5T~) 71 Universiteit
ey Leiden Quantum Computation using
) Weighted Model Counting

With Applications in Physics

Master Computer Science

Name: Dirck van den Ende
Student ID: 2541041
Date: 24/07 /2025

Specialisation: Foundations of Computing

1st supervisor: Dr. Alfons Laarman
2nd supervisor: Dr. Joon Hyung Lee
3rd supervisor: Dr. Henning Basold

Master’'s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Einsteinweg 55

2333 CC Leiden

The Netherlands

Abstract

Quantum physics and, more specifically, quantum computing have the potential
to solve a myriad of problems in drug development, traffic optimization, artifi-
cial intelligence, and more. However, it is very difficult to solve these problems
on a classical computer, and quantum computers are not yet equipped to solve
real-world problems. As such, other techniques for solving quantum problems
on classical computers have been developed recently. One of these techniques is
weighted model counting (WMC), which has proven effective at a range of tasks
within computer science, physics, and beyond. However, existing approaches for
using WMC in physics only target specific problems, lacking a general framework
for expressing problems using WMC. This limits the reusability of these approaches
in other applications and means these techniques often lack mathematical rigor.
We present an approach for expressing linear algebraic problems, specifically those
present in physics and quantum computing, as WMC instances. We provide mathe-
matical rigor by proving the correctness of this approach. We do this by introducing
a framework that converts Dirac notation to WMC problems. We build up this
framework theoretically, using a type system and denotational semantics, and
provide an implementation in Python. We demonstrate the effectiveness of our
framework in calculating the partition functions of several physical models: The
transverse-field Ising model and the Potts model. As the performance of model
counters improves in the future, our framework will provide a bridge between
weighted model counting and many real-world problems.

Contents

Notation
1 Introduction
1.1 The potential of weighted model counting
12 Stateoftheart
1.3 Problemstatement
14 Researchquestions
1.5 Contributions o o
1.6 Overview
2 Preliminaries
21 Booleanlogic. o
2.2 Weighted model counting
221 Definition
23 Quantumcomputing Lo
231 Diracnotation
232 Kroneckerproduct Lo
233 Matrixtrace Lo
234 Pauliand Hadamard operators
23,5 Matrixexponentialo Lo Lo
3 Encoding Dirac notation using WMC
31 LanguageSyntax
32 Typesystem
321 Scalartyperules
322 Matrixtyperules Lo o
3.3 Value denotational semantics
34 Representations o000
3.4.1 Scalarrepresentation
3.4.2 Matrix representation L.
3.43 Representationmap
3.4.4 Equivalence of representations
3.45 Finding equivalent representations

3.5 Representation denotational semantics

3.5.1 Scalarrepresentations
3.5.2 Matrixrepresentations
36 Correctness.
3.7 Implementation
38 Discussion e
4 Ising model
41 Definition L
42 Conversion to WMCby Nagyetal.
42.1 Reproducing results from Nagyetal.
4.3 Conversion to matrix representations.
43.1 Alternative formulation of the Ising model
43.2 Rewriting the partition function
433 Representingef”
434 Representing e?“®%) L
43.5 Comparison with Nagyetal.
5 Transverse-field Ising model
51 Definition o
5.2 Trotterization o o o
5.3 Conversion to matrixencodings
54 Experiments Lo oo
6 Potts model
6.1 Definition L o
6.2 Conversion of standard Potts model to WMC
6.3 Experiments o oo oo
6.3.1 Comparing model counters
6.3.2 Comparing variable encodings
6.4 Conversion of generalized Potts model to WMC
6.41 Discussion o
7 Related work
71 D-Hammer
72 Categorytheory
7.3 Quantum circuit simulation using WMC
7.4 Ising model partition function o L
7.5 Hamiltonian simulation using decision diagrams
7.6 Modelcounters L o
8 Conclusion
81 Evaluation L
82 Futurework Lo o

A Variable encodings

Al Logarithmicencoding 60

A2 Orderencoding 61
A3 One-hotencoding 61
B Correctness of representation denotational semantics 62
B.1 Propertiesof WMC 62
B.2 Correctnessproof 64

References 74

Notation

Below is a table with the notation used in this thesis, along with the section where
the notation is introduced.

Notation Intr. Meaning
B 21 The set of binary values {0,1}.
¢[7] 21 A Boolean formula ¢ over a set of variables V evalu-

ated for an assignment 7 : V — B.

1{c} 2.1 Indicator function returning 1 if the condition c is
true, and 0 otherwise.

0 21 The negation of a Boolean variable v.

p=1 21 Logical equivalence of Boolean formulae ¢ and .

IF 2.2 Some arbitrary field, which is assumed to be the
same field throughout this work.

WMC(¢, W) 22 Weighted model count of ¢ with respect to W.

T 2.2 “Always true” Boolean formula. Often referred to
as “top”.

L 2.2 “Always false” Boolean formula. Often referred to

as “bottom”.

(il (il 2.3.1 A row vector of width g with a 1 at the i-th position
counting from 0, and 0 everywhere else. The g is left
out if it is clear from context.

i, 2.3.1 A column vector of height g with a 1 at the i-th
q gnt q

position counting from 0, and 0 everywhere else.
The g is left out if it is clear from context.

A®B 232 The Kronecker product of two matrices.
tr(M) 233 The trace of a matrix.

X, Y, Z 234 Pauli X, Y, and Z matrices.

H 234 Hadamard quantum gate/matrix.

Notation Intr. Meaning

eM 2.35 Matrix exponential) ;2 , MFK/k!.

) 3.1 Scalar type in the language from Chapter 3.

M(g,m — n) 3.1 Type of a 4" x ¢ matrix in the language from Chap-
ter 3.

tr(M) 3.1 Matrix trace expression in the language from Chap-
ter 3.

entry(i, j, M) 3.1 Expression for the matrix entry at row i and column
j, in the language from Chapter 3.

apply(f,s) 3.1 Expression for the application of a field endomor-
phism on a scalar in the language from Chapter 3.

bra(g, 1) 3.1 Expression in the language from Chapter 3 for the
length-q row matrix (i|,.

ket(q, 1) 3.1 Expression in the language from Chapter 3 for the
length-g column matrix 7).

trans(M) 3.1 Expression for the transpose of a matrix in the lan-
guage from Chapter 3.

apply(f, M) 3.1 Expression for the entry-wise application of a field
endomorphism on a matrix.

Fe:T 3.2 Expression e has type T.

lelw 3.3 Value denotational semantics of an expression e.

rep(¢, W) 34.1 Value that the tuple (¢, W) represents, which is
equal to WMC(¢, W).

var(v) 3.4.2, A | Set of Boolean variables used in the variable repre-
sentation v.

v=n 3.4.2, A | Formula for equality of a variable encoding v to a
value n

val, 3.4.2, A | Validity formula of a variable encoding v.

V4w 3.4.2, A | Equality formula of two variable encodings v and
w.

rep(¢, W, x,y,q) | 3.4.2 Matrix that the tuple (¢, W, x,y, q) represents.

Rep 3.4.3 Set of scalar and matrix representations.

Mat(IF), 34.3 Set of matrices over a field [, optionally with the

Mat(FF, n x m)

given shape.

Notation Intr. Meaning

7] 344 Equivalence class of a representation r under the re-
lation of equal outputs when applying the function
rep.

lel 3.5 Representation denotational semantics of an expres-
sion e.

f1U f2 3.5 Union of two functions with disjoint domains.

fi-f2 3.5 Multiplication of functions on where their domains
overlap, and the value of one of the functions else-
where.

Exp 3.6 Set of expressions that have a type.

A 4.1, 5.1, | Set of sites in an Ising model, transverse-field Ising

6.1 model, or Potts model.

Jij 4.1,5.1 | Interaction strength between sites in an Ising model,

transverse-field Ising model.
, 41 External field strnegth at site i in an Ising model.

o 4.1 Configuration of spins of an Ising model.

Hi(o) 41 Hamiltonian of an Ising model with spin configura-
tion 0.

Zg 1 41 Partition function of an Ising model at inverse tem-
perature p.

Ux, Pz 51 Transverse-field Ising model external field strengths
in X and Z directions.

Hg 5.1 Transverse-field Ising model Hamiltonian matrix.

Zs.0 5.1 Partition function of a transverse-field Ising model
at inverse temperature p.

Jij(si,s}) 6.1 Interaction strength between sites i and j in a gener-
alized Potts model, given their states s; and s;.

hi(s;) 6.1 External field strength at site i in a generalized Potts
model, given its state s;.

s 6.1 Configuration of spins of a Potts model.

Hp(s) 6.1 Hamiltonian of a Potts model with spin configura-
tion s.

Zgp 6.1 Partition function of a Potts model P at inverse tem-

perature p.

Chapter 1

Introduction

Quantum physics is the theory of the very small, describing the behaviour and
interaction of fundamental particles, atoms, and molecules. Quantum physics,
and more specifically quantum computing, have the potential to solve a myriad
of problems in drug development, traffic optimization, artificial intelligence, and
more [25, 38, 47]. Despite this potential, however, it is very difficult to solve
these problems with a normal computer, as the space of solutions to check grows
exponentially with the problem size. Quantum computers aim to provide a solution
to this. However, current quantum computers are not yet powerful enough to
deal with these practical problems. As such, other techniques for solving quantum
problems on classical computers have been developed recently.

An example of a problem with this exponential blowup is calculating the partition
function. This is a physical quantity of a system that can be seen as a measure
of the “total energy” in that system. The quantity is generally expressed as an
exponentially-sized sum over possible states a system can be in. Using brute-force
on even moderately sized partition function problems will yield extremely long
runtimes, which means there is a need for tools to speed up this process.

One such promising technique is weighted model counting (WMC), an approach
that involves powerful solvers on classical computers. This will investigate the use
of weighted model counters to calculate the partition functions of various systems.
We will also provide a general framework for solving quantum physics problems
using weighted model counting.

1.1. The potential of weighted model counting

Weighted model counting is, at its core, a very basic problem statement: Given some
constraint problem and some weights, calculate the weighted sum of all solutions
to the constraint problem [4]. We can express this formally as having a Boolean

formula ¢ and a weight function W, where the weighted model count is defined as

WMC(p,W) = Y W(1) (1.1)

T solves ¢

Generally, the set of solutions T grows exponentially with the size of ¢. As such, the
problem is #P-hard in general [17], which is a complexity class that can be seen as
the “counting equivalent” of NP. Simply put, these problems take a lot of time to
solve as the problem size increases.

Despite this complexity, modern model counting tools can achieve an exponen-
tial speedup on many real-world problems formulated with WMC. These model
counters use advanced techniques such as clause learning, tensor networks, and
algebraic decision diagrams to solve problems [14, 15, 16, 40, 43]. This has allowed
researchers to apply weighted model counting to a variety of problems and tasks
in recent decades, such as in probabilistic inference, statistical physics, and critical
infrastructure reliability [8, 12, 28, 30, 34].

1.2. State of the art

More recently, the application of WMC to problems in quantum physics has been
explored. Mei et al. [26, 27, 28] showed that WMC can be used for the simulation
and analysis of quantum circuits on classical computers. This is done by encoding
the gates in a quantum circuit as Boolean formulae. Although quantum simulation
at its core involves complex numbers, Mei et al. [28] also showed that weighted
model counting problems with complex weights can be reduced to those with real
numbers, or even Boolean values B = {0,1}. This allows the simulation to be
performed using most existing model counters.

Another area where model counters have shown strength recently is in statistical
physics. Nagy et al. [30] showed that the calculation of the partition function of
the Ising model, which is a classical model of interactions between particles, can
be transformed to a WMC problem. Like WMC, the calculation of this partition
function is #P-hard in general, which makes it such a good candidate for this
approach. They showed that the TensorOrder [16] model counter, which works
with tensor networks, outperforms existing tools like CATN [33] from physics in
computing the partition function.

These applications already show the potential that weighted model counting has.
However, they lack a more general method for encoding problems from (quantum)
physics using weighted model counting.

1.3. Problem statement

Existing approaches for using WMC only target specific problems, lacking a more
general framework for applications in physics and beyond. This specifically intro-

5

duces the following limitations:

¢ Existing encodings for quantum systems only support operations on qubits,
and not more general qudits (qubits with more than two dimensions, see [32]).

¢ There is no general framework for applying common linear-algebraic oper-
ations like matrix multiplication, Kronecker products, or taking the trace of
a matrix. These operations often need to be performed when dealing with
quantum circuits or quantum systems in general. It is therefore useful to
be able to convert a problem written in Dirac notation (a common way of
writing linear-algebraic problems in physics) to a weighted model counting
problem. Dirac notation has already shown its use in tools like DiracDec [49]
and D-Hammer [50], although these tools solve different tasks.

¢ Existing methods either lack mathematical rigour or involve long proofs.
Again, this is mainly caused by the lack of a general framework.

¢ Weighted model counting has not been applied to physical systems other than
the (classical) Ising model.

In this thesis, we propose a general framework for applying WMC to many prob-
lems in (quantum) physics. We demonstrate the effectiveness of this framework by
using it to calculate the partition functions of several physical models.

1.4. Research questions

In this thesis, we address the following two main research questions:

1. Encoding problems from physics using WMC is hard and currently requires
much human insight into the problem at hand. Many of these problems could
be formulated more easily when using matrices. This could, for example,
be done using Dirac notation. To apply WMC to a wider range of problems
from physics, is it possible to encode Dirac notation using weighted model
counting, using a general framework?

2. The scope of problems to which WMC has been applied in physics is currently
very narrow. In quantum physics specifically, it is limited to the simulation and
analysis of circuits. Can we calculate the partition functions of the transverse-
tield Ising model, which is a quantum model, and the Potts model, which is
classical?

1.5. Contributions

We provide three main contributions in this thesis: A theoretical framework for
encoding matrices using WMC, an implementation of this framework, and several
applications of this framework on problems from physics:

1. We provide a generic encoding of 4" x g™ matrices using WMC. We provide
a method for applying operations such as matrix multiplication, addition,
and taking the trace to these encodings. From this, we build a language that
can encode Dirac notation using WMC. We provide a formal proof of the
correctness of our framework in the appendix.

2. An open-source implementation of this framework in Python is available
at [13]. This implementation was used to perform the experiments in Chap-
ters 4, 5, 6.

3. Applications of our framework to the calculation of the partition functions
of the (quantum) transverse-field Ising and (classical) Potts models. To our
knowledge, this is the first time weighted model counting has been applied to
these problems.

Figure 1.1 illustrates the general approach to solving physics problems using our
framework. The green boxes indicate choices between physics problems and model
counters. In both cases, other options also exist. The user is responsible for the first
step of converting the physics problem to a matrix problem. All other steps are
automated by the framework.

Model counter

Physics problem
(romoia o
- Partition func.
Matrix problem DiracWMC Cachet > (211: cl)tlli):r utnc)
TF Ising model _] il
DPMC

Figure 1.1: Workflow of solving physics problems using our framework.

1.6. Overview

In Chapter 2, we introduce some preliminaries used throughout the thesis. We give
some basic definitions from Boolean logic, and build on this to define weighted
model counting formally. Furthermore, we introduce some concepts from quantum
computing, such as Dirac notation.

Chapter 3 then builds on the definition of weighted model counting to define the ma-
trix encodings used in our framework, which we call “matrix representations”. We
introduce a function, rep, that maps matrix representations to matrices. We define
a formal language and type system with the supported matrix operations (matrix
multiplication, addition, taking the trace, etc.) that is similar to DiracDec [49] and
D-Hammer [50]. Then, we give procedures for implementing these operations on
matrix representations by defining semantics [-],. These semantics map expressions
to the matrix representations. At the end of this chapter, we give a theorem showing

the correctness of these operations by showing rep o [-], returns the matrix of the
expression.

Chapters 4, 5, and 6 outline several applications of the matrix representations.
Chapter 4 discusses the WMC encoding of the Ising model partition function
presented by Nagy et al. [30]. The Ising model is a classical model from physics that
models interactions between particles. We show that the matrix representations
from Chapter 3 can also be used to calculate the partition function. It turns out that
these two ways of converting the calculation to WMC result in the same Boolean
formula and weight function. The experimental results of Nagy et al. are replicated
to show that our framework gives the same results.

Chapter 5 introduces the quantum version of the Ising model: The transverse-field
Ising model. We show that, using a technique called Trotterization, the partition
function of this model can be approximated using matrix representations. Some
experimental results are discussed for small systems.

We introduce a classical generalization of the Ising model, called the Potts model,
in Chapter 6. We encode the Potts model partition function and show that the
performance of model counters on this problem is comparable to that of the Ising
model.

Chapter 2

Preliminaries

In this chapter, we give some preliminaries used throughout this thesis. We intro-
duce basic concepts and notation from Boolean logic, then build on this to define
weighted model counting. Lastly, we introduce some concepts from quantum
computing.

2.1. Boolean logic
Before introducing model counting problems, we need to establish some basic

definitions and notation related to Boolean logic. First, we introduce some notation
for the satisfiability of a Boolean formula.

Notation 2.1: Boolean satisfiability

Let ¢ be some Boolean formula over a set of variables Vand 7: V — B a
function assigning binary values to variables. We write ¢[7] = 1 if T satisfies
¢, and ¢[t] = 0. We will write sat(¢) = 1 if ¢ is satisfiable and sat(¢) = 0
otherwise, i.e.

sat(¢) = 1{¢ is satisfiable} = max P[], (2.1)

where 1 is an indicator function equal to 1 if ¢ is satisfiable and 0 otherwise.

Model counters (particularly the ones used in this thesis) often require their input to
be in conjunctive normal form, which is a conjunction (logical AND) of disjunctions
(logical OR) of literals (either a variable or its negation). Although this seems like
a major restriction, many problems can be expressed as or rewritten to this form
without much effort.

Definition 2.2: Conjunctive normal form

A Boolean formula ¢ is in conjunctive normal form (CNF) if it is of the form

o= AV 22

i=1j=1

where each x;; is a literal (so either v or T for a variable v). We use ¢ = ¢ to
denote logical equivalence between two formulae ¢ and .

2.2. Weighted model counting

In this section, we introduce the concept of weighted model counting, in which
the problem is to find the weighted sum of all solutions to a Boolean formula. It
is a generalization of #SAT, which asks for the number of solutions to a Boolean
formula, without weights. This is itself a generalization of SAT, which asks only if
there is a solution, not how many solutions there are.

Like #SAT problems, weighted model counting is #P-hard in general [17]. How-
ever, due to extensive research in recent decades, model counters like Cachet [40],
Ganak [43], DPMC [14], TensorOrder [16], and ProCount [15] can solve these
problems in a relatively short amount of time. These tools make use of a variety
of techniques and concepts, like Tensor networks (TensorOrder), clause learning
(Cachet), and algebraic decision diagrams (DPMC), to simplify the problem or
otherwise speed up the calculation of the total weight. In many practical appli-
cations, this can lead to an exponential speedup compared to brute force. Model
counters have proven effective at probabilistic inference, statistical physics, critical
infrastructure reliability, and more [8, 12, 28, 30, 34].

In this work, we specifically focus on weighted model counters that have two inputs.
First, they accept a Boolean formula in conjunctive normal form (CNF). Second,
they take a weight function, mapping literals to weights. Some model counters,
like Cachet and TensorOrder, require these weights to be positive. We can still
use these solvers to compute the partition functions of the Ising model and Potts
model, which are problems we discuss in Chapters 4 and 6. Other problems, like
the partition function of the quantum Ising model from Chapter 5, require some of
the weights to be negative.

Although the problem using any real weights can be transformed into one using
only positive weights, this transformation introduces an XOR between all of the
variables with negative weights, which often hurts the runtime of the solver (al-
though solutions to this do exist [2, 44, 51]). Therefore, in this work, we only use
solvers that can compute the weight model counting problem at hand directly,
without transformations. Similarly, WMC instances with complex weights can also
be reduced to instances with real weights [28].

10

2.2.1. Definition

As mentioned, weighted model counting problems consist of two parts: A Boolean
formula over some set of variables V, usually in CNF, and a weight function
assigning a weight to every literal from V. Generally, these weights are real numbers
when given to a model counter. However, we will work with some general field
IF of weights instead, since this generalization does not have any impact on the
theory. This could be of particular use when working with problems in quantum
computing, where values can be complex numbers.

The weighted model count calculates the sum of weights over all satisfying assign-
ments 7 : V — B of the Boolean formula. The weight of an individual assignment
is the product of the weights of the variables with their assigned values.

Definition 2.3: Weighted model counting

Let ¢ be a Boolean formula over some finite set of variables V. Let W :
V x B — F be a function, called the weight function. The weighted model
count of ¢ with respect to W is defined as

WMC(p,W) = Y ¢[c]- [W(v,7(0)) 23)

V=B veV

This is also often denoted as W(¢) in literature.

Note that the set of variables V can contain more variables than are in the formula
¢. However, all variables in ¢ have to be in V. For convenience, we will introduce
the following notation related to the weight function:

Notation 2.4

e Denote dom(W) as the domain V of the weight function W.
e For variables v € V, write W(v) = W(v,1) and W(v) = W(v,0).

Weighted model counting problems can be particularly useful to calculate probabil-
ities. A Boolean variable can be interpreted as a random variable that only depends
on other variables through the formula ¢. The probabilities of the random variable
being true or false are given by the weight function. We demonstrate this in the
following example.

Example 2.5

Suppose we have two coins and a die. We would like to know the probability
that either of the coins comes up heads, and that we roll a six with the die. We
introduce three variables cj, ¢, and d. The first two represent the first and
second coin coming up heads, respectively. The variable d represents the die

rolling a six.

Since the probabilities of heads and tails are equal, we assign the following
weights to ¢; and cy:

W(c1) =1/2, (coin 1 tails) W(¢y) = 1/2 (coin 2 tails) (0.4)
W(cy) = 1/2, (coin 1 heads) W(cz) = 1/2 (coin 2 heads) '
The probability of rolling a six is 1/6, hence
W(d) =5/6, W(d) =1/6. (2.5)

The event of rolling a six and at least one heads can be expressed as d A (¢1 V
¢2). To find the probability of this occurring, we sum over all combinations
of heads and tails and rolling a six or not rolling a six, such that the formula
holds. This is exactly what happens in the weighted model counting definition.
Hence, we can calculate the probability of at least one heads and rolling a six
as

WMC(d A (c1 V), W) (2.6)
= W(d)W(c1)W(c2) + W(d)W(1)W(c2) + W(d)W(c1)W(c2) (27)
—1/24+1/24+1/24 2.8)
—1/8 2.9)

Next, we illustrate that the domain of the weight function can contain variables that
are not in ¢ using another example.

Example 2.6

Consider ¢ = T (“always true” or “top”) and W : {x,y} x B — [constant 2.
Then we have

WMC(¢, W) = WE)W(H) + WE)W(y) + W(x)W(y) + W(x)W(y) (210)

=2-242-2+2-24+2-2=16. (2.11)

Example 2.7

Changing the formula from Example 2.6 to ¢ = L (“always false” or “bot-
tom”), we get WMC(¢p, W) = 0.

Example 2.8

If we instead change the weight function from Example 2.6 by setting W(x) =
W(x) = 0, we also get WMC(¢, W) = 0, since there will be a 0 in every

product in the sum from the definition of WMC.

2.3. Quantum computing

We introduce some basic concepts and notation used in quantum computing, which
is mostly performed using operations on large (2" x 2") matrices. We will use some
of the notation used in quantum computing in the more general context of g"* x g
matrices.

2.3.1. Dirac notation

The most basic building blocks are bras and kets, denoted as (i[, and |i) , respectively.
This is called Dirac notation. A bra is a size-q row vector filled with zeros, except at
the position i (counted starting from 0), where it has a 1. A ket is defined similarly,
but as a column matrix. If the size of the vector is clear from context, the g will often
be left out. It is common to compute the scalar (j| M |i) for some matrix M. This
gives the entry of the matrix at the i-th row and j-th column, written as M;;.

Example 2.9

Below are some examples of operations with bras and kets.

Bla=1{0 0 0 1] 2.12)
1
0)3 = |0 (2.13)
0
ol * % p=s (2.14)
120

2.3.2. Kronecker product

The Kronecker product of two matrices is often used in quantum computing to
perform a parallel operation on two or more separate subspaces. Written as A ® B,
the Kronecker product is defined as
AopB ... Ap,_1B
ARQB= : : (2.15)
Ac10B ... A1, 1B

13

where A is an r X ¢ matrix, and A;;B is the scalar multiplication of the matrix B with
Ajj. These matrices are filled into the matrix A ® B.

One reason the Kronecker product is often used in quantum computation is that
multiplication can be distributed: (A; ® By)(A2 ® By) = A1A» ® B1By. For this
reason, the Kronecker product can describe the parallel application of matrices to
different qubits.

Example 2.10

Suppose we have the following matrices:

21] Fl]
B= (2.16)
10 2 3

The Kronecker product of these matrices is

A=

01 01 0201
2 1
2 3 2 3 4 6 2 3
A®B=| F {1 F 4= (2.17)
01 0 1 0100
1 0
2 3 2 3 23 00

2.3.3. Matrix trace

The trace of a square matrix is the sum of the entries on the diagonal. We write the
trace of a matrix as tr(M). A property of the trace is that tr(A ® B) = tr(A) - tr(B).

Example 2.11

The trace of the matrix

2 4

(2.18)
1 -7
is equal to tr(A) = —5.

2.3.4. Pauli and Hadamard operators

Common operations performed in quantum circuits are the Pauli X, Y, and Z
operators and the Hadamard H gate, each of which is performed on a single qubit

14

in quantum computing.

10 0 —i 1 0 1
01 i 0 0 -1 V2
Each of these matrices is involutive, meaning it is its own inverse. One useful prop-

erty used when converting the transverse-field Ising model to WMC in Chapter 5 is
that X = HZH.

X =

1]
(2.19)
-1

2.3.5. Matrix exponential

The exponential of a square matrix is defined similarly to the Taylor expansion of
an exponential of a real number:

eM = exp(M) = Y. T (2.20)

For a diagonal matrix, this is equal to the matrix with the exponential of each of the
entries on the diagonal, and zeros everywhere else. For large non-diagonal matri-
ces, more advanced techniques exist to calculate the matrix exponential relatively
quickly [29].

Example 2.12

The matrix exponential of the diagonal matrix

10 O
A=100 © (2.21)
0 0 log(2)
is equal to
=101 0 (2.22)

15

Chapter 3

Encoding Dirac notation using WMC

We introduce weighted model counting representations of quantum operators. The
concept of encoding quantum problems using WMC has been explored before [26,
27, 28], though these works lack a general framework for converting problems from
physics to WMC instances. We aim to create a much more general method for
encoding matrices, by allowing encodings of any 4" x g matrix, instead of just
2" x 2" square matrices and row /column vectors like in previous work. We call this
q the base size of the matrix. The framework we present is more generic in that it
gives a general method for encoding matrices, as opposed to previous work, which
focused on specific applications such as quantum circuits.

We represent these matrices as tuples (¢, W, x,y, q) of a Boolean formula ¢, weight
function W, input and output variables x and y, and a base size q. The formula and
weight function form the basis of model counting instances, used for every entry in
the matrix. The input/output variables act as pointers to the specific entries in the
matrix, which are obtained by adding restrictions to the values of these variables to
the formula ¢. Scalars are represented by WMC instances (¢, W), where the value
of the scalar is WMC(¢p, W).

Several common matrix operations are introduced that can be performed on these
representations directly, such as matrix multiplication, taking the trace, and com-
puting the Kronecker product. To formalize and prove the correctness of these and
other operations, we first introduce a language of scalars and matrices, built from
scalar constants, bras, and kets. This language is similar to D-Hammer, introduced
by Xu et al. [50], as it builds on Dirac notation. However, the language we introduce
in this work is less extensive and neither supports contexts nor labeled matrices.
We provide an implementation of our approach at [13], which is further discussed
in Section 3.7.

We introduce two kinds of denotational semantics on this language: [-], returns the
actual matrix or scalar that an expression represents, while [-], returns a class of
(matrix or scalar) representations that corresponds with the matrix or scalar.

16

3.1. Language Syntax

We introduce a language that is loosely based on D-Hammer [50]. It has two types
of expressions: scalars and matrices. Scalars from a field [F are of type S. Matrices
have a type that contains the size of the matrix and its base size. A base size of
q € Z>3is used to represent 4" x g™ matrices. The intuition of this number is that
it represents the dimension of the smallest vector space that all of our matrices act
on. For a system of qubits, for example, a base size of g = 2 would be used, since
elementary operations on qubits are performed using 2 x 2 unitary matrices. Any
unitary acting on multiple qubits has dimensions that are a power of two.

We write the type of a matrix as M (g, m — n), representing a q" x g™ matrix, with
n,m € Zx>q. Also note the reversal of the order of n and m. We use this notation
because a 4" x g™ matrix (4" rows and " columns) is generally interpreted as a
linear map F1" — F1".

More formally, for n,m € Z>p and q € Z>, the type syntax is
T:u=8|M(gm—n) (3.1)

The syntax of expressions e is split up into scalars s and matrices M.

ex=s| M (3.2)
su=ua|sy-sp|s1+s2]|tr(M) | entry(i,j, M) | apply(f,s) (3.3)
M :=bra(i,q) | ket(i,q) | Ma - My | My + My | M1 ® My (3.4)
| s- M | trans(M) | apply(f, M) (3.5)

Here a € F is an arbitrary constant and f : F — [is an arbitrary field endomor-
phism. Field endomorphisms, by definition, have the properties f(xy) = f(x)f(y)
and f(x +vy) = f(x) + f(y). The complex conjugate is a notable example of a field
endomorphism.

Scalar expressions can be combined using multiplication and addition. Applying a
tield endomorphism to a scalar also results in another scalar. In addition, taking the
trace or getting a specific entry from a matrix gives a scalar.

The most basic matrices are the bra and ket (see Section 2.3.1). From these, op-
erations can be performed, such as adding or multiplying matrices. In addition,
we have syntax for taking the Kronecker product, matrix-scalar multiplication,
and taking the transpose of a matrix. We also add support for applying a field
endomorphism f to every entry of the matrix.

3.2. Type system

The type system associates expressions with types. We say that the expression e has
type T if - e : T can be proven using the type rules below.

17

3.2.1. Scalar type rules

The usual rules for scalars apply: Multiplying or adding two scalars results in a
scalar, and applying a field endomorphism to a scalar yields a scalar as well. In
addition, any element of FF is a scalar.

Fsp: sy s sy
“EF (consy 5170 2:5 vy C50S 2:5 Add)
Fa:S Fsi-s:S Fsi+s:S
(3.6)
Fs:S f :IF — Fis a field endomorphism
(Apply) (3.7)

- apply(f,s): S

Getting an entry from a matrix or calculating the trace of a square matrix also results
in a scalar:

=M: M(q,m— n) FM:M(g,n—n)
— (Entry) (Trace) (3.8)
Fentry(i,j,M): S Ftr(M):S

where0 <i <g"and 0 <j < g™.

3.2.2. Matrix type rules

The bra and ket form the basis for matrix expressions. These have the types
M(q,1 — 0) and M(0 — 1) respectively, as they can be interpreted as linear
maps FY — [Fand IF — IF9. For 0 < i < g we have

- bra(i,q) : M(q,1 — 0) (Bra) - ket(i,q) : M(q,0 — 1) Kb 39)

Matrix multiplication is essentially the composition of maps F7" — F7" and F7' —
F7" to one map F7" — IF7'. However, do note that the composition is read from
right to left. Hence M, and

=My M(q,m— k) =My M(q,k — n)

(MatMul) (3.10)
H My - My : /\/l(q,m — Tl)

Adding two matrices of the same type results in a matrix with that type. Multiplying
a matrix by a scalar results in a matrix of the same type, and so does applying a
field endomorphism entry-wise.

= My : M(g,m — n) =M, : M(q,m— n)

(MatAdd) (3.11)

FMi+ M;: /\/l(q,m — 1’1)

Fs:S FM: M(qgm—n)
(ScaMul) (3.12)
Fs-M: M(q,m— n)
-M: M(q,m— n) f :F — Fis a field endomorphism
(MatApply)

Fapply(f, M) : M(q,m — n)

(3.13)

18

Taking the transpose of an q" x g matrix results in a 4" x ¢" matrix:
FM: M(g,m—n)
F trans(M) : M(gq,n — m)

The kronecker product of a g™ x g™ matrix and a "2 x g™ is a g¢"11"2 x g™ +"m
matrix:
F My : M(F,q,m; — nq) F My : M(F,q,my — ny)

= My ® My : M(q,my +my — ny +ny)

Example 3.1

As an example we will prove that (3 - ket(0,2) - bra(1,2)) ® ket(0,2) has type
M (2,1 — 2), where we have q = 2. We will use the field of complex numbers
F=C.

(Trans) (3.14)

(Kron) (3.15)

First we prove that 3 - ket(0,2) - bra(1, 2) is of type M (2,1 — 1):

3eC Fbra(1,2) : M(2,1— 0) - ket(0,2) : M(2,0 — 1)
F3:S8 - ket(0,2) - bra(1,2) : M(2,1 — 1)
F3-ket(0,2) -bra(1,2) : M(2,1 — 1)

(3.16)

Applying the Kronecker product and using the type of ket(0,2) gives

F3-ket(0,2) -bra(1,2) : M(2,1 — 1) - ket(0,2) : M(2,0 — 1)
- (3 ket(0,2) - bra(1,2)) @ ket(0,2) : M(2,1 — 2)

(3.17)

3.3. Value denotational semantics

As a baseline for the representation semantics we introduce later, we define the
denotational semantics [-], as the “value” of an expression, i.e., the concrete scalar
or matrix that the expression represents. For example, the value of ket(1,2) - bra(0,2)
is a 2 x 2 matrix with a 1 in the bottom-left corner and 0 everywhere else. We define
the denotational semantics inductively on the type derivations of the expression,
meaning expressions without a type (e.g. ket(1,2) - ket(0,2)) do not get a value.
Note that, due to the way the type system is defined, there is at most one type
derivation for each expression.

For scalars, the denotational semantics are defined as follows:

[afo = [apply(f,s)]o = f([s]o)
[s1 + s2]o = [s1]0 + [s2]0 [[entrY(i/j/ M)[y = ([[M]]U)ij (3.18)
[s1 - s2llo = [s1]0 - [s2]0 [tr(M)]o = tr([M]o)

19

The semantics of bras and kets are the 1 x g and g x 1 matrices with an entry 1
at the i-th position (counting from zero) and 0 everywhere else. We denote these
matrices using Dirac notation with (i|, and |i),, where the q is left out if it is clear
from context.

[[bra(l' q)]]v = <l|q [[ket(l’ q)]]v = |l>q (319)

The semantics of other matrix operations are performed simply by evaluating the
expression recursively:
[[MZ) Ml]]v = [[MZ]]Z) : [[Ml]]v IIS ’ M]]U = [[S]]v ’ [[M]]U
[M1 + Mz]lo = [Mi]lo + [M2]o [trans(M)], = [M]Z (3.20)
[Mi® MaJo = [Milo ® [M2]o [apply(f, M)]o = f([M]o)
Note that the type rules above prohibit any incompatible matrices from being

multiplied or added. The value of f(M) for a field endomorphism f : F — FF and
matrix M is the matrix M with f applied to every entry.

These denotational semantics are in a certain sense valid, because [e], € [T], for
any expression e of type T.

Example 3.2

The value semantics of the expression
e = (3-ket(0,2) - bra(1,2)) ® ket(0,2) (3.21)

from Example 3.1 can be determined as follows:

[eo = [3 - ket(0,2) - bra(1,2)]o ® [ket(0,2)]o (3.22)
= ([3]» - [ket(0,2) - bra(1,2)],) ® [ket(0,2)], (3.23)
= (3 - [ket(0,2) - bra(1,2)]o) ® [ket(0,2)]o (3.24)
= (3 [ket(0,2)]o - [bra(1,2)]o) ® [ket(0,2)]o (3.25)
= (3-10), - (1],) ®|0), (3.26)

1 1
_(3-”-[0 1}>® (3.27)
0 0
S
00
_ (3.28)
00
O O

The expression is associated with the value we would like it to have.

20

3.4. Representations

We will introduce representations for both scalars and matrices. Scalars will have
a representation that is the solution to a model counting problem (¢, W) (i.e.,
WMC(¢, W)). Meanwhile, matrices are represented with a longer tuple that also
includes input and output variables, and a base size g: (¢, W, x,,9).

3.4.1. Scalar representation

As mentioned above, scalars are represented by model counting instances (¢, W).
This is formalized in the following definition:

Definition 3.3: Scalar representation

A tuple (¢, W) of a Boolean formula ¢ over a set of variables V and a
weight function W : V x B — F uniquely represents a constant « € F if
WMC(¢, W) = a. For consistency with matrix representations later, we will
write rep as a function from Boolean formulae and weight functions to [F,
defined by

rep(¢, W) = WMC(¢p, W) (3.29)

Example 3.4

Suppose we have a Boolean formula ¢ and weight function W : {x,y} x B —
R given by

p=x—y (3.30)
W(x)=W(x) =1 (3.31)
W(y) =W(y) =1/2 (3.32)

Then rep(¢p, W) = WMC(¢p, W) = 3/2.

3.4.2. Matrix representation

The definition of a matrix representation extends on that of a scalar representation
by adding input and output variables x and y, and a base size 4. The input and
output variables serve as pointers to the different entries in the matrix. The formula
¢ and weight function W are used as the basis for a set of model counting problems,
one for every entry in the matrix. The same weight function is used at every entry,
but the Boolean formula ¢ is extended with requirements for the input and output
variables: ¢' = ¢ A (x = j) A (y = i). The value at the entry is the weighted model
count WMC(¢', W).

The input and output of a matrix representation consist of Boolean variables that

21

together represent some number in the range {0, ...,4" — 1}. We do this by using
strings (of length 1) of “g-state variable encodings”. These encodings use Boolean
variables and formulae to represent numbers from {0, ...,q — 1}. How these can
be implemented is described in Appendix A. However, there are some important
properties these encodings need to have. These are outlined below:

e For an encoding v we write var(v) for the set of all Boolean variables v uses.

¢ For an encoding v we can write v = n to indicate v is equal to some number
n. There should be exactly one assignment 7 : var(v) — B for which (v =
n)[t] =1.

* Denote val, = \/Z;%)(U =n).
¢ Write v <+ w for the equality of two g-state encodings v and w.

We use the same notation for strings of these variable encodings.

Definition 3.5: Matrix representation

Suppose we have a tuple (¢, W, x,y,q) of a Boolean formula ¢ over a set of
variables V, a weight function W : V x B — F, two strings of g-state variables
x and y over V, and a base size ¢ € Z>;. This tuple represents the matrix

M € Mat(F, gl x gy if for all j € {0,...,4* =1} andi € {0,...,q¥ — 1}
we have

(jl Mi) = Mjj =WMC (p Ax =jAy =i, W) (3.33)
Again, every tuple represents exactly one matrix, which justifies the notation

rep(¢, W, x,y,q9) = M. (3.34)

Example 3.6

We give a representation of the matrix

02
M= (3.35)
10

with base size g = 2. This means we can use Boolean variables as our g-state
input and output variables x and y.

Note that any non-zero entry (i, j) in the matrix has i # j, which means we
use the formula ¢ = x <+ 7. We need the model count to be 2 when x is true
and y is false, which is why we set W(x) = 2. Any other value of W we set to
1. When determining the weighted model count for every entry of the matrix,

22

we find that (¢, W, x,y,2) is a representation of M:

WMC((x <> Y) AXAY,W) =0

WMC((x < Y) AXAYy, W) =WE)W(y) =1 (3.36)
WMC((x > ¥) Ax Ay, W) =W(x)W(y) =2 '
WMC((x > y) Ax Ay, W) =0

The first and last equations are zero since the formulae are unsatisfiable.

Example 3.7

There is no requirement that the input and output variables be different. Such
can be the case for diagonal matrices, and the Pauli-Z matrix in particular:

7= (3.37)
0 —1

This matrix can represented with (T, W, x, x,2), using the weight function
W : {x} x B — F defined by W(X) =1 and W(x) = —1.

3.4.3. Representation map

From Definitions 3.3 and 3.5 we introduce the map
rep : Rep — F UMat(F), (3.38)

where Rep is the set of scalar and matrix representations. This map is neither
injective nor surjective. It is not injective because two tuples can represent the same
scalar or matrix. Two model counting instances can have the same weighted model
count. It is also not surjective because not every matrix shape can be represented.
Matrices that can be represented have the shape 4™ x 4", so a 3 x 2 matrix cannot be
represented, for instance. This is a limitation that arises from the Kronecker product
operation on matrix representations, defined in Section 3.5.

3.4.4. Equivalence of representations

Checking if two tuples represent the same value is NP-hard in general, since it
would require checking ¢ = ¢» for tuples (¢1, W) and (¢, W). Despite this, it is
useful to define the representation denotational semantics as a map to equivalence
of representations, rather than the representations themselves. For this, we define
the equivalence relation ~ on Rep as follows:

ri~1ry <= rep(ry) =rep(ra) (3.39)

23

This relation induces an injective map rep” : Rep/~ — F UMat(IF). We denote the
equivalence class of a representation r under this relation with [r].

3.4.5. Finding equivalent representations

We will define the representation semantics in the next section as a map from type
derivations to classes of representations. This is done inductively. Hence, we can
have two classes of representations, and need to combine these in some way to get
a new class. We will do this by using representatives of the classes. In the rules in
Section 3.5, we introduce two types of constraints: Constraints on the domains of
the representations and a constraint WMC(T, W) # 0.

Domain constraints

We put some requirements on the domains of these representatives (e.g., the do-
mains need to be disjoint) to combine them. Finding representations that conform
to these restrictions is possible by substituting variables in the representations.

We illustrate this with an example: Suppose we define the representation semantics
of [s1 - sp]» inductively. Then we already have two representatatives (¢;, W) and
(¢p2, Wo) with [s1], = [(¢1, W1)] and [s2]; = [(¢2, W2)]. Now we want to combine
them by using [s1 - so]ly = [(¢1 A ¢2, W1 UW,)]. A requirement for this to work is
that the domains of W; and W, are disjoint. We can accomplish this by substituting
variables in the representation (¢, W,) with fresh ones. This can be implemented
efficiently.

Requiring WMC(T,W) # 0
Note that WMC(T, W) can be written as

WMC(T, W) = [[(W(@) + W(v)) (3.40)

veV

This quantity can only be 0 if, for some variable v € V, we have W(v) + W(v) = 0.
If we have W(7) = W(v) = 0, then WMC(¢, W) = 0 for any Boolean formula
¢. Hence we have rep(¢, W) = rep(L, Wp), with Wy : @ x B — F. Note that
WMC(T, Wy) = 1.

If W(v) # 0, we instead introduce a fresh variable v’. We add v <> ¢’ to the formula
¢, and introduce the weight function W' : (VU {v'}) x B — F that is the same as
W on V, except for W (v) = —W(7), W (?') = —1,and W'(v') = 1.

Using these two methods, for every model counting instance (¢, W), we can effi-
ciently find an equivalent instance (¢', W) with WMC(T, W) # 0. Note that these
methods can also be applied to matrix representations.

24

3.5. Representation denotational semantics

In this section, we introduce the representation denotational semantics [-], for
all scalar and matrix type expressions. Like with the value semantics, the rep-
resentation semantics are defined on proof trees of type derivations. We refrain
from proving the correctness of these operations here, but proofs can be found in
Appendix B.

3.5.1. Scalar representations

Scalar expressions are mapped to classes of equivalent scalar representations, de-
noted as [(¢, W)]. Scalar constants form the basis of scalar expressions. These
are mapped to the classes of representations of the same value «. For the sake of
implementation, we give an explicit element of this class:

Rule 3.8: Scalar constant

[a]r = [(x, Wa)] (3.41)

where W, : {x} x B — F is a constant function a.

For model counting instances with no variables in common, the model counts can
be multiplied using combining them as follows:

Rule 3.9: Scalar multiplication

[s1]r = [(¢1, W1)]
[s2]r = [(¢2, W2)] = [s1-s2]r = [(¢1 A P2, W1 UW)]
dom(W7) Ndom(W,) = &

(3.42)

Here W; U W, indicates the union of two functions with disjoint domains
fi:Xis = Yrand fo: Xp — Yp toa function U fr: X3 UXp — Y UY).

In category-theoretical terms, this is the morphism f; LI f, from the coproduct
of X; and Xj; to Y7 U Y;. Defining it like this would drop the requirement for
the domains to be disjoint. However, there are restrictions in other rules that
would make working with this definition difficult.

Adding scalars is more involved, as there is no property of weighted model counting
instances that allows for easily adding results. We add a control variable c that
points to either ¢ or ¢, as the formula that needs to hold. The other formula does
not need to hold, meaning we get a model count that is multiplied by a factor
WMC(T, W;). We divide by this quantity by scaling the weights of ¢ appropriately.

25

As outlined before, equivalent representations with WMC(T, W) # 0 can be found
efficiently.

Rule 3.10: Scalar addition

\

[s1]- = [(¢1, Wh)]

[s2] = [(¢2, W2)]

dom(W;) Ndom(W,) = & ¢ =

¢ & dom(Wy) U dom (W) (343)

WMC(T, Wp) # 0, WMC(T, W) #0 |

ﬂSl +52]]r = [((E — (Pl) A (C — ¢2),W1 UW,u Wc)]

where W, : {c} x B — F with W(c) = 1/WMC(T,W;) and W(c) =
1/WMC(T, Wa).

A field endomorphism f has the property that WMC(¢, f o W) = fF(WMC(¢p, W))
for any weight function W and formula ¢, which is why it is introduced in the
syntax of our language.

Rule 3.11: Field endomorphism on a scalar

[sl: = [(¢, W)] = [apply(f,s)]r = [(¢, f o W)] (3.44)

3.5.2. Matrix representations

Matrix typed expressions are mapped to equivalence classes of matrix represen-
tations [(¢, W, x,v,9)], as described in Definition 3.5. Bras and kets form the basis
of the matrix-type expressions. These are represented with formulae that fix the
values of the input/output variables. The weight function is kept constant 1. This
means that there is exactly one input/output index i for which the model count is 1,
and it is 0 for all other indices.

Rule 3.12: Bra and ket

[bra(i,)] = [(x = i, W, x, =, 4)] (3.45)
[ket(i, @)l = [(x = i, W1, — x,9)] (3.46)

4

where x is a g-state variable and W : var(x) x B — [is constant 1 and “—
denotes an empty string of variables.

The product of two matrices is essentially the composition of two linear maps. We

get the product M, - M; by connecting the output variables of M; to the input
variables of M,. Figure 3.1 shows this schematically.

26

It is also necessary to add val, for these connected variables y to the formula, since
y will no longer be an input or output of the resulting matrix M - M. If this were
not added to the formula, it would allow for values of y outside the range it can
represent.

Rule 3.13: Matrix multiplication

[Ma]r = [(¢1, W1, x,,9)]
[Ma], = [(¢2, Wa, y,2,9)] = a7
dom(W;) Ndom(W,) = var(y) (3.47)
IIMZ . Ml]]r = [(4)1 AN WA Valy, Wy - Wy, x, Z,q)]
The multiplication of weight functions is using the following rule for mul-

tiplying functions f; : X3 — Fand f, : X, — F to get a function
f1-f2:X1UX2—>]F.

f1(x) if x € Xp
(fi-f2)(x) =3 fa(x) ifx ¢ X4 (3.48)
fi(x)- fo(x) ifxe X3NXy

M, - My

Figure 3.1: Diagram of multiplication operation on matrix representations.

The sum of two matrices is represented in a similar way to scalars, with an extra
variable that indicates which matrix should be evaluated. In this case, the input
and output variables are also linked with the input and output variables of the
respective matrix. Figure 3.2 shows the operation schematically.

27

Rule 3.14: Matrix addition

[Mi]ly = [(¢1, W1, x1,¥1,9)]
[Mz]y = [(¢2, Wa, x2,2,9)]
dom(W;) Ndom(W;) = &

({c} Uvar(x) Uvar(y)) N (dom(W;) Udom(W,)) = @
WMC(T,Wp) # 0, WMC(T,W,) #0

)

(3.49)

[[Ml = MZ]]I’ — [((PI Wl U W2 U WC U nyl x/]// 11)]

with

p=(C— (x> x1)A Yy < y1) A1)
A(e—= ((x < x2) A (Y < y2) A ¢2))

and W, : {c} x B — F and Wy, :

tion 1.

(3.50)

(var(x) Uvar(y)) x B — [F defined by
We(c) = 1/WMC(T, Wy), We(c) = 1/WMC(T, W,), and Wy, constant func-

Figure 3.2: Diagram of addition operation on matrix representations.

The Kronecker product representation is constructed from the two independent
representations of the matrices M; and Mj. The input and output variables of the
two matrices are concatenated. Figure 3.3 shows this schematically.

28

Rule 3.15: Kronecker product

[[Ml]]i’ = [((Pll Wl/xllylf q)]
[Ma]r = [(¢2, Wa, x2,y2,9)]
dom(W;) Ndom(W,) = &

_—
(3.51)

M1 ® Ma]r = [(¢1 A 2, Wi U Wy, x1%2, Y1Y2, q)]

x| My |

xol Mo |v2

E

Figure 3.3: Diagram of Kronecker product operation on matrix representations.

The multiplication of a scalar and a matrix can be represented by a conjunction of
the two formulae. This operation uses the property that WMC(¢p A, W; UW,) =
WMC(¢, Wy) - WMC(y, W) for two formulae ¢ and ¢ for variables in the domains
of W; and W, respectively (such that the domains do not overlap). Figure 3.4 shows
the operation schematically.

Rule 3.16: Matrix-scalar multiplication

[s]r = [(¢s, Ws)]
[M]r = [(¢, W, x,y,49)] = [s-M]r = [(@ N s, WU W5, x,y,4)]
dom(Ws) Ndom(W) = @
(3.52)
The representation of the transpose of a matrix is the same, but with input and
output variables swapped. The effect of this operation can be seen directly in (3.33),

where swapping the input and output variables replaces (x = j) A (y = i) with
(x = i) A (y = j). Figure 3.5 shows the operation schematically.

Rule 3.17: Transpose

[M]; = [(&,W,x,y,9)] = [trans(M)]; = [(¢, W, y,x,q9)] (3.53)

Applying a field endomorphism to a matrix is similar to applying it to a scalar.

29

M

S

Figure 3.4: Diagram of multiplying a matrix M with a scalar s, using representations
for both.

trans(M)

Figure 3.5: Diagram of the transpose of a matrix representation. Input and output
variables are swapped.

Rule 3.18: Field endomorphism on a matrix

M]; = [(¢,W,x,y,9)] = [apply(f,M)]; = [(¢, foW,x,y,q9)] (3.54)

The trace of a matrix can be calculated by adding a clause to the conjunction requir-
ing the input and output variables to have the same value. In addition, we need
this new input/output to be valid. Figure 3.6 shows the operation schematically.

Rule 3.19: Trace

MIy = (e, W, x,y,9)] = [or(M)]; = [(¢ A (x & y) Avaly, W)] (3.55)

Figure 3.6: Diagram of taking the trace of a matrix, using a matrix representation to
get a scalar representation.

An entry in the matrix can be obtained by applying the definition from (3.33) directly.

30

Instead of returning the quantity WMC(¢ A (x = j) A (y = i), W), we return the
model counting instance.

Rule 3.20: Matrix entry

IMDy = [(9, W, x,y,q9)] = [entry(i,j,M)] = [(¢ A (x = j) A (y = i), W)]
(3.56)

3.6. Correctness

To use these semantics effectively, we need to be able to convert an expression to
a representation, then use a model counter to get the actual matrix or scalar that
is represented. We want the outcome to be the same as evaluating the expression
directly (i.e., using [-],). What this means is that we need rep” o [-], = [-],. We
interpret [-] and [-], as maps

[-]o : Exp — F UMat(IF) (3.57)
[-]r : Exp — Rep (3.58)

We define the set Exp of expressions that have a type.

The representation semantics [-, are well-defined. Furthermore, for the value
semantics [-], and the function rep” as defined in Section 3.4.4, we have

rep* o [, = [0 (3.59)

Proof. See Appendix B, which uses induction on the proof trees of the expression
types. m

3.7. Implementation

We provide a Python implementation of the presented framework, called DiracWMC,
at [13]. The implementation supports most of the operations presented in this chap-
ter. In addition, it supports labeling matrices, similar to D-Hammer [50]. Matrices

can also be constructed from Boolean formulae and weight functions directly, re-
moving the need to build up matrices from bras and kets.

The subsequent chapters in this thesis use the implementation to test the effective-
ness and performance of our framework. The source code for the experiments
performed in these chapters can be found in the experiments folder of the imple-
mentation.

31

3.8. Discussion

Although most of the rules from Section 3.5 can be implemented efficiently, yield-
ing a compact CNF formula, the addition rules introduce an extra variable that
distributes over the already existing formulae when keeping the formulae in CNF.
When doing many additions, this can cause the size of the formula to become
quadratic in the number of operations.

An alternative representation (¢, W, x, v, g, c) could be introduced, which adds a
“conditional variable” c. We can let the representation with ¢ A ¢ be of the original
matrix, and with ¢ A ¢ of the matrix with the same shape, but filled with ones. This
would make the addition operation result in a more compact formula, namely

(C — (C1 V Cz)) AN (E — (51 /\Ez)) AN (51 \/Ez) NP1 NP2 (3.60)

This requires only a constant amount of extra space per addition. However, it is not
certain that the performance of the model counters would increase when using this
definition, since the formula (¢ — (¢1 V ¢2)) A (€ — (¢1 A ¢2)) cannot be simplified
easily.

In our method, the model counter is only called at the end of the process, once one
big model counting instance is constructed. It can be beneficial to evaluate scalars
and small matrices while constructing the representations. This could reduce the
total size of the problems the model counter has to solve.

32

Chapter 4

Ising model

In this chapter, we introduce the Ising model: A physical model from statistical
mechanics, often used to model molecular interactions [6]. It can, for example, be
used to model a lattice of magnetic particles with a certain spin where interactions
between particles of different spins are different from interactions between particles
with the same spin. A quantity that is of interest when studying the Ising model is
the partition function Zg ;, which is a measure of the total energy in the system. It
can be used to determine the probability of a certain configuration of states occurring
in the system, as it acts as a normalizing factor to determine this probability.

We show a procedure introduced by Nagy et al. for calculating the Ising model
partition function using weighted model counting [30]. We also show that there is an
alternative way of calculating the partition function using matrices, from which the
theory in Chapter 3 can be used to transform the calculation into a weighted model
counting problem. It turns out that these two methods result in the same WMC
instance. We use the Ising model as a test setting for the implementation of our
framework, DiracWMC [13]. In Chapters 5 and 6, we use the same implementation
on new applications.

4.1. Definition

The Ising model is represented as a weighted graph with a set of vertices A. The
weights on the edges of the graph are real numbers J;;, representing interaction
strengths between vertices. Vertices are often referred to as sites. Additionally,
there is an external field strength h; (also a real number) at each site, which models
external factors that influence the system. Figure 4.1 shows an Ising model on a
regular lattice, which is often the case with Ising models of interest. An Ising model
is called ferromagnetic if Jij =0 foralli,j € A, and antiferromagnetic if Jij <0 for
all ,j € A. In this work, we consider the general case where J;; can be any real
value (i.e., the model does not have to be ferromagnetic or antiferromagnetic).

The partition function is a measure of an Ising model that is the sum of “energies”

33

over all possible configurations of an Ising model. A configuration is an assignment
of values from {—1, 1} to every site in the model. We make these concepts explicit
in Definition 4.1.

hi

Jij

Figure 4.1: A rectangular lattice Ising model. The arrows are the external field
strengths h; at each site, and the connections between the sites are interactions with
strengths J;;.

Definition 4.1: Ising model

A (classical) Ising model is a tuple I = (A,], h) where A is a finite set rep-
resenting vertices (sites),] : A> — R is a symmetric (i.e., J(i,j) = J(j,1))
function indicating the interaction strengths between sites, and 7 : A — R
a function from sites to external field strengths. As is conventional, we will
write J (i, j) as J;; and h(i) as h;.

A configuration is a function ¢ : A — {—1,1} that assigns every site a spin.

Again, we write (i) as 0;.

The Hamiltonian Hj : Map(A,{—1,1}) — R of an Ising model is a function
from configurations to energies, defined as

Hi(o) = — Y Jjoi0;— Y hio; 4.1)

ijeA ieA

The partition function, at inverse temperature f3, is defined as the following
sum over all possible configurations:

Zgr= Yy e PHIO (4.2)
c:A—{-1,1}

The main use of the partition function is that it is a normalization factor for the
Boltzmann distribution Pg (o) = e PHI(@) / Zg 1, which calculates the probability
of a configuration occuring in the system. At a very high temperature g — 0,
the Boltzmann distribution approaches the uniform distribution. At very low

34

temperatures B — oo, the Boltzmann distribution approaches a probability 1 for
the configuration with the lowest energy H;(¢). This configuration is known as the
ground state, and finding the ground state is a separate, very important problem in
physics.

As an example, we show the partition function calculation of an Ising model with
two sites.

Example 4.2

Consider an Ising model with two sites, with an interaction strength of 1
between the two sites, and an external field strength of 2 at the first site, and
—3 at the second site. Note that this is a ferromagnetic Ising model, because
the only interaction [j; is positive.

The Hamiltonian of this Ising model is
H[(O') = —]120'10’2 - h10'1 - I’l20'2 = —010p — 2071 + 30» (4.3)

Calculating the partition function requires summing over four configurations
o, which we will denote as (—1,—1), (—=1,1), (1, —1), and (1,1). The partition
function as inverse temperature p = 1 is

Zﬁ = e_H((_lf_l)) -+ e_H((_lll)) + e_H((ll_l)) + e_H((lrl)) (44)
—e (D e 04 (Y 40026299 (4.5)

The probability of the configuration (—1, —1) occurring according to the Bolz-
mann distribution is Pg ;((—1, —1)) = e~ (=2 /Zg | ~ 0.12.

The calculation of the partition function is #P-hard in general [3], as the number of
terms in the sum is 214 and the sum cannot be easily simplified. There are several
tools that improve the runtime significantly over brute-force calculation in some
cases [33, 41]. However, these tools can still struggle to solve larger problems. This
makes the problem a good candidate for weighted model counting tools.

4.2. Conversion to WMC by Nagy et al.

First, we will show how Nagy et al. [30] converted the Ising model partition function
calculation to a WMC problem. In the next section, we show how the same can be

35

accomplished using the matrix representations introduced in Chapter 3.

In the method introduced by Nagy et al. [30], a variable x; is introduced for each
site. For each interaction, there is a variable x;;. A variable x; being set to false
corresponds with 0; = —1, and x; being true corresponds with ¢; = 1. Likewise
the variable x;; should be false if g;0; = —1 and true if 0;0; = 1. This can be
accomplished by introducing the following formula, which can be easily rewritten
into CNF:

o= N (xij < (xi < x))) (4.6)

i,jeEN

They note that the exponents in the partition function can be split up as follows:

Zgi=), (1‘[eﬁfff"f"f) (1‘[eﬁ"f‘ff> (4.7)

FA {11} \ijeA icA
They then introduce the following weight function:

W(xij) = fﬁiﬁ W(xjj) = eﬁ:j 4.8)
W) — e_.B i W(xi) = gﬁ i

(xi
It follows that WMC(¢p, W) = Zg ;.

4.2.1. Reproducing results from Nagy et al.

As a baseline, some of the experiments from Nagy et al. [30] have been reproduced.
The experiments in this work are limited to the three model counters Cachet [40],
DPMC [14], and TensorOrder [16]. Figure 4.2 shows the runtimes of the three
solvers for 2D square lattice Ising models. It shows that the TensorOrder solver is
significantly faster than DPMC and Cachet for larger problem sizes. This is in line
with effective tools from physics, like CATN [33], using tensor networks to solve
the partition function problem, just like TensorOrder does. Figure 4.3 shows the
same experiment with Ising models on random graphs of expected degree three.
In this case, the performance of the DPMC solver is more comparable to that of
TensorOrder. The results are similar to the results from Nagy et al. [30]. The output
partition function values have been checked against a brute-force method for square
lattices of sizes 2, 3, and 4.

4.3. Conversion to matrix representations

The Ising model can be formulated in an alternative way using matrices. Every
site corresponds to a subspace that the matrices can act upon. External fields are
modeled using 2 x 2 diagonal matrices. Interactions are modelled using 4 x 4
matrices acting on two subspaces.

36

10!

100

1071

Runtime (s)

10—2

1073
5 10 15 20

Linear size L

| el Cachet e Jrme DPMC el TensorOrder

Figure 4.2: Runtime of calculating the
partition function of an L x L square
lattice Ising model with interaction
strengths and external field strengths
from the standard normal distribution,
averaged over five runs. Comparison
between the model counters Cachet,
DPMC, and TensorOrder.

10!

100

10~1

Runtime (s)

102

1073
40 60 80 100 120 140 160

Number of spins |A|

| Qe Cachet el Jpmme DPMC smmmgfigme TensorOrder

Figure 4.3: Runtime of calculating the
partition function of a random graph
Ising model for different numbers of
spins (nodes), averaged over five runs.
The expected degree of each node is
three. The interaction strengths are uni-
formly chosen from [—1, 1], and there is
no external field. Comparison between
the model counters Cachet, DPMC, and
TensorOrder.

This formulation allows for a more general notion of an Ising model using non-
diagonal matrices. This is used in the formulation of the quantum Ising model,

described in Chapter 5.

4.3.1. Alternative formulation of the Ising model

In this alternative formulation, the Hamiltonian is a diagonal matrix that is the sum
of Z and Z ® Z Pauli matrices. Recall that the Pauli-Z matrix is defined as

7 —

The Hamiltonian is equal to

Hi=— Y, JiZiZi—) hZ

i,jEA

(4.9)
1

(4.10)
ieEA

Each entry on the diagonal of this matrix corresponds one-to-one with the en-
ergy of a configuration. For example, the top-leftmost entry is the energy of the
configuration with all spins —1.

37

The exponential e=PHI = y*° (—BH;)*/k! is again a diagonal matrix, with every
entry on the diagonal now equal to e PE, where E is the original entry in the
matrix H;. Taking the trace of this matrix is the same as summing over e~PF for all
configuration energies E:

Zyp = tr(e PHY) (4.11)

4.3.2. Rewriting the partition function

A property of the matrix exponential is that, if two matrices X and Y commute (i.e.,
XY = YX), then X+ = ¢X . ¢, Since any two diagonal matrices commute, we can
rewrite the matrix exponential to the following:

o BHI _ (H e]ijZiZj> (H e_hizi> (4.12)

ijeA ieA

If we can write each of the matrices in this product as a representation using a
Boolean formula and weight function, we can use the methods from Chapter 3 to
determine the partition function. In the following sections, we describe how to

represent matrices e?Z and e?(2®7),
4.3.3. Representing ¢/

Note that the matrix ¢ is equal to
't = (4.13)

We can represent this matrix using a single variable x and no clauses in the Boolean
formula. The weight function W : {x} x B — R assigns the weight ¢~? if the
variable is set to true, and ¢? if it is set to false: W(x) = ¢’ and W(x) = e~ %. Then
we have

% = rep(T, W, x,x,2) (4.14)
4.3.4. Representing ¢/(“®?)
The matrix e?(“®?) is equal to
¢/ 0 0 0]
6
pzez) _ |0 €7 00 (4.15)
0 e ? 0
0 0 0 ¢

We can use an auxiliary variable z in combination with the required input vari-
ables x and y to indicate when x and y are equal, since these are exactly the cases
corresponding with ¢’ in the matrix. Hence we introduce the Boolean formula
z ¢+ (x <> y) We use the weight function W : {x,y,z} x B — R which returns 1 for
both input variables and W(z) = e~ W(z) = ¢’. Then

0(222) — rep(z <> (x <> y), W, xy, xy,2) (4.16)

4.3.5. Comparison with Nagy et al.

When multiplying all matrices from Sections 4.3.3 and 4.3.4 using the matrix repre-
sentation procedure described in Section 3.5, we get the same formula and weight
function as in Nagy et al. [30]. Since the input and output variables of every matrix
are the same, the input and output variables of the product representation are also
the same. Since there is exactly one input variable per site (as a Kronecker product
is taken over all sites), each input/output variable from the matrices e~"% and
e JiiZiZj corresponds with a site in the lattice, and hence with a variable x; from
Section 4.2 (technically, its negation X;). The variable z from the representation of
e?(?®7) corresponds with a variable x;j from Section 4.2.

When calculating the partition function by first converting the Ising model to a
matrix representation, and then calculating the trace using a model counter, we get
similar runtimes to using the direct method from Section 4.2. Figure 4.4 shows the
performance on square lattice Ising models, while Figure 4.5 shows the performance
on random graph Ising models. Both experiments were done with the same Ising
models as those used in Section 4.2.1. Note that the runtimes include the runtimes
of the solvers, but not the time it took to build the matrix representations. These
runtimes are not significant for smaller problems, but do become significant as
problem sizes increase. We did not include it here, as the methods used to combine
the matrices are not well-optimized. An implementation in, for example, C++ could
see a significant performance increase here. As mentioned above, the two methods
result in the same Boolean formula and weight function, explaining the similar
runtimes. Again, the output partition function values have been checked against a
brute-force method for square lattices of sizes 2, 3, and 4.

Although both methods yield the same results, the matrix representation method
has the advantage that it can be applied to other models similar to this one, without
those models having to be expressed in WMC form directly.

In the next chapters, we introduce two other models where this advantage is evident.
The transverse-field Ising model in Chapter 5 is not easily convertible to WMC
without first looking at matrix representations. The Potts model, introduced in
Chapter 6, is similar to the Ising model. Matrix representations have a similar
advantage here.

39

10!

100

101

Runtime (s)

10~2

1073
5 10 15 20

Linear size L

10!

100

101

Runtime (s)

10—2

1073
40 60 80 100 120 140 160

Number of spins |A|

em=l()= Cachet matrix e Je== DPMC matrix e TensorOrder matrix

------ Cachetbase ®e@eeee DPMCbase ®eeeee TensorOrder base

()= Cachet matrix == Jm= DPMC matrix emgfipm TensorOrder matrix
------ Cachetbase ®e@eeee DPMCbase ®®ee=e TensorOrder base

Figure 4.4: Runtime of calculating the
partition function of an L X L square
lattice Ising model with interaction
strengths and external field strengths
from the standard normal distribution,
averaged over five runs. The problem
is converted to a matrix representation
from Chapter 3, after which the trace is
calculated using a model counter. Com-
parison between the model counters Ca-
chet, DPMC, and TensorOrder. Direct
method from Nagy et al. in dotted
lines [30].

Figure 4.5: Runtime of calculating the
partition function of a random graph
Ising model for different numbers of
spins (nodes), averaged over five runs.
The expected degree of each node is
three. The interaction strengths are uni-
formly chosen from [—1,1], and there is
no external field. The problem is con-
verted to a matrix representation from
Chapter 3, after which the trace is cal-
culated using a model counter. Com-
parison between the model counters Ca-
chet, DPMC, and TensorOrder. Direct
method from Nagy et al. in dotted
lines [30].

40

Chapter 5

Transverse-field Ising model

We will now move to the quantum version of the Ising model. In this context, the
Hamiltonian can be a non-diagonal matrix. The Hamiltonian is used, for example,
in the Schrédinger equation. It describes the time evolution of a quantum system

Hp(0) = in o [p(0)). 6)

The quantum partition function is, as can be done in the classical case, defined as
the trace of an exponential of the matrix:

Zp = tr (e—ﬁH) — tr (i (_i—fﬂk> (5.2)

k=0

The difficulty in calculating this trace lies in the structure of the Hamiltonian for
quantum systems. While in the classical Ising model we had a linear combination
of Pauli-Z matrices, in the quantum case we may have non-commutative matrices.
Recall that, for two matrices A and B, we have ¢4 T8 = ¢4 . ¢B if and only if A and B
commute.

Applications of the computation of the partition function include finding phase
transitions and the calculation of the Helmholtz free energy [37]

F = —% log Zg. (5.3)

5.1. Definition

Finding the partition function, or a quantity related to it, is a common problem
in the research of the transverse-field Ising model [7, 22]. This is the model we
will discuss in this work. It has many different characterizations based on context.
However, we will focus on the definition used by Suzuki [45], which has differing

41

interaction strengths between spins and constant external field strengths in two
different “directions” X and Z. It should be noted that this model is not a complete
generalization of the classical Ising model introduced in Chapter 4, since the ex-
ternal field strengths are kept constant at all sites. However, the model is almost a
generalization.

Definition 5.1: Transverse-field Ising model

A transverse-field (quantum) Ising model is a tuple Q = (A, J, 4z, yx) where
A is a finite set of vertices (called sites),] : A> — Risa symmetric function
mapping pairs of sites to interaction strengths, and yy, 4, € R are constants
representing field strengths in two directions.

The Hamiltonian of this model is a 21l x 2/Al matrix given by

Ho=— Y FiZZi—p Y, Zi—px) %Ki, (5.4)
ijeEN icA ieA

where X; and Z; are Pauli matrices (see (4.9)) at site i and identity everywhere
else.

The partition function, at inverse temperature > 0, is defined as
Zgo=tr (e—ﬁHQ) : (5.5)
Recall that the Pauli-X and Pauli-Z matrices are defined as

01 1 0
X = Z = (5.6)
10 0 -1

Suppose we have a two-spin system Q = (A,], yz, ptx), where A = {1,2},
Jio=1p, =0and pu, = 1.

px =1 Uy =1
Ju=1

42

Then the Hamiltonian is the following 4 x 4 matrix:

1 1 10
1 -1 0 1

Ho=-Z1Zp— Xi — Xy = (5.7)
1 0 —-11
0 1 1 1

The partition function at inverse temperature p = 1 then is

(1 -1 -1 0

Zgo=Tr | exp -0 (5.8)
-1 0 1 -1
|0 -1 -1 —1]

152 —207 —207 115 |
—207 476 204 —207
~ Tr (5.9)
—207 204 476 —207
| 115 —207 207 152

~ 12.55. (5.10)

It has been shown that finding the partition function of a 2-local Hamiltonian (the
above Hamiltonian is 2-local) is QMA-complete [18] in general. However, there are
some special cases of Hamiltonians for which the partition function computation
is easier. Bravyi et al. showed that the computation of the partition function for
Hamiltonians with a specific denseness condition can be achieved in polynomial
time in the number of qubits in the system [5]. However, this denseness condition
is quite strict and, for example, does not hold in the case of a transverse-field Ising
model on a square lattice.

5.2. Trotterization

A common technique that physicists use to solve problems like this is the so-called
Trotterization technique [20]. It makes use of the following property for any two
matrices A and B:

k
e = lim (e% -e%> (5.11)

This is true even if A and B do not commute, which is a requirement for the equality
eAtB = e4eB. In our problem, we have two of these non-commuting matrices,

43

consisting of Pauli-Z and Pauli-X matrices respectively:

Hoz=— Y JiZiZi—p: Y Zi (5.12)
ijeA ieA
HQ,X = —‘Mx Z Xi (513)
ieA

Then we have Hy = Hg 7 + Hg x. Using this, we can approximate the partition

function as
H H k
Zpor~tr ((e_ﬁ%z -e‘ﬁ%x)) (5.14)

Another useful property of the matrix exponential is that, for an invertible matrix P

and any matrix A, we have e” AP — p~1,ADP In our problem, the Pauli-X matrix

can be diagonalized as X = HZH, where H is the involutory Hadamard operator

1 1

1
V2 |1 -1
Define the sum of Pauli-Z matrices

Hox = —Hx Y, Zi (5.16)
ieA

(5.15)

This is the same as Hg x, but with all Pauli-X matrices replaced with a Pauli-Z.
Therefore, we have Hg x = H ®A] Hp xH @Al which gives

H aolAlg golal\

Zgo =~ tr <e—ﬁ%z.e—ﬂ%x) (5.17)
Hpz Hp x k

. (e—ﬁ%Hwie—ﬂ%H@m) 518

Note that we are now left with only Hadamard matrices and exponentials of Pauli-Z
matrices.

5.3. Conversion to matrix encodings

Hp x/k z

The matrices e 02/K and e are products of matrices of the forms ¢?# and e~%%,
and can hence be encoded as described in Chapter 4. All that remains is encoding
the Hadamard matrices. A single Hadamard can be encoded as the following: (see
also [28])

(r & (xAY),W,x,y,2) (5.19)
with W : {x,y,7} x B — R constant 1 except for W(r) = —1. Multiplications and

Kronecker products can be performed using the techniques from Chapter 3.

44

5.4. Experiments

Figure 5.1 shows the performance of the DPMC model counter when using Trotteri-
zation for different numbers of sites. It compares sparse graphs (average degree
1) and denser graphs (average degree 3). On sparser graphs, the performance is
much better. This is likely because the graph consists of several separate connected
components, which means the Ising model can be seen as the disjoint union of two
or more smaller models. In terms of the model counter, this means the formula ¢
can be split up as two formulae ¢; A ¢ with disjoint variables. This performance
increase is not inherently something model counters can take into account. This
could also be taken into account at the Ising model level.

We compare our method with the SciPy expm method [10]. This calculates the
exponential of a matrix using a method presented by Al-Mohy and Higham [29].
When using this method, no Trotterization is required, meaning there is no error-
runtime tradeoff. There is also no inherent advantage to sparser graphs, as the
space used to store the matrix is the same, and the method does not know about
the relationships we encoded using Pauli-Z and Pauli-X matrices.

Figure 5.2 shows the performance of the expm method for different numbers of
qubits. Overall, the performance of our method is generally worse or similar to
the expm method. However, as the performance of model counters improves in the
tuture, our method may become more useful.

T T T T T T T T T T T T T T T T T
10! E 10! g
100 | E 100 | E
o -] o -]
() | | () | |
£ 0l = £ w0l E =
£ g E £ g E
& B R g B 7
1072 = 102 | =
B E — E
1073 = E 1073 = E
L1 I Lt L Lo I IR L
100 10-1 1072 100 10-1 1072
Relative Error Relative Error
Qs 11 = 2 e 11 = 6 n=10 Qs 11 = 2 e 11 = 6 n=10
e e 11 = 4 e 1, = 8 e 11 = 12 e 11 = 4 ey 11 = 8 e 1 = 12
(a) Average degree 1 (b) Average degree 3

Figure 5.1: Runtime vs. relative error of approximating the partition function of
a random graph transverse-field Ising model for different average degrees, us-
ing Trotterization. Interaction strengths and external field strengths are from the
standard normal distribution. Results are averaged over five runs. Comparison
between different numbers of sites . Only the runtime of the model counter itself
is included. Uses the DPMC model counter.

45

10!

100

-4

101

Runtime (s)

10~2

(= -2

1073

o

—O——1 = 2 e 11 = 6 n=10
_n_y,:4_°_n:8_u_n:12

Figure 5.2: Runtime of the SciPy expm method when calculating the partition
function of a random graph transverse-field Ising model for different average
degrees. Drawn using the same scale as in Figure 5.1. Results are averaged over
five runs.

46

Chapter 6

Potts model

We introduce another generalization of the Ising model, known as the Potts model.
This generalization allows for more than two states per site, such that interaction
strengths are defined separately for each possible pair of states, per pair of sites.
The Potts model has applications in image segmentation [11, 21, 35] and has been
used to study proteins [23, 24]. In these applications, finding the Gibbs distribution,
which is normalized using the partition function, is crucial. In this chapter, we will
show that there is a procedure similar to that shown in Chapter 4 for determining
the Potts model partition function. We consider two cases: the generalized Potts
model, which has a wider range of applications, and the standard Potts model, a
more narrow definition that can be described more compactly than the generalized
model when converted to a weighted model counting instance.

6.1. Definition

The Potts model, like the Ising model, is defined on some graph with interactions
between sites. The difference between the two models lies in the interaction and
external field functions | and h. The interaction function | now takes four parame-
ters: Two that indicate the sites that have some interaction, and two that indicate
the states of the two sites. The external field function / takes two parameters: The
site on which the external field is applied, and the state of the site. Like for the
Ising model, we call a Potts model ferromagnetic if | is non-negative and antifer-
romagnetic if | is strictly negative. Generally, it is assumed that a Potts model is
ferromagnetic.

Definition 6.1: (Generalized) Potts model

A (generalized) Potts model is a tuple P = (A,], h,q) where A is a finite set
representing vertices (sites), g € Z>; is the number of states each site can be
in. J: A2 x {0,...,9 — 1}*> — R s a function indicating interaction strengths

47

between sites for different combinations of states, which is symmetric in the
sense that J(i,j,s;,5;) = J(j,i,8,8;). h : A x{0,...,g — 1} — Ris a function
returning the strength of an external field at each site. Like in the Ising model,
it is conventional to write] (i,], s;, ;) as Jij(s;,s;) and h(i,s;) as h;(s;)-

A configuration is a function s : A — {0,...,q — 1} that assignments every
vertex a state. It is again conventional to write s(i) as s;.

The Hamiltonian Hp : Map(A,{0,...,9 —1}) — R of a Potts model is a
function from configurations to energies, defined as

Hp(s) = — Y Jij(si,s;) —) hi(si)- (6.1)

ijEA ieEA
The partition function, at inverse temperature B, is defined as

Zgp= Yy e PH0) (6.2)
s:A—{0,...q—1}

Although the generalized Potts model can be formulated as a weighted model
counting problem, we will focus on a simpler version of the Potts model, called
the standard Potts model. This is a model without an external field, and with an
interaction between two sites only if they are in the same state. Interactions can only
occur if two sites are neighbours in some graph over A. The interaction strength
between connected pairs is kept constant across the model. The Hamiltonian of this
model is

Hp(s)=—] Y I{s;i=s;}, ECA~ (6.3)
(i,j)€E

Here we have | > 0, i.e., the model is ferromagnetic.

Example 6.2

We will consider a standard Potts model with three sites, labeled A, B, and
C. Assume there are three possible states for each site (i.e., § = 3). There are
interactions between sites 1 and 2, and sites 2 and 3. Suppose the interaction
strength | is 4.

The Hamiltonian is

Hp(SA,SB,Sc) = —4]1{SA = SB} — 411{53 = Sc}. (64)

48

The partition function at inverse temperature p = 1is

Zgp = e—Hp(sasB,sc) (6.5)
5:{A,B,C] {012}

This sum has 3% = 27 terms. There are three configurations s where all sites
are given the same state, in which case Hp(s) = —8. Thereare3-2-2 = 12
configurations where sites A and C are not given the same state as site B,
which means Hp(s) = 0. There are 3 - 2 = 6 configurations where sites A and
B are assigned the same state, and site C is given a different state. Likewise,
there are also 6 configurations where sites B and C are assigned the same state,
and site A is given a different state. This makes for 12 configurations with
Hamiltonian Hp(s) = —4. Adding all of these together to get the partition
function yields

Zpp =3¢~ 11270 412~ (-4 ~ 9610.05 (6.6)

6.2. Conversion of standard Potts model to WMC

Like in Section 4.3, we can reformulate the problem of finding the partition function
to that of finding the trace of a matrix. We can instead write the Hamiltonian as a
matrix

Hp=—] Y M; (6.7)
(i,j)eE

The matrix M is a diagonal g% x g> matrix M = Zz;é |k, k) (k,k|. This can be
interpreted as the entries on the diagonal being 1 if the two states are the same, and
0 otherwise. Like for the Ising model, the partition function is then equal to

Zgp =tr (efﬁH”> =tr H ePIMij (6.8)

(i,f)€E
The matrix ¢f/Mii has entries 1 on the diagonal, except when the two states are the
same, in which case there is an entry ef/. This matrix can be encoded using WMC

with (z <> (x <> y), W, xy, xy), where the weight function W : (var(x) U var(y) U
{z}) x B — R is constant 1 except for the value W(z) = ef/.

6.3. Experiments

We now present two different experiments relating to the Potts model. First, we
compare the performance of different model counters on this problem. Second, we

49

compare different ways of encoding the input and output variables. Unlike the
Ising and transverse-field Ising model, different encodings behave differently in the
Potts model, because the base size g of matrices is not necessarily equal to 2.

6.3.1. Comparing model counters

Figure 6.1 shows the performance of the model counters Cachet, DPMC, and Ten-
sorOrder when determining the partition function of random graph Potts models
for different numbers of states q. The performance is similar to that of the Ising
model in Figure 4.5, with DPMC outperforming TensorOrder for smaller problem
sizes.

The performance gap between TensorOrder and DPMC is different between g = 3
and q = 4. For q = 3, DPMC outperformed TensorOrder for all graph sizes, while
for g = 4, TensorOrder outperformed DPMC on larger problems. This may be
caused by the logarithmic encoding used in this experiment. In the following, we
will compare different encodings of the states in the Potts model using the DPMC
solver.

10! 10!

100

100

10~1 10~1

Runtime (s)
Runtime (s)

10—2 10~2

| | | | 10-3 | | | |
10 20 30 40 10 20 30 40

10-3

Graph size Graph size

| Qe Cachet el e DPMC smmfigeme TensorOrder

| Qe Cachet e e DPMC smmmfigeme TensorOrder

(@g=3 b)g=4

Figure 6.1: Runtime of calculating the partition function of a random graph standard
Potts model for numbers of states g = 3,4. Interaction strength is taken from the
standard normal distribution. Results are averaged over five runs. The expected
degree of each node is four. Logarithmic variable encoding is used. Comparison
between the model counters Cachet, DPMC, and TensorOrder.

6.3.2. Comparing variable encodings

Comparing g = 3 with g = 4, one can see that all solvers are faster at calculating
partition functions of Potts models with four states than at those with three states.
This may be caused by the logarithmic encoding used in this experiment (see

50

Appendix A for more on variable encodings). All states are encoded with two
variables vy and v; in both cases, but in the case of 4 = 3, an extra condition 7y V 73
is added to the CNF formula. Despite the sum in the partition function definition
containing more terms, solvers handle this case better.

Figure 6.2 shows a comparison of the logarithmic encoding with an order encod-
ing, which uses g — 1 variables to encode a state in a g-state Potts model (see
Appendix A.2). Note that for g = 2, these two encodings are the same.

The logarithmic encoding outperforms the order encoding for larger g, although
not significantly. Like with the cases g = 3 and q = 4, the runtimes for g = 8 are
faster than those for g4 = 7 when using the logarithmic encoding. In the case of
the logarithmic encoding, clear groups are also visible: Potts models with g = 3
and g = 4 have similar runtimes, as do Potts models with g = 5,6,7,8. This
is because these use the same number of variables per state in the logarithmic
encoding, namely [log, q].

These groups are not visible in the order encoding. However, the order encoding
still performs similarly to the logarithmic encoding in cases where g is not a power
of two. It slightly outperforms the logarithmic encoding for 4 = 3. The gap in
performance between the two encodings will likely grow as g increases. However,
higher values of g are often of little use in practical applications. Hence, the order
encoding remains relevant.

ol - = 0! |]
E ¥ g E g
100 £ E 100 & E
o - i o - i
) - -) - -
£ £
et E LS 4
& g 1 & g 1
1072 & = 102 -
Sy S I Sy I N B
10 20 30 40 50 60 70 10 20 30 40 50 60 70
Graph size Graph size
Qe (] = 2 e] = 4 § = 6 e = § Qe [= 2 e] = 4 § = 6 e g = §
=3 ——q=5——q=7 =g =3 ——q=5——q =7
(a) Logarithmic encoding (b) Order encoding

Figure 6.2: Runtime of calculating the partition function of a random graph standard
Potts model for different numbers of states q and different variable encodings.
Interaction strength is taken from the standard normal distribution. Results are

averaged over five runs. The expected degree of each node is four. The solver used
is DPMC.

51

6.4. Conversion of generalized Potts model to WMC

The calculation of the partition function of the generalized Potts model can be con-
verted to a weighted model counting problem, just like in the case of the standard
Potts model. However, because this model is so general, the encoding is much less
efficient. We can write the Hamiltonian as a matrix

Hp=—- Y Y M(si,si)ii— Y, Y, Nisi)i (6.9)

ij€Ns;5,€{0,..4—1} i€As;€{0,...4—1}

The matrix M(s;, s;) is a g% X g? matrix with one non-zero entry, which is the diago-
nal entry corresponding to the states s; and s; at the two sites i and j. This value is
equal to Jij(s;,s;). Similarly, N(s;) is a g X g matrix with one non-zero entry ;(s;)
on the diagonal, corresponding with the state s;.

The trace of the matrix e PH? is the partition function, which can be written as a
trace of a product of matrices:

Zgp=tr H H oBM(siss))ij H H BN (si);i (6.10)

ijeNs;5;€{0,...4-1} i€As;€{0,...q—1}

The matrices e#MGi5))ij can be encoded with
(z+ (x =5 Ny =s),W,xy,xy), (6.11)

with W : (var(x) Uvar(y) U {z}) x B — R constant 1 except for the value W(z) =
ePliisi5) The matrices ePNGi)i can be encoded similarly with

(z4+ (x=5;),W,x,x), (6.12)

where W : (var(x) U {z}) x B — R is constant 1 except for the value W(z) = ePi(s:),

6.4.1. Discussion

With few non-zero values [;;(s;,s;) and h;(s;), this could be a fairly efficient en-
coding of the Potts model. However, in general, this encoding will become very
inefficient as clauses are added for every non-zero value. This is in contrast to
the standard Potts encoding, which uses only x <+ y to encode a sum of matrices
Zsi,s]- €{0,..,9—1) M(si,sj)ij from the generalized Potts model. This could, depending
on the variable encoding chosen, lead to a more compact CNF formula being passed
to the model counter.

52

Chapter 7

Related work

We present several related works, including both theoretical and practical studies.

7.1. D-Hammer

Xu et al. [50] introduced D-Hammer: A tool that can check the equivalence of
quantum expressions using labeled Dirac notation. For this, they introduce rewrit-
ing rules to normalize terms. The type system and syntax they use are similar to
those we introduced in Chapter 3. This work is itself based on their earlier work on
DiracDec [49], which uses plain Dirac notation. Their implementation of D-Hammer
can be considered a generalization of ZX-calculus [9], extending it with various
operations on Hilbert spaces. This comes at a performance cost on problems that
can be encoded using both D-Hammer and the ZX-calculus.

The main differences between D-Hammer and our work are that we aim to evaluate
an expression written in Dirac notation, rather than checking more general equiva-
lences, and that we use weighted model counting as an intermediate layer to solve
problems. Although our implementation does support the labeling of matrices, our
theoretical framework does not.

7.2. Category theory

In general, monoidal categories (see [42] for the definition) can be used to provide a
syntax for the sequential and parallel composition of matrices (i.e., multiplication
and Kronecker product). This allows for the use of the rich field of category theory
to be used in the language definition of Chapter 3. Villoria et al. [48] showed that,
using enrichment, these operations can be extended to include other algebraic
operations like convex combinations. They point out that this can be useful in
simulating noise quantum circuits, for example. Using this technique, among
others, the language defined in Chapter 3 could be described using category theory.
We instead define the syntax explicitly, and then define semantics on this syntax.

53

7.3. Quantum circuit simulation using WMC

Mei et al. [26, 27] showed that model counting can be used in quantum computing
for simulating circuits and equivalence checking. They showed that quantum states
can be encoded using variables [28]. Gates can then be encoded by expressing
a relationship between input and output variables, which are the states before
and after the gate is applied. More recently, Zak et al. [52] extended this work by
showing that model counting techniques can be used for the synthesis of quantum
circuits. We also build on this work by generalizing the expression of quantum
operators using weighted model counting, and consequently applying it to practical
applications.

7.4. Ising model partition function

Nagy et al. [30] showed how the Ising model partition function problem can be
converted to a WMC instance. They proved that existing model counters like Ten-
sorOrder [16] show competitive performance compared to existing techniques. In
addition, they relate the problem of calculating the partition function to #CSP, using
powerful theoretical tools to gain insights into where the hardness of the problem
comes from. We reproduced some of the experimental results and performed exper-
iments on the transverse-field Ising and Potts models. We did this while using the
matrix representations instead of converting these problems directly to WMC.

7.5. Hamiltonian simulation using decision diagrams

Sander et al. [39] showed how Hamiltonian simulation can be performed using
decision diagrams. At every node in the decision diagram, four outgoing edges
represent the four different quadrants of a square 2" x 2" matrix. This is then
applied recursively to these quadrants. The edges contain weights, such that the
value at a specific entry in the matrix can be found by traversing the decision
diagram from the root to a leaf. Their technique of splitting up the matrix into
quadrants is similar to our technique of using strings of input and output variables.
We use a weighted model counting representation, where Sander et al. use decision
diagrams.

7.6. Model counters

Model counters can employ several different techniques to calculate weighted
model counts efficiently. The three solvers we used in this work are: (1) Cachet [40],
an older tool that uses clause learning, (2) DPMC [14], which employs a dynamic
programming technique, and (3) TensorOrder [16], which uses tensor-network
contraction to solve WMC problems. Other successful model counters include

54

Ganak [43] and ProCount [15].

55

Chapter 8

Conclusion

In this work, we presented a framework for encoding quantum operators using
Boolean formulae and weight functions. The framework can be used to convert
problems written in Dirac notation to weighted model counting problems. The
aim was to solve computationally difficult classical and quantum problems using
weighted model counters, which have proven effective at a range of tasks in re-
cent decades. We showed the effectiveness of our framework on the (quantum)
transverse-field Ising model and the classical Potts model.

Our framework is able to represent arbitrary " x g matrices using weighted
model counting. This is a significant improvement over previous work, which only
provided methods for specific application areas, such as quantum circuit evaluation.
For the first time, we formalized the concept of using weighted model counting for
matrix calculations by giving a generic framework for performing common matrix
operations on matrix representations. We have proven this framework yields correct
outcomes mathematically, such that it can be used in future work without risk of
erroneous results. In this future work, the focus can now lie more in finding the
right matrices or operators to represent problems, rather than converting problems
directly to WMC. We validated the effectiveness of our framework by calculating
the partition function of the Ising model, as previously achieved by Nagy et al. [30]
through direct conversion to WMC. We have shown that these two techniques yield
the same result.

To the best of our knowledge, for the first time, we applied WMC to two new
partition function problems: the transverse-field Ising model and the (classical)
Potts model, by using our framework. The performance of the Potts model partition
function calculation was comparable to that of the Ising model. Model counters
were also effective at approximating the transverse-field partition function for
smaller problem sizes. As model counters improve, we expect our technique to
become more relevant in the realm of quantum problems.

56

8.1. Evaluation

At the start of this thesis, we stated the following research questions:

1. Is it possible to encode Dirac notation using weighted model counting using a
general framework?

2. Can we calculate the partition functions of the transverse-field Ising and Potts
models?

We answered the first question by providing a framework that can encode arbitrary
q" x q" matrices, and providing rules for performing common matrix operations,
such as matrix multiplication and addition, on these representations of matrices
directly.

We answered the second research question by using our DiracWMC (see [13])
implementation of the framework in these practical applications. We showed that
WMC can be used to calculate or approximate the partition functions of both the
transverse-field Ising and the Potts model. On the Potts model, the performance
was comparable to that of the Ising model, which was shown to be competitive
with existing tools by Nagy et al. [30].

8.2. Future work

The matrix representations presented in this paper could be extended to tensors
of arbitrary order. This could be achieved by adding more strings of variable
encodings to the representations. Most operations presented in this work would
be performed similarly, requiring only small extensions for the extra dimensions
of the object. This would allow the technique to be applicable in a wider range of
problems.

Furthermore, as mentioned in Chapter 3, the current way the matrices are rep-
resented does not allow for an addition operation that increases the size of the
representation by a constant amount. This could be solved by using an alternative
representation. However, it is unclear if an alternative representation would have a
significant performance impact.

It may also be possible to build up a similar framework with monoidal categories
(see Section 7.2) as the basis. This may provide a rich theoretical foundation to the
framework, and as such, may simplify the proofs of its correctness. Although it may
be possible to do this by extending the current framework, it is likely very involved.
It may therefore be necessary to build a new framework from the ground up.

Further work may also be done on the complexity of the problems passed to the
model counters. Some operations may yield a WMC instance that can be solved
more efficiently when rewritten in a certain way, for example.

57

Lastly, similar problems to WMC, like weighted maximum weighted model count-
ing, may also be used to encode matrices. This could pave the way to solving the
ground-state problem using matrix representations.

58

Appendix A

Variable encodings

In this chapter, we describe several ways of encoding a g-state variable (A variable
that can take values {0, ...,q — 1}) using Boolean variables. There are several ways
of doing this, each of which is useful in certain situations [1, 19, 31, 36, 46]. We
will introduce several of these variable encodings that can be used in the matrix
representations described in Chapter 3. For the matrix representations, we need
support for several operations on these variable encodings. Hence, we introduce
the following formal definition:

Definition A.1: Variable encoding

A variable encoding is a tuple v = (q,V, =), with g4 € Z>; the base of the
encoding, V a set of variables the encoding uses, and =: {0,...,9 — 1} —
Form(V) a function sending a value n to a formula over V that indicates the
value of v is equal to n. We use the notation v = n. The following should be
true:

1. (v=n)A(v=m)= L forall n # m;

2. For every n, there exists exactly one T : V — B such that (v = n)][7]
holds.

In addition to this definition, we also introduce notation for formulae that indicate
an encoding “has a valid value” and that two encodings “have the same value”.
These formulae can often be simplified, as will be done in the sections discussing
different encodings.

For encodings v = (q,V, =) and w = (g, V/, =), use the following notation:

* q(v) =g

59

e var(v) =V;

e val, = \/Z;%)(v =n);

. vaE\/Z;E(v:n/\w:n).

Note that a string/tuple of encodings x = xj_1 ... xg can represent numbers from
{0,...,4" — 1} by using base-q expansions. We can then use the same notation as
defined above for these strings, with:

k-1 k-1
x=n= /\(x;=n) forn = Z g'n; with0 < n; <g (A.1)
i=0 i=0
k—1
var(x) = |) var(x;) (A.2)
i=0
k—1
val, = /\ valy, (A.3)
i=0
k—1
xory= Aoy (A4)
i=0

Below we list some example encodings. Note that in our implementation, some
auxiliary variables may be introduced to make the Boolean formulae more compact
in CNF form. However, the structure of the encodings is largely the same.

A.1. Logarithmic encoding

First, we introduce an encoding that uses a logarithmic number of variables relative
to the base g [36]. To be precise, we use variables vy, . .., vx_1, where k = [log, q].
Naturally, the set of used variables of an encoding v is

var(v) = {vg,...,Vk_1}- (A.5)

The equality formula for a number 7 is a cube (conjunction of literals) where v; or
v; is present depending on whether n; from the binary representation n = Zi"::& 2in;
is equal to 1 or 0 respectively.

The formula val, can be rewritten as follows, making use of the binary representa-
tiong — 1= Y 12ig;:

Valv = /\ 51' V \/ 5]' . (A6)
i€{0,...k—1} jefi+1,.. k—1}
C],':O q]':1

60

For some other base-g encoding w with variables wy, . .., wx_1, the formula v <> w
can be rewritten by comparing all variables separately:

k—1
verw= (v & w). (A.7)
i=0

A.2. Order encoding

An alternative encoding, which is beneficial in some cases for SAT solvers and model
counters, is an order encoding [1]. This encoding uses q — 1 variables vy, ..., v; 2,
where each variable v; should be true if the represented number is strictly larger
than i. A big advantage of this representation is the compact formula for val,, which
is a conjunction of implications, making sure no false value comes before a true one:

k—1
val, = /\ (v; = vi_q). (A.8)
i=1

For another base-g encoding w using variables wy, ..., wx_1, we can again check for
equality by checking all variables have the same value:

k-1
v w= (v < w). (A.9)
i=0

A.3. One-hot encoding

Finally, we introduce a one-hot encoding, also known as a direct encoding [36]. The
encoding requires exactly one out of g variables to be true. The set of variables is
var(v) = {vo,...,v5-1}. The validity formula makes sure exactly one variable is
true, which can be done with

q—1
val, = (\/ vl-) A /\(Ei V 0;). (A.10)

i=0 i

Again, equality of two encodings can be checked by checking if all variables have
the same value:

k—1
vew= (v & w). (A.11)
i=0

Note that there are more efficient methods similar to this encoding [19, 31]. From
these methods, only the addition of auxiliary variables has been (partially) used in
our implementation of the matrix representations.

61

Appendix B

Correctness of representation
denotational semantics

In this chapter we prove Theorem 3.21, which states that the semantics [-], are well-
defined and that rep” o [-], = [-],- We do this using induction on the expression
type proof tree. Each separate rule has its own Lemma below. Since [-], is defined
as evaluating the expression using the usual rules, we refrain from mentioning [-],
explicitly in the remainder of this chapter.

Section B.1 lists some general properties of weighted model counting. The proofs
in Section B.2 rely on these properties. The proof of Theorem 3.6 is split up into
Lemmas, one for every rule in Section 3.5.

B.1. Properties of WMC

Let ¢; and ¢, be Boolean formulae over sets of variables V; and V5, respectively.
LetWj : Vi x B — Fand W; : V, x B — F be weight functions. If V1 NV, = &
we have

WMC (1 A o, Wy UW,) = WMC(¢py, Wy) - WMC(p, Wo) (B.1)

Proof. Write S = WMC(¢1 A ¢pp, W3 U W,). We have
S=), (¢Ag)ld [WUuWo)(o,7(v)) (B2)

ViUuV,—B veViuV,

The function T can be split up into two functions 7; and 7, over the two domains
V1 and V,, respectively. Since ¢ only contains variables from V;, we have ¢;[t] =

62

¢1[71], and likewise for ¢.

S= Y Y ¢i[ulgnl <H Wi (v, 11 (v) (H Wa (v, v))) (B.3)

71:Vi—=B 15:V,—B veV; veV,

= (Y. ¢lul I1 Wl(vzfl(v))> (Y. ¢plnl [] Wz(UrTz(U))> (B.4)

7:V1—B veVp 7:V,—B veEV,

= WMC(¢1, W1) - WMC(¢2, W) (B.5)

This proves the lemma. O

Lemma B.2

If
|_

Let ¢1 and ¢, be Boolean formulae over a set of variables V, with ¢; A ¢
(i.e., 91 A ¢ is unsatisfiable). Let W : V x B — IF be a weight function. Then

WMC (1 V ¢2, W) = WMC(¢p1, W) + WMC(¢pp, W) (B.6)

Proof. Writing out the definition, we have

WMC(¢1 Vo, W)= Y, (1 V)t [T W(o t(0)) (B.7)

T.V—B veV

Because ¢ and ¢, cannot be satisfied at the same time, we can write (¢1 V ¢)[T] =
$1[T] + ¢2[T]. Taking this outside of the entire sum gives the desired result. O

Lemma B.3

Let ¢ be a Boolean formula, W : V x B — [F a weight function,and v € V a
variable. Then

WMC(¢, W) = WMC(¢p AT, W) + WMC(¢p A v, W) (B.8)

O

Proof. This follows from Lemma B.2 by using ¢ = (¢ AT) V (¢ Av)

Lemma B.4

Let ¢ be a Boolean formula, W : V x B — [F a weight function, and f : F — [F
a field endomorphism. Then

WMC(9, f o W) = f(WMC(g, W) (B.9)

Proof. Since f is a field endomorphism, it has properties f(x +y) = f(x) + f(y)
and f(xy) = f(x)f(y). This means

WMC(¢p, foW) = Y ¢[t][[(foW)(v,T(v)) (B.10)

T:V—B veV

63

=), ¢lt-f (H W(v,T(v))>. (B.11)
T.V—B veV
Note that ¢[t] € {0,1}. If ¢[1] = 0, for any x we have f(¢[1]-x) =0 = f(0) =

¢lt] - f(x). If ¢[T] = 1 we have the same property: f(¢[T]-x) = f(x) = ¢[T] - f(x).
Therefore, we can rewrite the equation above as

WMC(g, foW)= Y f (gbm I w<v,r<v>>> (B.12)
T.V—B veV

=f< Y, ¢l T1 W(%T(U))) (B.13)
V=B veV

= f(WMC(¢,W)) (B.14)

U

B.2. Correctness proof

Combining the Lemmas below with induction on type derivation trees proves
Theorem 3.21.

Lemma B.5: Scalar constant

Let & € F. Then [a], is well-defined and rep”([a],) = a.

Proof. The fact that [«], is well-defined follows directly from the definition. For
W : {x} x B — F constant « and ¢ = x, we have

rep* ([a],) = rep*[(¢, W)] (B.15)
= rep(¢, W) (B.16)

= WMC(¢, W) (B.17)

= sat(¢p AX) - W(X) +sat(p Ax) - W(x) (B.18)

= W(x) (B.19)

" (B.20)

U

Lemma B.6: Scalar multiplication

Let s1 and s, be expressions of type S. Suppose [s1] and [s], are well-defined.
Then [s; - s3], is well-defined, and

rep#([[51 -s2]r) = reP#([[Sl]]r) 'rep#([[SZ]]r) (B.21)

64

Proof. Suppose [s1]r = [(¢1, W1)] and [s2]; = [(¢p2, W>)] with the domains of W
and W, disjoint. Then by definition

[s1 - s2lr = [(P1 A 2, W1 U W3)] (B.22)

We show that this expression is well-defined by showing the value of rep”([[s - 52],)
is independent of the choice of ¢, ¢2, Wi, and W,. We have

rep” ([s1 - 52]) = WMC (¢ A o, W1 U W5) (B.23)

Since Wj and W, have non-overlapping domains and ¢; and ¢, have variables in
the domains of W; and W respectively, Lemma B.1 gives

rep” ([s1 - 52]) = WMC (¢, Wy) - WMC (¢, Wo) (B.24)

= rep” (91, W1)]) - rep*([(¢2, W2))) (B.25)

= rep’([s1]y) - rep’ ([s2]) (B.26)

By assumption, the above expression is well-defined. O

Let s1 and s, be expressions of type S. Suppose [s1] and [s] are well-defined.
Then [s1 + s2], is well-defined, and

rep([s1 + s2]r) = rep*([s1]) + rep*([s2]s) (B.27)
Proof. Suppose [s1]r = [(¢1, W1)] and [s2]y = [(¢2, W2)] with the domains of W,
and W, disjoint, WMC(T, W;) # 0, and WMC(T, W,) # 0. By definition
[s1+ 520 = [((€ = 1) A (c = ¢2), Wi U W, UW)] (B.28)

with W, : {c} x B — F defined by W.(c) = 1/WMC(T,W;) and W.(c) =
1/WMC(T,W,). Again, we show that this is well-defined by showing rep*([s; +
s2]r) yields the same value independent of the formulae and weight functions
chosen at the start.

Write W =Wy UW, UW.and ¢ = (€ — ¢1) A (¢ — ¢2). Then
rep” ([s1 + s2]);) = WMC(y, W) (B.29)
By Lemma B.3 we have
rep” ([s1 + 82],) = WMC(w AT, W) +WMC(p Ac, W) (B.30)

We will show that WMC(p Ac, W) = rep”([s1],), the case WMC (¢ A ¢, W) is sym-
metric. Note that y A¢ = ¢ A C. Since ¢; contains only variables variables in the
domain of W;, Lemma B.1 gives

WMC(AT, W) = WMC(¢1 AT, W) (B.31)

65

= WMC (¢, W) - WMC(T, W,) - WMC(, W,) (B.32)

1
= WMC(¢p1, Wq) - WMC(T, W) - WMC(T, W)

= WMC(¢, W1) (B.34)

(B.33)

Similarly it can be shown that WMC(y A ¢, W) = WMC(¢,, W,), which means

rep”([s1 + s2];) = WMC(¢1, Wy) + WMC(¢po, W)
= rep#[((l)l, Wy)| + rep#[(qbz, W2)]
= rep#([[sl]]r) + rep#(ﬂSZ]]r)

Lemma B.8: Field endomorphism on a scalar

Let s be an expression of type S and f : F — F a field endomorphism.
Suppose [s], is well-defined. Then [apply(f,s)], is well-defined, and

rep® ([apply(f,s)]) = f(rep®([s]:)) (B.35)

Proof. Suppose [s]; = [(¢, W)]. By definition,
[apply(f,8)]r = [(¢, f o W)] (B.36)

We show this is well-defined by showing the value of the expression below is
independent of the choice of ¢ and W:

rep”([apply(f,s)];) = WMC(¢, f o W) (B.37)

It follows from Lemma B.4 that
rep*([apply(f,s)]r) = F(WMC(¢, W)) = f(rep*([s])) (B.38)
This completes the proof. O

Lemma B.9: Bra and ket

Letg € Z>, and 0 < i < gq. Then [bra(i,q)], and [ket(i, q)], are well-defined
and

rep”([bra(i, 9)]-) = (il, (B.39)
rep*([ket(i, 9)]y) = i), (B.40)

66

Proof. We will prove the correctness of the bra. The case of ket is symmetric. The
semantics are well-defined by definition.

We need to show that rep”([bra(i,q)],) is a row vector with a 1 at entry i and 0
everywhere else. This can be done by verifying that, for every 0 < j < g, we have

rep*([bra(i,9)];) j) = 1{i = j} (B.41)
Note that we have
[bra(i, g)]; = [(x =i, Wy, x, —,9)] (B.42)

with x a g-state variable encoding and W : var(x) x B — [F constant 1. Using the
definition of matrix representations, we have

rep([bra(i,)]1) [j) = WMC(x =i Ax = j,W)) =1{i = j} (B43)

This proves the lemma. O

Let M; and M, be expressions with types M(gq,m — k) and M(q,k — n)
respectively. Suppose [M;], and [M;], are well-defined. Then [M, - M;]; is
well-defined, and

rep”([My - My],) = rep*([Ma]) - rep* ([M1],) (B.44)

Proof. Suppose we have

[Mi]r = [(¢1, W1, x,y,9)] (B.45)
[M2]y = [(¢2, Wa,y,2,9)] (B.46)

with dom(W;) N'dom(W,) = var(y). We will show that [M; - M1], is well-defined
by showing that the result of rep”([M, - M;],) is independent of the choice of
formulae and weight functions earlier. We can prove the lemma by showing that,
forall0 <i < g"and 0 <j < g™, we have

(i| rep* ([M2 - Mily) |j) = (il rep*([Ma],) - rep® ([Mi];) |7) (B.47)
By definition, we have
[My - Mi], = [¢p1 A ¢p Avaly, Wy - Wy, x, 2, 4] (B.48)
Furthermore,

(i| rep® ([Ma - Mi],) |j) = WMC($1 Ao Avaly Ax =jAz=iW;-W,) (B.49)

67

Using the property val, = A/ _1(= a) and Lemma B.2, we have

g1
(i rep® ([Ma - My]) |j) = Y WMC(p1 Ago Ay =aAx=jAz=i Wi W)
a=0
(B.50)

Since the only overlap ¢; A x = j and ¢ A z = i have is var(y), which is the only
overlap in the domains of W; and W,, and all variables in var(y) are fixed by y = a,
we can rewrite this as

g -1

(i| rep” ([My - M1];) Z WMC(¢1 Ax = jAy =a, W) (B.51)
-WMC(4>2 Nz=1iNy=a,W,) (B.52)
q k1
= Z | rep*([M1]) |j) (il rep*([M2],) |a) ~ (B.53)
q"—l
= ZO (il rep*([Mz],) |a) (a| rep*([M1]))~ (B.54)
= (i| rep" ([M2],) - rep™ ([Ma]) |/) (B.55)
This proves the lemma. O

Let M; and M, be expressions with type M(gq, m — n). Suppose [M;], and
[My], are well-defined. Then [M; + M5], is also well-defined, and

rep” ([M; + Ma],) = rep”([M]) + rep” ([M2],) (B.56)

Proof. Suppose that

[Mi]y = [(@1, Wa, x1, 51, 9)] (B.57)
[Ma]r = [(¢2, Wa, x2, 42, q)] (B.58)
with the domains of W; and W, disjoint, WMC(T, W) # 0, and WMC(T, W;) # 0.
Let ¢ be a Boolean variable and x and y strings of variable encodings, of the same
lengths as x; (or x7) and y; (or yy), respectively. Let these be chosen in such a way

that neither ¢ nor the variables in x and y are contained in either of the domains of
W; and W,. We have defined

[Mi + M)y = [(¢, Wi UW2 UW: U Wy, x,y,9)] (B.59)
with

== ((x & x) Ay < y1) A1)

A= ((x 6 1) A © 12) Ad)) (5.60)

68

and W, : {c} x B — FF and Wy, : (var(x) Uvar(y)) x B — [F defined by W,(c) =
1/WMC(T, Wy), We(c) = 1/WMC(T, W,), and W,y constant 1.

We will show that [M; + My], is well-defined by showing rep”([M; + M>],) yields
the same value, independent of the choice of representations at the start of the
proof. Let0 < i < g"and 0 < j < g". Write W = W; UW, U W, U W,, and
Yp=¢pAx=jAy =i Wehave

(i| rep® ([M1 + Ma],) |j) = WMC(y, W) (B.61)

We will show that WMC (¢ Ac, W) = (i| rep*([M1],) |j), the case WMC(¢p A c, W)
is symmetric. Note that

PAC= (x> x)ANY) AprAx=jAy=iAT (B.62)
Since ¢ does not contain the variable ¢, Lemma B.1 gives

WMC(p AT, W) = WMC (9, Wy U Wyy) - WMC(T, W) - WMC(¢, W,) (B.63)
1

= WMC(¢p, Wy U Wyy) - WMC(T, W) - WMC(T, Ws) (B.64)
= WMC(p, Wy U Wyy) (B.65)

We can rewrite ¢ to
P=Pp1ANx=jAx1=]Ay=1iAy; =1 (B.66)

Since 1 only contains variables in the domain of W;, we can rewrite further to

WMC(p AT, W) = WMC(¢p1 Axy = j Ay =i, Wi) - WMC(x = j Ay = i, Wyy)
(B.67)

Note that there is exactly one satisfying assignment of x = j A y = i, which means
the term on the right is 1, which means

WMC(p Ac, W) =WMC(p Axy =jAy; =i, W) (B.68)
= (i| rep[(¢, W, x1,y1,9)] |]) (B.69)
= (i rep*([Mi]) |) (B.70)
Similarly, it can be proven that

WMC(y Ac, W) = (i| rep*([M2];) |7) (B.71)

Combining these with Lemma B.3 gives
(il rep* ([M1 + M) |f) = WMC(y, W) (B.72)
=WMC(p Ac, W) + WMC(yp A©) (B.73)
= (i rep" ([Mu],) |j) + (il rep” ([Ma],) |) (B.74)
= (| (rep*([Ma]) + rep*([M2];)) |) (B.75)
This proves the lemma. O

69

Let M; and M; be expressions with types M (q, m; — nq) and M (g, my — my)
respectively. Suppose [M;], and [M;]; are well-defined. Then [M; ® M;]; is
well-defined, and

rep#([[Ml ® M],) = rep#([[Ml]]r) ® rep#([[Mz]]y) (B.76)

Proof. Suppose we have

[Mi]r = [(¢1, W1, x1,41,9)] (B.77)
[Ma]r = [(¢2, Wa, x2,2,9)] (B.78)

with dom(W;) Ndom(W,) = @. Then, by definition,
[M1 ® Ma]y = [(¢1 A 2, W1 U Wa, X122, Y112, q)] (B.79)

We show that this is well-defined by showing that the value of rep” ([M; ® M,],) is
independent of the choice of the representations at the start of the proof. We need
to show that, forall 0 <i; < ¢™",0<1i <g",0<j; <g™,and 0 < jp < g™

(iria| rep® ([My @ Ma]ly) |j1j2) = (iaiz| (rep® ([Mi]y) ® rep® ([M2],)) lj1j2) (B.80)
We have

(ixiz| rep® ([M1 ® Ma];) |juj2) (B.81)
= WMC(le Nga N\ x1xp = j1j2 NY1Yyr = i1ip, W1 U Wz) (B.SZ)
= WMC((Pl ANPppAx1 =71 Ax2 =] ANy1 =11 Nyp =i, Wp U Wz) (B.83)

Lemma B.1 gives

(iria] rep® (IM1 ® Ma]y) |1f2) (B.84)

= WMC(p1 Ax1 =j1 Ay1 =i, W))WMC(¢p Axp = o Aya =i, W) (B.85)

= (ir| rep*([Mi]y) |j1) {ia| rep*([M2])) |12) (B.86)

= (i1ia| (rep*([M1]) ® rep*([Ma],)) |j1j2) (B.87)
This proves the lemma. O

Let s be an expression of type S and M an expression of type M (q,m — n).
Suppose [s]; and [M], are well-defined. Then [s - M]; is also well-defoned,
and

rep”([s - M],) = rep*([s];) - rep*([M]) (B.88)

70

Proof. We prove that [s - M], is well-defined by showing the result of rep”([s - M],)
is independent of the choices of representations

[s]r = [(¢s, Ws)] (B.89)
[M]y = [(¢. W, x,y,q)] (B.90)

with dom (W) Ndom(W;) = @. Forevery 0 <i < g"and 0 < j < ¢, we have

(il rep”([s - M]y) |j) = (il rep™[(9 A s, WU W5, x,,9)]) (B.91)
—WMC(pAps Ax=jAy =i, WUW,) (B92)

Lemma B.1 gives

(i| rep®([s - M],) |j) = WMC(¢ps, W5) -WMC(pAx =jAy =i, W) (B.93)
= rep*([s],) - (il rep*(IM],)) (B.94)

Since this is true for any i and j, this proves the lemma. O

Let M be an expression of type M(q,m — n) and suppose [M], is well-
defined. Then [trans(M)], is well-defined, and

rep*([trans(M)]) = (rep”([M],))" (B.95)

Proof. Suppose [M], = [(¢, W, x,y,q)]. By definition,
[trans(M)]- = [(¢, W, y, x,9)] (B.96)

We show that this is well-defined by showing rep”([trans(M)],) yields the same
value, independent of the choice of the representation before.

We want to show that (i| rep”([trans(M)],) |j) = (j|rep*([M],))|i). Using the
formula above, we get

(i| rep” ([trans(M)],) |j) = WMC(p Ay = jAx =i, W) (B.97)
=WMC(pAXx=iAy =] W) (B.98)

= (jl rep"(IM]y) |i) (B.99)

This proves the lemma. O

Let M be an expression of type M(gq,m — n) and f : F — F a field endo-
morphism. Suppose [M], is well-defined. Then [apply(f, M)], is well-defined,

71

and

rep*([apply(f, M)]») = f(rep*([MI;)) (B.100)
We interpret f being applied to a matrix as it being applied to every entry in

the matrix, as it is done for the value semantics [-]5.

Proof. For [M], = [(¢, W, x,y,q)] we have defined

[apply(f, M)y = [(¢, f o W, x,,q)] (B.101)

We prove this is well-defined by showing that rep*([apply(f, M)],) has the same
value, independent of the choice of the representation at the start of the proof. Using
Lemma B.4, we get

(il rep([apply(f, M)];) |f) = WMC(p Ax = jAy =i, f o W) (B.102)

= f(WMC(pAx=jAy=1iW)) (B.103)

= f({i] rep*(IM]) 1)) (B.104)

Since this is true forany 0 < i < g" and 0 < j < g™, this proves the lemma. O

Let M be an expression of type M (g, n — n) and suppose [M] is well-defined.
Then [tr(M)]; is also well-defined, and

rep” ([tr(M)];) = tr(rep*([M],)) (B.105)
Proof. Suppose that [M], = [(¢, W, x,v,9)], then

[tr(M)]r = [(¢ A (x = y) Avaly, W) (B.106)

We prove that this is well-defined by showing the result of rep” ([tr(M)],) is inde-
pendent of the choice of the representation [M],. We have

rep” ([tr(M)],) = rep*[(¢ A (x < y) Avaly, W)] (B.107)
=WMC(¢ A (x <> y) Avaly, W) (B.108)
Using the fact that val, = /\Zn:?)1 (x = a) and Lemma B.2, we get

q"-1

rep ([tr(M)],) = Y WMC(¢p A (x <> y) Ax =a, W) (B.109)
a=0
q'-1

= WMC(pAx=aAy=a W) (B.110)
a=0

72

=) (a|rep*([M];) |a) (B.111)
a=0
= tr(rep*([M],)) (B.112)
This proves the lemma. 0

Let M be an expression of type M(g, m — n). Suppose we have indices i and
jwith0 <i < g"and 0 <j < g™. Furthermore, suppose [M]; is well-defined.
Then [entry(i, j, M)], is well-defined, and

rep” ([entry(i, j, M)],) = (rep”([M]:));j (B.113)

Proof. Suppose [M],; = [(¢, W, x,y,q)]. Then, by definition, we have
lentry(i,j, M), = [(9 Ax = j Ay =i, W)] (B.114)

We prove this is well-defined by showing that rep”([entry(i, j, M)],) yields the same
result, independent of the choice of the representation before. From the definition
of matrix representations, we get

(rep”([M];)) = WMC(p Ax = jAy =i, W) (B.115)
=rep'[(pAx=jAy =i W)] (B.116)

= [entry(i, j, M)]» (B.117)

This proves the lemma. O

73

References

[1]

2]

[3]

[4]
[5]

[6]
[7]

[8]

[9]

[10]

Ignasi Abio and Peter J. Stuckey. “Encoding Linear Constraints into SAT”.
In: Principles and Practice of Constraint Programming. Ed. by Barry O’Sullivan.
Cham: Springer International Publishing, 2014, pp. 75-91. 1SBN: 978-3-319-
10428-7.

Bernhard Andraschko, Julian Danner, and Martin Kreuzer. “SAT solving
using XOR-OR-AND normal forms”. en. In: Math. Comput. Sci. 18.4 (Dec.
2024).

F Barahona. “On the computational complexity of Ising spin glass models”.
In: Journal of Physics A: Mathematical and General 15.10 (Oct. 1982), p. 3241. DOL:
10.1088/0305-4470/15/10/028. URL: https://dx.doi.org/10.1088/0305-
4470/15/10/028.

A Biere, M Heule, and H van Maaren. Handbook of Satisfiability. en. Amsterdam,
NY: IOS Press, Jan. 2009, p. 650.

Sergey Bravyi, Anirban Chowdhury, David Gosset, and Pawel Wocjan. “Quan-
tum Hamiltonian complexity in thermal equilibrium”. In: Nature Physics 18.11
(Oct. 2022), pp. 1367-1370. 1SSN: 1745-2481. DOI: 10.1038/s41567-022-01742~
5. URL: http://dx.doi.org/10.1038/s41567-022-01742-5.

Stephen G Brush. “History of the Lenz-Ising model”. In: Reviews of modern
physics 39.4 (1967), p. 883.

O. Canko and E. Albayrak. “Pair-approximation method for the quantum
transverse spin-2 Ising model with a trimodal-random field”. In: Physics
Letters A 340.1 (2005), pp. 18-30. 1SSN: 0375-9601. DOI: https://doi.org/10.
1016/ j . physleta.2005.04.025. URL: https://www.sciencedirect . com/
science/article/pii/S0375960105005694.

Mark Chavira and Adnan Darwiche. “On probabilistic inference by weighted
model counting”. In: Artificial Intelligence 172.6 (2008), pp. 772-799. 1SSN: 0004-
3702. DOIL: https://doi.org/10.1016/j.artint.2007.11.002. URL: https:
//www.sciencedirect.com/science/article/pii/S0004370207001889.

Bob Coecke and Ross Duncan. “Interacting quantum observables: categori-
cal algebra and diagrammatics”. In: New Journal of Physics 13.4 (Apr. 2011),
p- 043016. DOI: 10.1088/1367-2630/13/4/043016. URL: https://dx.doi.
org/10.1088/1367-2630/13/4/043016.

The SciPy community. scipy.linalg.expm. 2008. URL: https ://docs . scipy .
org/doc/scipy/reference/generated/scipy.linalg.expm.html (visited
on 06/27/2025).

74

https://doi.org/10.1088/0305-4470/15/10/028
https://dx.doi.org/10.1088/0305-4470/15/10/028
https://dx.doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1038/s41567-022-01742-5
https://doi.org/10.1038/s41567-022-01742-5
http://dx.doi.org/10.1038/s41567-022-01742-5
https://doi.org/https://doi.org/10.1016/j.physleta.2005.04.025
https://doi.org/https://doi.org/10.1016/j.physleta.2005.04.025
https://www.sciencedirect.com/science/article/pii/S0375960105005694
https://www.sciencedirect.com/science/article/pii/S0375960105005694
https://doi.org/https://doi.org/10.1016/j.artint.2007.11.002
https://www.sciencedirect.com/science/article/pii/S0004370207001889
https://www.sciencedirect.com/science/article/pii/S0004370207001889
https://doi.org/10.1088/1367-2630/13/4/043016
https://dx.doi.org/10.1088/1367-2630/13/4/043016
https://dx.doi.org/10.1088/1367-2630/13/4/043016
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm.html

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Christoph Dann, Peter Gehler, Stefan Roth, and Sebastian Nowozin. “Pottics —
The Potts Topic Model for Semantic Image Segmentation”. In: Proceedings of
34th DAGM Symposium. Lecture Notes in Computer Science. Springer, Aug.
2012, pp. 397-407.

Paulius Dilkas and Vaishak Belle. “Weighted model counting with conditional
weights for Bayesian networks”. In: Proceedings of the Thirty-Seventh Conference
on Uncertainty in Artificial Intelligence. Ed. by Cassio de Campos and Marloes
H. Maathuis. Vol. 161. Proceedings of Machine Learning Research. PMLR, July
2021, pp. 386-396. URL: https://proceedings.mlr.press/v161/dilkas21a.
html.

Dirck van den Ende. DiracWMC. URL: https://github.com/System-Verifi
cation-Lab/DiracWMC.

Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi. “DPMC: Weighted
Model Counting by Dynamic Programming on Project-Join Trees”. In: Princi-
ples and Practice of Constraint Programming: 26th International Conference, CP
2020, Louvain-La-Neuve, Belgium, September 7-11, 2020, Proceedings. Louvain-la-
Neuve, Belgium: Springer-Verlag, 2020, pp. 211-230. 1SBN: 978-3-030-58474-0.
DOI: 10.1007/978-3-030-58475-7_13. URL: https://doi.org/10.1007/978-
3-030-58475-7_13.

Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi. “ProCount: Weighted
Projected Model Counting with Graded Project-Join Trees”. In: Theory and
Applications of Satisfiability Testing — SAT 2021. Ed. by Chu-Min Li and Felip
Manya. Cham: Springer International Publishing, 2021, pp. 152-170. I1SBN:
978-3-030-80223-3.

Jetfrey M. Dudek and Moshe Y. Vardi. Parallel Weighted Model Counting with
Tensor Networks. 2021. arXiv: 2006.15512 [cs.DS]. URL: https://arxiv.org/
abs/2006.15512.

H. B. Hunt and R. E. Stearns. “On the complexity of satisfiability problems
for algebraic structures (preliminary report)”. In: Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes. Ed. by Teo Mora. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1989, pp. 250-258. 1SBN: 978-3-540-46152-4.

Julia Kempe, Alexei Kitaev, and Oded Regev. “The Complexity of the Local
Hamiltonian Problem”. In: SIAM Journal on Computing 35.5 (2006), pp. 1070-
1097. DOI: 10.1137/50097539704445226. eprint: https://doi.org/10.1137/
S0097539704445226. URL: https://doi.org/10.1137/S0097539704445226.
William Klieber and Gihwon Kwon. “Efficient CNF Encoding for Selecting
1 from N Objects”. In: 2007. URL: https : //api . semanticscholar . org/
CorpusID:165159977.

Physics Claire Kluber. Trotterization in Quantum Theory. 2025. arXiv: 2310 .
13296 [quant-ph]. URL: https://arxiv.org/abs/2310.13296.

Philipp Krdhenbiihl and Vladlen Koltun. “Efficient Inference in Fully Con-
nected CRFs with Gaussian Edge Potentials”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by]J. Shawe-Taylor, R. Zemel, P. Bartlett, F.
Pereira, and K.Q. Weinberger. Vol. 24. Curran Associates, Inc., 2011. URL:

75

https://proceedings.mlr.press/v161/dilkas21a.html
https://proceedings.mlr.press/v161/dilkas21a.html
https://github.com/System-Verification-Lab/DiracWMC
https://github.com/System-Verification-Lab/DiracWMC
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-030-58475-7_13
https://arxiv.org/abs/2006.15512
https://arxiv.org/abs/2006.15512
https://arxiv.org/abs/2006.15512
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1137/S0097539704445226
https://api.semanticscholar.org/CorpusID:165159977
https://api.semanticscholar.org/CorpusID:165159977
https://arxiv.org/abs/2310.13296
https://arxiv.org/abs/2310.13296
https://arxiv.org/abs/2310.13296

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

https : //proceedings . neurips . cc / paper _files/paper /2011 /file/
beda24c1el1b46055df£2c39c98fd6fcl-Paper.pdf.

Johannes Lang, Bernhard Frank, and Jad C. Halimeh. “Concurrence of dynam-
ical phase transitions at finite temperature in the fully connected transverse-
field Ising model”. In: Phys. Rev. B 97 (17 May 2018), p. 174401. DOI: 10.1103/
PhysRevB.97.174401. URL: https://link.aps.org/doi/10.1103/PhysRevB.
97.174401.

Ronald M Levy, Allan Haldane, and William F Flynn. “Potts Hamiltonian
models of protein co-variation, free energy landscapes, and evolutionary
titness”. en. In: Curr Opin Struct Biol 43 (Nov. 2016), pp. 55-62.

AlexJ. Li, Mindren Lu, Israel Desta, Vikram Sundar, Gevorg Grigoryan, and
Amy E. Keating. “Neural network-derived Potts models for structure-based
protein design using backbone atomic coordinates and tertiary motifs”. In:
Protein Science 32.2 (2023), e4554. DOT: https://doi.org/10.1002/pro.4554.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro .4554.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4554.
Weikang Li, Zhide Lu, and Dong-Ling Deng. “Quantum Neural Network
Classifiers: A Tutorial”. In: SciPost Phys. Lect. Notes (2022), p. 61. DOI: 10 .
21468/SciPostPhysLectNotes.61. URL: https://scipost.org/10.21468/
SciPostPhysLectNotes.61.

Jingyi Mei, Marcello Bonsangue, and Alfons Laarman. “Simulating Quan-
tum Circuits by Model Counting”. In: Computer Aided Verification. Ed. by
Arie Gurfinkel and Vijay Ganesh. Cham: Springer Nature Switzerland, 2024,
pp- 555-578. 1SBN: 978-3-031-65633-0.

Jingyi Mei, Tim Coopmans, Marcello Bonsangue, and Alfons Laarman. “Equiv-
alence Checking of Quantum Circuits by Model Counting”. In: Automated
Reasoning. Ed. by Christoph Benzmiiller, Marijn J.H. Heule, and Renate A.
Schmidt. Cham: Springer Nature Switzerland, 2024, pp. 401-421. 1ISBN: 978-3-
031-63501-4.

Jingyi Mei, Jan Martens, and Alfons Laarman. “Disentangling the Gap Be-
tween Quantum and #SAT”. In: Theoretical Aspects of Computing — ICTAC
2024: 21st International Colloquium, Bangkok, Thailand, November 25-29, 2024,
Proceedings. Bangkok, Thailand: Springer-Verlag, 2024, pp. 17-40. I1SBN: 978-3-
031-77018-0. DOI: 10.1007/978-3-031-77019-7_2. URL: https://doi.org/
10.1007/978-3-031-77019-7_2.

Awad H. Al-Mohy and Nicholas J. Higham. “A New Scaling and Squaring
Algorithm for the Matrix Exponential”. In: SIAM Journal on Matrix Analysis
and Applications 31.3 (2010), pp. 970-989. DOI: 10.1137/09074721X. eprint:
https://doi.org/10.1137/09074721X. URL: https://doi.org/10.1137/
09074721X.

Shaan Nagy, Roger Paredes, Jeffrey M. Dudek, Leonardo Duefias-Osorio, and
Moshe Y. Vardi. “Ising model partition-function computation as a weighted
counting problem”. In: Phys. Rev. E 109 (5 May 2024), p. 055301. DOI: 10.1103/
PhysRevE. 109.055301.

76

https://proceedings.neurips.cc/paper_files/paper/2011/file/beda24c1e1b46055dff2c39c98fd6fc1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/beda24c1e1b46055dff2c39c98fd6fc1-Paper.pdf
https://doi.org/10.1103/PhysRevB.97.174401
https://doi.org/10.1103/PhysRevB.97.174401
https://link.aps.org/doi/10.1103/PhysRevB.97.174401
https://link.aps.org/doi/10.1103/PhysRevB.97.174401
https://doi.org/https://doi.org/10.1002/pro.4554
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.4554
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4554
https://doi.org/10.21468/SciPostPhysLectNotes.61
https://doi.org/10.21468/SciPostPhysLectNotes.61
https://scipost.org/10.21468/SciPostPhysLectNotes.61
https://scipost.org/10.21468/SciPostPhysLectNotes.61
https://doi.org/10.1007/978-3-031-77019-7_2
https://doi.org/10.1007/978-3-031-77019-7_2
https://doi.org/10.1007/978-3-031-77019-7_2
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
https://doi.org/10.1103/PhysRevE.109.055301
https://doi.org/10.1103/PhysRevE.109.055301

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Van-Hau Nguyen, Van-Quyet Nguyen, Kyungbaek Kim, and Pedro Barahona.
“Empirical Study on SAT-Encodings of the At-Most-One Constraint”. In: The
9th International Conference on Smart Media and Applications. SMA 2020. Jeju,
Republic of Korea: Association for Computing Machinery, 2021, pp. 470-
475. 1SBN: 9781450389259. DOI: 10 . 1145 /3426020 . 3426170. URL: https :
//doi.org/10.1145/3426020.3426170.

Peter B R Nisbet-Jones, Jerome Dilley, Annemarie Holleczek, Oliver Barter,
and Axel Kuhn. “Photonic qubits, qutrits and ququads accurately prepared
and delivered on demand”. In: New Journal of Physics 15.5 (May 2013), p. 053007.
DOI: 10.1088/1367-2630/15/5/0563007. URL: https://dx.doi.org/10.1088/
1367-2630/15/5/053007.

Feng Pan, Pengfei Zhou, Sujie Li, and Pan Zhang. “Contracting Arbitrary Ten-
sor Networks: General Approximate Algorithm and Applications in Graph-
ical Models and Quantum Circuit Simulations”. In: Phys. Rev. Lett. 125 (6
Aug. 2020), p. 060503. DOI: 10.1103/PhysRevLett.125.060503. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.125.060503.

Paredes, Duefias-Osorio, Meel, and Vardi. A weighted model counting approach
for critical infrastructure reliability. May 2019.

Nara M. Portela, George D.C. Cavalcanti, and Tsang Ing Ren. “Contextual
Image Segmentation Based on the Potts Model”. In: 2013 IEEE 25th Interna-
tional Conference on Tools with Artificial Intelligence. 2013, pp. 256-261. DOI:
10.1109/ICTAI.2013.47.

Steven Prestwich. “Chapter 2. CNF Encodings”. In: Frontiers in Artificial In-
telligence and Applications. Frontiers in artificial intelligence and applications.
IOS Press, Feb. 2021.

Mario Reis. “Chapter 8 - Paramagnetism”. In: Fundamentals of Magnetism. Ed.
by Mario Reis. Boston: Academic Press, 2013, p. 94. ISBN: 978-0-12-405545-2.
DOI: https://doi.org/10.1016/B978-0-12-405545-2.00008-4. URL: https:
//www.sciencedirect.com/science/article/pii/B9780124055452000084.
Sebastian V. Romero, Alejandro Gomez Cadavid, Pavle Nikacevi¢, Enrique
Solano, Narendra N. Hegade, Miguel Angel Lopez-Ruiz, Claudio Girotto,
Masako Yamada, Panagiotis Kl. Barkoutsos, Ananth Kaushik, and Martin
Roetteler. Protein folding with an all-to-all trapped-ion quantum computer. 2025.
arXiv: 2506.07866 [quant-ph]. URL: https://arxiv.org/abs/2506.07866.
Aaron Sander, Lukas Burgholzer, and Robert Wille. “Towards Hamiltonian
Simulation with Decision Diagrams”. In: 2023 International Conference on
Quantum Computing and Engineering. May 2023. DOI: 10 . 1109 /QCE57702 .
2023.00039. arXiv: 2305.02337 [quant-ph].

Tian Sang, Paul Beame, and Henry A. Kautz. “Heuristics for Fast Exact Model
Counting”. In: International Conference on Theory and Applications of Satisfiability
Testing. 2005. URL: https://api.semanticscholar.org/CorpusID:137080.
Nicol Schraudolph and Dmitry Kamenetsky. “Efficient Exact Inference in
Planar Ising Models”. In: Advances in Neural Information Processing Systems.
Ed. by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou. Vol. 21. Curran

77

https://doi.org/10.1145/3426020.3426170
https://doi.org/10.1145/3426020.3426170
https://doi.org/10.1145/3426020.3426170
https://doi.org/10.1088/1367-2630/15/5/053007
https://dx.doi.org/10.1088/1367-2630/15/5/053007
https://dx.doi.org/10.1088/1367-2630/15/5/053007
https://doi.org/10.1103/PhysRevLett.125.060503
https://link.aps.org/doi/10.1103/PhysRevLett.125.060503
https://link.aps.org/doi/10.1103/PhysRevLett.125.060503
https://doi.org/10.1109/ICTAI.2013.47
https://doi.org/https://doi.org/10.1016/B978-0-12-405545-2.00008-4
https://www.sciencedirect.com/science/article/pii/B9780124055452000084
https://www.sciencedirect.com/science/article/pii/B9780124055452000084
https://arxiv.org/abs/2506.07866
https://arxiv.org/abs/2506.07866
https://doi.org/10.1109/QCE57702.2023.00039
https://doi.org/10.1109/QCE57702.2023.00039
https://arxiv.org/abs/2305.02337
https://api.semanticscholar.org/CorpusID:137080

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Associates, Inc., 2008. URL: https : //proceedings . neurips . cc/ paper _
files/paper/2008/file/816b112c6105b3ebd537828a39af4818-Paper . pdf.
P. Selinger. “A Survey of Graphical Languages for Monoidal Categories”.
In: New Structures for Physics. Springer Berlin Heidelberg, 2010, pp. 289-355.
ISBN: 9783642128219. DOI: 10. 1007 /978-3-642-12821-9 _4. URL: http:
//dx.doi.org/10.1007/978-3-642-12821-9_4.

Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S Meel. “GANAK:
A Scalable Probabilistic Exact Model Counter.” In: IJCAI. Vol. 19. 2019. 2019,
pp. 1169-1176.

Mate Soos, Stephan Gocht, and Kuldeep S. Meel. “Tinted, Detached, and
Lazy CNF-XOR Solving and Its Applications to Counting and Sampling”.
In: Computer Aided Verification: 32nd International Conference, CAV 2020, Los
Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Los Angeles, CA, USA:
Springer-Verlag, 2020, pp. 463—484. 1SBN: 978-3-030-53287-1. DOI: 10.1007/
978-3-030-53288-8_22. URL: https://doi.org/10.1007/978-3-030-
53288-8_22.

Masuo Suzuki. “Relationship between d-Dimensional Quantal Spin Systems
and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and
Systematic Approximants of the Partition Function and Spin Correlations”.
In: Progress of Theoretical Physics 56.5 (Nov. 1976), pp. 1454-1469. 1SSN: 0033-
068X. DOI: 10.1143/PTP . 56 . 1454. eprint: https: //academic . oup . com/
ptp/article-pdf /56/5/ 1454 /5264429 /56 -5~ 1454 . pdf. URL: https :
//doi.org/10.1143/PTP.56.1454.

Tomoya Tanjo, Naoyuki Tamura, and Mutsunori Banbara. “Proposal of a
compact and efficient SAT encoding using a numeral system of any base”. In:
2011. URL: https://api.semanticscholar.org/CorpusID:15006712.
Jedwin Villanueva, Gary] Mooney, Bhaskar Roy Bardhan, Joydip Ghosh,
Charles D Hill, and Lloyd C L Hollenberg. Hybrid quantum optimization in the
context of minimizing traffic congestion. 2025. arXiv: 2504 . 08275 [quant-ph].
URL: https://arxiv.org/abs/2504.08275.

Alejandro Villoria, Henning Basold, and Alfons Laarman. “Enriching Dia-
grams with Algebraic Operations”. In: Foundations of Software Science and
Computation Structures. Ed. by Naoki Kobayashi and James Worrell. Cham:
Springer Nature Switzerland, 2024, pp. 121-143. 1SBN: 978-3-031-57228-9.
Yingte Xu, Gilles Barthe, and Li Zhou. “Automating Equational Proofs in
Dirac Notation”. In: Proc. ACM Program. Lang. 9.POPL (Jan. 2025). DOI: 10.
1145/3704878. URL: https://doi.org/10.1145/3704878.

Yingte Xu, Li Zhou, and Gilles Barthe. D-Hammer: Efficient Equational Reasoning
for Labelled Dirac Notation. 2025. arXiv: 2505 . 08633 [cs.PL]. URL: https :
//arxiv.org/abs/2505.08633.

Jiong Yang and Kuldeep S. Meel. “Engineering an Efficient PB-XOR Solver”.
In: 27th International Conference on Principles and Practice of Constraint Program-
ming (CP 2021). Ed. by Laurent D. Michel. Vol. 210. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, 2021, 58:1-58:20. ISBN: 978-3-95977-211-2.

78

https://proceedings.neurips.cc/paper_files/paper/2008/file/816b112c6105b3ebd537828a39af4818-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/816b112c6105b3ebd537828a39af4818-Paper.pdf
https://doi.org/10.1007/978-3-642-12821-9_4
http://dx.doi.org/10.1007/978-3-642-12821-9_4
http://dx.doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1143/PTP.56.1454
https://academic.oup.com/ptp/article-pdf/56/5/1454/5264429/56-5-1454.pdf
https://academic.oup.com/ptp/article-pdf/56/5/1454/5264429/56-5-1454.pdf
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1143/PTP.56.1454
https://api.semanticscholar.org/CorpusID:15006712
https://arxiv.org/abs/2504.08275
https://arxiv.org/abs/2504.08275
https://doi.org/10.1145/3704878
https://doi.org/10.1145/3704878
https://doi.org/10.1145/3704878
https://arxiv.org/abs/2505.08633
https://arxiv.org/abs/2505.08633
https://arxiv.org/abs/2505.08633

DOI: 10.4230/LIPIcs.CP.2021.58. URL: https://drops . dagstuhl . de/
entities/document/10.4230/LIPIcs.CP.2021.58.

[52] Dekel Zak, Jingyi Mei, Jean-Marie Lagniez, and Alfons Laarman. “Reducing
Quantum Circuit Synthesis to #SAT”. In: 31th International Conference on Princi-
ples and Practice of Constraint Programming (CP 2025). Accepted for publication.
2025.

79

https://doi.org/10.4230/LIPIcs.CP.2021.58
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.58
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.58

	Notation
	Introduction
	The potential of weighted model counting
	State of the art
	Problem statement
	Research questions
	Contributions
	Overview

	Preliminaries
	Boolean logic
	Weighted model counting
	Definition

	Quantum computing
	Dirac notation
	Kronecker product
	Matrix trace
	Pauli and Hadamard operators
	Matrix exponential

	Encoding Dirac notation using WMC
	Language Syntax
	Type system
	Scalar type rules
	Matrix type rules

	Value denotational semantics
	Representations
	Scalar representation
	Matrix representation
	Representation map
	Equivalence of representations
	Finding equivalent representations

	Representation denotational semantics
	Scalar representations
	Matrix representations

	Correctness
	Implementation
	Discussion

	Ising model
	Definition
	Conversion to WMC by Nagy et al.
	Reproducing results from Nagy et al.

	Conversion to matrix representations
	Alternative formulation of the Ising model
	Rewriting the partition function
	Representing exp(theta*Z)
	Representing exp(theta*(Z kron Z))
	Comparison with Nagy et al.

	Transverse-field Ising model
	Definition
	Trotterization
	Conversion to matrix encodings
	Experiments

	Potts model
	Definition
	Conversion of standard Potts model to WMC
	Experiments
	Comparing model counters
	Comparing variable encodings

	Conversion of generalized Potts model to WMC
	Discussion

	Related work
	D-Hammer
	Category theory
	Quantum circuit simulation using WMC
	Ising model partition function
	Hamiltonian simulation using decision diagrams
	Model counters

	Conclusion
	Evaluation
	Future work

	Variable encodings
	Logarithmic encoding
	Order encoding
	One-hot encoding

	Correctness of representation denotational semantics
	Properties of WMC
	Correctness proof

	References

