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1 Abstract

Percussion and Drums have been the subject of many works in the field of Music Information

Retrieval (MIR) but research has trended in two key directions; (1) audio based single instru-

ment classification, or (2) pattern recognition from symbolic representations such as standard

notation and MIDI (Musical Instrument Digital Interface). This leaves a gap for exploration

in the audio domain that interrogates drum styles which are composed of patterns over time.

When CNNs (Convolutional Neural Networks) are applied to drum classification tasks they

perform well but have not been extensively compared to pretrained transformer-based mod-

els for drum audio style classification in a supervised transfer learning context. This project

seeks to examine classification of drum audio style by comparing a baseline CNN trained

only on the GMD (Groove Midi Dataset) with a pretrained transformer based model; PaSST

(Patchout Audio Spectrogram Transformer) with frozen general audio embeddings from Au-

dioSet. Understanding this comparison reveals the ways in which general audio knowledge

can effect drum audio style classification. Experiments with model depth, augmentation and

padding show that PaSST with these frozen embeddings reduces performance in terms of
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accuracy but reveals robust feature representation distinct from the baseline CNN.
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3 Introduction

Inspiration and Relevance

This project grew out of an inspiration to detect the motorik drum pattern; an iconic 4/4

time signature groove popularized by 1970’s German rock, in musical recordings. Although

this topic is uniquely compelling it presents several challenges. To execute a project with

this aim one would need to create a custom dataset which would involve source separation

to isolate the drum audio, beat detection algorithms to segment the audio and extensive

annotation or utilization of few shot/zero shot learning to create ground truth labels. In

order to avoid the task of dataset creation the GMD (Groove MIDI Dataset) was chosen

as it is the largest drum audio dataset with primary and secondary style annotations and

regularized segmentation allowing effective usage in this context (15). In addition the GMD

was compiled from performances by professional drummers that included additional meta-

data for BPM (beats per minute), beat type (beat or fill), time signature among other data

points relevant to audio and MIDI size. In terms of model architectures to handle this clas-

sification task, first a baseline CNN was chosen as it had been shown that this architecture

type performed well on drum instrument classification (11). Then to explore the effect of

transfer learning from general audio embeddings, PaSST was chosen as it is a lightweight
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and efficient adaption of the AST (Audio Spectrogram Transformer) that has shown consis-

tent performance improvement over baseline CNN models in a variety of downstream audio

classification tasks (5). These two models set the groundwork for initial experimentation

and data set exploration which led to the style scope of the project broadening to focus on

the different performance of the models across all styles present in the GMD rather than

just one subset of styles.

The Problem

Several musical audio and general audio classification tasks have involved a variety of CNN,

RNN and transformer based architectures. Simple CNNs have shown to be generally per-

formative for single instrument classification while transformer based approaches continue

to improve results on a variety of musical audio classification tasks. For this project our

musical audio classification task is drum audio style which will be defined as a set of pat-

terns and musical articulations exemplified by combinations of onsets and timbral structures

over time that are categorized to certain annotations determined by expert or professional

drummers that contributed to the GMD. Often these styles share some combination of se-

mantic labels from both music genre classification and drum pattern designations set out

by musical cannon knowledge explicated by subject matter experts, in our case professional

drummers. Because drum styles are linked to but independent from specific tempo or time

signature constraints, a key challenge in this research area is capturing the features of these

styles from variable-length audio (1). Recent applications in CNNs and transformer-based

models (2; 3) show that a transfer learning approach, where a model trained on source task is

then utilized on a target task like a smaller specialized dataset, offers increased classification

accuracy in a variety of audio file lengths. For example Quelennec et al. evaluated a series

of pretrained models across musical instrument, urban and environmental sounds noting dif-

fering performance in mean average precision and accuracy depending on the file length (4).

In addition, Ding et al. compared various CNN baseline models with multiple pretrained

models and displayed that the PaSST model showed significant improvement over the CNN

baseline in both music instrument detection and genre classification (5). These studies make

it compelling to explore a comparison between PaSST and a baseline CNN. To more clearly
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explicate the context of this thesis the next section on related audio classification tasks will

focus first on music then towards drums while providing additional foundations for transfer

learning and augmentation.

4 Related Work

Polyphonic Audio Classification

Modern deep learning has driven substantial progress in classifying polyphonic music, typ-

ically focusing on tasks like genre recognition or music tagging over entire tracks. Earlier

work has often employed CNNs that segmented audio into short frames, classified each seg-

ment, and aggregated predictions (6). A major shift included the use of pretrained audio

representation models like VGGish trained on a large YouTube dataset (7). Another in-

fluential model, OpenL3, is a deep audio embedding learned via self-supervised audiovisual

correspondence on a music subset of the large AudioSet dataset (8). In addition more recent

research has pivoted toward AST’s, which use self-attention to model long-range dependen-

cies directly (9; 10).Although these classifiers can detect broad musical styles, they are not

necessarily optimized for analyzing drum specific patterns in isolated form. Moreover, the

focus in polyphonic classification is often on global attributes like timbral evolution over time

in conjunction with melody, harmony and instrumentation, and not necessarily percussion

or drum focused.

Single drum instrument audio

In contrast, another body of work focuses on classifying individual drum onsets or instru-

ments where, the goal is to recognize whether a given audio excerpt corresponds to a snare,

kick, cymbal, or other drum component (11). For single instrument detection it has been

shown that CNNs outperform LSTMs in small-data regimes as these convolutional filters

efficiently capture spectral features without the heavier parameter load of recurrent layers

(12). While such single onset systems achieve high accuracy and highlight the timbral dis-

tinctions of individual drum sounds, they provide limited insight into how a sequence of
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onsets forms a style over time. As a result these methods applied to single instrument de-

tection can be investigated for application to drum audio style classification that involves

multiple instruments in a drum kit creating patterns over variable temporal lengths.

Drum style classification

Capturing drum style which encompasses both rhythmic patterns and dynamic nuances

requires a more temporally informed view than single hit detection. In the symbolic domain,

ADT (Automatic Drum Transcription) has made strides in transcribing drum onsets into

MIDI , but this relies on accurate MIDI file supplements that are usually not present in

audio files unless explicitly provided with the audio data (13; 14). Converting raw audio to

MIDI also introduces an intermediate representation that may lose timbral and performance

details relevant to style and by contrast, directly classifying style from audio aims to retain

these features. ADT is a way of detecting, classifying and notating a series of drum onsets

without applying additional semantic labeling to this captured sequence. Drum audio style

on the other hand takes a more global view of the given audio and learns the features in

relation to its style label without transcribing individual onsets over a given time series. This

makes it a higher level interpretation of a pattern as these semantic labels assigned represent

a collective grouping of patterns that share underlying characteristics. One can view this as

similar to the task of genre classification in music as genre is often defined by certain qualities

that cannot necessarily be reduced to components of notation. Style classification for drum

audio remains relatively unexplored in a comparative context with transfer learning.

Transfer Learning

In machine learning the process of transfer learning in a classification context is generally

defined as the re-utilization of parameters trained on a source task to accomplish a target

task (16). The motivation behind utilizing this technique is often around data scarcity as a

network employing pretrained weights can often have its parameter size reduced. Although

transfer learning is applied to many machine learning applications outside of music or audio,

when applied to this domain the process of initializing models with weights usually involves
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learned representations from large-scale audio corpora (17; 5).

For example, in Choi et al. they used a CNN based VGG (Visual Geometry Group) like

architecture with mel spectrogram inputs which utilize the mel frequency scale to compute

a high resolution image of the input audio, from the Million Song Dataset1 consisting of

a variety of musical audio to be used for target tasks which are downstream classification

tasks like GTZAN2 music genre classification in which they found that the pretrained models

outperformed the random weight initialized baseline without pretraining (16). Although it

can be said the source and target tasks here are quite similar, this study indicates that

transfer learning could be successfully applied to a variety of data scarce MIR tasks. These

tasks are similar in the sense that the pretrained data is of a similar nature to the data set

which the model is being applied for in a classification context ie. using a model trained

on musical audio for musical genre classification represents a likely similarity in underlying

features. In our case we want to explore if general audio embeddings will translate to drum

audio style classification representing less similarity between pretrained audio and target

audio.

Pretrained embeddings like VGG or OpenL3 (Open-source deep audio and image em-

beddings) were once popular, but more recent architectures such as PaSST and PANNs

(Pretrained Audio Neural Networks) have generally outperformed these older systems in

downstream audio tasks (3; 4). Although this technique can be applied to both CNN and

transformer based architectures it is noted that the current state of research tends to focus on

utilizing transformers in a transfer learning context. For example, transformers pretrained

on diverse data like AudioSet can capture both local and global audio patterns relevant to

different sound events (2). Similarly, multi-modal models like CLAP (Contrastive Language

Audio Pretraining) have demonstrated robust classification abilities in music datasets by

learning audio representations aligned with text descriptions (18). Because of the applica-

tion of this technique to genre classification, musical instrument classification and a variety of

other downstream audio classification tasks it is compelling to explore the potential benefits

in a drum audio style classification context.

1http://millionsongdataset.com/
2https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification
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Application to our Problem

Drawing on both single instrument studies and broader transfer learning advances, this work

is structured to investigate how well variations of the AudioSet pretrained PaSST model

performs in classifying drum audio by style in relation to a baseline CNN trained on the

GMD. This will elucidate if and and to what extent the pretrained embeddings offer an

advantage over a baseline CNN baseline trained from scratch on GMD audio as has been

shown in prior studies with data sets of similar nature and size (5). This is compelling

because transferring knowledge from the large general audio corpora AudioSet to the GMD,

highlights not only the efficacy of PaSST in this context but also has the potential to reveal

if some form of drum audio style information is encoded in a ’world audio model’.

On Augmentation

Data augmentation in an MIR context generally refers to modifying the input audio wave-

forms, computed spectrograms or other representations with the intent to change the fre-

quency content over time in the given input. Some applied choices are time-frequency mask-

ing, pitch shifting, time stretch or mixup which have been employed to improve model

robustness and generalization in audio tasks (19). Adding these perturbations to the audio

or the spectrogram allows for the model to learn from more varied conditions although re-

sults are varied in terms of classification accuracy ranging from modest improvements of 1 to

3 percentage points (20). Augmentations in the context of pretrained models compared to

trained from scratch baselines show that they can be beneficial in data scarce environments

in both contexts (26).

5 Research Question

What is the effect of pretrained general audio embeddings in PaSST when

compared to a baseline CNN for drum audio style classification?

To address this, we investigate two main model architectures: A baseline CNN trained

solely on the GMD and PaSST with frozen embeddings pretrained on AudioSet. We specif-
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ically aim to primarily investigate if the AudioSet embeddings are beneficial for drum audio

style classification in terms of accuracy and underlying feature representation.

6 Methodology

Data and Preprocessing Overview

The GMD3 contains over 18,000 indexed audio files with extensive metadata that are seg-

mented based on the MIDI notation giving a uniform musical length of two measures irre-

spective of BPM recorded and labeled by expert human drummers. This musically informed

regularization of two measures is valuable as it allows for elucidation of whether this rela-

tively short amount of musical audio is sufficient for classification across different absolute

time durations. The style annotations include ‘primary-style’ and/or ‘secondary-style’ which

is concatenated into a single tag to mitigate the effect of half of the dataset lacking secondary

style annotations which eliminates the need for multi-label classification while still retaining

the ability to analyze at a hierarchical level. Due to the fact these labels are human created

there is some potential for injection of subjectivity here but it is reasonable to suppose that

human drumming professionals are a plausible source for ground truth labeling as they are

domain experts. The drum audio has a sample rate of 16kHz, which means it does not in-

clude frequencies above 8kHz; however, this reduced bandwidth is not a significant limitation

in this context.

Multiple data configurations were explored to evaluate performance across different model

architectures. Based on the results, only audio files under 10 seconds were used, as they

comprised the majority of the GMD and allowed for a fair comparison between models, given

that PaSST was pretrained on 10-second clips from AudioSet. To facilitate experimentation,

analysis, and exploration of the data several modifications to the default GMD metadata

were made including; revising the splits so that proportional class representation was present

in all splits, audio file renaming to efficiently incorporate the existing indexing, file path

columns, primary and secondary style concatenation to a new style-class column and a

3https://www.tensorflow.org/datasets/catalog/groove#groove2bar-16000hz
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length-bin column to examine the duration distribution (1-3 seconds, 3-5 seconds, 5-7 seconds

and 7-10 seconds). The waveforms of the selected audio recordings were transformed into

log-Mel spectrograms as this time-frequency representation has proved effective for audio

classification tasks (26). Input regularization was applied during preprocessing for both

architectures by padding each input to a fixed length representing 10 seconds of audio initially

using zero-padding, with alternative padding methods introduced in later experiments.

In this project, augmentation methods were not initially utilized, however for the sake

of interpretability of the latent representations Timestrech, Time Patchout (from PaSST),

Gaussian Noise and Room Simulation were implemented to observe if these produced move-

ment of the embeddings. These augmentations were chosen in part for their feasibility and

because of the variable length clips in the GMD. The python library audiomentations4 is a

go-to tool for many audio machine learning researchers which offers a wide variety of aug-

mentations aimed at making models more useful for real world applications. By choosing

augmentations that can be implemented during training rather than through re-rendering

audio files the scope of this part of the project is contained. For definitions, Gaussian Noise

will add random noise to the audio waveform, Timestretch changes the speed of the audio

waveform without changing the pitch, Time Patchout removes vertical patches from the

spectrogram and Room Simulator creates the effect of a room on the audio waveform. Cru-

cially, these augmentations are implemented either on the raw waveform or the computed

spectrogram to explore how the models will deal with time, noise and reverberant conditions

which can provide insight into performance in more real-world conditions.

CNN Baseline Model

1. Architecture Overview

Initially Hiner’s model for drum instrument classification that achieved 93.4 percent

accuracy was adapted (11). Then an iterative process was undertaken to modify the

architecture with several changes primarily focused on increasing the depth of the

network then later with different augmentation and padding refinements.

4https://github.com/iver56/audiomentations
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As detailed in the experiments, changes in the architecture involved primarily adding

2d convolutional layers, each followed by max pooling, dropout and global average

pooling, implemented with PyTorch5. Then the network passes the inputs to two

fully connected with a 512 input size after which follows the feedforward network with

Rectified Linear Unit (ReLU activation) which introduces non-linearity and helps the

network learn more complex relationships within the data. After this global pooling

occurs along with flattening, RelU activation, and dropout concluding with the final

dense layer which takes the 512-dimensional output and further transforms it into a

final output that represents the predicted probabilities for each drum style class.

2. Preprocessing and Feature Extraction

For feature extraction the original sample rate of 16 Khz is maintained and no resam-

pling is performed with NFFT=1024, 128 mel bins and hop=NFFT/4. These settings

are chosen because they performed well in the original code we adapted and provide

a sufficient setup for the classification task. A preprocessing notebook was also uti-

lized to create several dataset configurations with different columns added to facilitate

experiments in the Google Colab virtual environment (28).

3. Variable-Length Inputs and Training

To handle the varied audio file durations all files are initially padded with zeros up to

10 seconds which helps the CNN perform better and will match our comparison with

PaSST. For training a 50 epoch maximum is set with early stopping patience of 10

epochs to exist within a limited compute budget while also being sufficient for a dataset

of modest size like the GMD. During training the Adam optimizer with batch size 16

and learning rate of 1e-4 helped constrain the training time to 3-8 hours depending on

GPU type utilization and after concluding training inference is ran on the test set and

compute the precision, recall and F1 scores for the both the entire test split and per

class which is then visualized with confusion matrices per experiment.

4. Model Interpretability

5https://pytorch.org
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Once arriving at the optimal primary configuration of the CNN baseline starting at

experiment round 6, t-distributed stochastic neighbor embedding (t-SNE) is employed

to visualize and examine the clustering in the embedding space both by individual

style class and primary/secondary styles. This technique is particularly useful here

as it provides a concise dimensionality reduction of the higher dimensional embed-

dings allowing additional insights beyond accuracy metrics which becomes particularly

insightful when analyzed in conjunction with the confusion matrices.

5. Expected Results

We expect the classification accuracy of the model to increase with the number of

Conv2d layers but only up to a point that will need to be experimentally tested in

conjunction with dataset size and hyperparameter tuning. The experiments will ex-

amine different model depths and augmentation then report results. In the t-SNE

visualizations it is expected to see clustering reflective of the accuracy scores.

PaSST Pretrained Model

1. Overview and Motivation

To compare with the CNN baseline and observe the influence of transfer learning

from large scale general audio data, we adopt PaSST as our pretrained model (1).

PaSST is trained on AudioSet; one of the largest general audio datasets that includes

among other categories, environmental sounds, speech audio, and musical sounds with

a regularized 10 second duration and human created labels (21). PaSST is well suited to

this project due to it’s efficient adaptation of the AST architecture, implementation of

time and frequency patchout along with disentangled positional encodings and reliable

ease of implementation. Additionally PaSST is fairly well cited and utilized in audio

classification research with well maintained code6including several different pretrained

configurations that facilitate experimentation. In the second round of experiments

with different configurations, it is determined that PaSST-L; a light version of PaSST

with 7 instead of 12 attention blocks trains faster and achieves higher accuracy than

6https://github.com/kkoutini/passt_hear21
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alternatives tested in this project. For these reasons we are steadfast in the judgment

that PaSST is a reasonable architectural choice in which to explore the relationship

between pretrained frozen general audio embeddings and drum audio style classification

in the GMD.

2. Model Architecture

The PaSST architecture borrows its fundamental design from vision transformers,

namely the DeiT and ViT upon which the AST was developed (9; 22; 23). In these

architectures an image is typically split into 16x16 patches during training. For our

purposes this image input is a log-mel spectrogram divided into a sequence of patches

and mapped to embedding vectors. The self-attention blocks enable PaSST to compute

global relationships among patches by allowing the model to capture both short-term

and long-term temporal structures. During training each patch is flattened and passed

through a linear projection to form a 768-dimensional embedding which is treated as a

high-level feature vector for the audio (9). The sequence of patch embeddings is then

augmented with positional encodings to inform the transformer of each patch’s time

and frequency location. Consequently, the disentangled encodings allow the model to

adjust to inputs of varying lengths by cropping or extending the time encoding dimen-

sion without altering frequency positional parameters (1). Afterwards, this sequence

including patches and prepended tokens is then fed through transformer encoder lay-

ers each comprising multi-head self-attention and feed-forward sub-layers. At the last

stage PaSST prepends a learned classification token (CLS) embedding to the sequence

that aggregates global context for classification. The output class prediction is pro-

duced from the transformer’s output tokens via a multi layer perceptron MLP that is

tuned for optimal depth experiment round 8.

3. Preprocessing and Feature Extraction

PaSST was trained on 32kHz sample rate audio therefore GMD audio is upsampled

to match the length of the AudioSet embeddings avoiding potential errors that could

arise from a sample rate mismatch. Following the original paper’s STFT approach

we use a 25 millisecond window with 10 ms hop and apply Mel filter bank to convert
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linear frequency spectrum into 128-bin Mel-spectrogram. These settings match our

preprocessing setup for the baseline CNN thus setting the stage for a fair comparison.

We apply the same data filtering done with the CNN in which all files up to 10 seconds

in duration are utilized with padding to the fixed 10 second length of 320000 samples

at 32Khz.

4. Patchout Regularization

The Patchout mechanism in PaSST comes in two forms, either Structured (PaSST-

S) which removes entire horizontal frequency bins or time columns or Unstructured

(PaSST-U) which randomly removes individual patches regardless of their time-frequency

positions which mimics dropout-like randomness at patch level granularity. The pre-

trained examples included in the PaSST github repository 7 demonstrate that struc-

tured patchout is the more effective choice in terms of attaining classification accuracy.

From this it is reasonable to suggest that time patchout will influence PaSST to rely

more on overall rhythmic patterns rather than local temporal positions thus capturing

the features related to style better. It is expected that this can be an advantage of

PaSST over the CNN and will be tested in the experiments section.

5. Transfer Learning, MLP Classifier and Training Setup

In the PaSST repository the authors provide 14 different configurations with frozen

embeddings in which the experiments of this project first use the default linear layer

then a deeper MLP. To maintain scope on the research question we only utilize the

frozen embeddings. For training we use the defaults within PaSST with batch size of

16, 4 workers, learning rate of 1e-4 with 50 epochs max with early stopping criteria of

10 epochs. The experiment notebooks each have detailed logs that provide data for

training curve visualizations (28). These choices elicit a fair comparison with our CNN

baseline, and prevent scope creep from extensive hyperparameter tuning.

6. Model Interpretability

In the same fashion as applied to the CNN we utilize t-SNE to examine the clustering

7https://github.com/kkoutini/passt_hear21
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in the embeddings. Based on the different architectures, augmentations and dataset

configurations tested, the changes that produce embedding drift will become apparent.

The outputs from t-SNE and confusion matrices will help build reasoning for how each

architecture deals with the data.

7. Expected Results

We hypothesize that because of the over 1 million general audio files in AudioSet,

some information will be present in the frozen PaSST embeddings that will aid in

classification accuracy and feature representation over a baseline CNN. Fortification

of the MLP on top of these embeddings is expected to produce noticeable increases

in accuracy. Besides accuracy a more robust shared feature space between classes is

expected to be indicated by nearby clustering of similar classes.

Evaluation Protocol

For both model pipelines the primary metric we evaluate and discuss is F1 / Accuracy even

though Precision, Recall, F1 , mAP (Mean Average Precision) and AUC are also computed.

F1 is the most appropriate in a single label classification context as we have devised with the

primary and secondary style tag concatenation. Confusion matrices will provide at-a-glance

views of model performance.

Reproducibility

All notebooks for these experiments are made available in a google drive repository for exami-

nation and reproducibility if desired (28). This repository also includes audio files, metadata,

model checkpoints, log files, embedding space visualizations and confusion matrices used for

and produced by the experiments.
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7 Experiments

Description and Summary

At the very beginning of exploratory prototyping the initial CNN prototype first used only

files with exactly 4 seconds in length at 16Khz resulting in a fixed input size and a smaller

subset of the data. After this was shown to work well with over 90 percent accuracy the same

architecture is used for the subsequent experiments until model depth is explored. After

adjusting the metadata to facilitate single label classification and avoid class imbalances

across the 80/10/10 split it became more readily usable for this project. All models were

trained on either A100 or L4 GPU’s in a Google Colab virtual environment during the

months of April and May of 2025 (28). A total of 34 experiments were conducted consisting

of 11 rounds that are grouped into four categories: Configuration Exploration, Dataset

Exploration , Model Depth and Patchout , Augmentations and Padding. Each of these four

groups will begin with a table giving a concise view of the results followed by further details.

Configuration Exploration

Table 1: F1 scores by experiment round and model (highest per round in bold).
Round ID Model F1 Notebook Description

1 1.1 CNN 0.9204 GMD CNN prototype3.ipynb Defaults with rock styles
1 1.2 PaSST 0.8544 PaSST setup2.ipynb Defaults with rock styles
2 2.1 PaSST 0.8660 PaSST setup3.ipynb PaSST config
2 2.2 PaSST 0.8699 PaSST setup4.ipynb PaSST config

1. Experiments Round One - PaSSt and CNN default test with rock styles

The first round of experiments was aimed at utilizing a subset of the GMD that con-

tained all 2 measure audio files with the style annotation rock in either the style-primary

or style-secondary columns with the exception of the style-secondary entitled groove8

as this class had only a few files and because its style was given a generic name it would

have little value for this initial experiment and was thus filtered out of the dataset.

This experiment round utilizes 5082 of the original 18297 files. Following an 80 percent

train, 10 percent validation, 10 percent test split,the train split contains 4062 samples,
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validation 505 samples and test 515 samples all with roughly analogous proportional

splits, for example all three splits contain 69.5 percent rock samples, 5.3 percent punk

samples etc. on for each style-class in the dataset. This proportional data balancing

is maintained throughout all experiments for consistency.

Hypothesis:

To properly establish baseline configurations for both model architectures we explore dif-

ferent data subsets and pretrained configurations with the expectation that the PaSST

default pretrained model with the default linear layer head will result in higher classifi-

cation accuracy of styles over the 3 layer CNN architecture because of the underlying

AudioSet feature representation.

Experiment 1.1

In this experiment the model trained for the full 50 epochs achieving an F1 score of

0.9204 which is a good initial result for the CNN architecture. The confusion matrix

shows the model mostly had issues with classifying secondary style tags within the

primary style rock. This is not a particularly surprising result as the other styles can

be seen as sub-styles of the rock class. Other than that a notable confusion is also

between the labels rock-shuffle and rock-halftime.

Experiment 1.2

This experiment used the default pretrained model (arch=”passt-s-swa-p16-128-ap476”)

which was noted by the authors to be the model that most efficiently converged, mean-

ing it finishes training in fewer epochs (1). The options indicated in the architecture

title refer to structured patchout (s) , Stochastic Weight Averaging (swa), Patch size

= 16 (p16), Input frequency dimensions (128) and Average Precision .476 on Audioset

(ap476). The model was set up to train for the full 50 epochs, but early stopping with

patience of 10 was triggered, disabling further training beyond epoch 29. The model

achieved an F1 score of 0.8544. The confusion matrix shows again the model mostly

had issues with classifying rock secondary style tags with the main rock style class.

Notably different from the first CNN experiment is that this version of PaSST confused

classes punk, funk and rock shuffle with rock tracks substantially more.
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Discussion:

This initial round of experiments indicates a potential to disprove the hypothesis but

further experimentation will be implemented to expand upon these findings as the

CNN baseline outperformed PaSST by 6.67 percent on the same dataset. From this

stage it is useful to test with different pretrained configurations of PaSST provided and

different dataset configurations.

2. Experiments Round Two - PaSST pretrained configuration tests

These experiments were set up to test which pretrained version of PaSST was most

appropriate to use for additional experimentation. Two other configurations ‘passt-

s-kd-p16-128-ap486’ and ‘passt-l-kd-p16-128-ap47’ are chosen amongst the available

options because they either have the highest average precision on AudioSet (ap486)

or have the highest average precision within a lighter transformer architecture (ap47).

The aim of these experiments is to choose the optimal PaSST pretrained architecture

to conduct future experiments with.

Hypothesis:

To determine which PaSST model to move forward with in subsequent experiment

rounds, considerations of accuracy and training time will be tested. We expect ‘passt-

s-kd-p16-128-ap486’ to outperform ‘passt-s-swa-p16-128-ap476’ due to higher average

precision on Audioset and that ‘passt-l-kd-p16-128-ap47’ will outperform ‘passt-s-swa-

p16-128-ap476’ in terms of training time because of its lighter architecture.

Experiment 2.1

In this experiment the PaSST configuration is changed to arch=”passt-s-kd-p16-128-

ap486” which has the highest Average Precision score on AudioSet. The options indi-

cated in the architecture title refer to structured patchout (s) , knowledge distillation

(kd), Patch size = 16 (p16), Input frequency dimensions (128) and Average Preci-

sion .486 on Audioset (ap486). The model was set up to train for the full 50 epochs,

but early stopping triggered disabling further training beyond epoch 43. Upon infer-

ence the model achieved an F1 score of 0.8660 demonstrating a roughly 1.2 percent
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improvement over the ‘passt-s-swa-p16-128-ap476’ architecture from the first PaSST

experiment. The confusion matrix shows again the model mostly had issues with clas-

sifying rock secondary style tags with the main rock style class as is likely to occur due

to the over-representation of the rock primary style annotation. When comparing the

confusion matrix to the first PaSST experiment this architecture is notably better at

disambiguating rock folk and rock rockabilly from rock. This leads us now to test the

next pretrained configuration.

Experiment 2.2

In this experiment the pretrained configuration is set to arch=”passt-l-kd-p16-128-

ap47” with the 7 transformer attention blocks while still maintaining structured patchout

with average precision of 0.4708 on AudioSet which is also referred to by the original

authors as PaSST-L (light). The options indicated in the architecture title refer to

light reduced depth=7 (l) , knowledge distillation (kd), Patch size = 16 (p16), Input

frequency dimensions (128) and Average Precision .4708 on Audioset (ap47). The

model trained faster than prior runs for the full 50 epochs with no triggering of early

stopping. Upon inference, the model achieved an F1 score of 0.8699 demonstrating

a 0.39 percent improvement over ‘passt-s-kd-p16-128-ap486’ from the second PaSST

experiment and a 1.6 percent improvement over the initially used ‘passt-s-swa-p16-

128-ap476’ configuration. The confusion matrix shows PaSST-L is marginally better

at disambiguating punk rock, shuffle and rock-indie from rock while most other classes

see little or no change.

Discussion:

These experiments demonstrate that PaSST-L provides not only the fastest training

time but also the best F1 scores within this subset of the GMD. This means our

hypotheses from this round of experiments were partially proven but exceeds expecta-

tions as PaSST-L not only trains faster but is also more accurate. From these results

PaSST-L is chosen as the configuration for all future PaSST experiments.
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Dataset Exploration

Table 2: F1 scores by experiment round and model (highest per round in bold).
Round ID Model F1 Notebook Description

3 3.1 CNN 0.3267 GMD CNN prototype4.ipynb GMD-mini
3 3.2 PaSST 0.3911 PaSST setup5.ipynb GMD-mini
4 4.1 CNN 0.7531 GMD CNN prototype5.ipynb GMD-full
4 4.2 PaSST 0.7367 PaSST setup6.ipynb GMD-full
5 5.1 PaSST 0.7269 PaSST setup6 2.ipynb GMD-full repeat
5 5.2 PaSST 0.7313 PaSST setup6 3.ipynb GMD-full repeat
5 5.3 CNN 0.7646 GMD CNN prototype5 2.ipynb GMD-full repeat
5 5.4 CNN 0.7827 GMD CNN prototype5 3.ipynb GMD-full repeat

3. Experiments Round Three - 10 percent mini GMD tests

With the PaSST-L architecture we further investigate how the baseline CNN and

PaSST handle different subsets of the data. To do this we take the entire original

dataset under 10 seconds with 18,264 files between all splits.Through analyzing the

duration the files via the added length bin column, it is observed that there are no

substantial length imbalances per split meaning that proportional balancing is not

needed on duration in addition to class. To get a view of the entire dataset through

a quicker training pass 10 percent (1870 files) proxy of the full dataset based is used.

Experiments in this category involve 74 output classes as opposed to the 9 output

classes in prior experiments.

Hypothesis:

To guide further experimentation with the full dataset, exploration within a smaller

representative sample has the potential to provide useful insights. We expect PaSST to

outperform the CNN now that more class variety will be present.

Experiment 3.1

In this experiment the model trained for the full 50 epochs with high initial train

and validation losses showing steady decrease and a decreasing rate of validation loss.

The model also finished training in under one hour due to the smaller dataset size.

The model achieved an F1 score of 0.3267 indicating a substantial decrease in perfor-

mance from experiments with other datasets. The confusion matrix shows the model
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confuses funk with hiphop, afrobeat and soul while jazz fast is also confused with dance-

breakbeat, latin-brazilian-bossa and jazz. This is notable as the model does appear

even in this small subset to be clustering similar features together as these confused

classes likely have musicological overlap. In addition similar confusion is seen with rock

being predicted in many classes incorrectly, likely again due to the over-representation

of that class within the dataset.

Experiment 3.2

In this experiment the model trained for the full 50 epochs in roughly one hour with

no early stopping. Upon inference, the model achieved an F1 score of 0.3911 demon-

strating decreased performance compared to the prior experiments but it outperforms

the CNN by a noticeable 6.5 percent. This hints that PaSST is better at dealing with

more diverse drum audio data in the GMD-mini. The confusion matrix shows simi-

lar confusion with funk and hip hop, jazz fast with dance breakbeat and interestingly

latin-brazilian-sambareggae with neworleans-secondline.

Discussion:

This round of experiments shows PaSST for the first time achieving higher accuracy

than the baseline CNN, albeit with much lower overall F1 scores. This leads to ex-

panding these tests to the entire GMD to observe if the similar results hold.

4. Experiments Round Four - Expansion to the full GMD

Now that the pipelines for both models have demonstrable functionality we expand

our approach to the entire dataset.

Hypothesis:

Now that superior accuracy has been observed in PaSST over the CNN in the prior

round of experiments with the GMD-mini, it is expected that PaSST-L will continue to

outperform the CNN baseline when trained on the entire dataset.

Experiment 4.1

In this experiment the CNN trained for the full 50 epochs achieving an F1 score of

0.7531 indicating a substantial increase in performance from the 10 percent proxy
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dataset in the previous experiment. This indicates the CNN performs better when

dataset size increases even if proportional characteristics of the datasets are nearly

identical. The confusion matrix shows the model confuses funk and hip hop with

rock rather than other genres in the prior CNN experiment while jazz fast is also

confused with dance-breakbeat, jazz-mediumfast and jazz. This is noteworthy because

the model’s confusion appears to be less focused as the incorrect predictions don’t

appear to be as musicologically related to each other and rather seem to be more

related to the rock class imbalance in the dataset.

Experiment 4.2

In this experiment PaSST trained for the full 50 epochs in roughly 8.5 hours. Upon in-

ference, the model achieved an F1 score of 0.7367 demonstrating increased performance

compared to the 10 percent proxy experiment but marginally underperformed the CNN

on the full dataset by roughly 1.25 percent. This gap in performance motivates further

exploration for the sake of interpretability and hyperparameter tuning. For some class

specifics, the confusion matrix shows jazz-fast being confused with jazz-mediumfast,

dance-breakbeat, funk-purdieshuffle, afrocuban and rock halftime, additionally funk is

again heavily confused with rock.

Discussion:

These results are compelling as the differences between PaSST and the CNN in terms

of accuracy decreases when utilizing the full dataset. To further verify these findings

repetition of these experimental conditions will be done.

5. Experiments Round Five - Full GMD experiment repetition

These experiments repeat those of the fourth round on the full dataset twice for each

model architecture to provide a 3 repetition average.

Hypothesis:

Similar performance is expected as these experiments are a repetition of the previous

round, slight variance in each training run is expected but on average the CNN should

outperform PaSST.
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Experiment 5.1

This experiment utilizes the A100 GPU achieving an F1 of 0.7269.

Experiment 5.2

This experiment utilizes an L4 GPU and achieves and F1 of 0.7313.

Experiment 5.3

This experiment uses A100 GPU and achieves an F1 of 0.7646.

Experiment 5.4

This experiment employs an A100 GPU and achieves and F1 of 0.7827.

These results provide a three experiment average of F1 0.7316 for PaSST and F1 0.7668

for the CNN baseline, thus the CNN beats PaSST in this configuration by 3.52 percent

on average.

Discussion:

Repeating these experiments not only proves our hypothesis for this round of experi-

ments but also widens the gap between the model types by around 2.25 percent. These

repetitions assist in giving a clearer view into the performative differences between

these models which will be further expanded by examining embedding visualizations

for interpretability beyond accuracy.

Model Depth and Patchout

6. Experiments Round Six - t-SNE and Time patchout

This round of experiments begins the examination of embedding spaces for both models

in different configurations for comparison. We use t-SNE as our visualization algorithm

and examine the embeddings from PaSST on the full data set with and without time

patchout augmentation to test the effect of this aspect of the architecture. Time

patchout is chosen as a way to examine if the model is capturing time related features as

it removes vertical sections from the spectrogram. This will also provide an indication

if there is any difference between the representation in the embedding space for both
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Table 3: F1 scores by experiment round and model (highest per round in bold).
Round ID Model F1 Notebook Description

6 6.1 PaSST 0.7247 PaSST setup6 4.ipynb t-SNE & Time patchout
6 6.2 PaSST 0.3861 PaSST setup5 2.ipynb t-SNE & Time patchout , GMD-

mini
7 7.1 PaSST 0.8582 PaSST setup6 5.ipynb PaSST MLP 3 Layers
8 8.1 PaSST 0.8604 PaSST setup6 6.ipynb PaSST MLP 5 Layers
8 8.2 PaSST 0.7964 PaSST setup6 7.ipynb PaSST MLP 7 Layers
8 8.3 PaSST 0.8659 PaSST setup6 8.ipynb PaSST MLP 4 Layers
8 8.4 PaSST 0.8352 PaSST setup6 9.ipynb PaSST MLP 2 Layers
8 8.5 PaSST 0.8424 PaSST setup6 10.ipynb PaSST MLP 6 Layers
8 8.6 PaSST 0.8577 PaSST setup6 11.ipynb MLP 4 Layers, Symmetric Bottle-

neck
8 8.7 PaSST 0.8604 PaSST setup6 12.ipynb MLP 4 Layers, Progressive Bottle-

neck
9 9.1 CNN 0.8779 GMD CNN prototype6.ipynb CNN 5 Conv Layers
9 9.2 CNN 0.8944 GMD CNN prototype6 2.ipynb CNN 7 Conv Layers
9 9.3 CNN 0.8900 GMD CNN prototype6 3.ipynb CNN 9 Conv Layers

the 10 percent proxy and the full dataset. All subsequent experiment rounds include

t-SNE functionality in their respective notebooks.

Hypothesis:

Patchout removes sections of the spectrogram and we expect this form of augmentation

to result in a slight shift in the embeddings space, indicating PaSST is sensitive to time

patchout both on the GMD and GMD-mini.

The PaSST setup6-tSNE notebook shows t-SNE on the full GMD without time patchout

to be compared with below. No retraining occurred here, only the initial t-SNE evalua-

tion to visualize the embedding space. The t-SNE displays moderate cluster formation

when tuning hyperparameter perplexity 30-50 which is consistent across all versions

with the full dataset. Perplexity tuned to 50 with plotly8 will be used for interactive

analysis in later sections as it display the clearest presentation to compare and contrast

both architectures.

Experiment 6.1

In this experiment time patchout is applied on the full dataset and retrained resulting

in and F1 of 0.7247.

8https://github.com/plotly/plotly.py
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Experiment 6.2

In this experiment t-SNE embedding visualization is performed on the GMD-mini with

time patchout resulting in a slight decrease of -0.5 percent from no time patchout in

experiment 3.2 yielding and F1 of 0.3861.

Time patchout appears to have a nearly unnoticeable effect on movement in the em-

bedding space in both PaSST setups with the full dataset and the mini dataset. Both

models show between a 0.5 - 0.8 percent percentage decrease in accuracy when per-

forming time patchout. This suggests that our hypothesis is not proven in that time

patchout augmentation does not substantially affect the embedding space and suggests

the model is not capturing features that would be affected by time patchout.

Discussion:

Both embedding visualizations for GMD and GMD-mini show similar clustering but

also anomalous clustering in the CNN appears to be different from PaSST ass seen in

Figure 3. It is not exactly clear what this cluster is comprised of but when examining

some of the classes in the plotly graph many overlap with confused classes. In addition

t-SNE on the GMD-mini was not as interpretable due to the smaller number of exam-

ples in the test split. For this reason, from this point forward, only the full GMD will

be utilized. The next experimental rounds will aim to further optimize the architec-

tures by deepening the classification head on PaSST and expanding the convolutional

layers of the CNN.

7. Experiments Round Seven - PaSST MLP depth test

In this section we attempt to improve the classifier head on top of the frozen embeddings

in PaSST to examine it’s effect on performance. The default classification head in

PaSST is a single linear layer. This is a very shallow and simple classification head

resulting in 115K trainable parameters which is likely hindering performance. To

address this a deeper classification MLP is employed initially with three layers. This

new MLP has LayerNORM, ReLU activation and dropout and 512 hidden-dim. In

addition, since we use PaSSt-L that has knowledge distillation arch=”passt-l-kd-p16-

128-ap47”, we also make sure the classification head for the distillation token and CLS
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tokens are both updated to the MLP structure for consistency and to avoid averaging

between the CLS and distillation tokens using different classifier heads, which would

degrade the impact of the instantiated MLP.

Hypothesis:

The 3 layer MLP will improve performance of PaSST over the single linear layer due

to increased quantity of trainable parameters.

Experiment 7.1

The 3 Layer MLP results in an F1 of 0.8582 showing marked improvement over the

single linear layer.

Discussion:

It is now apparent that PaSST with the updated three layer MLP classification head

surpasses the default implementation three experiment average by 12.66 percent in-

dicating a substantial improvement. This iteration of PaSST also outperforms the 3

Conv2d layer CNN three experiment average by 9.14 percent. Because this optimiza-

tion was successful additional hyperparameter tuning will be explored.

8. Experiments Round Eight - PaSST MLP optimization and bottlenecks

This round of experiments is aimed at determining the ideal depth of the PaSST

MLP as the initial experiment used three layers and testing additional depths has the

potential to reveal the optimal MLP depth. Through these experiments it was found

that four layers resulted in the highest accuracy and below are the details for tests with

two, four, five, six and seven layers trained on either L4 or A100 GPU’s dependent on

runtime availability. Experiments appear in the order they were conducted.

Hypothesis:

As the depth of the MLP increases so will accuracy up to a certain point upon which

accuracy will plateau or decrease leading to discovery of the optimal depth.

Experiment 8.1
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This experiment utilizes a five layer MLP with 2.4M trainable (up from 1.4M in the

previous experiment) parameters and results in an F1 of 0.8604.

Experiment 8.2

This experiment employs a seven layer MLP with 3.5M trainable parameters and results

in an over 6 percent decrease in accuracy from five Layers with an F1 score of 0.7964

Experiment 8.3

This experiment has a four layer MLP with 1.9M trainable parameters and surpasses

the 5 layer MLP by 0.55 percent for a new high score. This is the best version of

PaSST so far with an F1 of 0.8659.

Experiment 8.4

This experiment uses a two layer MLP with 866K trainable parameters and demon-

strates a performance decrease of 3.07 percent compared to four layers with an F1

score of 0.8352.

Experiment 8.5

This experiment utilizes a six Layer MLP with 3M trainable parameters resulting in

an F1 of 0.8424.

To seek out further optimizations of the MLP symmetric and progressive bottlenecks

are used within the layers as this technique can compress the feature representations

and has the potential to increase accuracy even though the MLP is implemented with

0.3 dropout. The bottleneck concept in neural networks refers to intentionally creating

a layer with fewer neurons than the surrounding layers. This architectural choice serves

several purposes, the primary one being feature compression which forces the network

to learn more compact, essential representations by squeezing information through a

narrower layer.

Hypothesis:

Bottlenecked MLP’s will increase accuracy within the 4 Layer MLP due to feature

compression creating a modest optimization.
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Experiment 8.6

This experiment utilizes a 0.8 hidden size middle layer (symmetric) bottleneck 4 layer

MLP with 200k reduction to 1.7M Trainable parameters. This results in a decrease in

performance by 0.82 percent over PaSST with four layer MLP and no bottleneck with

an F1 of 0.8577.

Experiment 8.7

This experiment employs a progressive bottleneck within the four layer MLP consist-

ing of a 100k reduction to 1.8M trainable parameters. This configuration also under

performs the no bottleneck four Layer MLP version of PaSST by 0.55 percent with F1

of 0.8604. In light of these results further testing with bottlenecked MLP’s is ceased

as both iterations appear to create performance degradation in terms of accuracy dis-

proving the hypothesis for this experimental round.

Discussion:

These experiments show the no bottleneck, no augmentation four Layer MLP equipped

PaSST is the best performing version in terms of accuracy with 86.59 percent. It also

achieves these results with consistently more efficient training time duration. Now,

analogous improvements to the CNN should be made to ensure fair comparison as to

not ’straw-man’ our contrast between the two models.

9. Experiments Round Nine - CNN optimizations

We utilize this round to determine the ideal depth of the convolutional layers for the

CNN as the initial experiment used 3 Conv2d layers. Through the experiments detailed

below it becomes evident that seven layers is the optimal CNN configuration in this

context. Training setups remain consistent and experiments appear in the order they

were conducted.

Hypothesis:

Adding convolutional layers will increase accuracy up to a point at which performance

will either stagnate or degrade as deeper networks may not always result in improved

accuracy.

28



Experiment 9.1

This experiment uses five Conv2d layers and surpasses the best PaSST version in

experiment 8.3 by 1.2 percent with F1 of 0.8779.

Experiment 9.2

This experiment utilizes seven Conv2d layers instead of five resulting in an increased

F1 to 0.8944.

Experiment 9.3

This experiment implements nine Conv2d layers resulting in a 0.44 percent decrease

compared to seven layers resulting in an F1 of 0.8900.

Discussion:

These results indicate seven layers is the ideal depth for the CNN but due to com-

pute budget and time constraints further experimentation with this aspect is not pur-

sued. The next group of experiments will test some additional augmentation types and

padding modes to observe their effects.

Augmentations and Padding

10. Experiments Round Ten - Additional Augmentations

In this round we apply augmentation to test both models’ robustness to perturbed

audio conditions and see if they produce any drift in the embeddings. To perform

this he python library audiomentations9 is utilized. To perform this we employ ‘Ad-

dGaussianNoise’ and ‘RoomSimulator’ augmentations as they can be efficiently applied

during training directly on the waveforms and do not rely on creating new files or ref-

erencing separate directories of audio files. Gaussian noise adds random noise while

RoomSimulator creates the effect of a physical space upon the waveform. Both of

these augmentations are not perfect but create perturbations that can make the the

models more robust to variety in the audio. In addition for PaSST we will apply

9https://github.com/iver56/audiomentations
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Table 4: F1 scores by experiment round and model (highest per round in bold).
Round ID Model F1 Notebook Description

10 10.1 CNN 0.9080 GMD CNN prototype6 4.ipynb CNN 7 Conv Layers + Gaussian-
Noise, RoomSim

10 10.2 PaSST 0.7953 PaSST setup6 13.ipynb MLP 4 Layers + GaussianNoise,
RoomSim

10 10.3 PaSST 0.8446 PaSST setup6 14.ipynb MLP 4 Layers + TimeStretch
10 10.4 CNN 0.8632 GMD CNN prototype6 5.ipynb CNN 7 Conv Layers +

TimeStretch
11 11.1 PaSST 0.8429 PaSST setup6 15.ipynb PaSST MLP 4 Layers, Circular

padding
11 11.2 PaSST 0.8752 PaSST setup6 16.ipynb PaSST MLP 4 Layers, Reflection

padding
11 11.3 CNN 0.8747 GMD CNN prototype6 6.ipynb CNN 7 Conv Layers, Gaussian-

Noise, RoomSimulator, Reflec-
tion padding

11 11.4 CNN 0.8736 GMD CNN prototype6 7.ipynb CNN 7 Conv Layers, Reflection
padding

11 11.5 CNN 0.8747 GMD CNN prototype6 8.ipynb CNN 7 Conv Layers, Circular
padding

‘TimeStretch’ in a separate experiment to investigate if drift occurs in the embedding

space as changing the duration but not the pitch of the audio can further elucidate

how PaSST is affected by time. These tests with augmentation are limited but serve as

tools to observe how each model handles noise and time disturbances beyond the orig-

inal provided audio. These waveform based augmentations added significant compute

resource intensity and increased train time.

Hypothesis:

PaSST will be more robust to time and noise perturbations due to the AudioSet em-

beddings, disentangled time and frequency positional encodings and will exhibit a slight

decrease in accuracy but not as much as the CNN. An effect in embedding drift is also

expected due to waveform based augmentation.

Experiment 10.1

This experiment results in a surprising 1.36 percent increase in accuracy over no aug-

mentations. Lower validation loss during training over the previous best CNN is also

observed, indicating these augmentations not only helped reduce the chance of overfit-

ting but also increased accuracy. This experiment produces the highest score for the
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CNN with seven Conv2d Layers for this project and thus achieves the highest accuracy

on drum style classification within the GMD with an F1 of 0.9080.

Hypothesis:

A modest increase in accuracy similar to what occurred with the CNN is expected due

to increased robustness from audio variety and perturbations.

Experiment 10.2

In this experiment surprisingly, PaSST loses 7.06 percent of accuracy from the best

PaSST with 4 layer MLP and no augmentation in experiment 8.3 (0.8659 F1). Full

results show an F1 of 0.7953.

Hypothesis:

A small decrease in accuracy along with embedding drift is expected due to TimeStretch

augmentation as these are changing the original durations of the variable length drum

audio.

Experiment 10.3

In this experiment embedding drift occurs that at a glance appears quite different

from the patchout augmentation especially around 50 perplexity on the t-SNE and

will explore this further in the analysis section.

Discussion:

These experiments bring about some compelling results and insights. The CNN per-

forms at it’s best when employing RoomSimulator and Gaussian Noise in experiment

10.1 but when applied to PaSST in 10.2 the effect is actually detrimental in terms

of accuracy. Both models also lose accuracy when TimeStretch is implemented. This

shows that PaSST is generally lest robust to augmentations when compared to the

CNN. From this we move to the last experimental round exploring different padding

modes.

11. Experiments Round Eleven - Circular and Reflection Padding

In this round different modes of padding are applied to observe if there are effects
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accuracy, latent representations and training. Before this padding with zeros was the

only mode utilized. The torch functionality for padding is used with mode switching

to ’circular’ and ’reflection’ in different tests. These padding modes are invoked in such

a way that the padding occurs in chunks smaller than the current length up until the

max of 10 seconds and is trimmed to that exact length in samples if necessary. Two

experiments are conducted on PaSST then three on the CNN and these experiments

continue to appear in the order conducted.

Hypothesis:

PaSST and the baseline CNN will exhibit modest increases in accuracy due to circu-

lar and reflection padding as these give the model more information to learn from as

opposed to padding with zeros.

Experiment 11.1

Circular padding surprisingly results in a 2.3 percent decrease over the best PaSST

model. Even though this is the case train and validation loss are very stable throughout

and the validation accuracy curve appears to not converge as fast as previous rounds.

This may suggest that PaSST could benefit from a max training epochs greater than

50 as implemented. Full results show F1 of 0.8429.

Experiment 11.2

Reflection padding results in a 0.93 percent increase in F1 over the best PaSST model,

meaning this setup achieves the best out of all PaSST experiments with the full GMD.

Train and validation loss are less stable than with circular padding and similar to the

last round the validation accuracy curve is not entirely flat at the end of training further

corroborating that PaSST may benefit from higher max epoch count. Full results show

F1 of 0.8752.

Experiment 11.3

Switching back to the CNN, GaussianNoise, RoomSimulator and reflection padding

results in a 3.33 percent decrease in F1 over the best CNN model. These augmenta-

tions are kept in for this experiment as they previously improved the CNN’s accuracy
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however this shows the model performs worse when padding mode is changed from

zeros to reflection. For the train and validation loss curves it is mostly stable with the

exception of a spike around the 25th epoch. In addition when examining the valida-

tion accuracy curve it appears the CNN converged at around epoch 30 with the curve

mostly flat from thereon out as the early stopping was triggered at epoch 40. This is

an interesting change in the training because it shows that the CNN converges faster

than PaSST while achieving nearly the same F1 of 0.8747.

Experiment 11.4

The only change in this experiment from the last is the removal of augmentations to

isolate the effect of the change from padding with zeros to padding with reflection.

This test with just reflection padding results in a 3.44 percent decrease in F1 over the

best CNN model. Interestingly, the train and validation loss curves mostly plateau

after epoch 12 of 50 which was not observed in previous rounds. In addition, when

examining the validation accuracy curve it appears the CNN improves very little after

around epoch 15 of 50 showing faster convergence than PaSST. From this it is also

noted that augmentations help in terms of training stability but do not in terms of F1

with the result of 0.8736.

Experiment 11.5

The last experiment conducted uses circular padding only and results in a 3.33 percent

decrease in F1 over the best CNN model. Like before, augmentations are removed to

isolate the effect of the padding mode change. Similar to the last experiment with

just reflection padding, train and validation loss curves appear to be more unstable

than padding with reflection. Validation loss generally plateaus after epoch 13 of 50

and when examining the validation accuracy curve, the CNN improves very little after

around epoch 20 of 50 adding evidence that it converges faster than PaSST but with

lower accuracy when padding modes are changed from zeros. Full results show F1

0.8747.

Discussion:

These experiments elucidate a few important attributes of the models. Firstly it is
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apparent that the CNN works best with zero padding and PaSST works best with

reflection padding. This may indicate that with longer drum audio samples PaSST

would be superior as the CNN is more effective with dealing with zeros. Additionally,

circular padding against our intuition is not as effective as reflection padding in both

models. We can also see that based on the validation accuracy curves PaSST may

benefit from a higher training epoch limit as the CNN converges faster but PaSST

training curves hint that it could benefit from additional epochs to fully converge

and enact early stopping. In the CNN we generally observe somewhat more unstable

training when padding modes are changed in addition to a reduction in F1 over the pad

with zeros method. In regards to training time we did not notice anything divergent

from previous rounds so padding mode changes do not seem to affect this aspect. This

final experiment section concludes with a new best score for PaSST and some insights

that hint will be explored in the analysis section.

8 Analysis

This section will aim to derive insights from the conducted experiments. Because of the

’black-box’ nature of these models, inspecting the embedding space computed from the t-

SNE along with results from the confusion matrices will help increase model interpretability.

We group these analysis rounds by each architecture type and conclude with shared insights

between both that are documented in the results sheet 10 .

PaSST Insights

1. Embeddings: Top 10 style classes by centroid shift

Analyzing by centroid shift elucidates how the center of clusters move based on different

experimental choices. The largest mean centroid shift in the most moved classes comes

from pad with reflection and zero padding comparison. This experiment comparison

is also accompanied by a 3.06 percent increase in accuracy meaning reflection padding

10https://docs.google.com/spreadsheets/d/1l6qoCJU3BJl25YsMWcbxRspjxEavY37Ds0NKYRluSn0/

edit?usp=sharing
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Figure 1: t-SNE across PaSST experiments.

is more accurate than padding with reflection and time stretch, while no substantial

movement occurs when comparing zero padding with and without time stretch.

When comparing the reflection padding to circular padding experiments the mean

centroid shift drops from 8.32 to 6.82. The classes in common with the prior comparison

are ‘latin-reggaeton’ , ‘soul-groove10’ , ‘soul-groove4’ , ‘pop-soft’ and ‘pop-groove7’.

This shows that at least there is some overlap in the classes that shift the most due

to changes in padding modes. This comparison also is accompanied by 3.33 percent

lower accuracy for circular padding compared to reflection padding.

Then when comparing circular padding with progressive bottlenecking the mean cen-

troid shift drops from 6.82 to 6.30 when contrasted with the previous comparison

meaning circular padding produces less shift in the embedding space than reflection

padding. Interestingly the top 10 shifted style classes in this comparison have no over-
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lap with the previous comparison but share some overlap with the first, that being

with style classes ‘jazz-klezmer’ , ‘latin-merengue’ , ‘rock-rockabilly’ and ‘latin-ando’.

It is difficult to determine an exact reason for this phenomenon but it does illustrate

that different classes move differently in the embedding space based on padding and

bottle-necking. Here it is good to recall that circular padding proves less effective in

terms of accuracy when compared to zero padding and progressive bottleneck as shown

in experiments 8.6, 8.7 and 11.1 in Table 5.

When examining these comparisons it becomes apparent that reflection padding pro-

duces substantially more embedding shift than time stretch on zero padding with cer-

tain classes moving the most (jazz, latin, rock, pop and soul). This also continues

but with less mean centroid shift when circular padding is used further indicating that

padding mode changes produce the most embedding movement. There also does not

seem to be a clear connection between change in accuracy and embedding movements.

This is also evident in the t-SNE as there are clear separate clusters when these padding

modes are applied as seen in Figure 1. Now that the most shifted classes are analyzed,

a similar analysis by primary styles will be explored in the next subsection.

2. Embeddings: Primary Style and Centroid Shift

When comparing all of the embeddings grouped by primary style the most shift across

all 17 primary styles comes from reflection padding. Through conducting the same

three comparisons from the last subsection, there is a different rank order of the primary

styles with the most shift. We also note the same trend that reflection padding when

compared to zero padding with time stretch produces the most mean centroid shift

followed by the comparison with reflection padding vs. circular padding and thirdly

by circular padding vs. zero padding with progressive bottleneck. One commonality

is the primary style ‘dance’ shifts the least in all three comparisons. There are also

similar rank orderings for most shifted primary styles across the three comparisons with

‘rock’, ‘afrobeat’ and ‘funk’ primary styles. These results show that when substantive

embedding cluster centroid shift occurs it effects broadly amongst the primary styles

with the only commonalities being in a few of the primary styles which are in themselves
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inconsistent across experiment comparisons.

3. Confusion Matrices comparison

When analyzing the confusion matrices, focus is placed on experiments with the most

notable change from the best PaSST without augmentation achieved in experiment 8.3

which results in examining experiments 10.2 , 11.2 and 11.2 in Table 5.

Comparing 8.3 with 10.2 examines the effect of the augmentation GaussianNoise and

RoomSimualtor. As noted in the experiments section F1 drops from 0.8659 to 0.7953

in this experiment.

These augmentations make the model more confused with certain style classes. For

example ’funk’ , ’latin’, ’hip hop’ and ’rock’. Jazz styles are also confused and notably

jazz fast exhibits the exact same confusion between models with being most misclas-

sified as ‘dance-breakbeat’ or ‘jazz-medium fast’. Additionally ‘latin-brazillian-bossa’

is also more confused with ‘jazz-funk’ and ‘jazz’ , ’Neworleans-funk’ with ‘dance-disco’

and a slight amount more confusion in rock classes. This demonstrates that when

these augmentations are introduced you see more confusion with classes that are likely

musically similar. For example it can be speculated that ‘dance-breakbeat’ or ‘jazz-

medium fast’ are more confused because they both likely contain rapid snare drum hits

and ghost notes who’s transients are smeared slightly by the augmentations causing a

drop in accuracy. A similar speculation could be made for ‘latin-brazillian-bossa’ being

confused with ‘jazz-funk’ and ‘jazz’ as bossa nova as a genre is historically influenced

by jazz which could be apparent even in just the drum style. These speculations would

need further research to be confirmed but this analysis shows that when drum audio

is augmented with GaussianNoise and RoomSimulator, additional details emerge.

Comparing experiemnts 8.3 with 11.1 examines the effect of circular padding. As

noted in Table 5 F1 drops slightly from 0.8659 to 0.8429. ’Funk’ is classified more

accurately and the nearly identical misclassification of ‘jazz-fast’ is apparent. Jazz and

latin styles generally see slightly more confusion with apparently less musical coherence

; for example ‘latin-brazillian-bossa’ is now more confused with funk and rock. This

round of comparison leads us to speculate that as accuracy increases the confusion
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becomes more scattered among classes where this less of a clear musical connection

or a less clear underlying feature overlap. What this could mean is that with circular

padding the model correctly classifies some of those examples we examined before but

is still left with outliers.

Comparing 8.3 with 11.2 examines the effect of reflection padding. As noted in Table

5 F1 increases slightly from 0.8659 to 0.8752 as it achieves the best score for PaSST

in the entire project and beats the CNN within experiment round 11. The difference

in accuracy between these is less than one percent so distinguishing them is a difficult

task. Like the last comparison there is noted improved accuracy in the funk classes

with ‘jazz-fast’ misclassified in the same way, demonstrating that the features related

to those are consistently confused regardless of the experiments we ran. There are

mixed results in the latin classes by comparison with ’latin’ and being less confused

but ‘latin-brazillian-bossa’ being confused with ‘rock’ and ‘reggae’. Generally, slight

improvements exist across most classes due to the marginally higher accuracy.

In summary by comparing these confusion matrices there appears to be a few key

takeaways. When GaussianNoise and RoomSimulator augmentations are introduced,

accuracy drops but potentially musically related style classes are revealed. Circular

padding decreases accuracy over no augmentations and struggles with some outlier

classes. Lastly, reflection padding increases accuracy but has similar outliers. The

key insight gained is that slightly lowering accuracy through waveform augmentations

revealed some similarly confused classes across experiments with the most changes in

accuracy.

4. t-SNE comparison

In the PaSST-setup6-tSNE-eval2 notebook11 the embedding space between experi-

ments is examined. The most notable insight is that there is very little movement

in the embeddings across all the experiments until we change the padding modes to re-

flection or circular as shown in Figure 1. With perplexity tuned to 50 a clear cluster is

evident for both padding modes. This is notable because the augmentations provided

11https://colab.research.google.com/drive/1IUAfOao5JlcgFeFcd_T397L-qOGEIulS?usp=sharing
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the most change in accuracy (2-7 percent) but did not produce a noticeable embedding

movement while concurrently substantial movement of the embeddings from pad mode

changes only produced moderate changes in accuracy of roughly 1-2.5 percent. This

continues to show that embedding space movement does not change in conjunction

with accuracy which leads into conducting the same analysis for the CNN.

CNN Insights

Figure 2: t-SNE across CNN experiments.

1. Embeddings: Top 10 style classes by centroid shift

To compare embeddings concisely focus is placed on experiments with the most centroid

shift after convolutional layer depth is optimized at 7 Conv2d layers narrowing the

comparison to experiments 9.2 with 10.1 , 10.4 , 11.4 and 11.5 shown in Table 5. The
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CNN overall produced roughly 10 times more shift compared to PaSST as evidenced

by the t-SNE visualizations with metrics noted in the results sheet just as they were

for PaSST12.

Similar to PaSST, The greatest mean centroid shift in the CNN for most moved classes

comes from reflection padding and zero padding comparison. However unlike PaSST,

this experiment comparison results in a 2.08 percent decrease in accuracy meaning

reflection padding is detrimental to the CNN’s accuracy performance. When comparing

zero padding with reflection padding (Experiments 9.2 and 11.4) 6 of the top 10 most

shifted classes are the same these being in order of shift ’rock-rockabilly’ , ’dance-disco’

, ’funk-latin’ , ’afrobeat’ , ’rock-groove8’ , and ’funk’. It should be noted here these 6

style classes are in the top 10 for all experiments examined here underlying significant

commonalities between them.

Then when comparing zero padding with circular padding (Experiments 9.2 and 11.5)

the mean centroid shift drops marginally lower than with the previous comparison.

Within the top 10 shifted classes the main notable change is the addition of style class

’latin-brazilian-sambareggae’. The rank order of shift for these classes is also changed

but the differences are small as the overall delta in accuracy is 1.93 percent. From this

it is clear only that circular padding created more drift for certain latin styles.

When contrasting Zero padding vs. Zero Padding with Time Stretch augmentation

(Experiments 9.2 and 10.4) mean centroid shift is again marginally lower than our last

comparison. Notably here another latin class added to the top 10 that being ’latin-

dominican-merengue’ in addition to ’reggae-slow’. The confusion matrices show that

reggae and latin are often confused across this experimental comparison showing that

a drop in overall accuracy (0.8944 to 0.8632) also coincides with embedding drift in

certain classes.

Lastly, Zero padding vs. Zero Padding with GaussianNoise and RoomSimulator (Ex-

periments 9.2 and 10.1) show mean centroid shift lower of the examined comparisons,

which is notable because this round had the highest accuracy demonstrating that higher

12https://docs.google.com/spreadsheets/d/1l6qoCJU3BJl25YsMWcbxRspjxEavY37Ds0NKYRluSn0/

edit?usp=sharing
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accuracy coincides with lower mean centroid shift among the top 10 most shifted style

classes.

In summary, changes in padding mode produce the most mean centroid shift among

the top 10 shifted style classes, which is consistent with PaSST. Timestretch augmen-

tation also does not have a major effect on embedding shift but it does produce lower

accuracy. Lastly Gaussian Noise and Room Simulator Augmentations produce less

mean centroid shift while also increasing accuracy. The co-occurrence of lower top 10

style class mean centroid shift and higher accuracy appears to be a key distinction

from performance in PaSST. Additionally the top 10 style classes by mean centroid

shift have very little overlap with the experiments examined for PaSST which leads

into investigating primary styles to see if these phenomena continue.

2. Embeddings: Primary Style and Centroid Shift

When comparing the CNN embeddings grouped by primary style it is further shown

that the most shift comes from reflection padding, just as it did in PaSST. When noting

the same experimental comparisons inspected in the last subsection, there is a slight

difference in rank order of the primary styles with the most shift. When grouped by

primary style the order of most shift by experiment comparison is the same. This shows

that analyzing the top 10 most shifted style classes and by primary style provides a

similar representation generally across experimental comparisons. Interesting, primary

style ‘dance’ shifts near the top in all comparisons where in PaSST it shifted the least.

Similar primary styles are present near the top of most shift like ’hiphop’, ’dance’

,‘afrobeat’ and ‘funk’. When compared with PaSST some of the classes appear to have

musical overlap (for example funk and hiphop are likely to be musically similar) but

this does still seem to indicate a difference between how the models deal with features

of these classes. Overall, these results show that when substantive centroid shift occurs

it affects similar classes by rank order slightly more so than in PaSST.

3. Confusion Matrices comparison

Similar to how there were compared with PaSST, close examination is only performed

on experiments that result in the most notable change from the best CNN without

41



augmentation achieved in experiment 9.2 with 7 Conv2d layers (0.8944). The following

will then examine experiments 10.1 , 10.4 and 11.4 seen in Table 5

Comparing experiment 9.2 with 10.1 tests the effect of GaussianNoise and Room-

Simualtor augmentations which resulted in an F1 increase from 0.8944 to 0.9080. This

result was unexpected as these augmentations were expected to result in a drop in

accuracy but instead lead to the highest F1 of any experiment in the project. Upon

examining the confusion matrices the augmentations appear to reduce the confusion

between jazz and funk classes with the exception of ‘jazz-fast’ which is again confused

with ‘dace-breakbeat’, ‘funk’, ‘afrocuban’ and ‘jazz-mediumfast’. This shows that the

CNN and PaSST struggle in nearly the same way with this particular style likely hint-

ing that they have underlying similarities in the feature representation for these two

classes. Additionally, the augmentations make the model confuse ‘latin-brazilian-bossa’

less with ‘jazz’ and more with ‘reggae’ and ‘rock’ without any increase in accuracy, hint-

ing that the model is more influenced at least in part by the over-representation of the

‘rock’ class. Outside of this generally there are small increases in accuracy for latin

related classes and marginal decreases for classes like ‘rock-halftime’ although it is dif-

ficult to make definitive statements from these findings as the difference in accuracy

between these models is less than 1.5 percent.

Comparing experiments 9.2 and 10.4 seeks to examine the effect of TimeStrectch aug-

mentation which results in an F1 decrease from 0.8944 to 0.8632.

It is immediately noticable that the model is slightly more confused with funk related

classes but the confusion is with classes like ‘hiphop’ and ‘jazz-funk’ hinting at an un-

derlying similarity in feature representation broadly for that style. Jazz again is more

confused with other jazz styles with ‘jazz-fast’ exhibiting nearly identical confusion

compared to the last evaluation corroborating that time stretch is not influencing at

least this particular style class. Time stretch also reduces accuracy generally across

latin styles with for example ‘latin-brazilian-bossa’ accuracy dropping for more confu-

sion with rock related classes while still maintaining some jazz confusion. This appears

to indicate that time stretch makes the model more sensitive to class imbalances. The

42



style class ‘rock-halftime’ again noticeably drops in accuracy being confused with ‘jazz’

,’and funk-purdieshuffle’ which is compelling because especially the famous prude shuf-

fle beat invented by drummer Bernard Purdie could be seen as quite musically similar

to rock-halftime. This is yet another hint that some form of underlying feature rep-

resentation may be present between certain confused classes. Lastly, other classes see

marginal decreases in accuracy as expected due to the overall lower accuracy.

Comparing experiments 9.2 and 11.4 probes the effect of padding with reflection which

results in a F1 decrease from 0.8944 to 0.8736.

The first notable difference compared to the last analysis is that reflection padding does

not increase confusion with funk classes as much. Both models have nearly identical

performance with those classes. The model again struggles significantly with ‘jazz-fast’

confusing it with the same classes as in prior comparisons. Accuracy drops for most

latin classes and the same phenomenon with ‘latin-brazilian-bossa’ occurs where it’s

confusion becomes confused centered around the rock class. This is another instance

of observing that as augmentations or padding modes are changed the model becomes

more sensitive to class imbalance. Other notable confusions are ‘New Orleans-funk’

with many latin styles and some rock styles. This confusion appears less musically

cohered to previous rounds but the confusion with certain latin classes hints at the

potential for shared underlying feature representation due to musical similarity.

4. t-SNE comparison

These comparisons begin on experiments where the convolutional layers have been

increased from the 3 layer original prototype as it provides a more precise comparison

between optimizations within the hyper parameters. All t-SNE’s are evaluated at

perplexity tuned to 50 to ensure consistency with other comparisons shown in the

overview in Figure 2 .

Firstly when experiments 9.1 and 9.2 compare five and seven convolutional layers,

clearer clustering is evident with seven layers as specifically style classes often form

miniature clusters rather than being more broadly clustered by primary style. Classes

like funk and hip hop are more separated in seven layers while jazz styles generally also

43



seem more tightly clustered. Here it is key to note that a structure in the embedding

space emerges that is evenly spread then composes a nearly symmetrical shape. It

appears anomalous as it appears distinct from all other clusters but contains a variety

of seemingly unrelated classes within it. It is not entirely clear what this is but it

could be related to the confused classes or the beat / fill designations present in the

GMD. This structure of ‘misfits’ is also much more tightly clustered in the seven rather

than five layers. This phenomenon indicates the model is somehow clustering these

instances from disparate classes. In experiment 9.3 with 9 convolutional layers this

anomalous structure is more spread out over the embedding space while much of the

other clusters stay largely intact indicating this group of embeddings is more sensitive

to model depth. Tighter clustering appears to coincide with higher accuracy as seven

conv2d layers had the best F1 in its experiment round of 0.8944 as opposed to the

0.8900 with 9 layers which is one aspect where the CNN and PaSST diverge.

In experiment 10.1 we achieve the highest F1 on the CNN of 0.9080 and note movement

in the embedding space but similar clustering. In addition the anomalous cluster

appears to be heavily focused around confused classes relating to ‘jazz-fast’ and ‘jazz-

mediumfast’ that we noted both in the CNN and PaSST further showing that this

cluster may indeed be constituted of misclassified examples.

Furthermore when GaussianNoise and RoomSimulator is swapped for TimeStretch a

clear reduction in cluster density in some primary styles is observed but more noticeably

in the anomalous cluster mentioned previously. This could mean that TimeStretch is

smearing transients as there is a drop to F1 of 0.8632.

The remaining experiments of round eleven that focus primarily on different padding

modes do create movement in the latent space but similar clustering occurs across

all three. Potentially similar musical styles are clustered near each other similar to

previous observations hinting further that the CNN also has some underlying feature

representation on musically related classes however the emergence of the anomalous

cluster elucidates some form of commonality between it’s constituent classes that we

suspect has to do with drum fills rather than beats that may have more varied transients
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and lack of prominent downbeats although this would need further experimentation to

be confirmed.

Embedding Comparison Summary

The baseline CNN and PaSST have noticeably different representations in the embedding

space. The CNN appears to be more capable at clustering specific style classes together

while PaSST’s clustering represents the potential for more cohesion to primary style. The

CNN may more clearly separate these classes because it is trained solely on the GMD and

has no pretraining from general audio embeddings.

However both architectures appear to exhibit an underlying representation of features

linking similar styles as evidenced by similar primary styles clustering near each other al-

though to different degrees. The CNN embeddings exhibit an anomalous cluster that is not

present in PaSST which is suspected to pertain to misclassifications or drum fills based on

examining the original GMD metadata and confusion matrices in conjunction with the t-

SNE. If this were the case it would indicate PaSST is better at dealing with these anomalies

although it achieves overall lower accuracy. It is also noted that embedding shifts coincide

more with accuracy changes in the CNN rather than PaSST although this is not confirmed

to be causal or correlative. The CNN’s increased embedding shift as shown Figure 2 when

compared to PaSST’s in Figure 1, indicates differing feature representation sensitivity as the

CNN embeddings move with each experiment while PaSST embedding movement is only

notable when padding modes are changed.

9 Discussion

The prior sections of this project demonstrate the baseline CNN is able to perform exception-

ally well in GMD drum audio style classification and that the potential for transfer learning

with PaSST from general audio embeddings does not have a positive impact in terms of

accuracy. This could derive from a variety of reasons, one of which being the ‘world model’

that these embeddings exemplify does not contain within it a representation of the features

that would aid in the classification of drum audio style. AudioSet features lead to lower
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accuracy in PaSST but a more nuanced examination shows the potential for more robust

underlying feature representation than the CNN. Additionally the limited compute bud-

get of this project potentially contributed to PaSST’s performance not meeting the initial

expectations of exceeding the CNN.

The clustering behavior of the CNN demonstrates notable differences from PaSST, namely

that individual style classes are more distinct and outliers are clustered together rather than

by their primary styles. This suggests the CNN is learning more local features for drum au-

dio style classification and struggles with a certain subset of the GMD in a way that PaSST

does not. This could indicate the baseline CNN has a lesser degree of broader primary style

based feature understanding compared to PaSST.

PaSST interestingly outperforms the CNN on the GMD-mini showing that as data size in-

creases to the full GMD the influence of the Audioset embeddings begins to degrade accuracy

in comparison to the CNN. It is also noteworthy that before optimizing model architectures,

the accuracy differences between them are often less than 1.25 percent. This hints that with

more detailed hyperparameter tuning and compute budget, PaSST could plausibly achieve

accuracy within a smaller margin of the baseline CNN.

Another point of interest is training time, while both models appear to train in roughly

similar durations, once any form of waveform augmentation is introduced the CNN exhibits

much more need for compute. Augmentation experiments were deliberately limited with no

more than two happening concurrently to avoid excessive affect ambiguities. In either case

both models perform exceptionally well and likely exceed most human experts, although

this would need experimental verification. As one of the distinguishing features of PaSST,

structured time patchout surprisingly degrades performance where it was designed to create

an advantage for classification. This result should have been anticipated because drum

audio styles are a result of onset patterns over time and if sections of this are removed from

the spectrogram the model, this could create confusion. It is suspected that many of the

confused styles classes deal with short and low amplitude transients that patchout and other

augmentations smear which further confuses the model becoming less disambiguated from

the frozen embeddings.

For PaSST, bottlenecking the MLP both in a symmetrical and progressive fashion hin-
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ders accuracy, although the progressive bottleneck was slightly more performative. This

technique was minimally explored and could be expanded to utilizing different dropout rates

or designing a more sophisticated MLP. The architectural changes made in this project were

exploratory in nature to examine effects in terms of accuracy, embedding drift and train

time. In a context where compute resources and time are less constrained, more abundant

hyperparameter tuning could continue until a more optimal state is reached.

Another result that was not expected in Experiment 10.1 in Table 5 where the CNN

achieved nearly 91 percent accuracy surpassing all other experiments. We can speculate

that the gaussian noise helps the model more clearly disambiguate transients or downbeats

although this would need to be experimentally confirmed. As for the effect of RoomSimu-

lator, since it was not employed on its own, it’s not clear what the results would be in the

absence of gaussian noise. This would also need experimentally verified as the inclusion of

acoustic reflections could produce a variety of effects on the overtones in audio files that

could alter the signal such that classification accuracy is affected.

Lastly we note that upon close examination of the embeddings and confusion matrices

that both models struggle with certain classes consistently, those being often in jazz, latin

or funk style classes. However even though both of these models become confused in these

classes, in the CNN the confusion is more related to class imbalance of the rock style while

in PaSST confusion is more related to primary style, hinting at a more robust feature rep-

resentation. It is difficult to point to a specific reason for these misclassifications with one

interesting note that 291 of the original files were labeled ’fill’ rather than all others as ’beat’

so it is possible this is playing a role but would need further investigation.

Significance

To our knowledge this is the first study available that not only explores strictly audio based

style classification from the GMD but also that investigates the relationship between general

audio embeddings in a pretrained AST based model for the task of drum audio style clas-

sification. The methods undertaken in this project have the potential to be improved upon

such that they can be applied to for example applied to other drum audio contexts. The

pipelines built for this project can still be utilized for drum audio style in other contexts
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given proper regularization. The analysis of the embeddings over experimental variations

also uncovers differing feature representation for the GMD across architecture types creating

ample context for future research.

Limitations

One significant limitation is that the GMD is highly imbalanced towards one annotation with

the primary style ’rock’ accounting for around two thirds of the dataset. A more balanced

dataset or more sophisticated methods to mitigate class imbalance may have led to different

results. Although the dataset is for the most part very well organized by its original authors,

this is certainly a flaw. In addition as we have alluded to earlier, the GMD style annotations

include some level of subjectivity and could lack nuance in some cases that may have led to

more confusion in the ultimate results of the classification.

This project also utilized only the audio files while the MIDI was also available. The

possibility to build separate pipelines for MIDI data then fuse them into an ensemble model

has the potential for elucidating if inclusion of MIDI data along with audio would improve

performance. However, solely utilizing audio mitigates scope creep while also making the

model potentially more applicable to real world environments where MIDI data would not

be present.

Lastly, this project was limited by access to high throughput compute, even though L4

and A100’s were used in the Google Colab environment, at times unpredictable fluctuations

in training speed occurred which created numerous difficulties.

Future Research

There are essentially two main directions in which this research could be broadened; those

being the expansion of datasets utilized and combining these pipelines with others to facilitate

the creation of ensemble models for other contexts.

One direction of future research would be to incorporate the E-GMD13, an expanded

version of GMD that is much larger and varied. Leveraging the E-GMD would explore

13https://magenta.tensorflow.org/datasets/e-gmd/
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whether models trained on a broader set of timbral and stylistic variations learn more robust

and widely applicable features. Due to the more varied nature of the E-GMD it may also

perform better in supervised or unsupervised transfer learning contexts which would bring

new research insights for drum audio style classification. Additionally becuase the E-GMD

does not appear to have presegmented audio with appropriate metadata, it would open up

the potential for the application of few shot learning. Adapting the E-GMD to this pipeline

would however involve the need to create segmented audio files based on available MIDI

and a precise indexing protocol akin to what was done the GMD along with other potential

architectural modifications and hyperparameter tuning. This appears feasible due to MIDI

data inclusion with the audio and has the potential for setting a state of the art benchmark

for drum audio style classification on the largest known dataset of it’s kind. We can speculate

these models would perform slightly differently in terms of accuracy compared to the results

of this project but would still be performative. This future direction would also be more

generalizable to different types of drum timbres making it more usable in our next type of

future direction; application to polyphonic full mix audio.

For the second direction of future research an exploration of application to non MIDI

aligned / based audio would be worth exploring. This would likely involve using real word

field recordings from acoustic drum recordings of various types. Since this project has shown

the classification performs above 85 percent when regularized properly it would be compelling

to attempt this with recordings that are less regularized or structured. This would have the

potential to uncover more nuanced styles that may exist in the at times ambiguous area

of primary styles. Additionally some of these recordings would likely contain additional

environmental noise and since AudioSet contains general audio embeddings there could be

the potential to detect and segment these environmental sounds from drum styles. This

would make the models more generalizable to real world contexts and thus could eventually

lead to more real time application of the classification pipelines. This would also reduced

the need for human created annotations which can lead to faster data set creation that can

be utilized in subsequent studies.
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10 Conclusion

In conclusion, this thesis conducted to our knowledge the first known comparison of super-

vised transfer learning for PaSST and a baseline CNN on the GMD for drum audio style

classification. The results indicate that AudioSet embeddings when frozen in PaSST did not

provide an advantage in terms of accuracy over the baseline CNN as originally hypothesized.

Examining the embeddings space reveals that even though PaSST achieves lower accuracy it

appears to exhibit more robust primary style based clustering while CNN clustering exhibits

clearer mini-clusters around individual style classes hinting at more adherence to local rather

than global features.

Waveform augmentations helped elucidate similarities in confused classes and demon-

strated the baseline CNN was more sensitive to class imbalance. Additionally, these aug-

mentations had varied effects when applied to both model architectures with GaussianNoise

and RoomSimulator improving the CNN while degrading PaSST. Timestretch also decreased

performance in both the CNN and PaSST. PaSST unexpectedly improves to its highest score

with reflection padding whereas the CNN exhibits a small performance decrease from both

reflection and circular padding. Meanwhile these padding mode changes produce the only

substantive movement when compared to other PaSST experiments. This also led to the

observation that in PaSST, mean centroid shift did not clearly correspond to changes in

accuracy while in the CNN higher accuracy coincides with lower mean centroid shift.

Model depth and patchout experiments demonstrated anomalous clustering behavior in

the CNN and patchout augmentation, a key feature of PaSST, did not improve the models

accuracy or produce embedding drift. PaSST-L with less transformer blocks was shown to

be ideal for the task which increased accuracy and training efficiency over other pretrained

configurations. PaSST outperformed the baseline CNN on GMD-mini but not on GMD

although the gap in performance between the two shrunk to 3.27 percent when utilizing all

style classes present in the dataset. For PaSST a four layer MLP was found to be the ideal

depth and that when bottlenecked, performance did not improve. For the CNN it was shown

that seven layers was the optimal depth.

Confusion matrix comparison also showed both models struggled often with similar classes
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but the CNN was at times more confused with the over-representation of the ’rock’ annota-

tion.

These results indicate the ’world model’ from AudioSet embeddings exhibits a nuanced

relationship to the task of drum audio style classification. Although accuracy with these

embeddings in PaSST is lower than the baseline CNN, when the CNN is challenged with

padding mode changes and certain waveform augmentations, its embeddings are more sen-

sitive to centroid shift and class imbalance. Furthermore, PaSST maintains more stable

primary style clustering and lower mean centroid shift indicating that general audio embed-

dings may aid in creating a more robust underlying feature representation for drum audio

styles.
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11 Appendices

Figure 3: t-SNE for the best PaSST model by primary style.
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Figure 4: t-SNE for the best GMD CNN model by primary style.
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Table 5: F1 scores for all experiments (highest per round in bold).
Round ID Model F1 Notebook Description

1 1.1 CNN 0.9204 GMD CNN prototype3.ipynb Defaults with rock styles
1 1.2 PaSST 0.8544 PaSST setup2.ipynb Defaults with rock styles
2 2.1 PaSST 0.8660 PaSST setup3.ipynb PaSST config
2 2.2 PaSST 0.8699 PaSST setup4.ipynb PaSST config
3 3.1 CNN 0.3267 GMD CNN prototype4.ipynb GMD-mini
3 3.2 PaSST 0.3911 PaSST setup5.ipynb GMD-mini
4 4.1 CNN 0.7531 GMD CNN prototype5.ipynb GMD-full
4 4.2 PaSST 0.7367 PaSST setup6.ipynb GMD-full
5 5.1 PaSST 0.7269 PaSST setup6 2.ipynb GMD-full repeat
5 5.2 PaSST 0.7313 PaSST setup6 3.ipynb GMD-full repeat
5 5.3 CNN 0.7646 GMD CNN prototype5 2.ipynb GMD-full repeat
5 5.4 CNN 0.7827 GMD CNN prototype5 3.ipynb GMD-full repeat
6 6.1 PaSST 0.7247 PaSST setup6 4.ipynb t-SNE & Time patchout
6 6.2 PaSST 0.3861 PaSST setup5 2.ipynb t-SNE & Time patchout, GMD-

mini
7 7.1 PaSST 0.8582 PaSST setup6 5.ipynb PaSST MLP 3 Layers
8 8.1 PaSST 0.8604 PaSST setup6 6.ipynb PaSST MLP 5 Layers
8 8.2 PaSST 0.7964 PaSST setup6 7.ipynb PaSST MLP 7 Layers
8 8.3 PaSST 0.8659 PaSST setup6 8.ipynb PaSST MLP 4 Layers
8 8.4 PaSST 0.8352 PaSST setup6 9.ipynb PaSST MLP 2 Layers
8 8.5 PaSST 0.8424 PaSST setup6 10.ipynb PaSST MLP 6 Layers
8 8.6 PaSST 0.8577 PaSST setup6 11.ipynb MLP 4 Layers, Symmetric Bot-

tleneck
8 8.7 PaSST 0.8604 PaSST setup6 12.ipynb MLP 4 Layers, Progressive Bot-

tleneck
9 9.1 CNN 0.8779 GMD CNN prototype6.ipynb CNN 5 Conv Layers
9 9.2 CNN 0.8944 GMD CNN prototype6 2.ipynb CNN 7 Conv Layers
9 9.3 CNN 0.8900 GMD CNN prototype6 3.ipynb CNN 9 Conv Layers
10 10.1 CNN 0.9080 GMD CNN prototype6 4.ipynb CNN 7 Conv Layers + Gaussian-

Noise, RoomSim
10 10.2 PaSST 0.7953 PaSST setup6 13.ipynb MLP 4 Layers + GaussianNoise,

RoomSim
10 10.3 PaSST 0.8446 PaSST setup6 14.ipynb MLP 4 Layers + TimeStretch
10 10.4 CNN 0.8632 GMD CNN prototype6 5.ipynb CNN 7 Conv Layers +

TimeStretch
11 11.1 PaSST 0.8429 PaSST setup6 15.ipynb PaSST MLP 4 Layers, Circular

padding
11 11.2 PaSST 0.8752 PaSST setup6 16.ipynb PaSST MLP 4 Layers, Reflection

padding
11 11.3 CNN 0.8747 GMD CNN prototype6 6.ipynb CNN 7 Conv Layers, Gaussian-

Noise, RoomSimulator, Reflec-
tion padding

11 11.4 CNN 0.8736 GMD CNN prototype6 7.ipynb CNN 7 Conv Layers, Reflection
padding

11 11.5 CNN 0.8747 GMD CNN prototype6 8.ipynb CNN 7 Conv Layers, Circular
padding
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Table 6: Glossary of Terms

Acronym Definition

MIR Music Information Retrieval
GMD Groove MIDI Dataset
E-GMD Expanded Groove MIDI Dataset
PaSST-L Patchout Audio Spectrogram Transformer – Light
CNN Convolutional Neural Network
MLP Multilayer Perceptron
AST Audio Spectrogram Transformer
ViT Vision Transformer
DeiT Data Efficient Image Transformer
LSTM Long Short-Term Memory
ADT Automatic Drum Transcription
MIDI Musical Instrument Digital Interface
PANN Pretrained Audio Neural Network
CLAP Contrastive Language Audio Pretraining
STFT Short-Time Fourier Transform
NFFT Non-Uniform Fast Fourier Transform
ReLU Rectified Linear Unit
LayerNORM Layer Normalization
GPU Graphics Processing Unit
t-SNE t-distributed stochastic neighbor embedding
VGG Visual Geometry Group
OpenL3 Open-source deep audio and image embeddings
OpenMIC Instrument recognition dataset
CLS Embedding Classification embedding
F1 Accuracy metric
mAP Mean average precision
AUC Area under the curve
ESC-50 Dataset for Environmental Sound Classification
AudioSet A large-scale dataset of manually annotated audio events
LLM Large Language Model
SOTA State of the art
DEMUCS Hybrid Spectrogram and Waveform Source Separation
BPM Beats per minute
SpecAugment Spectrogram augmentation technique
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