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Abstract

This study evaluates the impact of various prompting techniques on the logical consistency
and reasoning capabilities of Large Language Models (LLMs). Specifically, this is done in
a Natural Language Inference (NLI) setting. To test this, four LLMs were chosen based on
varying architecture types and parameter sizes: GPT-Turbo, Claude-3.5-sonnet, LLaMA-
2-70B and Mistral-7B-Instruct. These models were tested on the LogiQA 2.0 dataset
to assess their performance in producing accurate conclusions and coherent and correct
reasoning chains. Logical consistency is a critical benchmark for testing the reasoning
capabilities of LLMs. The prompting techniques that were used are: Zero-Shot, Few-Shot,
Chain-Of-Thought and Generated Knowledge. Zero-shot prompting was used as a baseline
because of its neutral characteristics. Results indicate that while prompting techniques do
indeed influence performance, their overall impact on logical consistency in this specific
setting is negligible. Few-Shot and Generated Knowledge produced modest performance
improvements for GPT-3, but other models exhibited minimal or negative effects. The
quality of the reasoning chains varied, with Claude out performing the other models in
coherence and correctness. These findings stress the limitations of contemporary LLMs in
complex reasoning tasks and highlight the need to future improvement and refinement
of these prompting techniques to improve logical consistency for older models. While
this study evaluates the impact of prompting techniques on logical consitency in LLMs,
the used dataset has a binary gold label structure. This lacking a neutral category. This
may have influenced the results by conflating contradiction with unrelated statements.
Additionally, extracting the prediction labels themselves proved to be a non trivial task
duo to the stochastic nature of LLMs. These limitations introduce uncertainty into the
reported accuracy scores and reasoning evaluations.
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Chapter 1

Introduction

1.1 Large Language Model and Natural Language

Inference

Large Language Models (LLMs), such as GPT-3 and GPT-4, have contributed to a
significant improvement of the quality of AI by using models with billions of parameters to
generate human-like text [1]. These models are trained on vast datasets often containing:
books, webpages, code repositories, news articles and other publicly available web content.
Large Language Models thrive in performing various natural language tasks, including
Natural Language Inference (NLI). NLI refers to the process of determining whether a given
hypothesis is true, false, or undetermined based on a given premise [2]. Understanding
the mechanisms behind LLMs and their capabilities in NLI is crucial to exploring their
limits and potential enhancements.

1.2 The importance and difficulties of reasoning

1.2.1 Reasoning as a feature

LLMs have excelled at many use cases for a long time. Auto-completion, new text
generation in the style of another and many more. A use case that has always been a
problem is abstract reasoning as stated by Bubeck et. al[3]. Bubeck disects reasoning as
”finding and applying a general pattern from few data”. Drawing new conclusions from
previously given datapoints in a natural language setting aligns with human cognitive
abilities to asses a situation. Doing more research in this field could provide a better
insight in the perceived human-like coginitive abilities LLMs display.

1.2.2 Difficulties

The widespread use of LLMs has given rise to many new and innovative use cases. These
new use cases vary from giving personal advice to fact checking. The big problem with
many ambiguous use cases for LLMs is that there is a large unsolved problem that occurs
in these models: hallucinations[4]. This phenomenon occurs when an LLM produces a
piece of text which the users interpret as factually correct which in reality is actually false
and completely fabricated. Hallucinations occur because LLMs are stochastic systems, as
a result of which a sentence may be produced which is the most probable sentence given
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the models’ training data. However, the model has no inherit intuition for truth or false
so other systems have to be put in place to check this output. There have already been
numerous measures to counteract these hallucinations[5]. These hallucinations make some
use cases more problomatic than others. Creating new ideas or texts define the power
of the language models, whereas producing facts could be problematic because of the
stochastic nature of these models. Reasoning is another one of these problematic use cases.
For reasoning you need context or world knowledge and a good logical basis how one
event will or can follow the previous event. Recent models, like DeepSeekV3, have been
known to greatly improve these reasoning tasks by distilling larger complex reasoning
capabilities to another smaller model[6].

1.3 Prompting

Just as presenting information in a new way, rephrasing the information may help humans
understand the given message better. Prompting is a way to guide an LLM to the desired
problem case. Prompting involes altering the given input to the model to a specific way
to shape the response. This enables the model to perform specific tasks like reasoning,
summarization or classification without the need for additional fine-tuning to this specific
task. Certain structures[7] in this guidance have been defined to follow a set structure.
Some of these techniques mirror the way humans learn through reinforcement and example
for instance Zero-shot prompting, where no additional information is given, Few-shot,
where some examples are given of the desired output.

1.4 Research Objectives

While looking forward with newer and bigger contemporary models, it is also interesting to
look back and see if we can replicate the same results with older models. In this research I
attempt to investigate the effectiveness of prompting techniques on the reasoning skills in
last gerenation LLMs in an NLI setting. The goal is to expose these models to a dataset
of logic-based NLI problems and let the models generate a reasoning chain and conclusion.
Comparing these prompting techniques and the models could give interesting insights to
what can help specific models perform better. The performances of the models will be
quantified in two ways: a reasoning chain score and a conclusion label accuracy score.
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Chapter 2

Theoretical Background

2.1 Large Language Models (LLMs)

Large Language Models (LLMS) have revolutionized the world of Artificial Intelligence by
giving machines the ability to understand, generate and interact with natural language in
ways that were previously never possible. The pivotal moment in this development was
the introduction of the transformer architecture, first proposed in the paper Attention
is All You Need by Vaswasni et al (2017)[8]. Traditional recurrent and convolutional
neural networks were replaced by models with this transformer architecture by utilising
a mechanism called self-attention. This process enables the models to filter all relevant
information out of the input sequence, regardless of their position within this input. This
proposed architectural style greatly improved the scalability and training times of these
models.
The attention mechanism allows models to assign a level of importance to words or tokens
in the input sequence. Letting the model capture contextual relationships of the input
provides way to a new level of nuance understanding that was not possible before. This is
combined with positional encoding, enabling the model to process sequences in parallel
rather than sequential. Together, these two concepts addressed and solved the biggest
bottlenecks older architectures, such as RNNs and LSTMs, faced.
Modern LLMs are variations of this proposed transformer architecture. Often choos-
ing between an encoder-only or decoder-only, which both combine into the traditional
transformer. Next to that, parameter size and fine-tuning approaches can also differ
greatly which results in a big variance in area of expertise and performance of these
models. OpenAI’s GPT-3.5-Turbo and the newest GPT-4 are examples of decoder-only
architectures, optimized for generating coherent and relevant text. On the other hand
there are encoder-only models like BERT which are more suited for classification and
question answering.
These advancements have placed LLMs at a fundamental position in the contemporary field
of AI, capturing the world with high performance results in natural language translation,
summarzation and natural language inference.
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2.2 Natural Language Inference and Logical Reason-

ing

Natural Language Inference (NLI) is a task in natural language processing that involves
letting a machine figure out the logical relationship between a premise and a hypothe-
sis. More specifically, NLI classifies the relationship as either: entailment(the hypothesis
logically follows the premise), contradiction(the hypothesis contradicts the premise) or
neutral (the hypothesis cannot be determined from the premise and no correlation can be
found). In Table 2.1 below a few examples of NLI classification are provided. This task is
a fundamental test for a models’ ability to reason and make inferences.

Premise Hypothesis Label
A man is sitting at a desk writing
a letter.

The man is sleeping. Contradiction

A woman is reading a book in the
library.

The woman is studying for an
exam.

Neutral

A soccer game with multiple males
playing.

Some men are playing a sport. Entailment

Table 2.1: Examples of Premises, Hypotheses, and their Logical Labels

The development of the field of NLI is historically not limited to LLMs but take a broader
trend in AI. Early methods utilised a system of rules, which were handcrafted symbolic
representations of the given context. While being easy to use and deduce, these rule
systems struggled with scalability and handling more complex contexts. When AI started
modeling after the human brain with machine learning and neural networks, statistical
models helped with the automatization of the NLI task. However, they still could not
obtain a deep contextual understanding of the given information and were limited by the
features they were trained on.
When deep learning was introduced, neural networks took a more dominant place in
NLI research. BERT and GPT are examples of models that make use of pre-trained
representations of language to not only capture a representation of the literal word but
also of the concept the word represents. This enables these models to deduce a more
nuanced relationship between a given premise and hypothesis. Following this development,
a big surge in performance increases were measured, particularly when these models were
fine-tuned on large predetermined datasets such as SNLI and MNLI (Williams et al.,
2018)[9]. As Wiegreffe and Pinter discuss in their publication Explaining Simple Natural
Language Inference [2], even seemingly straightforward NLI tasks often require complex
liguistic hints and logical structures, making them a fundamental benchmark for reasoning.
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2.3 Prompting Techniques

The way information is presented to an LLM can make a big difference as to what
the output entails and if the desired result is returned[10]. Together with the rise and
popularity of Large Language Models has Prompt engineering also made it’s way up and
has been improved drastically. Prompting techniques, the practice of structuring a models’
input to guide it’s behaviour to a desired output, have been standardized and refined over
the last few years. Prompting techniques, the method of changing your input to a certain
structure, are central in this problem. More so-called prompting techniques have come up
the more developments were made with LLMs. Research shows that different prompting
strategies can significantly positively affect the accuracy and coherence of model outputs
[7]. Examples of techniques are: zero-shot prompts, where the model generates responses
without any additional context, few-shot and Chain-Of-thought prompts, which provide
examples or structured reasoning patterns to enhance the models performance. Prompting
techniques not only enhance a models’ output but also serve as a bridge between initial
intent and the interpretation a machine has of this intent. This draws a great parallel
to cognitive strategies like framing and priming. The choice of prompting technique can
impact the models understanding of context, logical reasoning, and ability to infer, which
are all crucial skills in NLI tasks [2].
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Chapter 3

Methodology

3.1 Experimental Design

The setup of this study is an NLI environment based on logic given a premise and a
hypothesis structure. The basis on logic integrated in the used dataset is further expanded
on in section 3.3.1. This study aimed to get a clear and wide comparison across multiple
models(3.2) and prompting techniques(3.3.2). This was done to draw focus from one
specific model to many different training and fine tuning sets. Prompting this environment
creates a results dataset with outputs from different models and the predicted label
given in the output text. In this study, Zero-shot was chosen as a baseline comparison
because it provides a clear and standardized reference point for all models. Unlike other
technical systems where a true ”zero-level” may be defined, the differences in training
data, architecture and design goals make a true ”zero-level” impractical and difficult
to find. A Zero-shot setting provides and unaffected playing field for reasoning. This
serves as a neutral starting point for evalualtion. Taking this approach give all models a
fair comparison, regardless of underlying differences. Lastly, the quality of reasoning is
measured. By prompting a state-of-the-art model from openAi, gpt-4o, with the generated
reasoning it attaches a reasoning score to each individual reasoning chain. This is done
to quantify how well each model performed on reasoning given each specific prompting
technique.

3.2 Models Used

For this study I selected four models to compare them based on their performance in a
logical rule-based NLI task. The models selected are Claude-3-5-Sonnet-20241022, GPT-
3.5-Turbo, Llama-2-70B-Chat, and Mistral-7B-Instruct. They were selected to represent
a diversity in parameter size, architecture type, and training approach. This was done
to ensure I could evaluate how different models handle a logic-based premise-hypothesis
type task.
Claude-3-5-Sonnet-20241022, Llama-2-70B-Chat, and GPT-3.5-Turbo are well known
and widely-used models, mostly chosen for their all-around performance on NLP tasks.
Finally, I also added Mistral-7B-Instruct, a significantly smaller model, parameter-wise,
to understand how lightweight models handle these tasks as well. This Mistral model was
specifically fine-tuned to follow specific instructions. This would make a fair comparison
to see the trade-off of fine-tuning on a specific task and a significant decrease in parameter
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count. The combination of these models allows for a good evaluation, including both
smaller and larger models, instruction-following models, and general-purpose models,
enabling me to draw concrete conclusions about the capabilities of current language
models in logical reasoning tasks.

3.2.1 Claude-3.5-sonnet

Introduced in June of 2024[11], Claude-3.5-sonnet is part of the Claude-3.5 family of
models together with Claude-3.5-haiku and Claude-3.5-opus. The parameter count of
this specific model remains undisclosed but Anthropic’s addendum specifiec that it has
graduate-level reasoning (GPQA), undergraduate-level knowledge (MMLU), and coding
proficiency (HumanEval). Anthropic has greatly invested in the world of Large Language
Models with it’s development of the entire line of Claude models. Anthropic has pitched
the Claude-3.5 family as a robust and reliable solution for tasks requiring high-level
reasoning, knowledge retrieval and structured problem-solving.

3.2.2 GPT-3.5-Turbo

The GPT-3.5 family of models build further upon the groundbreaking GPT-3 model line.
GPT-3.5-Turbo, built by OpenAI, takes the strengths of its predecessors a step further
with an undisclosed but updated and expanded parameter count and big improvements in
efficiency and fine-tuning options. This specific model was designed to be a balanced trade
off between performance and cost. One of the biggest advancements of GPT-3.5-Turbo, is
its improved contextual understanding. Longer input sequences allow the model to take
in longer and more complex conversations.

3.2.3 LlaMA-2-70B-Chat

In July of 2023 Meta introduced the Llama-2 line of models[12]. Multiple variants of base
and fine-tuned models were released to the public for ease of use and specific use cases.
Llama-2-70B-Chat is the largest of the line of models released with 70 billion parameters
fine tuned on chat interactions. The fine-tuning process involved training the model on
diverse datasets including conversational datasets. This was done to improve the models’
ability to produce a human-like dialogue. This way, Meta made LlaMA a perfect fit for
virtual assistants, interactive tools or customer support applications.

3.2.4 Mistral-7B-Instruct

Mistral-7B[13] was introduced as a lightweight, low parameter alternative model for
bigger models such as LlaMA-2-13B and Llama-2-34B. In the introduction blogpost[14],
Mistral-7B-Instruct was also introduced. Being fine-tuned on instruction datasets publicly
available on Huggingface. Mistral accompanied the base model with this fine-tuned model
to show that their base model can easily be fine-tuned. Mistral-7B-Instruct is a great
example of the growing amount of smaller light-weight and easy to run models. These
smaller models make a perfect tool for developers to deploy them in an environment
with limited resources. This model is chosen in this study to better portray a range of
performances and parameter counts.
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3.3 Dataset Used and Prompt Design

3.3.1 Dataset: LogiQA 2.0

For this study a dataset was needed based around an NLI taskset and a logical problem
structure. High levels of reasoning skills centered around world knowledge and logical
implications were the two main characteristics this dataset needed. LogiQA 2.0 [15] fits
all of these criteria. It is a large-scale logical reasoning reading comprehension dataset
adapted from the Chinese Civil Service Examination. This dataset is based around Chinese
examination questions and has been translated to English to result in an NLI dataset of
14752 instances. All of these instances are annotated with a gold label. These labels are
only in either the form entailed or not-entailed, so the use of contradiction and neutral are
combined. This dataset was chosen due to its high level of reasoning needed and instance
density. In 2023 this dataset was also used as a benchmark in the study Evaluating the
Logical Reasoning Ability of ChatGPT and GPT-4 [16]. Where it was used to asses the
performance of ChatGPT and GPT-4 without the use of prompting techniques as a second
element.

Limitations

LogiQA 2.0 uses a binary gold label system. This is a major limitation compared to the
traditional NLI task. Seen as the neutral and the contradiction conclusions are merged
into one label: not-entailed. Some examples that should be contradiction may have been
misclassified as something else. This may confuse a model that is generally known to a
NLL problem setting. This could lead to misleading accuracy metrics as models may have
labeled cases that should have been contradiction to something else for the wrong reasons.
For example if the LLM responded with: ”The reasoning supports the hypothesis but is
not completely definitive” or ”in some cases” or ”Not neccesarily entailed”, the actual
conclusion given is very ambiguous and open to interpretation. Furthermore, this affects
the predicted label extraction as in a case of ”Not neccesarily entailed”. In this particular
case it is difficult to systematically extract the right sentiment from the models’ response.

Datapoint example

Shown below is a random example from the dataset. This particular example is about one’s
profession given the proportion of income one receives from it. In the example, the premise
and hypothesis are marked as such, while the relationship is marked as ”gold label”.

{

"idx": 218,

"premise": "Many people who call themselves teachers are not

actually teachers because teaching is not their main

source of income.",

"hypothesis": "A person cannot be called a writer unless the

writing is his main source of income.The same is true

for teachers.",

"gold_label": "entailed"

}
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3.3.2 Prompting Techniques

In this study I have used four prompting techniques to accurately test and compare the
performance of different models: Zero-shot(ZS), Few-shot(FS), Chain-Of-Though(CoT)
and Generated Knowledge(GK).

Few-shot Prompting

In a Few-shot setting, some examples of context related structures are given to the LLM.
This helps the LLM learn during runtime and leverages in-context learning. Brown also
found that this improves performance[17]. Below is a basic example of a few-shot setting
on a logical premise-hypothesis task.

Example 1:

Premise: All humans are mortal. Socrates is human.

Hypothesis: Socrates is mortal.

Answer: Entailed

Example 2:

Premise: Some birds can fly. Penguins are birds.

Hypothesis: Penguins can fly.

Answer: Not Entailed

Now, answer the following:

Premise: All cats are mammals. Some mammals are nocturnal.

Hypothesis: Some cats are nocturnal.

Answer:

My prompt used for the few-shot setting was made with predetermined examples and
looks much alike the Zero-Shot setting. The difference between these two prompts is found
the examples that are given at the beginning of the prompt:

You are tasked with analyzing the relationship between

a premise and a hypothesis.

Your output must strictly follow this format:

Reasoning: <Provide reasoning here>

Conclusion: <entailed OR not-entailed>

Here are some examples:

Example 1:

Premise: The sky is blue.

Hypothesis: The sky is not blue.

Reasoning: The premise states that the sky is blue, but

the hypothesis contradicts this by saying it is not blue.

These statements cannot both be true at the same time.

Conclusion: not-entailed

Example 2:

Premise: A dog is barking.

Hypothesis: There is a dog barking.

Reasoning: The hypothesis directly repeats information
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from the premise, so it logically follows.

Conclusion: entailed

Example 3:

Premise: A person is playing soccer.

Hypothesis: The person is doing a physical activity.

Reasoning: Playing soccer is a form of physical activity,

so the hypothesis logically follows from the premise.

Conclusion: entailed

-----

Now analyze the following:

Premise: {premise}.

Hypothesis: {hypothesis}.

Reasoning: <Your reasoning here>

Conclusion: <entailed OR not-entailed>
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Zero-shot Prompting

In a zero-shot setting, the model is only provided with the problem statement, in this
case the premise and hypothesis, without any additional context or examples. This
technique tests the model’s direct reasoning skills. Zero-shot prompting has been formally
introduced in the groundbreaking paper Language models are few-shot learners by Brown
et. al[17]. This paper shows that an LLM, not fine-tuned on a specific task, can yield
acceptable results in different environments given the structure of the prompt. An example
of Zero-shot prompting is shown below.

Premise: All cats are mammals. Some mammals are nocturnal.

Hypothesis: Some cats are nocturnal.

Is the hypothesis logically entailed by the premise? Answer:

In this study I used this prompt to create a Zero-shot environment for the given premise
and hypothesis:

You are tasked with analyzing the relationship between

a premise and a hypothesis.

Your output must strictly follow this format:

Reasoning: <Provide reasoning here>

Conclusion: <entailed OR not-entailed>

----

Analyze the following:

Premise: {premise}.

Hypothesis: {hypothesis}.

Reasoning: <Your reasoning here>

Conclusion: <entailed OR not-entailed>

This prompt gave the model a simple instruction and ensured a specific output to make
analyzing the data later easier.

Chain-Of-Thought (CoT)

Chain-Of-Thought prompting encourages the model to break down its answering process
into reasoning steps. This technique improves interpretability and often improves accuracy.
This was shown in the paper Chain-Of-Thought Prompting Elicits Reasoning in Large
Language Models by Wei et. al [18]. In this paper Wei gives a clear structure how Chain-
Of-Thought prompting can be achieved and why it is an improvement from zero-shot or
few-shot settings. A flowchart illustrating the reasoning process for Chain-Of-Thought is
shown in Figure 3.1. Breaking down the problem in clear and concise reasoning steps may
help the model understand the problem setting better. This helps the model to take all
factors into account while generating an output.
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Figure 3.1: Example of Chain-Of-Thought Prompting. Image source: Wei et al.[18]

To ensure the generation of clear and concise reasoning steps, I used the prompt below.

You are tasked with analyzing the relationship between a

premise and a hypothesis.

Your output must strictly follow this format:

Reasoning: <Provide clear step-by-step reasoning here>

Conclusion: <entailed OR not-entailed>

Now, analyze the following thinking step by step:

Premise: {premise}.

Hypothesis: {hypothesis}.

Reasoning: <Provide your reasoning steps here, explaining

why the premise and hypothesis are related or not.

Be explicit and logical in your thought process.>

Conclusion: <After reasoning through the steps, conclude

whether the relationship is entailed or not-entailed in a single word.>

Generated Knowledge (GK)

The last prompting technique that was used in this study is Generated Knowledge
(GK). Generated Knowledge, as the name states, incorporates extra knowledge about
the context of the hypothesis and premise when prompting the final question. This
information is used to enrich the context used by the model and improve the accuracy by
including real world knowledge. The flowchart 3.2 below described the process of creating
a Generated Knowledge setting as shown in the paper Generated Knowledge Prompting
for Commonsense Reasoning by Liu et. al [19]. This flowchart breaks down how there are
two clear steps to GK-prompting:

1. Ask the model to generate knowledge about the problem setting. The problem
setting functions as the hypothesis and premise in this case.

2. Prompt the model again with the generated knowledge and the final question.
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Figure 3.2: Flowchart of Generated Knowledge Prompting. Image source: Liu et al.[19]

To follow these steps coherently I used two prompts; one to generate the knowledge and
one the generate the NLI reasoning and label.

Input: Greece is larger than mexico.

Knowledge: Greece is approximately 131,957 sq km, while

Mexico is approximately 1,964,375 sq km, making Mexico

1,389% larger than Greece.

Input: Glasses always fog up.

Knowledge: Condensation occurs on eyeglass lenses when water

vapor from your sweat,

breath, and ambient humidity lands on a cold surface, cools,

and then changes into tiny drops of liquid,

forming a film that you see as fog. Your lenses will be

relatively cool compared to your breath, especially when the

outside air is cold.

Input: premise:’{premise}’.

Hypothesis: {hypothesis}

knowledge:

The result of this prompt is real world knowledge about the specific hypothesis and
premise. This knowledge was then used in the following prompt to create the desired
output:

You are tasked with determining whether the relationship between

a premise and a hypothesis is entailed or not-entailed.

Here is the knowledge generated about the premise and hypothesis:

{knowledge}

Using this knowledge, analyze the logical connection between the

premise and hypothesis.

Identify whether the hypothesis logically follows from the premise.
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Provide clear reasoning for your analysis and a definitive conclusion.

Premise: {premise}

Hypothesis: {hypothesis}

Reasoning: <Provide reasoning here>

Conclusion: <entailed OR not-entailed>

3.3.3 Prompt Design Considerations

The design of the prompts was chosen to align with the logical structure of the task
at hand, making sure the models could effectively process the premise and hypothesis
and give each datapoint and equal chance. The following considerations were of great
importance when designing the prompts:

• Clarity in premise-hypothesis pairs: It was fundamental that for each prompting
technique, the premise and hypothesis were both clearly defined and annotated to
avoid any ambiguity. So the model clearly sees what the hypothesis is and what
the premise is. This clarity avoids any variance in results that may arise because of
longer or shorter premise-hypothesis pairs or difficult language used.

• Balancing brevity and informativeness: For the Zero-Shot and Few-Shot
prompts, it was a high priority to create a balance between brevity and informative-
ness. The prompts needed to be concise enough to avoid overwhelming the model
and flooding its context limit, while still providing it with sufficient information to
comply to the technique and guide its reasoning.

• Iteratively refining Chain-Of-Thought and Generated Knowledge prompts:
The prompts for Chain-Of-Thought and Generated Knowledge were constructed
iteratively to make sure logical consistency and coherence were present in the
reasoning chains.

These considerations aimed to minimize bias and maximize the interpretability of the
model’s reasoning process. All of the prompts were designed by the design given in the
papers where they were introduced and mentioned in Paragraph 3.3.2

3.3.4 Analysis Methods

To analyze the given results of the different prompting techniques multiple evaluation
methods were used. Accuracy evaluations with statistical significance are paired with a
Reasoning score. The combinations of these two methods provide a independent assesment
of the results.

Accuracy Evaluation

The accuracy is measured as the proportion of correctly predicted labels by each model
across the dataset. The generated conclusion label given the premise-hypothesis pairs, is
compared to the gold labels in the LogiQA 2.0 dataset.
To establish an accurate baseline for this measure, Zero-Shot will be used as a reference
point. The performance of other techniques will be compared to this performance.
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Statistical Significance

To say something accurate about the difference in results given by the prompting techniques,
a statistical analysis will be done. Especially a paired t-test will be conducted. The test
will comapare the accuracy of the prompting techniques to the Zero-Shot baseline.
When the T-test produces a significance level of p < 0.05 will be categorised as significant
and statistically meaningfull. If the compared p-value will be higher than this, the difference
is statistically insignificant. This will give an objective assesment of the measured results.

Accuracy vs. Prompt Length and Verbosity Bias

Given that different prompting techniques may deliver different length prompts, an analysis
on this relationship will also be conducted. This analysis tracks the accuracy(binned into
predefined ranges) across the prompt length(measured in character count) and will show
if there is a direct correlation between the two.
A LOWESS (Localy Weighted Scatterplot Smoothing, as introduced by Cleveland(1979)[20])
regression will be applied to visualize the relationship. In addition to that, a standard
deviation will be computed within each bin to assess the variance in the given bin.
Given that verbosity bias—where models tend to favor responses based on length rather
than content—could influence performance, the following measures are taken:

• The distribution of prompt lengths across different prompting techniques will be
analyzed.

• The accuracy of different models will be examined across length bins to identify a
relationship.

• Bins with fewer than 10 samples will be marked as Low N to indicate that the bin
is underrepresented.

This analysis will help to show that the changes in performance are due to the used
prompting techniques rather than the models’ preferences for longer prompts.

Reasoning Quality Score

A second measure to evaluate the responses of the models is a Reasoning Quality Score.
This score will assess the coherence and correctness of the reasoning and explanation
given by the model in response to the prompt. This will be done to see if the explanation
a model can give can differ from the actual conclusion label.
The reasoning quality score will be assigned by the LLM GPT-4o-Turbo. The score ranges
form 0 to 1 and is an indication of the coherence and correctness of the given explanation.
For each model and prompting technique, the average reasoning score is calculated along
with a high-score precentage. This is a percentage of how many instances had a reasoning
quality score of 0.8 or higher.
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Chapter 4

Results

This section presents the results of evaluating four language models—Claude-3.5, GPT-
3.5-Turbo, Llama-2-70B, and Mistral-7B—on logical reasoning tasks using four prompting
techniques: Zero-Shot, Few-Shot, Chain-Of-Thought, and Generated Knowledge. The goal
is to assess the impact of these techniques on model accuracy and reasoning coherence.

4.1 Performance Analysis

The first part of the analysis consists of an accuracy reading of the NLI dataset with the
given prompting techniques. For every prompting technique I calculated an accuracy score
over all 2000 entries in the dataset. As Zero-shot was used as a base case, I compared
the other prompting techniques’ scores to the accuracy of Zero-Shot. The accuracy scores
observed in the Table4.2 below must be interpreted in the context of the dataset’s two-label
limitations. Since contradiction and neutral are merged, models may have struggled to
distinguish between logically contradictory statements and statements that were just
unrelated. This could have deflated or inflated the resulting accuracy score of the associated
models’ performance.

Model Zero-Shot Few-Shot Chain-Of-Thought Generated Knowledge
GPT 0.4965 0.5325 (+7.25%) 0.484 (-2.54%) 0.533 (+7.35%)
Claude 0.5600 0.5595 (-0.09%) 0.5765 (+2.91%) 0.5475 (-2.24%)
LLaMA 0.5535 0.5515 (-0.37%) 0.543 (-1.91%) 0.539 (-2.56%)
Mistral 0.5245 0.5115 (-2.48%) 0.5205 (-0.77%) 0.5075 (-3.24%)

Table 4.1: Average accuracy scores for each model and technique with percentage increase
or decrease compared to zero-shot accuracy

4.1.1 Statistical analysis

To check if the differences are statistically significant, a T-test on the difference in
performance compared to the Zero-Shot performance was performed. The average accuracy
scores computed for each technique and compared to the Zero-shot baseline. The p-values
of each test determined if the difference was statistically significant. A threshold of p < 0.05
was used to determine this. The results of these tests are shown in Table 4.2. As shown in
the column on the right, only the GPT-3.5-Turbo model combined with the Few-Shot and
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Generated Knowledge had a significant increase in performance. All of the other increases
or decreases were not statistically significant.

Table 4.2: Accuracy Comparison Across Models and Techniques compared to Zero-shot
performance

Model Technique Accuracy (Zero Shot/Technique) p-value Significant

GPT-3 FS 0.4965 / 0.5325 0.0227 Yes
GPT-3 CoT 0.4965 / 0.484 0.4292 No
GPT-3 GK 0.4965 / 0.533 0.0209 Yes
Claude FS 0.5600 / 0.5595 0.9746 No
Claude CoT 0.5600 / 0.5765 0.2923 No
Claude GK 0.5600 / 0.5475 0.4266 No
LLaMA FS 0.5535 / 0.5515 0.8988 No
LLaMA CoT 0.5535 / 0.543 0.5048 No
LLaMA GK 0.5535 / 0.539 0.3572 No
Mistral FS 0.5245 / 0.5115 0.4108 No
Mistral CoT 0.5245 / 0.5205 0.8001 No
Mistral GK 0.5245 / 0.5075 0.2822 No
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4.2 Analysis of Accuracy Across Prompt Lengths

Figure 4.1 shows the relationship between the length of the prompts (binned into character
ranges) and the mean accuracy for all four prompting techniques: Zero-Shot, Few-Shot,
Chain-Of-Thought and Generated Knowledge. On the primary y-axis of each subplot,
the mean accuracy is shown across bins of the length of the prompts, with error bars
representing standard deviation. The secondary y-axis, represented by gray bars, represents
the sample size for each bin. Using LOWESS, smoothed trend lines provide a summary of
the accuracy trends over the length of the prompt. When a point on one of the subplots
is annotated by Low N, the particular bin was underrepresented in the resulting dataset
because of insufficient data. A sample size of 10 or lower was chosen as the cutoff line.
Across all prompting techniques, there is a high variability in accuracy trends, with large
standard deviations within each bin. For Zero-Shot and Chain-Of-Thought, accuracy
stays relatively flat. This suggests the length of the prompt has a minimal impact of
verbosity. On the other side, Few-Shot and Generated-Knowledge show a slight upward
trend, indicating that the length of the prompt may have a beneficial effect on the accuracy.
Most of the bins from 1500 characters and upwards are underrepresented and don’t have
enough samples to accurately say something about the upward trends.
Overall, the results do not indicate clear evidence for verbosity bias. While Few-Shot
and Generated Knowledge did show an improvement with a higher character count, the
variability and low samples sizes make it unclear if the length of the prompt is a direct
cause.

Figure 4.1: Accuracy vs. Prompt Length (binned) across prompting techniques. Each
subplot represents a prompting technique, showing the mean accuracy with error bars
for standard deviation, smoothed trends, and sample sizes. Low sample sizes are marked
where applicable as Low N.
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4.3 Reasoning Quality Evaluation

The last part of analysing how the models behaved is a reasoning quality score. This score
is generated by GPT-4o and assesses how coherent and correct the reasoning chain is
regardless of the outcome label. In Table 4.3 there is a detailed overview of the resulting
data. This table presents the reasoning scores across the four used models( GPT, Claude,
LLaMA, and Mistral) for the four prompting techniques used: Zero-Shot, Few-Shot,
Chain-Of-Thought and Generated Knowledge. The left column is the average reasoning
score for all reasoning chains that model has produced for a certain prompting technique,
and the right column is the percentage of high performing reasoning chains in the sample.
Overall, Claude outperforms the other models in both average reasoning scores and
high-score percentage. Especially in the generated knowledge setting, having a near
perfect(99.85%) high-score percentage. GPT-3.5-Turbo shows a stable performance for
all prompting techniques, with a clear increase in the generated knowledge setting as
well. LlaMA follows GPT-3-Turbo in its consistency, averaging just above GPT-3-Turbo.
Mistral, however, consitently performs the lowest of all models. Especially in the generated
knowledge setting, with only 15.85% higher scores than 0.8. While the reasoning score
is a reflection of the coherence and correctness of the models’ response, it is important
to acknowledge that the limitation from a tri-label NLI setting to a binary NLI setting
probably has influenced either the reasoning chain or the tone of the reasoning chain
generated by these models. This may have influenced the reasoning scores and this should
be taken into consideration when interpreting these results.
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Model Average Reasoning Score High-Score Percentage (≥ 0.8)

ZS Prompting
GPT3 0.75 60.55
CLAUDE 0.88 98.60
LLAMA 0.80 76.40
MISTRAL 0.71 45.55

FS Prompting
GPT3 0.76 61.15
CLAUDE 0.87 96.75
LLAMA 0.76 62.35
MISTRAL 0.61 17.95

COT Prompting
GPT3 0.76 65.95
CLAUDE 0.88 97.60
LLAMA 0.83 84.40
MISTRAL 0.66 34.15

GK Prompting
GPT3 0.81 83.05
CLAUDE 0.90 99.85
LLAMA 0.71 70.75
MISTRAL 0.55 15.85

Table 4.3: Comparison of reasoning scores and high-score percentages (≥ 0.8) across the
four prompting techniques.
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Chapter 5

Discussion

5.1 Key Findings

5.1.1 LLMs stengths and weaknesses

The analysis of the resulting data revealed a few key characteristics that will be discussed
in this chapter. The models displayed varying levels of accuracy across different reasoning
contexts with different prompting techniques. Notably, Claude performed best in the
Zero-Shot setting, indicating the model may have a better baseline reasoning performance
without the addition of context.
However, only one of the models showed a significant improvement in performance after
being provided with the additional prompting strategies and context information.
GPT-3-Turbo showed some improvement in the Few-Shot and Generated Knowledge
settings, suggesting more examples and in-context knowledge could be reasons for a
performance increase for this specific model. But there was also a decrease in performance
in the Chain-Of-Thought setting, giving various results. This may suggest that for GPT-
3-Turbo a more direct and clearly defined prompt design may be beneficial but more
complex reasoning chains may be too impactful on performance and solely hurt the logical
reasoning capabilities of this model.
LLaMA and Mistral both showed very consistent results on all prompting techniques in
the study. Both models experienced a purely negative effect on the performance for all
used prompting techniques. This may illustrate that the models are not well equipped for
reasoning tasks in such a complex setting or in a multistep reasoning chain environment
with the addition of these prompting techniques. However, all of the decreases were
statistically insignificant so it is not clear evidence that it impacts their logical reasoning
capabilities.

5.1.2 Impact of prompting techniques

The study results show that the impact of prompting techniques on a reasoning and
logic based NLI setting are more limited than beneficial. While the different prompting
techniques used did make an impact, the average accuracy impact was only 0.11%. Other
than the outlier, being GPT-3-Turbo, most increases or decreases were modest and did
not significantly impact the models reasoning capabilities.
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Few-Shot

Few-Shot prompting had a notable performance improvement for the model GPT-3-Turbo,
where the addition of a few examples increased the performance by 7.25%. While the
other models only decreased in performance with the addition of examples. This indicates
that giving examples can increase the models’ performance but it is still difficult to get a
consistent baseline in the reasoning NLI setting. The increase in performance is however
an indication that giving GPT-3-Turbo examples may help with its logical reasoning skills
and makes the model more consistent.

Chain-Of-Thought

While this prompting technique is meant to encourage the model to reason in a more
structured and explicit way, this effect did not show in this study. In fact, most models
including GPT-3-Turbo suffered from the added complexity. This may suggest that the
added structure and thinking steps hindered the models ability to stay on track and
accurately assess the problem in question. This highlights the potential trade-off between
generating explicit reasoning and producing an accurate conclusion label.

Generated Knowledge

In contrast to giving examples of how the problem setting is syntactically supposed to
be solved, Generated Knowledge aims to help a model semantically by giving additional
context related world knowledge. This in itself is also a test in keeping this knowledge in
active context and letting it help the reasoning and label generation. The results show
that it has a comparable impact as the Few-Shot setting with the negative impact being
greater. While GPT-3-Turbo benefits from the additional knowledge, Claude, LLaMA
and Mistral had a bigger negative impact on the accuracy. What is interesting is that the
average reasoning scores greatly increased in this setting for the models GPT-3-Turbo
and Claude. This suggests that while the additional knowledge may interfere with a clear
sight on the conclusion, it did help with a more coherent reasoning chain.

Overall

In summary, the data suggests that while prompting techniques do indeed influence
a models’ performance in some problem settings, their impact on this reasoning NLI
dataset was in most cases neglegable. This is also confirmed by the statistical analysis in
Paragraph 4.1.1. The trained ability for logical inference probably played a more central
role in performing in this task rather than the additional context or examples. The results
indicate that while prompting techniques may indeed have some beneficiary effects on a
model’s output, it does not help these last generation models overcome their reasoning
difficulties and for most cases did not have a clear impact on their logical consistency.

5.1.3 Reasoning Score evaluation

The second measure of evaluation of the impact of prompting techniques on the reasoning
capabilities of these models in an NLI setting is the Reasoning Score. These scores provide
an independant evaluation of how the models’ reasoning chain was coherent and correct
regardless of the resulted outcome label. As was shown in the summary table 4.3, an
average score was calculated and a percentage of high performing scores were displayed.
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Few-Shot

The few shot prompting setting resulted in a mostly similar scoring result compared to
Zero-Shot. This is in contrast to the label accuracy where Few-Shot made a definitive
improvement for GPT-3-Turbo. These results show that although Few-Shot may have a
beneficial impact on the accuracy, that does not necessarily mean the preceding reasoning
chain is impacted at all.

Chain-Of-Thought

Chain-Of-Thought prompting also resulted in an increase in reasoning chain scores. The
level of improvement varies by model. For GPT-3-Turbo, Chain-Of-Thought prompting
made a slight improvement in average reasoning score and high-percentage score. This
indicates that the way Chain-Of-Thought guides the model improved its reasoning consis-
tency. Claude on the other hand shows a very consistent score for both Chain-Of-Thought
and Zero shot prompting, suggesting that its reasoning capabilities are affected less by
this technique. Overall, the results vary by model and do not give a clear indication of im-
provement. Often Chain-Of-Thought prompting enhances a model’s reasoning capabilities
though its effect is not universal and model dependant.

Generated Knowledge

Prompting in a Generated Knowledge setting resulted in the highest overall reasoning
scores. Specifically Claude achieved an average score of 0.90 and a near 100 high(≥ 0.8)
percentage of 99.85. This shows that Claude and GPT-3-Turbo benefited from the
additional context knowledge to generate a coherent and correct reasoning chain.

5.2 Implications and Future Work

The results of this study highlight a part of Natural Language Processing where a lot of
improvements can be made in the future. The flaws of contemporary LLMs are very clear
in this logical reasoning setting. This results in some improvements to this study in the
future and what other settings could be studied.

5.2.1 Model selection

As stated in the first chapter of this study, there have recently been many developments in
the area of LLM reasoning. New training data and ever increasing parameter counts show
that the reasoning gaps in LLMs can be solved that way. However, to make backwards
compatable solutions we need to keep looking at older models. Not every machine is
capable of running models with billions of parameters so this is still a valuable area of
research.
While this study focussed on four low to mid end models, Claude-3.5, GPT-3.5, Llama-2,
and Mistral-7B, it could give valuable insights to do the same study with different models
and use these results to create a broader insight on models with these parameter counts.
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5.2.2 Prompt engineering

The critical element in this study were the prompting techniques. Given the limited time
and resources it was necessary to make some generalizations regarding the structuring of
these prompts. For example the Few-Shot examples were manually curated for all context
settings. In addition, giving more specific examples in the same syntactic manner would
be an interesting future study.
Furthermore, Chain-Of-Thought prompting aims to encourage a model to give a structured
reasoning chain. The results do not reflect this, therefore refining the structure and clarity
may be beneficiary and improve the overall effectiveness of using this technique.

5.3 Reflection on Research limitations

This study has faced two major limitations that may have influenced the results coming
forth from the research that was done. In this section these limitations will be discussed
more deeply and reflected how they may have influenced the results and conclusion of
this study.

5.3.1 Tri-label to binary label setting

The first limitation that impacted this study was the inherit flaw of the used dataset:
LogiQA 2.0. This dataset, unlike a traditional dataset, uses a binary categorisation of the
NLI problem task. Contemporary models that may be more familiar with a tri-label NLI
task may get confused and respond differently when asked to categorise the relationship
between a premise and a hypothesis when one of the options is missing. For now we
can’t say for sure that this has had a great influence but it should definetly be taken
into consideration. Only future research with both a binary and a tri-label dataset could
conclude whether or not this has really had a difinitive impact

5.3.2 Prediction label extraction

The second lmiitation that was faced in this study was the difficulties in extracting
the predicted label from the resposne of the model. Because of the stochastic nature of
LLMs, this task proved to be non-trivial. As seen in 3.3.2, a specific output structure was
requested from the used models but because of this non deterministic nature, the responses
weren’t always in this format. This made extracting the one or two worded prediction label
more difficult than predicted before. A series of regex functions and manual inspection
have al yielded slighlty different results. This proved that the actual conclusionary labels
and resulting accuracy scores could not be trusted fully. The differences were minor but
could not to be proven fully correct. In a future rendition of this research, a big portion of
the research time should be invested in the research of label extraction from a stochastic
response.
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Chapter 6

Conclusion

In this study, the impact of four prompting techniques on the logical consistency and
reasoning capabilities of four enterprise level LLMs was evaluated: GPT, Claude, LLaMA
and Mistral. The results that came out of the study showed that while prompting techniques
did influence the performance of the models, the actual impact on logical consistency
and reasoning coherence and correctness was modest at best, with only few significant
improvements across all models. Claude consistently overperformed the other models,
specifically in the Generated Knowledge setting, where it showed both high reasoning
scores and a near perfect high-score percentage. GPT-3-Turbo demonstrated that the Few-
Shot setting boosted its accuracy score but it did not exhibit corresponding improvements
in reasoning scores, indicating that the presentation of examples may improve accuracy
on deducing the right conclusion without necessarily making an improvement on the
consistency of the reasoning given by the model. On the other hand LLaMA and Mistral
showed very few signs of benefiting from the prompting techniques, suggesting they may
struggle from the added complexity. These facts together show that the overall impact of
prompting techniques was not clear on the logical consistency of the models.
This study underlines the limitations and choking points many LLMs face, while at the
same time pointing out areas of future improvement. The results suggest that some
prompting techniques may benefit from a different input structure, such as Generated
knowledge, but further improvements on the techniques are definitely needed to accurately
test their impact. Overall the results don’t show a clear improvement on the logical
consistency of these particular models given the prompting techniques as they were used.
While these insights into the impact of prompting techniques on logical consistency in
LLMs are provided by the results, the limitations should also be acknowledged. The
dataset’s two-label formate may have influenced these results by combining netraulity
and contradiction, potentially affecting the validity of the accuracy scores. Additionally,
the problems in extracting the actual prediction labels from the LLM-generated text
introduced a layer of ambiguity. Future research should consider doing the same setup but
with a trilabel dataset and refining the label extraction methods to ensure a more precise
assesment of the reasoning capabilities of LLMs with the aid of prompting techniques.
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