in parallel. One can see that, given enough processors, for a sequence
of length L, only log, L intermediary steps are necessary. Note however that the
construction of the the tuples over which the algorithm operates requires O(LP)
space to store a copy of the state matrix for each element in the sequence, where P is
the space complexity of the state matrix. For a general state matrix this would result
in O(LN?) total space complexity, for a diagonal state matrix the space complexity
would be limited to O(LN) for each SSM kernel. As mentioned in 2.1.2, LSSLs are
instantiated with H unique SSM kernels, resulting in a O(HLN) space complexity
for each LSSL layer in the network. Given that feature sizes values of 128 or 256 are
not uncommon, the memory requirements for a parallel scan implementation of the
LSSL can quickly become unmanagable. See appendix A for a further discussion of
this point. To overcome these memory issues two different approaches have been
tried.

2.1.5 Mamba

Mamba, proposed by the same author who has conducted previous research on
HiPPO-matrices and the LSSL, solves the memory issues using hardware-aware
state expansion. Instead of preparing the scan input (A, B) in GPU high-bandwith
memory, the SSM parameters (A, A, B, C) are loaded directly into GPU SRAM, where
discretization and recurrence are performed (Gu and Dao, 2024). Only the final out-
put of O(LH) is written back into HBM. During training intermediary states are not
stored, but instead recomputed in the backwards pass, which significantly reduces
memory requirements.

Furthermore, Mamba introduces a selection mechanism to SSM architectures
which can be thought of as a linear time complexity variant of the attention mecha-
nism in the transformer. The B, C and At parameters are replaced with dense input
dependent linear layers

B:R' > REx RN u — sp(u) (2.16)
C: Rl — RE xRN u > sc(u) (2.17)
At: Rl — RE x RH u— (0 +s5(u)) (2.18)

where sg(u) = Lineary(u), sc(u) = Lineary(u), sp(u) = Broadcasty(Linear; (u)),
7(x) = In(1 + €¥) (softplus) and 6 € RF x R a set of parameters trained directly
via gradient descent. With these changes the matrices B and C used in the recurrent
computations are no longer static along sequence length, but can vary depending on
the provided input sequence. Together with the input dependence of At the selective
SSM no longer represents an LTI system. Convolutional training methods thus no
longer apply. We can however use the parallel scan method introduced in section
2.1.4. The benefit of introducing the selection mechanism is that, with selection,

10 Chapter 2. Background

SSMs can handle irregularly spaced sequential data in a natural way. Also, as we
will elaborate on in section 2.1.7, discretized SSMs with a selection mechanism are a
generalization of the heuristic gating mechanism employed in RNNs. The selection
mechanism thus allows for the ignoring of irrelevant inputs, something previous
SSMs could not do.

2.1.6 S5

The second approach to overcoming the memory issues encountered in earlier SSMs
involves densifying the parameter matrices. Where LSSL, 5S4 and Mamba use an en-
semble of many linear single-input, single-output (SISO) SSMs together with non-
linear mixing layers, Smith, Warrington, and Linderman, 2023 instead opted to use
a single multi-input, multi-output (MIMO) SSM. The model used a reduced latent
state size of P < NH, operating over an input- and output dimension of size H.
Rather than broadcasting a single input u across H seperate SSMs, each sequence
element is encoded into a H-dimensional vector on which the SSM operates as a
whole. This approach resulted in the S5 layer. See figure 2.2 for reference.

The S5 layer uses a diagonalized state matrix and feedthrough matrix together
with full B and C matrices. The learnable parameters of an S5 layer are thus given
by diag(A) € C?, B € CP*H,C € CH*P, diag(D) € RH, and At € RP. The S5 layer
uses parallel scan to compute its recurrences. First, each of the P rows in A and
B are discretized with its corresponding row element from At. We then construct
a sequence of tuples (A, Buy) kelo.L—1) and use parallel scan to compute the latent
states X = (xg)ke[o.—1] given by equation 2.6 with the use of the binary operator
of equation 2.15. y is now computed similarly to equation 2.7 by multiplying each
element in the sequence of x with C and adding Du.

Instead of H seperate latent states x for each independent SISO SSMs, we now
have only one latent state for the entire MIMO SSM. Feature mixing now occurs via
the input matrix B and the emission matrix C. The final S5 layer output is given
by applying a non-linearity to y. Note that the S5 layer does not employ a selection
mechanism. The matrices B, C and At are, as before, optimized directly.

Input
sequence

Ur1| ... (UL
sequence

Ul | ... (UL] 7 — —@— —@-- transformation

ui,H| ... UL.H encoding
layer

o activation
function

FIGURE 2.2: MIMO SSM design. Each sequence element in u is en-
coded to a H dimensional feature vector on which sequence trans-
formations are performed. Feature mixing is performed within the
sequence transformations. Seperate mixing layers are not required.
Activation functions are used to introduce non-linearity.

2.1. State Space Models 11

2.1.7 Relation to RNNs

Recurrent neural networks were the first type of sequence model to use a hidden
state to capture temporal dependencies across timesteps (Elman, 1990). Given a la-
tent space dimension of N, the recurrent equations capturing temporal dependency
of the hidden state x on the input u are given by

x; = g(Lineary(x;_1) + Lineary (u;) + b) (2.19)

where Linear denotes a linear projection layer to N dimensions, b denotes a bias
term and ¢ denotes an activation function (traditionally a sigmoid or tanh). Vanilla
RNN s struggle with vanishing and exploding gradients, which limit their use in
long-term sequence analysis. Long-short-term memory units (LSTMs) and gated
recurrent units (GRUs) were developed to overcome these challenges. GRUs sim-
plified the heuristic gating mechanism employed by LSTMs that were introduced to
greatly reduced the problem of vanishing gradients (Chung et al., 2014). Equations
for the GRU are given by

z; = o(Lineary ([us, xt—1]))

r; = o(Lineary ([us, x;—1]))

%¢ = tanh(Lineary ([ut, rr © x4-1]))
xt=(1—2z) Oxp_1+2: O %

where the update gate z; controls the balance between the preservation of previous
hidden states and the inclusion of new information and the reset gate r; controls
which information is used in computing the to-be-added hidden state.

Due to the explicit dependence of the GRU on both the input and the previous
hidden state for its gating computations, the GRU is only trainable using backprop-
agation through time (BPTT). Thus, training times scale (at least) linearly with se-
quence length, reducing the efficacy of these models for long-context tasks.

Inspired to adapt the parallel prefix scan algorithm to RNN architectures, Feng
et al., 2024 created minGRU, a minimal variant of the traditional GRU architecture
which foregoes the dependence of the gating mechanisms on previous hidden states.
The hidden state is instead updated as

z; = o(Lineary (u;)) (2.20)
X; = Lineary (u;) (2.21)
xt=(1-2z) Ox-1+2 O% (2.22)

The minimal GRU variant is significantly more efficient in term of parameter
count, training time and memory usage.

As mentioned in section 2.1.5, the discretization of selective SSMs can be seen
as the principled foundation of the heuristic gating mechanism employed by RNNs.
An illustrative proof was given by Gu and Dao, 2024. Suppose we are given an
SSMwith N =1, A = —1, B = 1, sp(u) = Linear(u) and 7(x) = In(1 4 ¢*). The
discretization step size is then given by

At =1In(1 4+ exp(6 + Lineary(u)) = In(1 + exp(Lineary(u)) (2.23)

12 Chapter 2. Background

where in the 1-dimensional case the learnable parameter 6 can be viewed as a bias
of the linear projection on u. Discretizing the state- and input matrix with ZOH
discretization we find

_ 1

A =exp(At-A) = T+ exp (Linearn (u)) = o(—Lineary(u))
=1—c(Lineary(u)) (2.24)

B=A"'(A-1) B =c(Lineary(u)) (2.25)

Applying these results to equation 2.3 with single step recurrence we find that

g+ = o(Lineary (u¢)) (2.26)
Xt = (1 — gt)xt_l +gt c Uy (227)

which is exactly the hidden state update equation 2.22 of the minGRU. More gener-
ally, the relation between equation 2.19 and 2.3 is clear and, depending on the chosen
selection mechanism, classic GRU and LSTM gating mechanisms can be recovered.

2.2 Reinforcement Learning

The field of reinforcement learning concerns itself with the study of sequential deci-
sion problems in dynamic, stochastic environments. Reinforcement learning models
the sequential decision problems as Markov Decision Processes (MDPs), formally

denoted by the tuple (S, A, T,r, 7).
state reward action

s, | |R, A
Rlvl
_S.. | Environment

FIGURE 2.3: Agent-environment interaction loop in an MDP. Figure
by Sutton, Barto, et al., 2018

The MDP, often referred to as the environment, consists of a set of states S. Upon
taking an action 2 € A in a state, the transition function T : S x A xS — [0,1]
denotes the probability of reaches a state s’ from s by taking that action. Notably,
for any state s’, this transition probability only depends on the current state and
the taken action. Previous states of the environment can be disregarded. We thus
assume that the states conform to the Markov Property. The environment includes
a reward function ¥ : § x A xS — R that determines the reward one receives
upon transition from state s to state s’ by taking action a. The solution to an MDP
is the sequence of actions that maximizes the total received reward until either the
environment terminates or a set numbers of steps is reached. An agent is thus tasked
with optimizing a policy 7 : S — A that determines the best course of action in each
state to maximize rewards. Note that in the reinforcement learning setting, the agent
does not have explicit access to either the transition function or the reward function.

2.2. Reinforcement Learning 13

Suppose we are at timestep t in an MDP. We can define the discounted return of
a state as the trace of its future rewards

N
Gr= Y " (2.28)
k=t+1

where N is the amount of timesteps for which the agent is active (can be infinite),
1 is the reward received on step k, and 7 is the discount factor for future rewards.
The discounted return an agent receives from a state depends both on the actions the
agent takes and the (stochastic) transition function. Thus, to find an optimal policy,
we should average the discounted return over all possible traces. We thus define the
value function V for a state as

Vﬂ(s) = IEuNH;s’NT[Gt|St = 5]'

where the expectation is taken over all possible transition states s’, given that we
take actions a from policy 7. A similar quantity can be defined to denote expected
return for each state-action pair

Qxr(s,a) =Equps~1[Gt|st =s,a; = a].

The explicit goal of reinforcement learning is to find a policy that maximizes the
average total return over an episode

N
](T[) =]ann;s’NT [E ’Ytrt] .

t=0

Using the Bellman equation, we can calculate the value of each state by repeat-
edly iterating over the state space, updating values based on the attained reward
and the (discounted) values of the achievable states

Va(s) = Bopsnt|r + 7 Vr(s)]. (2.29)

The runtime of such a dynamic programming method scales exponentially with
the dimension of the state space and is as such not feasible for any sufficiently com-
plex problem. Statistical methods using monte-carlo sampling and/or temporal dif-
ference learning were required. Many different algorithms have been developed,
tried and tested. Earlier value-based methods such as Q-learning and SARSA tried
to directly optimize the value functions. Other policy-gradient methods such as
REINFORCE instead relied on directly updating the (parametrized) policy by per-
forming gradient ascent with respect to the total return J. Later methods combined
both approaches to create actor-critic style algorithms, where an implicit policy is
updated based on an explicit value function. PPO is such a method.

22.1 PPO

Proximal Policy Optimization (PPO) is a simplified adaptation of Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015) with empirically proven better sample
complexity and runtime (Schulman et al., 2017). As other policy gradient methods,

14 Chapter 2. Background

PPO assumes a parametrized policy 7y and computes an estimator of the policy
gradient with respect to its parameters

§ = Ef[V@ log TTg (at|st)At] (230)

which can be used to perform stochastic gradient ascent. Note that the mathe-
matical expectation is now replaced with an estimated expectation over time. PPO
uses Generalized Advantage Estimation (GAE). In the equation above Ay is an esti-
mator of an exponentially reweighed average of all possible N-step returns, which
is computed using the temporal difference of a parametrized value function V,,

Ap =84 (YA)oria + - + (YN oy (2.31)

where 8¢ = 1 + YV (s141) — Vi (st).

Simply using ¢ to perform gradient updates results in destructively large policy
updates (Schulman et al., 2017). Whereas TRPO constrained policy updates explic-
itly with respect to a surrogate objective (denoted as conservative policy iteration)
given by

LCPI(9) = [m’(”f‘sf)fi], 232
<) t nf)old(at|st) t ()

PPO instead clips policy changes to prevent catastrophically large updates. The
main objective proposed by PPO is

7'(9(’1(t|5‘t)) ’At
LMP(9) = E; |min "o 115 . 2.33
() t 1 Clip(7'[9([1,‘51}) ,1_€’1+€) ~At ()

Torq (15t)

where € is the PPO clipping constant. We can see that the PPO objective, by tak-
ing their minimum, becomes a lower bound of the unconstrained and the clipped
objective. The value function of the critic is updated using the squared error loss
between the estimated value of a state and the observed cumulative reward from
the collected trajectory. To compromise between variance and bias the latter of these
values is often computed using the bootstrapped advantage estimate and a target
network.

LYF(0) = Iy [Vo(st) — (Ar + Vayy(s)]” (234)

The trade-off between exploration and exploitation of the network can be influ-
enced by adding a bonus entropy loss given by

L7(0) =& [H(0)] = E; | — Y mo(alst) log(mg(alst)) (2.35)

a

where the summation is replaced with an integral in a continuous action envi-
ronment.

2.2. Reinforcement Learning 15

Noting that we are performing gradient ascent, the total PPO loss is given by
L:(0) = LY (0) — 1 LVE(0) + c, LM (6) (2.36)

where the value coefficient c; and the entropy coefficient ¢, are tunable hyper-
parameters. PPO is an on-policy RL algorithm. During training trajectory rollouts
tuples of (at the minimum) observations, taken actions, rewards and episode bound-
aries (0,4a,r,d) are collected using the current network policy. Based on these roll-
outs, the network is trained using the loss function from equation 2.36. Tricks such
as minibatching and repeated batch updating can be readily integrated. See algo-
rithm box 1 for an overview.

Algorithm 1: Proximal Policy Optimization

input : MDP (S, A, T, r,), #iterations I, #environments N, #steps M,
#minibatches B, update-epochs K, learning rate 5
output: policy 71y

1 Initialize 6,4
2 fori< 1toldo

3 forn <— 1to N, using 6, do
4 Collect trajectory rollout (o, ar, rt,dt)sc 1, m}
5 Compute advantages Ay, ... Ay
6 end
7 Create B minibatches of length L suchthat B-L < N-M
8 forb < 1to Bdo
9 fork +— 1to Kdo
10 0 0+n-VoLl(0)
11 Gold — 0
12 end
13 end
14 end

2.2.2 Partially Observable MDPs

The reinforcement learning methods mentioned above require the agent to have ac-
cess to the full state of the environment. In many real world applications this is not
the case. Such problems can instead be modeled as partially observable markov de-
cision processes (POMDDPs). Instead of receiving the full state, an agent receives an
observation about the current state, which may be limited in scope. Note that the
markov property still holds for the environment, but does not hold for the observa-
tions the agent receives.

We will define an episodic stochastic POMDP as a tuple (S,), A, T, O, r,y) with
(now latent) state space S, observation space), action space A, transition function
T:SxAxS — [0,1], emission function O : § x YV — [0,1], reward function
r:SxAxS — R, and discount factor . The emission function maps a state-
observation pair to the likelihood of receiving that observation in the current state.
Note that the information an agent receives from a state is thus no longer necessarily
unique, as the same observation can have a non-zero chance of being emitted in
multiple states.

16 Chapter 2. Background

To extend PPO to partially observable MDPs, equations 2.30, 2.33, 2.34 and 2.35
and derivatives need to be updated to reflect their dependence on observations in-
stead of states. While formal guarantees about the effectiveness of extending PPO
to POMDPs are limited, some work has been done on extending PPO to episodic
POMDPs (Azizzadenesheli, Yue, and Anandkumar, 2020). In practice, training re-
current network architectures on PO problems with PPO can give good results (Raf-
fin et al., 2021). The only change necessary to adapt PPO for recurrent networks is
to initialize and store the hidden states of the networks. During trajectory rollout
the hidden state /1 should thus be added to the tuple (%, 0, 4,7, d). During advantage
estimation the hidden states of networks should be recomputed together with the
values of subsequent states.

2.2.3 PPO with SSMs

Most implementations of PPO use a static rollout length. A trajectory might thus
contain episode boundaries. Convolutionally trained SSMs have trouble dealing
with these episode boundaries. While ‘done’-signals can be encoded into the obser-
vation fed to the SSM, hidden states cannot be reset midway into a sequence during
training without a selection mechanism. LSSL- and 5S4 based architectures are thus
ill equiped in the RL setting. Variable length rollouts, on the other hand, are not eas-
ily paralellizable and might incur significant runtime overhead. Lu et al., 2023 have
found a way to circumvent the issue of hidden state resets by cleverly adapting the
binary operator used in the parallel scan algorithm. By redefining the parallel scan
tuples to include the environment done signal ¢ = (ck1,ck2,ck3) = (A, Buy, dy),
the operator from equation 2.15 can be replaced with

cec i d (Ca®@cin e @catccis) ifes=0 (2.37)
!] (lel,C]'IZ, C]',g) If C]',3 =1)

After the parallel scan has concluded the second tuple element contains the hidden
state associated with each sequence element. If no episode boundary is encountered
the binary operator is computed as normal. If an episode boundary is encountered,
the hidden state of the SSM is reset and the information from previous inputs is
discarded. Suppose for example that we are given a sequence u = (ug, 1y, u2) such
that we encounter an episode boundary between 1y and u;. The done signals from
the environment would then be given by d = (0,1,0). Constructing our tuples and
solving equation 2.37 yields

We can observe that all sequence information from before the episode boundary
is discarded. This simple change allows any SSM using the parallel scan algorithm
to work natively on RL problems.

SSMs with a selection mechanism might be able to forego this change in binary
operator. As mentioned in section 2.1.5, SSMs with a selection mechanism are in

2.2. Reinforcement Learning 17

principle able to learn heuristic gating mechanism. If the done signal of an environ-
ment is provided as part of the observation, a selective SSM could in theory learn
to increase the timestep parameter At — oo such that the hidden state computed
from earlier sequence elements are effectively discarded when a done signal is en-
countered. This allows for the handling of episode boundaries in a generic, non-
hardcoded way. Selective SSMs might thus be utilized in RL with minimal changes
in architecture.

19

Chapter 3

Related Work

In this chapter we cover existing research on SSMs, providing a condensed timeline
of the evolution of these models. An in depth discussion of the SSMs can be found
in the previous chapter. We also highlight previous work on the use of sequence
models in reinforcement learning, which problems they solved and which problems
are still open.

3.1 Structured State Space Models

The use of structed state space models in deep learning is a recent development,
starting only this decade. Starting in 2020, Gu et al., 2020 introduced HiPPO matri-
ces, formulating a family of structured state space models that can efficiently rep-
resent continuous-time dynamics in a discretized manner. Building upon this work
the Linear State Space Layer was the first SSM-based architecture that could be incor-
porated into existing neural networks as a standalone layer (Gu et al., 2021). LSSLs
can be trained with global convolutions, allowing parallel training on sequential in-
formation. Inference can be done in a recurrent manner, using constant memory and
runtime per query. These properties make SSM-based architectures an interesting
replacement for transformers. However, LSSLs can suffer from numerical instability
and high memory usage. Two approaches to solving this issue have been tried.

The first approach used fourier transforms and a combination of three convolu-
tional kernels together with a special class of diagonal-plus-low-rank state matrices
to streamline computations, resulting in the S4 architecture (Gu, Goel, and Ré, 2022).
Due to its increased efficiency and memory capacity, S4 was able to achieve state of
the art results on the Long Range Arena benchmark (Tay et al., 2021) and was the
first model to solve the 16k length Path-X problem. The S4 architecture has since
been refined, streamlining the state matrices to a diagonal form without conceding
much expressive power (Gupta, Gu, and Berant, 2022) (Gu et al., 2022).

The reduced memory usage from diagonal state matrices allowed Smith, War-
rington, and Linderman, 2023 to create the S5 model, which, as an alternate ap-
proach, switched from using global convolutions during training to using a parallel
scan algorithm (Blelloch, 1990). This reduced forward pass time complexity of a se-
quential datastream of length L from O(L) to O(log L). Whereas previous models
used single-input-single-output (SISO) SSMs for each feature in the data, S5 used a
linear encoder with a single multi-input-multi-output (MIMO) SSM, which greatly
reduced memory usage as only one SSM needs to be instantiated per layer. Later
work by Gu and Dao, 2024 kept the SISO design but instead loosened the imposed
LTI restriction on the SSM.

20 Chapter 3. Related Work

The so called Selective Scan State Space Model (56) introduced a selection mecha-
nism which allowed the SSM parameters to vary based on the input to the model. As
an example, whereas previous models discretized with the same timestep regardless
of input, S6 could vary this timestep allowing for variable input spacing and context
filtering. Gu and Dao, 2024 argue that the selection mechanism is the principled
foundation of heuristic gating mechanism found in Recurrent Neural Networks. To-
gether with a hardware-aware state expansion mechanism the S6 based architecture
Mamba has become a popular choice for long-sequence tasks. The architecture has
since been refined to for even greater speed-ups (Dao and Gu, 2024) and has been
succesfully applied in a variety of domains including audio processing, text process-
ing and medical imaging (Bansal et al., 2024).

3.2 Sequence models in RL

The development of efficient sequence models is of great importance for reinforce-
ment learning, as sequence modeling has played an increasingly important role in
settings where partial observability, long-term dependencies and memory are criti-
cal. Recurrent Neural Networks (RNNs) were among the earliest sequence models
used in RL. Hausknecht and Stone, 2015 introduced Deep Recurrent Q-Networks
(DRQNs), demonstrating that RNNs can effectively handle partial observability by
maintaining a hidden memory state over time. LSTMs and GRUs have since become
common in partially observable RL, particularly in domains like robotics, naviga-
tion, and dialogue systems (Heess et al., 2015). However, these recurrent approaches
train via backpropagation-through-time (BPTT), which results in training times scal-
ing with sequence length and gives rise to issues such as vanishing gradient prob-
lems. Other methods such as encoding reinforcement learning algorithms directly
in the weights of an RNN (Duan et al., 2016) have seen limited success.

Transformers, originally designed for natural language processing, have recently
been adopted in RL due to their ability to model long-range dependencies without
recurrence. Notable examples include the decision transformer (DT) (Chen et al,,
2021), which casts the problem of RL as conditional sequence modeling. DT did not
use value functions or policy gradients, instead opting to output optimal actions by
using a causally masked transformer conditioned on the desired reward, past states
and actions. The core idea of integrating as much as possible of the trajectory opti-
mization pipeline into the modeling problem has since been extended to diffusion
models (Janner et al., 2022) and has been generalized to meta-RL (Lee et al., 2022),
(Kirsch et al., 2024). Other research instead opted to use employ sequence models to
learn latent state representations of the RL environments while keeping in line with
traditional value- and policy based RL methods. Earlier RNN based world models
(Ha and Schmidhuber, 2018) have been successfully extended to use transformers
(Chen et al., 2022). The combination of world model learning and actor critic learn-
ing has allowed for general algorithms that can outperform even specialized meth-
ods across a wide variety of tasks, even being able to collect diamonds in Minecraft
from scratch without human data or curriculum learning (Hafner et al., 2023).

SSMs, combining the inferential efficiency of recurrent approaches with the se-
quence modeling power of transformers have been tested in reinforcement learning
settings with some success in both In-Context-RL (Lu et al., 2023) and offline RL
(Bar-David et al., 2023). Whereas Morad et al., 2023 have found that naively using

3.2. Sequence models in RL 21

S4 models in POMDPs did not perform well, other recent works have shown that
S4 (Bar-David et al., 2023) and Mamba (Ota, 2024) based models can outperform de-
cision transformer on a variety of benchmarks. As of now finetuning task-specific
SSM models seems a necessity. Larger model scales, improvements to the parallel
scan operators and selection mechanism employed by SSMs might however change
this.

While SSMs continue to gain popularity in the RL domain, little is known about
their performance in the single-environment on-policy setting. Effort has thus far
been mostly expended on their application to meta-learning and their use as autore-
gressive models which can be conditioned on desired returns. In the coming chap-
ters we will therefore study how SSMs perform on POMDPs compared to baseline
methods when trained using a policy gradient method.

23

Chapter 4

Experiments

As discussed in the previous chapters, the generic sequence-to-sequence modelling
capabilities of SSMs are promising for next-generation text, image, video and au-
dio processing tools. The recurrent structure of SSMs also allows us to apply these
models to POMDPs, where generalizing over multiple observations can significantly
improve model performance. To study the performance of SSMs in the reinforce-
ment learning setting we have implemented LSSL(f)-, and S5-based architectures.
The LSSL(f) architectures have been implemented both in the spirit of the original
implementation (Gu et al., 2021) using Krylov functions and convolutional training
schemes, and in a diagonalized fashion using parallel scan. We will refer to the latter
implementation as LSSLf-diag. We have also implemented a minGRU-based archi-
tecture (Feng et al., 2024) capable of using parallel scan.

To test the validity of the SSM implementations we have first implemented clas-
sification models using the same core architectures and tested their performance
on the the sequential MNIST dataset. Implementation details and results can be
found in appendix A. In the classification setting both LSSLf- and S5 based architec-
tures show good generalization capacities, converging to optimal performance on
the training and test data. However, the LSSLf-diag implementation was severely
limited by the amount of available GPU memory. Architectures with a feature di-
mension H > 32 could not be run locally. As mentioned in section 2.2.3, the Krylov
function based approach to SSM implementations will not translate well to rein-
forcement learning problems, since these models are not able to handle environment
resets. We have thus decided to focus the experiments on the performance of the S5
architecture. Section 4.3 details the hyperparameter search conducted to find an op-
timal configuration. In section 4.4 this configuration is compared and contrasted
with baseline models on a variety of partially observable environments. We con-
clude with an extensive study of the impact of the latent space dimension on the
capability of S5-based models to memorize important information. First however,
we will describe the deep network architecture we have adopted for these experi-
ments and discuss the coding level decision which we have found were required to
create performant models.

4.1 Deep network Architecture

For the experiments we use an actor-critic style architecture where different sequence
transformation layers can be used as drop-in replacements. Care has been taken to
design an architecture which works efficiently during both inference and training.

24 Chapter 4. Experiments

During the PPO training loop, many vectorized environments will be run in paral-
lel for rollout collection. After rollout collection the data from the environments is
divided into minibatches on which the model is trained sequentially.

411 S5

The S5 based architecture changes the interleaved broadcasting layer used in the
LSSL-based models to a linear encoding layer. This layer encodes the transition
minibatch observations to shape (L, H) where L denotes the sequence length and
H the encoded feature dimension. This encoded observation sequence is fed to a
sequence of residual blocks (He et al., 2016) consisting of an S5 SSM, a non-linear ac-
tivation function, a dropout layer, a residual connection and a (layer) normalization.
Note that each block has its own S5 SSM with a separate hidden state. See figure
4.1 for a schematic overview. The residual blocks can be chained indefinitely. The
output from these blocks is fed to a feedforward (FF) actor- and critic head.

Residual S5 block

S5 dropout layernorm

Linear
encoder

sequence
transformation

utility layer

- fo8

A
AN

feedforward
layer

@ activation
function
residual
connection

FIGURE 4.1: Architecture of a residual S5 block. The first block re-

quires a linear encoder to cast the u € R/l input to R”. Subsequent

blocks do not require an encoder. Non-linearity is introduced by the
activation function.

4.1.2 minGRU

The minGRU architecture resembles the S5 architecture. Sequences are encoded and
fed to a series of residual blocks consisting of an minGRU layer, a non-linear activa-
tion function, a dropout layer, a residual connection and layer normalization. Note
however that, as can be inferred from equations 2.20 to 2.22, a minGRU layer returns
an output of dimensions (L, N), not one of size (L, H) as the S5 model would. This
is accounted for in the encoding. The last hidden state computed by each minGRU
block is stored and used in subsequent model calls.

4.2. Coding Level Decisions 25

4.1.3 Baseline models

As baseline models we employ a Gated Recurrent Unit (GRU) (Chung et al., 2014)
and a traditional feedforward actor critic network. The GRU uses the same hidden
state dimension as the S5 model and an FF actor- and critic head. The fully FF model
consists solely of an actor- and critic head (no sequence transformations).

4.2 Coding Level Decisions

As mentioned in appendix A, several concessions to generality were required to
create performant S5-based SSM models. Foremost, a necessity discovered indepen-
dently from Gupta, Gu, and Berant, 2022, the real values of A were restricted to to the
negative plane. Positive real values can incur numerical instabilities, particularly for
long sequence lengths. This is due to the fact that the state dynamics governing SSM
behaviour contain exponential functions. Consider that the ansatz solution to a con-
tinuous differential equation of the form x(t) = Ax(t) is given by x(t) = . Any
eigenvalues with positive real parts would thus be amplified exponentially along
the sequence dimension.

On the other hand, the discretization timesteps At, in line with their physical in-
terpretation, were restricted to positive values. This in turn prevents undefined be-
haviour. In line with findings by Smith, Warrington, and Linderman, 2023, weight
decay was employed on the C and D matrix. This significantly impacted model
learning. Furthermore, the addition of dropout and layer normalization and the use
of a residual connection were hugely beneficial in the classification setting. While
layer normalization and residual connections are seen in other works on the appli-
cation of SSMs in RL (Lu et al., 2023), the use of dropout is less entrenched.

One of the most influential engineering decisions, found in the works of Lu et al.,
2023, was the addition of an action embedding wrapper for the tested environments.
This wrapper adds the last taken action (or a flag for the start of a new episode) to
the observation fed to the model. As can be seen in figure 4.2, the addition of this
wrapper can be the difference between almost perfect performance and comparative
underperformance.

NoisyStatelessCartpole Easy Action Embedding Comparison

0.8

021 —— no action embedding

action embedding

0:0 0:5].:0 l.‘5 2:0 2:5 3.‘0
Environment steps 1e6
FIGURE 4.2: Mean normalized returns on the NoisyStatelessCart-
poleEasy environment for a S5 RL agent using action embedding (or-
ange curve) and an agent not using action embedding (blue curve).
Results are averaged over 5 runs. The shaded region represents the
standard deviation over these runs.

26 Chapter 4. Experiments

As mentioned in section 2.1.3, enforcing conjugate symmetry during training
allows us save a large amount of memory during training. We have thus chosen to
enforce this restriction. In line with the reasoning found in section 2.1.1 we have
opted to use the zero-order hold discretization method. Models were trained using
the adam optimizer (Kingma and Ba, 2017). Gaussian error Linear units (GeLu) were
the non-linear activation function of choice.

4.3 Sensitivity Analysis S5

Optimal configuration of the S5 model might differ between classification- and RL
tasks. As such, a good first experiment is tuning the hyperparameters of both the
model and the PPO algorithm. Due to restrictions on runtime, the scope of the hy-
perparameter tuning was kept small. The S5 model was trained on both the State-
lessCartPoleEasy (SCPE) and the harder NoisyStatelessCartpoleMedium (NSCM)
environment from the popjaxrl suite for a variety of different hyperparameters. SCPE
mimics the classic CartPole environment known from the Gymnasium suite (Tow-
ers et al., 2024). The environment is made partially observable by removing the
velocity components of the pole from the observation space. NSCM additionally
adds gaussian noise to the returned observation, obfuscating the true signal. Pre-
liminary studies of these environments showed that SCPE can be fully solved, while
even finely tuned algorithms struggle on NSCM. Comparing performance on these
environments for a variety of hyperparameter configurations can therefore provide
insight in the sensitivity of S5 models to their hyperparameters. The search space of
the PPO hyperparameters was limited to the SSM learning rate, maximum gradient
coefficient, entropy coefficient, the number of vectorized environments, the number
of steps collected into the transition buffer and the number of update epochs per-
formed on each buffer. The learning rate of other network weights was fixed to 5
times the SSM learning rate.

TABLE 4.1: Search space of the S5 model- and PPO hyperparameters on both the

SCPE and the NSCM environment. Hyperparameters are either logaritmically

spaced, linearly spaced or of integer type. The steps column refers to the amount

of steps taken in the search space. If a hyperparameter is of integer type steps are
taken by multiplying with a factor of 2.

Parameter Spacing Type | Lower Bound | Higher Bound | Steps
Learning rate logarithmic 107° 1072 4
Maximum gradient coefficient linear 0.5 1 2
O || Entropy Coefficient logarithmic 1073 107! 3
& | Number of environments integer 16 64 3
Number of update steps integer 128 1024 4
Number of update epochs integer 2 32 5
residual layers integer 2 6 3
e | H integer 64 512 4
¢ || Actor Network hidden layer size | integer 32 128 3
Critic Network hidden layer size | integer 32 128 3

The search space of the S5 parameters was limited to the number of residual lay-
ers, the feature dimension size and the the hidden layer sizes of the actor- and critic
feedforward networks. See table 4.1 for an overview of all parameters studied. The
size of the latent space dimension was fixed to 256. The impact of this parameter will
be studied extensively in section 4.5. In total 50 random combinations of parameters
were tested. Results were averaged over three random seeds.

4.4. Model Comparison Across Environments 27

Note that while this experiment may give insight into well performing hyperpa-
rameter combinations for S5-based architectures, optimal hyperparameter configu-
rations might still differ between environments.

4.4 Model Comparison Across Environments

To test the performance of the S5 model in the RL setting we have performed a sweep
over the popjaxrl suite of partially observable MDPs (Lu et al., 2023). We have ran
the S5 model, and the baseline minGRU, GRU and FF models on all environments
to observe if the S5-based architecture manages to (on average) outperform baseline
implementations without a significant increase in runtime. Based on the results of
the hyperparameter search from section 4.3, the hyperparameters in this and the fol-
lowing experiments were set to the ones shown in table 4.2 unless otherwise explic-
itly mentioned. All models use the same set of PPO hyperparameters and the same
actor- and critic head architectures. The minGRU and GRU latent space dimension
are also set to size 256.

TABLE 4.2: PPO and S5 Hyperparameters used in the experiments of section 4.4 and

section 4.5.
Parameter Value
SSM Learning rate 107°
Learning rate 5-107°
O || Maximum gradient coefficient 0.5
& Clip coefficient 0.2
Entropy Coefficient 0.0
Number of environments 64
Number of update steps 1024
Number of update epochs 30
residual layers 4
o || N 256
@ H 256
At bounds (1073,1071)
Actor Network hidden layer size 128
Critic Network hidden layer size 128

4.5 Memory size efficiency

One of the purported advantages of SSMs is their ability to generalize to long con-
text windows. The application of the continuous time memory updates based on the
HiPPO framework in these models should allow for efficient updates to the models
hidden state. One might conclude that the ability to store information in the hidden
state is therefore limited mostly by the size of the latent space dimension. To test
this hypothesis we test S5 models with different hidden state sizes on the memory
corridor environment.

The memory corridor is an RL environment designed to test memory retention
in recurrent models (Moerland et al., 2024). The state space consists of a sequence of
corridors of length T, where each corridor contains N doors. In each corridor, only
one door grants passage to the next. The first time a corridor is reached the correct

28 Chapter 4. Experiments

door number is provided as a one-hot encoded observation to the agent. Selecting
the correct door puts the agent at the start of the corridor sequence. All previous
actions need to be repeated to arrive to the next door in the sequence. Selecting any
of the N — 1 other doors transitions to a terminal state, resetting the environment.
Previously seen doors provide a null-observation. Every correctly chosen door pro-
vides a reward of one (1) point. The total reward for reaching the n-th door thus
scales as 3n1(n — 1). We have implemented the Memory Corridor environment in
the Gymnax framework (Lange, 2022), inspired by PopJaxRL (Lu et al., 2023). We
have also implemented an easy variant, that provides the current agent position and

the correct number for the last door in the corridor as an observation each frame.

Using these environments, we test if larger latent space dimensions N allow S5
models to scale to larger context windows and allow for better dynamic memory
updates. We test values ranging from 8 to 256. Note that the memory corridor is
an especially hard environment since the same model hidden state needs to encode
different length sequences depending on the trajectory of the agent. As a compari-
son we also run baseline GRU models with different hidden sizes to showcase the
difference in generalization capacity.

For the memory corridor environment it was found beneficial to use a gated
linear unit (GLU) as the activation function in the residual layers of the S5 model.
The equation for this activation function is given by

GLU(y) = Linear,(GeLu(y)) - o(Linear,(GeLu(y))) 4.1)

where Linear, are dense linear projection layers and GeLu is the Gaussian error
Linear unit.

29

Chapter 5

Results & Discussion

In this chapter we showcase and discuss the results of the experiments laid out in
chapter 4. Section 5.1 discusses the results of the hyperparameter sensitivity analy-
sis, 5.2 shows how average performance differs between S5, GRU and FF models on
partially observable environments and 5.3 shows the relation between model hidden
state size and memory capacity. Experiments have been performed on an NVIDIA
GA104M GPU with 8 GB of VRAM. All results, unless otherwise stated, have been
averaged over at least 5 seeds to mitigate the chance of outliers influencing results.
When applicable, figures are smoothed with a second order Savitzky-Golay filter
using a window size of 7.

5.1 Hyperparameter Sensitivity

As outlined in section 4.3 we conducted a random search over the hyperparame-
ter ranges specified in table 4.1 on both the Stateless CartPole Easy- (SCPE) and the
Noisy Stateless Cartpole Medium (NSCM) environment. The results of this search
can be observed in figure ??. Non-surprisingly, the performance of S5-based mod-
els is worse on the NSCM environment compared to on SCPE. The best performing
models achieved 60% and 99.9% of the maximum reward respectively. More notably,
we can see a difference in model performance dropoff rate and in the percentage of
models achieving the (attainable) maximum reward. More than 80% of the tried S5
models achieve at least 0.8 of the maximum achieved reward on the SCPE environ-
ment. On the NSCM environment only 25% of models attain this 80% mark. More-
over we can see that the rate at which model performance declines is significantly
steeper for the more complex NSCM environment. We can conclude that as environ-
ment complexity increases, the S5 model becomes more sensitive to hyperparameter
tuning.

S5 model performance per Environment

—— NSCM
SCPE

[y
o
L

FIGURE 5.1: A comparison of
S5 model performance on the
NSCM (blue line) and SCPE (or-
ange line) environment. 50 mod-
els with different hyperparame-
ter configurations were trained
on both environments. The
curves show the percentage of
models that are able to achieve
a (normalised) reward level in
their respective environments.

% of models achieving evaluation reward
o o o o
N F=y [=1] o
; 1

e
o
L

0.2 0.4 0.6 0.8 10
Maximum achieved evaluation reward

30 Chapter 5. Results & Discussion

The results of this search were used to decide on a hyperparameter configuration
for later experiments. To account for limitations in hardware, a balance between
model runtime and model performance needed to be struck. Figure 5.2 shows a
quantitative analysis of these metrics as a function of the most influential hyper-
parameters: the size of the feature dimension H and the amount of residual layers
in the network architecture. From figure 5.2a and 5.2b we can see that for deeper
network architectures, runtime significantly increases when the feature dimension
is scaled beyond H = 256. Below this threshold little difference is found. We can
also observe that there is little cost to adding more residual layers to the network.
The results from figure 5.2c and 5.2d are less clear. The average performance can
vary wildly within a single configuration category. We can conclude that the two
hyperparameter in the graph are, on their own, not enough to predict model perfor-
mance a priori. Note also that the standard deviation for some categories is missing.
This can point either to the fact that all tried configurations have achieved the same
maximum reward during evaluation, or to the fact that only a single configuration
within the category has been ran. These instances are observed only in the SCPE
case, where three out of four instances are of models achieving the maximal attain-
able performance. We should be cautious with our conclusions based on this data.
A more extensive hyperparameter search might achieve more substantive results.

S5 Runtime vs. Hyperparameters (SCPE) S5 Runtime vs. Hyperparameters (NSCM)
Feature Dimension Feature Dimension
500 4 . 54 400 1 . 64

128 = 128

. 256 350 . 256
2 4004 - 512) - 512
5 § 300 4
3 S
W @
n n
2 3 2501
E E
£ €]
5 5 200
a @
o o
@ © 150 §
$ H
S <

100
50 4

2 layers 4 layers 6 layers 2 layers 4 layers 6 layers

(A) Runtime (SCPE) (B) Runtime (NSCM)

S5 Performance vs. Number of Residual Layers and Feature Dimension S5 Performance vs. Hyperparameters (NSCM)

124
Feature Dimension 0.6] Feature DI;H:HSIOI\
. 64 L]
. 128 . 128
. 256

. 256
— . 512

107 0.5 1

0.8

Maximum Achieved Reward
o
o

Maximum Achieved Reward

0.2 4

0.0 -
2 layers 4 layers 6 layers 2 layers 4 layers 6 layers

(C) Performance (SCPE) (D) Performance (NSCM)

FIGURE 5.2: Average S5 model runtime (top row) and maximum
achieved reward during evaluation (bottom row) during hyperpa-
rameter search on the SCPE (left) and NSCM (right) environments.
Both metrics are plotted as a function of the amount of residual lay-
ers in the network architecture and the dimension of the feature space
(H). Standard deviations of the results are displayed as black lines.

5.2. Comparison Across Environments 31

5.2 Comparison Across Environments

Using the results from section 5.1 to inform our hyperparameter configuration for
the S5 model and the PPO configuration for all models, as found in table 4.2, we
performed a sweep across all environments from the popjaxrl suite (Lu et al., 2023).
As can be observed in figure 5.3, our S5 model outperforms baseline implementa-
tions. While impressive, performance between environments still differs widely (as
could be expected without individual tuning). Standard deviations have thus been
omitted from this graph for the sake of clarity. Graphs of runs for each individual
environment can be found in appendix B. Also of note is the fact that the minGRU
model, whilst underperforming compared to the S5 model, outperforms the stan-
dard GRU baseline in a fraction of the runtime. We can conclude that the removal
of the reset gate and the linearization of the hidden state update are beneficial to
this architecture. Figure 5.4 shows the normalized MMER achieved by each model
averaged across environments. Final MMER values, together with average model
runtime, can be found in table 5.1. We can see that S5 models use only a fraction
of the runtime compared to BPTT trained GRUs. The runtime of the S5 model and
the minGRU model are of comparable order. It should be noted that the runtime of
FF models is still significantly lower. The FF models do however perform the worst
of the tested models, which is to be expected in partially observable environments.
We can conclude that in cases where generalization across sequence dimension is
not important FF models might still be the more prudent choice compared to SSM
models due to their lower runtimes. It should also be noted that while the S5, min-
GRU and GRU curves in figure 5.3 have not yet plateaued completely. These models
might thus benefit more from longer training times and more data samples which
were not achievable in our setting due to limitations in runtime.

Mean performance across all test environments

Mean performance across all test environments

— S5

] GRU
— FF

| — minGRU

e

4— S5
GRU

— FF

—— minGRU

0.8 1

|
o
=
=)

=0.15 1 0.6

—0.20
0.4

Normalized MMER

—0.25 4

Mean Evaluation Reward

0.2

—0.30 1

0.01

T T T
15 2.0 2.5

Environment Steps

T T T
3.0 0.5 1.0

le6

T T T T
1.0 15 2.0 25

Environment Steps

T T
0.0 0.5 0.0

FIGURE 5.3: Mean evaluation re- FIGURE 5.4: Normalized MMER

3.0
le6

wards achieved by the S5, min-

GRU, GRU and FF models (from

best performing to worst perform-

ing) as a function of environment

steps achieved on the environments
from the popjaxrl suite.

achieved by the S5, minGRU, GRU
and FF models (from best perform-
ing to worst performing) as a func-
tion of environment steps achieved
on the environments from the pop-
jaxrl suite. The colored shaded re-
gions denote standard deviations.

32 Chapter 5. Results & Discussion

Model | Across Environment MMER | Average Runtime (seconds)
FF 0.33 £0.43 25.73 +8.90
GRU 0.53 +0.33 765.54 +59.17
minGRU 0.71+0.27 214.31 +14.15
S5 0.82+0.19 253.31 +5.76

TABLE 5.1: Comparison of final model performance and training run-
times on all tested environments. Best achieved results are bolded.

5.3 Memory Capacity

As outlined in section 4.5, S5 and baseline GRU models were tested on the Memory
Corridor environment for a variety of different hidden state dimensions. Figure
5.5 shows the resulting learning curves and their standard deviations. S5 models
outperform baseline GRU models, but performance does not seem dependent on
the hidden state size. Final performance of all models is visualized in 5.6. We can
see that there is no significant difference in performance between models with a
different latent space dimension. There are a few possible reasons as to why this
might be the case. The first is that due to the complexity of the environment, a
more extensive hyperparameter tuning is needed. Performance in this case is not
bottlenecked by the hidden state dimension, but either by the configuration of the
PPO training loop or another part of the network architecture. Alternatively, the
S5 models might require more environment steps to achieve a notable difference in
performance. As mentioned in appendix A, S5 models can be relatively data hungry
compared to other architectures. To test this hypothesis we have performed a single
run of the N = 8 and N = 256 S5 architectures for 10® timesteps, which is displayed
in figure 5.7.

Model Performance vs. Latent Space Dimension Model Performance on Memory Corridor vs. Latent Space Dim.
30 1 Hidden dim. i N dim.
— 8 309 - g
— 16
16
254 p
— «/'_-NV“// 251 + e
128 P Ryt— Y o~y 64
20 p = 128

256

~N
=
L

Evaluation Reward
=
>

Best achieved Reward

=
=)
L

AN
/ " s i AANTRN B P e
) a7 AP e B NTS
| e _‘.Q:a\=>l’.»"::-..‘ s",«f.;‘:gg:-h ‘::9‘?’;-’_ 2ot
[.;‘.-ﬁﬂ-:‘r’:,%f:’\—_}"{ ETE S0 e Ll R 3 =
T

w
L

T T . T
0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

S5 GRU

FIGURE 5.5: Comparison of S5 (full)
and GRU (dashed) model perfor-
mances on the Memory Corridor en-

FIGURE 5.6: Maxmimum achieved
model performance on the Mem-

! Y) ory Corridor environment for S5 and
vironment for different latent dimen- GRU models with different latent

sion sizes. space dimensions.

In figure 5.7, we can see the S5 model with a hidden state dimension of N = 256
outperforming the N = 8 model, even achieving average testing scores of 45 (i.e.
traversing a 10-door long corridor). Any conclusions drawn from this results should
however be limited. A more extensive study of longer runtimes is unfortunately
prohibited by resource constraints.

5.3. Memory Capacity 33

Another possible explanation can be found in the observation structure of the en-
vironment. Not all observations in the memory corridor environment are relevant
for completing the task at hand. Integrating these observations into agent mem-
ory might even be detrimental to performance. Furthermore, the better an agent
performs the higher the ratio between useless- and useful information becomes. Ar-
chitectures employing a selection mechanism, such as the later Mamba models (Gu
and Dao, 2024) could in theory prevent detrimental memory updates with irrelevant
information, allowing for longer context scaling without loss in fidelity. It might be
interesting to test these models on this same environment.

Model Performance vs. Latent Space Dimension

Hidden dim.
8 |
01 — 256 _

30

20 A

Evaluation Reward

10 1|

. ‘
0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1les

FIGURE 5.7: Comparison of S5 models with hidden state size N = 8
(bottom) and N = 256 (top) on the Memory Corridor. A single run of
each model is shown.

35

Chapter 6

Conclusion

In this work we have studied the application of SSMs to partially observable rein-
forcement learning environments. SSMs, due to their constant time and memory
usage per inference step on sequential data, have become a popular choice for long-
range dependency modeling tasks. SSMs outclass transformers on asymptotic run-
time and model scalability, and traditional recurrent architectures on performance
benchmarks.

With the the necessary theory to implement SSM models for partially observable
MDPs outlined in chapter 2 and an overview of contemporary literature in the field
provided in chapter 3, chapter 4 focussed on the details of our experimental setup
and the coding level decisions necessary to create functional models. Noting that
implementations of LSSL-based models were not suitable for RL experiments, we
focused our efforts on the S5 architecture. Based on the results discussed in chapter
5, we can answer our research questions as follows.

RQ 1 How sensitive are SSMs to hyperparameter tuning in the RL setting?

As discussed in section 5.1, model tuning becomes increasingly important as en-
vironment complexity grows. For simpler environments, S5 models are robust to
suboptimal hyperparameter settings. While no single model parameter showed a
clear performance difference, we have found that a larger dimension of the feature
space H significantly increases model runtime. While individual tuning per envi-
ronment remains important, we have identified a hyperparameter configuration that
allows for reasonably consistent performance on most environments.

RQ 2 How does SSM performance compare to baseline models on PO RL tasks?

We have demonstrated that S5 models outperform baseline models on partially
observable environments and that they do so in a fraction of the runtime compared
to their GRU counterpart. Their efficacy in solving PO tasks does however come at
the cost of longer runtimes compared to feedforward networks, making FF architec-
tures a contender on non-PO environments.

RQ 3 What is the influence of the latent space dimension on the effective context
window size of the model?

While preliminary results point to a positive relation between model latent space
dimensionality and memory capacity, more research is needed to validate this con-
clusion.

36 Chapter 6. Conclusion

6.1 Limitations and Future Work

There are clear limitations to the results in this work. Due to restrictions in equip-
ment and time, all experiments had to be limited in scope. The conducted hyperpa-
rameter search was limited to a fraction of the tunable parameters, and the search
spaces were limited in size. The search space was searched using random search,
with no heuristically- or theoretically founded method for preferential search. A
more extensive hyperparameter search might thus be interesting to conduct.

Also, the GRU architecture used as a baseline was less optimized than the S5
architecture. Different hyperparameters and a deeper network with more residual
layers might achieve a better performance than the one attained in this work. Do
note that GRU runtimes would quickly become unmanagable for deeper networks.
It might thus be more interesting to focus on the streamlined minGRU architecture,
which outperforms its predecessor in a fraction of the runtime. Observing the fact
that the minGRU performance falls squarely between the S5 and GRU performance
on might wonder if with better optimization the minGRU architecture could achieve
performance on par with SSM architectures. As discussed in section 2.1.7, the min-
GRU can be seen as a special case of the general SSM model. It might thus be possible
to use a similar HiPPO initialization scheme for the latent state update layer in the
minGRU. Note that this initialization would only speed up initial training. In the
high update regime even the current model might achieve a similar performance to
the S5. This remains to be tested.

The omission of a transformer baseline from this work can be explained by lim-
itations in scope but should nevertheless be rectified in any later works. As the
current state-of-the-art sequence models their performance and runtime should be
compared to that of SSMs in the RL setting.

As noted in section 5.3, results on the influence of hidden state size on memory
capacity of S5 models was mostly inconclusive. Future experiments might either use
a simpler environment such as the T-maze environment from Bsuite (Osband et al.,
2020), or would need to devote more computational power to this experiment.

Furthermore, there were other coding level decisions whose influence has been
noted but could not be studied fully. The impact of the action-embedding wrapper,
explained in section 4.2, on model performance was undoubtedly significant but its
impact has not been tested on all environments. The discretization method of the
state- and input matrices was set to zero-order hold in line with recent works, but a
full comparison of different discretization methods has not been performed. Other
candidates for more extensive study include the inclusion and tuning of dropout in
the residual blocks, the use of batch normalisation vs. layer normalisation and the
impact of enforcing conjugate symmetry on final performance, runtime and mem-
ory usage. S5 models might also benefit from the use of the S4D-real diagonalized
state-matrix in the RL domain (Gu et al., 2022) which foregoes initializing with com-
plex eigenvalues altogether.

As noted in appendix A, S5 architectures seem to benefit from high update-to-
data ratios. Another interesting adaptation of the PPO algorithm might be to let
the trajectory length during rollout collection increase depending on model perfor-
mance. This would allow for a higher update-to-data ratio without compromising

6.1. Limitations and Future Work 37

early training speeds. Similarly, S5 models could be tested in an offline reinforce-
ment learning setting.

Another interesting direction for research is the inclusion of a selection mecha-
nism in the S5 architecture. S5 outperforms S4 on a variety of benchmarks (Smith,
Warrington, and Linderman, 2023), but comparisons between S5 and Mamba are
lacking. Adding a selection mechanism to S5 allows us to compare SISO and MIMO
design philosophies in a fair setting. Studying the influence of selection mechanisms
on RL tasks can in and of itself be an interesting endeavor. As noted by Gu and Dao,
2024, the binary operator introduced by Lu et al., 2023 acts as a hardcoded selection
mechanism setting A = 0 on episode boundaries. It might be interesting to study if
selective SSMs learn to copy this behaviour with no change in binary operator.

39

Bibliography

Azizzadenesheli, Kamyar, Yisong Yue, and Animashree Anandkumar (May 2020).
“Policy Gradient in Partially Observable Environments: Approximation and Con-
vergence”. en. In: arXiv:1810.07900. arXiv:1810.07900 [cs]. DOI: 10.48550/arXiv.
1810.07900. URL: http://arxiv.org/abs/1810.07900.

Bansal, Shubhi et al. (Oct. 2024). “A Comprehensive Survey of Mamba Architectures
for Medical Image Analysis: Classification, Segmentation, Restoration and Be-
yond”. en. In: arXiv:2410.02362. arXiv:2410.02362 [cs]. DOI: 10 . 48550/ arXiv .
2410.02362. URL: http://arxiv.org/abs/2410.02362.

Bar-David, Shmuel et al. (June 2023). “Decision S4: Efficient Sequence-Based RL via
State Spaces Layers”. en. In: arXiv:2306.05167. arXiv:2306.05167 [cs]. DOI: 10 .
48550/arXiv.2306.05167. URL: http://arxiv.org/abs/2306.05167.

Blelloch, Guy E. (Nov. 1990). Prefix Sums and Their Applications. Tech. rep. CMU-CS-
90-190. School of Computer Science, Carnegie Mellon University.

Chen, Chang et al. (2022). “Transdreamer: Reinforcement learning with transformer
world models”. In: arXiv preprint arXiv:2202.09481.

Chen, Lili et al. (2021). “Decision transformer: Reinforcement learning via sequence
modeling”. In: Advances in neural information processing systems 34, pp. 15084—
15097.

Cho, Kyunghyun et al. (2014). “On the properties of neural machine translation:
Encoder-decoder approaches”. In: arXiv preprint arXiv:1409.1259.

Chung, Junyoung et al. (2014). “Empirical evaluation of gated recurrent neural net-
works on sequence modeling”. In: arXiv preprint arXiv:1412.3555.

Dao, Tri and Albert Gu (2024). “Transformers are SSMs: generalized models and effi-
cient algorithms through structured state space duality”. In: Proceedings of the 41st
International Conference on Machine Learning. ICML'24. Vienna, Austria: JMLR.org.

Duan, Yan et al. (Nov. 2016). “RL?: Fast Reinforcement Learning via Slow Reinforce-
ment Learning”. en. In: arXiv:1611.02779. arXiv:1611.02779 [cs]. DOI: 10.48550/
arXiv.1611.02779. URL: http://arxiv.org/abs/1611.02779.

Elman, Jeffrey L (1990). “Finding structure in time”. In: Cognitive science 14.2, pp. 179-
211.

Feng, Leo et al. (Oct. 2024). “Were RNNs All We Needed?” In: arXiv:2410.01201.
arXiv:2410.01201. DOT: 10.48550/arXiv.2410.01201. URL: http://arxiv.org/
abs/2410.01201.

Goel, Karan et al. (2022). It's Raw! Audio Generation with State-Space Models. arXiv:
2202.09729 [cs.SD]. URL: https://arxiv.org/abs/2202.09729.

Gu, Albert and Tri Dao (May 2024). “Mamba: Linear-Time Sequence Modeling with
Selective State Spaces”. In: arXiv:2312.00752. arXiv:2312.00752. DOI: 10 . 48550/
arXiv.2312.00752. URL: http://arxiv.org/abs/2312.00752.

Gu, Albert, Karan Goel, and Christopher Ré (Aug. 2022). “Efficiently Modeling Long
Sequences with Structured State Spaces”. In: arXiv:2111.00396. arXiv:2111.00396.
DOI: 10.48550/arXiv.2111.00396. URL: http://arxiv.org/abs/2111.00396.

https://doi.org/10.48550/arXiv.1810.07900
https://doi.org/10.48550/arXiv.1810.07900
http://arxiv.org/abs/1810.07900
https://doi.org/10.48550/arXiv.2410.02362
https://doi.org/10.48550/arXiv.2410.02362
http://arxiv.org/abs/2410.02362
https://doi.org/10.48550/arXiv.2306.05167
https://doi.org/10.48550/arXiv.2306.05167
http://arxiv.org/abs/2306.05167
https://doi.org/10.48550/arXiv.1611.02779
https://doi.org/10.48550/arXiv.1611.02779
http://arxiv.org/abs/1611.02779
https://doi.org/10.48550/arXiv.2410.01201
http://arxiv.org/abs/2410.01201
http://arxiv.org/abs/2410.01201
https://arxiv.org/abs/2202.09729
https://arxiv.org/abs/2202.09729
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
http://arxiv.org/abs/2312.00752
https://doi.org/10.48550/arXiv.2111.00396
http://arxiv.org/abs/2111.00396

40 Bibliography

Gu, Albert et al. (2020). “HiPPO: Recurrent Memory with Optimal Polynomial Pro-
jections”. In: Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual. Ed. by Hugo Larochelle et al. URL: https://proceedings.neurips.
cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract .html.

Gu, Albert et al. (Oct. 2021). “Combining Recurrent, Convolutional, and Continuous-
time Models with Linear State-Space Layers”. In: arXiv:2110.13985. arXiv:2110.13985.
DOI: 10.48550/arXiv.2110.13985. URL: http://arxiv.org/abs/2110.13985.

Gu, Albert et al. (2022). “On the parameterization and initialization of diagonal
state space models”. In: Advances in Neural Information Processing Systems 35,
pp- 35971-35983.

Gupta, Ankit, Albert Gu, and Jonathan Berant (2022). “Diagonal State Spaces are as
Effective as Structured State Spaces”. In: Advances in Neural Information Processing
Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., pp. 2298222994.
URL: https://proceedings .neurips. cc/paper _files/paper/2022/file/
9156b0£6dfa9bbd18c79cc459efbd61c-Paper-Conference. pdf.

Ha, David and Jiirgen Schmidhuber (2018). “World models”. In: arXiv preprint arXiv:1803.10122.

Hafner, Danijar et al. (2023). “Mastering diverse domains through world models”.
In: arXiv preprint arXiv:2301.04104.

Hausknecht, Matthew] and Peter Stone (2015). “Deep Recurrent Q-Learning for Par-
tially Observable MDPs.” In: AAAI fall symposia. Vol. 45, p. 141.

He, Kaiming et al. (June 2016). “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770778.
DOI: 10.1109/CVPR.2016.90. URL: https://ieeexplore.ieee.org/document/
7780459/.

Heess, Nicolas et al. (2015). “Memory-based control with recurrent neural networks”.
In: arXiv preprint arXiv:1512.04455.

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Long short-term memory”. In:
Neural computation 9.8, pp. 1735-1780.

Janner, Michael et al. (2022). Planning with Diffusion for Flexible Behavior Synthesis.
arXiv: 2205.09991 [cs.LG]. URL: https://arxiv.org/abs/2205.09991.

Kidger, Patrick and Cristian Garcia (2021). “Equinox: neural networks in JAX via
callable PyTrees and filtered transformations”. In: Differentiable Programming work-
shop at Neural Information Processing Systems 2021.

Kim, Sanghyeon and Eunbyung Park (June 2023). “SMPConv: Self-Moving Point
Representations for Continuous Convolution”. en. In: 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada: IEEE,
pp- 1028910299. 1SBN: 9798350301298. DOI: 10 . 1109/ CVPR52729 . 2023 . 00992.
URL: https://ieeexplore.ieee.org/document/10205071/.

Kingma, Diederik P. and Jimmy Ba (Jan. 2017). “Adam: A Method for Stochastic Op-
timization”. en. In: arXiv:1412.6980. arXiv:1412.6980 [cs]. DOI: 10.48550/arXiv.
1412.6980. URL: http://arxiv.org/abs/1412.6980.

Kirsch, Louis et al. (Jan. 2024). “General-Purpose In-Context Learning by Meta-Learning
Transformers”. en. In: arXiv:2212.04458. arXiv:2212.04458 [cs]. DOI: 10 . 48550/
arXiv.2212.04458. URL: http://arxiv.org/abs/2212.04458.

Lange, Robert Tjarko (2022). gymnax: A JAX-based Reinforcement Learning Environment
Library. Version 0.0.4. URL: http://github.com/RobertTLange/gymnax.

Lee, Kuang-Huei et al. (2022). “Multi-game decision transformers”. In: Advances in
Neural Information Processing Systems 35, pp. 27921-27936.

https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
https://doi.org/10.48550/arXiv.2110.13985
http://arxiv.org/abs/2110.13985
https://proceedings.neurips.cc/paper_files/paper/2022/file/9156b0f6dfa9bbd18c79cc459ef5d61c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9156b0f6dfa9bbd18c79cc459ef5d61c-Paper-Conference.pdf
https://doi.org/10.1109/CVPR.2016.90
https://ieeexplore.ieee.org/document/7780459/
https://ieeexplore.ieee.org/document/7780459/
https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2205.09991
https://doi.org/10.1109/CVPR52729.2023.00992
https://ieeexplore.ieee.org/document/10205071/
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.2212.04458
https://doi.org/10.48550/arXiv.2212.04458
http://arxiv.org/abs/2212.04458
http://github.com/RobertTLange/gymnax

Bibliography 41

Lu, Chris et al. (2023). “Structured state space models for in-context reinforcement
learning”. In: Advances in Neural Information Processing Systems 36, pp. 47016~
47031.

Moerland, Thomas M. et al. (2024). EduGym: An Environment and Notebook Suite for
Reinforcement Learning Education. arXiv: 2311 . 10590 [cs.LG]. URL: https://
arxiv.org/abs/2311.10590.

Morad, Steven et al. (2023). POPGym: Benchmarking Partially Observable Reinforcement
Learning. arXiv: 2303 . 01859 [cs.LG]. URL: https://arxiv. org/abs/2303.
01859.

Osband, Ian et al. (2020). “Behaviour Suite for Reinforcement Learning”. In: Inter-
national Conference on Learning Representations. URL: https://openreview.net/
forum?id=rygf-kSYwH.

Ota, Toshihiro (2024). “Decision mamba: Reinforcement learning via sequence mod-
eling with selective state spaces”. In: arXiv preprint arXiv:2403.19925.

Parisotto, Emilio and Ruslan Salakhutdinov (2021). Efficient Transformers in Reinforce-
ment Learning using Actor-Learner Distillation. arXiv: 2104 . 01655 [cs.LG]. URL:
https://arxiv.org/abs/2104.01655.

Raffin, Antonin et al. (2021). “Stable-Baselines3: Reliable Reinforcement Learning
Implementations”. In: Journal of Machine Learning Research 22.268, pp. 1-8. URL:
http://jmlr.org/papers/v22/20-1364 .html.

Romero, David W et al. (2021). “Ckconv: Continuous kernel convolution for sequen-
tial data”. In: arXiv preprint arXiv:2102.02611.

Rumelhart, David E, Geoffrey E Hinton, Ronald] Williams, et al. (1985). Learning
internal representations by error propagation.

Schulman, John et al. (2015). “Trust region policy optimization”. In: International con-
ference on machine learning. PMLR, pp. 1889-1897.

Schulman, John et al. (Aug. 2017). “Proximal Policy Optimization Algorithms”. In:
arXiv:1707.06347. arXiv:1707.06347 [cs]. DOI: 10.48550/arXiv.1707.06347. URL:
http://arxiv.org/abs/1707.06347.

Smith, Jimmy T. H., Andrew Warrington, and Scott W. Linderman (Mar. 2023). “Sim-
plified State Space Layers for Sequence Modeling”. en. In: arXiv:2208.04933. arXiv:2208.04933
[cs]. DOI: 10.48550/arXiv.2208.04933. URL: http://arxiv.org/abs/2208.
04933.

Sutton, Richard S, Andrew G Barto, et al. (2018). Reinforcement learning: An introduc-
tion 2nd edition. Vol. 1. 1. MIT press Cambridge.

Tay, Yi et al. (2021). “Long Range Arena : A Benchmark for Efficient Transformers”.
In: International Conference on Learning Representations. URL: https://openreview.
net/forum?id=qVyeW-grC2k.

Towers, Mark et al. (July 2024). Gymnasium: A Standard Interface for Reinforcement
Learning Environments. DOI: 10.48550/arXiv.2407.17032.

Trentelman, Harry L et al. (2002). “Control theory for linear systems”. In: Appl. Mech.
Rev. 55.5.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural in-
formation processing systems 30.

Zhang, Guofeng, Tongwen Chen, and Xiang Chen (2007). “Performance Recovery in
Digital Implementation of Analogue Systems”. In: SIAM Journal on Control and
Optimization 45.6, pp. 22072223. DOI: 10.1137/050643416.

https://arxiv.org/abs/2311.10590
https://arxiv.org/abs/2311.10590
https://arxiv.org/abs/2311.10590
https://arxiv.org/abs/2303.01859
https://arxiv.org/abs/2303.01859
https://arxiv.org/abs/2303.01859
https://openreview.net/forum?id=rygf-kSYwH
https://openreview.net/forum?id=rygf-kSYwH
https://arxiv.org/abs/2104.01655
https://arxiv.org/abs/2104.01655
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.48550/arXiv.1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.2208.04933
http://arxiv.org/abs/2208.04933
http://arxiv.org/abs/2208.04933
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.48550/arXiv.2407.17032
https://doi.org/10.1137/050643416

43

Appendix A

Sequential MNIST

This section provides details on the implementation of the LSSL(f), LSSLf-diag and
S5 SSM models for the use in a classification setting. All models have been trained on
the sequential MNIST (sMNIST) dataset. The classic MNIST dataset consists of im-
ages of handwritten digits in a 28 x 28 pixel format. The sequential MNIST dataset
flattens these images to a one-dimensional sequence 784 pixels long. Flattening the
images from 2D to 1D removes the 2D inductive bias on that traditional convolu-
tional neural networks (CNNs), which have classically been used to solve image
recognition tasks, rely on. Instead the dataset is transformed to a purely sequential
problem. Note that modern convolutional architectures, such as CKCONV (Romero
et al., 2021) and SMPConv Kim and Park, 2023 can still (almost) fully solve this
dataset. We will however see that SSM based architectures can achieve a similar
performance with a fraction of the parameter count.

As mentioned in section 2.1.2, the full LSSL layer can be numerically unstable
and can incur long runtimes due to the need to recompute the Krylov matrix each
training step. We will thus focus on the architectures of the LSSLf-, the LSSLf-diag
and S5-based models. The sections below contain model-specific implementation
details and tables with the used training parameters. Note that the training batch
size for each model was set to 50.

A.1 Architectures

A.1.1 LSSLf

The first architecture implemented was based on the original LSSL paper (Gu et al.,
2021), using krylov functions as seen in equation 2.8. On a general level the architec-
ture consists of a broadcasting layer, multiple residual LSSLf blocks, a mean pooling
layer and linear decoders for the actor and critic heads. Given a minibatch of ob-
servations, the observations are broadcast to feature dimension H with interleaving.
As an example, given an 4 dimensional observation space, uy = (&, Bt, vt 0¢) the
broadcastcasting layer constructs the L x H matrix

44 Appendix A. Sequential MNIST

Xp &1 ... K[
Bo B1 ... PBr-a
Yo Y1 oo VL1
S 01 ... O
ng &1 ... (K[
ng 1 ... (K[
Bo B1 ... PBr
Yo 1o VL1
b 01 ... Or_1

Which will be fed to the SSMs in the residual block row-wise. Each residual block
is instantiated with its own discretization parameter At. Initilization of these param-
eters, following prior works, are taken to be between 0.001 and 0.1 on a logaritmic
scale. The output of the SSMs are computed in parallel. Non-linearity is applied by
a ReLu activation function. Dropout is applied feature-wise before linear mixing of
the SSM outputs. Following this we apply a residual connection and layer normali-
sation. See figure A.1 for a schematic overview. The output of these blocks is mean
pooled along the sequence dimension and classified by a linear layer. See table A.1
for a full overview of the hyperparameters used during traning.

Residual LSSLf block

dropout layernorm

sequence
transformation

[1]
L |

LSSLf(Atmn) 0 —

feedforward
layer

activation
o j
function

residual
connection

LSSLE(Atpay) 0 —

FIGURE A.1: Architecture of a residual LSSLf block.

General Bilinear Transform

In contrast with later SSM architectures, LSSLs used General Bilinear Tranform (GBT)
as their discretization method. The GBT method is a combination of the classic Euler
method of integral approximation (x = 0) and the backward Euler method (¢ = 1)

A= (I—art-A)H I+ (1—a)At-A)
B=At(I —aAt-A)"'B

When &« = 3, GBT preserves system stability, and can map unstable poles to stable
poles (Zhang, Chen, and Chen, 2007).

A.1. Architectures 45

Al2 S5

The S5 based architecture changes the interleaved broadcasting layer used in the
LSSL-based models to a linear encoding layer. This encoded observation sequence
is fed to a sequence of residual blocks (He et al., 2016) consisting of an S5 SSM, a non-
linear activation function (set to ReLu), a dropout layer, a residual connection and
a (layer) normalization. Note that each block has its own S5 SSM with a separate
hidden state. See figure A.2 for a schematic overview. The residual blocks can be
chained indefinitely. The output of these blocks is mean pooled along the sequence
dimension and classified by a linear layer. See table A.2 for a full overview of the
hyperparameters used during traning.

Residual S5 block

S5 dropout layernorm

Linear
encoder

sequence
transformation

utility layer

- @

AN
N

feedforward
layer

@ activation
function
residual
connection

FIGURE A.2: Architecture of a residual S5 block. The first block re-

quires a linear encoder to cast the u € R/l input to R”. Subsequent

blocks do not require an encoder. Non-linearity is introduced by the
activation function.

A.1.3 LSSLf-diag

The LSSLf-diag implementation combines the diagonalized SSM state matrix of S5
models with the parallel SISO kernels from the LSSLf implementation. The residual
block architecture is similar to the one seen in A.1. However, LSSL{-diag uses paral-
lel scan instead of Krylov functions to generalize over sequences of data. Due to the
fact that LSSLf-diag employs SISO kernels, GPU memory is the main bottleneck of
this architecture. Any scaling of the features dimension beyond 32 were unfeasible
on the used machines.

46

Appendix A. Sequential MNIST

A.2 Hyperparameters

Parameter Value
Learning rate 0.004
Cosine Annealing enabled
Epochs 16
Residual layers 6
N 128
H 128
logaritmic At bounds (-3,-1)
Feedthrough matrix enabled
Discretization scheme | General Bilinear Transform
Dropout p 0.2
Layer normalisation enabled

TABLE A.1l: Hyperparameters for the training of LSSLf on the se-
quential MNIST dataset. Parameters were chosen to conform with

the models used in (Gu et al., 2021)

Parameter Value
SSM learning rate 0.002
Learning rate 0.008
Cosine Annealing enabled
Epochs 150
Residual layers 4
P 128
H 96
logaritmic At bounds (-3,-1)
Conjugate symmetry enabled
Feedthrough matrix enabled
Discretization scheme | Zero-order Hold
Dropout p 0.1
Layer normalisation enabled

TABLE A.2: Hyperparameters for the training of S5 on the sequential
MNIST dataset. Parameters were chosen to conform with the models
used in (Smith, Warrington, and Linderman, 2023).

A.2. Hyperparameters

47

Parameter Value
SSM learning rate 0.002
Learning rate 0.008
Cosine Annealing enabled
Epochs 150
Residual layers 4
N 128
H 32
logaritmic At bounds (-3,-1)
Conjugate symmetry enabled
Feedthrough matrix enabled
Discretization scheme | Zero-order Hold
Dropout p 0.1
Layer normalisation enabled

TABLE A.3: Hyperparameters for the training of LSSLf-diag on the

sequential MNIST dataset

48 Appendix A. Sequential MNIST

A.3 Results

Observe figure A.3. In this figure we can see that the LSSLf- and S5 model both
achieve near perfect performance on the sMNIST dataset. The LSSLf-diag training
performance stagnates around an 80 % accuracy score. Notably, the valuation score
of the LSSLf-diag model is significantly higher than the achieved training scores.
This is likely due to dropout, which is turned of during model testing, affecting the
LSSLf-diag model more compared to the other two models due to its low feature di-
mension. Final (test) accuracy scores and model runtimes are displayed in table A.4
and are compared with current state of the art performance by feedforward archi-
tectures (Romero et al., 2021) (Kim and Park, 2023). One can note that while the S5
model slightly underperforms compared to the LSSLf model, the runtime is halved.
Note also that only a single run was performed for each of the models. The differ-
ence in final testing accuracy between LSSLf and S5 might thus be negligible. Note
also that the SSM based models can achieve a very decent performance with a sig-
nificantly lower parameter count compared to their feedforward counterparts. The
LSSLf-diag models parameters could not scale beyond the reported parameter count
without issues in memory capacity. Even then, one can note the more than four-fold
increase in runtime compared to the S5 model.

LSSLf sequential MNIST performance LSSLf-diag sequential MNIST performance S5 sequential MNIST performance
10
10

J—

e EN
7 D \‘/\[I Lf
i

Classification acct

Classification acct
Classification acct

eeeeeee

] T © u 3 20 6 s 100 10 10 3 20 o e 80
Epochs Epochs Epochs

(A) LSSIf (B) LSSLf-diag () S5

FIGURE A.3: SSM model training and valuation performance on the
sMNIST dataset plotted as a function of epochs.

Model Parameter Count () | Test Accuracy (1) | Runtime (H:M:S) ({)
LSSLf 21322 0.98 3:34:12
LSSLf-diag 13130 0.90 9:15:31
S5 26122 0.97 1:50:51
| CKCONV | ™ 09932 | -]
SMPConv 373k 0.9975 -

TABLE A.4: Model performance and runtime on the sMNIST dataset.
Bold values are the best achieved results. Models below the dashed
line represent the current state of the art.

49

50 Appendix B. Model Comparison on Individual Environments

Appendix B

Model Comparison on Individual
Environments

AutoencodeEasy AutoencodeMedium
~0.46
— 55
— GRU -0.48
—0.48 1 —0.49 -
B B
2 2
-0.50
3 050 &
(= [=4
E=] 2
=2 2 o051
= =}
o —0.52 =
& i
-0.52
— S5
—0.54 1 — GRU
—0.53 F
—— minGRU
00 s 10 15 20 25 30 0.0 0s 10 15 20 25 30
Environment Steps led Environment Steps led
(A) (B)
AutoencodeHard BattleshipEasy
—0.48 4 — S5
-0.40{ — Gru
—0.49 -
~0.42
2 B
o]
3 5
—0.50
o 4
c = 044
2 2
= £=1
3 3
= -0.51 =
< T 0.46
w w
— S5
-0.52 — GRU _0.48
— FF
—— minGRU
0.0 05 10 15 20 25 30 0.0 05 10 15 20 25 30
Environment Steps le6 Environment Steps le6
(© (D)
BattleshipMedium BattleshipHard
-0.36 1 — s5 036 4
—— GRU
— FF
—0.38 1 —— minGRU _038 |
2 2
[©
3 040 $ 040
o 4
f = c
S —0.42 | 2
E 5 -042
o o
=> >
W _0.44 4 w
~0.44
— GRU
—0.46 F
—0.46 1 — minGRU
00 s 10 15 20 25 30 00 05 10 15 20 25 30
Environment Steps le6 Environment Steps le6

(E) (F)

FIGURE B.1: Results on the Auto Encode and Battleship environ-
ments

Appendix B. Model Comparison on Individual Environments

51

Evaluation Reward

Evaluation Reward

Evaluation Reward

Evaluation Reward

CountRecallEasy

CountRecallMedium

B — — s5
—— GRU _og{ — GRU
— FF — FF
—0.86 1 —— minGRU —— minGRU
T —0.90
E
~0.88
&
§ —0914
=1
@
~0.90 =
@
I -0.92 4
-0.92 4
-0.93 4
-0.94 L — T T . T T T T T T T T T T
0.0 0.5 10 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
Environment Steps 1e6 Environment Steps le6
(4) (B)
CountRecallHard HigherLowerEasy
— s5
—0.847 — GRU 054
— FF
— minGRU
~0.85
- 04
2
-
~0.86 -
&
c 03
o
—0.87 o f=1
©
=
m
> 0.2
—0.88 w
— S5
—0.89 4 01 GRU
— FF
—— minGRU
0.0 05 10 15 20 25 30 0.0 05 10 15 20 25 30
Environment Steps 1e6 Environment Steps 1le6
(©) (D)
HigherLowerMedium HigherLowerHard
0.5 0.5 —u——
0.4 0.4
B
©
3
0.3 & g3
c
2
=
m
=
0.2 < 02
w
— 55 — S5
014 —— GRU 01 —— GRU
— FF — FF
—— minGRU —— minGRU
00 05 10 15 20 25 30 0o 05 10 15 200 25 30
Environment Steps 1e6 Environment Steps led
(E) (F)
MultiArmedBanditEasy MultiArmedBanditMedium
— 55 — 55
059 — GRU a5 | — GRU
— FF i — FF
—— minGRU —— minGRU
0.4
0.20 4
B
E
0.3
0.15
&
f=
k<]
0.2 2 0104
=
@
>
0.1 0054
0.00 -
0.0
T T T T T T T —0.05 1 T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 10 15 2.0 2.5 3.0
1e6 1e6

Environment Steps

()

Environment Steps

(H)

FIGURE B.2: Results on the Count Recall, Higher Lower and Multi
Armed Bandit environments

52

Appendix B. Model Comparison on Individual Environments

Evaluation Reward

Evaluation Reward

Evaluation Reward

Evaluation Reward

MultiArmedBanditHard

NoisyStatelessCartPoleEasy

0.10
55 101 — s5
—— GRU —— GRU
00871 g — FF
—— minGRU 11— minGRU
0.06 1 08
B
2
0.04 H
< 0.6
5
0.02 4 5
©
3
©
] 0.4
0.00 3
—0.02
0.2
—0.04
T r T T T T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
Environment Steps le6 Environment Steps 1e6
(A) (B)
NoisyStatelessCartPoleMedium NoisyStatelessCartPoleHard
067 — 5 — s5
— GRU 0354 — GRU
— FF — FF
0.54 — minGRU —— minGRU
0.30 4
B
-
0.4 H
025
c
=]
©
0.3 =]
= 0204
>
w
0.2 015 4
0.1 0.10
0.0 05 10 15 2.0 2.5 3.0 0.0 0.5 10 15 2.0 2.5 3.0
Environment Steps 1le6 Environment Steps 1e6
(© (D)
RepeatFirstEasy RepeatFirstMedium
1.00{ — S5 — S5
—— GRU -0.44 { — GRU
— FF — FF
0.75 4 _
minGRU _0.46 minGRU
0.50 E
2 -0.48
0.25 &
’ & -0.50
S
o
0.00 4 %
T -0.52
w
—0.25 4 _/__J —0.54 4
—0.50 4 ———l 056 4
T T T T T T T T T T T T T T
0.0 0.5 10 15 2.0 2.5 3.0 0.0 0.5 10 15 2.0 2.5 3.0
Environment Steps 1le6 Environment Steps 1e6
(E) (F)
RepeatFirstHard RepeatPreviousEasy
55 104 — s5
—0.425{ — GRU — GRU
— FF 08{ — FF
_o4s04 —— minGRU —— minGRU
0.6 4
B
—0.475 [
£ 044
4
—0.500 c
S o0z
F=3
©
—0.525 3
T 004
>
w
—0.550 - 02]
~0.575 0.4
—0.600 4 T T T T T T T —0.6 4 T T T T T T T
0.0 0.5 10 15 2.0 2.5 3.0 0.0 0.5 10 15 2.0 2.5 3.0
le6 Environment Steps 1e6

Environment Steps

(G)

(H)

FIGURE B.3: Results on the Multi Armed Bandit, Noisy Stateless Cart-
Pole, Repeat First and Repeat Previous environments.

Appendix B. Model Comparison on Individual Environments 53

Evaluation Reward

RepeatPreviousMedium

0.8 1

0.6

0.4 +

0.2 4

0.0 1

—0.24

—0.44

S5

GRU

FF
minGRU

T
0.5

T T T
1.0 15 2.0
Environment Steps

(4)

25

3.0
le6

Evaluation Reward

RepeatPreviousHard

0o{— S5
GRU
— FF
—0.14{ — minGRU
—0.24
—0.34
0.4
—0.54
T T T T T T T
0.0 0.5 10 15 2.0 2.5 3.0
Environment Steps 1e6

(B)

FIGURE B.4: Results on the Repreat Previous environments

