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Abstract

The growing capabilities of generative video models have increased the need for reliable
methods to distinguish authentic content from generated videos. Video watermarking, a
method for hiding data in the video signal, offers a way to address this challenge. This thesis
proposes a lightweight deep learning based video watermarking model that utilises multi-
frame embedding to improve robustness, imperceptibility, and efficiency trade-off compared
to existing approaches. Unlike prior publicly available work that embeds full watermark
messages in every video frame or over the whole video, the proposed method distributes
information across a small set of frames. A comprehensive set of video transformations, which
include novel overlays and multiple compression algorithms are introduced during training
to simulate real-world distortions. Results of the experiments demonstrate that the model
achieves competitive robustness and imperceptibility compared to state-of-the-art baselines,
while reducing computational cost. Furthermore, a real-world robustness evaluation using
videos uploaded to and re-downloaded from a widely used video sharing platform reveals
the limitations of current models for real-world use. The thesis highlights the effectiveness of
temporal embedding and diverse training augmentations in the field of video steganography,
while acknowledging the need for further studies.
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1 Introduction

Video watermarking, a branch within the field of steganography, is the practice of hiding information
within a video signal. The field has seen a significant amount of research in recent years, indicating
its growing importance [AA24]. This growth can be tied to the arrival of many powerful generative
video models, whose videos can be difficult to distinguish from real videos, even for a trained eye
[VNS24] [Zha22]. The recently released Google Veo 3 [Dee24] and the well-known OpenAI Sora
[LZL+24] are two examples of such models. These models also raise concerns about the possibility
of generating misinformation, as generally, videos are seen as a more trustworthy medium than text
[WTBR21] [SMC21]. Therefore, there is an urgent need to make it easier for humans to distinguish
between generated and real content.

1.1 Motivation

While video watermarking is a valuable tool which could help address this issue, it is not a stand-
alone solution. Watermarking would need to be deployed in tandem with well-formed policies for it
to mitigate the spread of misinformation [HF24]. While the details of these policies are beyond
the scope of this thesis, there have been proposals and efforts from various institutions [ZGC+24]
[RvDK25] . Therefore, three possible applications of video watermarking are presented to show the
importance and relevance of the work:

• Watermarking an AI generated video as the last part of the generation process ensures that
the generated video can be more reliably classified as AI generated. This has already been
proposed by some regulators [SB24] [HZL+25].

• Watermarking real videos with cryptographic signatures can help to verify that a video did
indeed originate from a reliable source. This could be done even on a video recording device
level [LWW+24].

• Moderators of a social media website can watermark an AI generated video to more effectively
limit its spread and allow for independent parties to check if a video has been flagged
[MKR+22].

1.2 Watermarking Criteria

The benefits of video watermarking are therefore evident, however, the question is how it could
be achieved in a reliable manner. Three key aspects are used to evaluate how well information is
hidden: robustness, imperceptibility and capacity. Firstly, the information must be hidden in a
way such that it is hard to remove, both intentionally and unintentionally. This is known as the
robustness of a watermark [ZNSL23] [KMP+22]. For example, information can be hidden in the
metadata of a file, or in specific pixel values. However, this has limited robustness to unintentional
attacks and even less for intentional ones. For instance, social media sites compress videos and
remove unnecessary data, to reduce storage and streaming bandwidth requirements [YWZ+24].
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Secondly, the imperceptibility of a watermark can be examined. This aspect of steganography
examines how easy it is to tell that a video has been watermarked [WWW23]. For instance, the
previous example of hiding information in file metadata would be imperceptible while watching
the video, however, a large text overlay on the whole video would be considered perceptible.
Imperceptibility is an important aspect to maintain the integrity of the original content [HWZ+22].

Thirdly, a watermark should be able to store as much information as possible [KP22]. In the context
of stopping the spread of misinformation, the watermark should be able to contain information
about a video, such as creation time, location data and a cryptographic signature among many
other details. Thus, a watermark should also have a large enough capacity.

There is a trade-off between all three of these aspects. An imperceptible watermark is typically
more fragile than a perceptible one, which means that the watermark has a lower robustness [AA24].
Whereas a high capacity watermark could be more perceptible as it allows for more information to
be stored within the video file. For example, a logo in the corner of a video is less noticeable than
multiple lines of overlaid text on a video. It is therefore important to balance all three aspects in a
well-functioning steganography technique. In addition to these established criteria, there is a fourth
aspect not inherent to steganography or watermarking, that is as integral as the other aspects for
this thesis. This aspect is the efficiency of a watermarking technique, which is crucial for being able
to process many high resolution videos at scale [ZWH+24].

1.3 Approach

This thesis proposes a video watermarking model using deep neural networks to balance watermark
robustness, imperceptibility, capacity and efficiency. Moreover, this work aims to build upon the
contributions in the paper Video Seal - a machine learning based video watermarking model by Meta
[FEYM24], and DVMark - a model by Google [LLC+23], among others. Using neural networks to
enhance video and image watermarking efforts has been a well researched topic, as demonstrated in
multiple recent works [KP22] [KPP22] [LRD21]. One of the breakthrough papers within this topic
is HiDDeN: Hiding Data with Deep Networks [ZKJFF18]. The benefits of this approach include a
more context aware watermark, which helps to hide data in the areas of an image where it is less
perceptible, and more robust watermarking, as it is difficult to account for many possible attacks
on the watermark by traditional techniques [LLC+23].

The main contribution of the approach proposed in this thesis is how the temporal dimension
of videos is utilized to embed a watermark in a video. Some publicly available models, like the
aforementioned Video Seal, work by embedding all of the data into every frame of the video. While
this simplifies training and could be more efficient, it does not use the temporal dimension of
videos which could be utilized for better robustness. Other approaches, like DVMark, spread out
the data over the entire video or a large number of frames. While this can improve robustness, it
may introduce computational overhead, particularly in long high resolution videos. The goal of
this approach is to create a more lightweight model that spreads out the data over a small number
of video frames while maintaining comparable data capacity and without sacrificing robustness.
This is done by adapting the original Video Seal model to use the temporal dimension of the video,
while also reducing the number of layers. Furthermore, compared to previous works, an extended
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amount of video transformations is implemented. These transformations include video overlays and
more compression algorithms, which are applied during training to increase the robustness of the
watermark to more real-world distortions. Lastly, the thesis contributes to the field by conducting
a pilot study on how well the watermarking models perform in real-world scenarios, to see how the
techniques can be improved in the future. This leads to the main research question of this thesis:

How do overlay transformations, compression techniques, and multi-frame embedding affect the
robustness, imperceptibility, and efficiency of deep learning based video steganography models?

Two sub-questions were also identified:

• How do overlay transformations and compression techniques impact the robustness and
imperceptibility trade-off of the model and performance in real-world scenarios?

• How does utilizing the temporal dimension by spreading the watermark across multiple frames
impact the trade-off between robustness, imperceptibility, and efficiency in a watermarking
model?

To answer these questions, a lightweight watermarking model will be developed and trained. The
thesis will start by highlighting the important definitions, after which related work and the history
of watermarking and steganography will be discussed. In the method section, the architecture,
training pipeline and how the model works for non-training data videos will be discussed. The thesis
goes on to detail how the model was trained and compares the results of the training with other
models. Furthermore, an experiment simulating real-world scenarios will be conducted and results
discussed. Finally, the conclusions drawn from the experiments will be presented, addressing the
research questions directly. Additionally, potential avenues for further research will be discussed.

The author of this thesis acknowledges the support of the Leiden Institute of Advanced Computer
Science and Dr. H. R. Doughty, whose supervision was instrumental to the development of this
thesis.

2 Background

2.1 Traditional Video Watermarking

Video watermarking was first developed as a means to enforce copyright protection. The development
of watermarking techniques began in the late 1990s with the growth of digital multimedia [DD03].
Basic techniques of video watermarking include hiding data in the least significant bits of each
colour channel or in the discrete cosine transform of a frame - approaches that also apply to
images. Traditional video-specific watermarking usually takes advantage of compression algorithms
such as H.264. These methods work by manipulating motion vectors or exploiting Reversible
Variable Length Codes (RVLC), which are used in video encoding to represent frequently appearing
symbols [AP17]. While these approaches can achieve robust and imperceptible results, as was
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demonstrated in the paper Robust video watermarking of H.264/AVC [ZHQM07], the watermark
demonstrates robustness only within the constraints of the original encoding scheme. Re-encoding or
stronger transformations can quickly reduce the accuracy of an extracted watermark. As traditional
watermarking methods faced challenges in both robustness and adaptability, deep learning-based
solutions started being explored.

2.2 Deep learning Based Approaches

Deep learning based video watermarking seeks to further increase the robustness of the watermark
by not necessarily relying on compression algorithms. Most deep learning based watermarking
models have a similar structure: an embedder, which takes an image or a set of video frames as
an input to produce watermarked video frames, an extractor, which extracts the watermarked
data, and some form of adversary to improve imperceptibility of the generated watermarks. While
video-specific watermarking models appeared later, a breakthrough paper, HiDDeN: Hiding data
with deep networks, was published in 2018, which demonstrated the viability of using deep neural
networks for image watermarking [ZKJFF18]. The model achieved satisfactory results both in
robustness and imperceptibility, compared to traditional methods. However, when directly applied
to video frames, noticeable flickering artifacts were introduced. First video-based deep neural
network watermarking models include RivaGAN [ZXCIV19] and VStegNet [MKNI19], both of
which aimed to exploit the temporal dimension of videos by processing video frames simultaneously.
Both models demonstrated strong performances, with VStegNet focusing efforts on watermark
capacity and RivaGAN focusing on robustness by utilizing a novel adversarial network. However,
both of the models need to process many frames in parallel, making these approaches inefficient for
long high resolution videos.

2.3 Recent Advances

Newer video watermarking models include Video Seal [FEYM24], DVMark [LLC+23] and ItoV
[YGW+23]. DVMark utilizes a novel multi-scale design where the watermarks are distributed
across multiple spatial-temporal scales, which translates to improved robustness compared to non
multi-scale models of the time. However, as pointed out in the paper for Video Seal, by processing
videos in high resolution and multiple frames in parallel, the efficiency and usability of the model
are questionable. ItoV, while still processing the entire video in parallel, improved on the efficiency
of the model by merging the channel and temporal dimensions, allowing videos to be processed by
2D convolutions instead of 3D convolutional layers. Video Seal focuses more on the efficiency of the
model, compared to previous works. Efficiency is achieved by disregarding the temporal dimension
of the video and rather training a more powerful image watermarking model. A watermark is only
generated at a configurable interval and the result is copied to the adjacent frames. While the
approach achieves notable results, by not utilizing the temporal dimension, the potential maximum
capacity of the model is brought into question. Furthermore, the technique can produce more
noticeable artefacts for videos with lower frame rates or quicker camera movements.
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2.4 Limitations

Despite significant progress in deep learning based video watermarking, there still exists a significant
trade-off between imperceptibility, robustness, capacity and efficiency in all of the methods. Models
that prioritize robustness often exhibit reduced imperceptibility, while the more lightweight models
might have lower capacity or more significant watermarking artefacts. Furthermore, many previous
methods rely on processing many frames or entire videos in parallel which can reduce efficiency and
usability for real-world applications. These limitations motivate the model introduced in section 4.
A hybrid watermarking model is introduced, which aims to balance these trade-offs, to create a
smaller and more efficient model with similar capacity and robustness to previous larger models.

3 Definitions

This section aims to give an overview of the important key topics to contextualize the architectural
components of the watermarking model introduced in the Section 4 of this thesis.

3.1 Convolutional Architectures for Image Processing

Image processing in neural networks is commonly performed using Convolutional Neural Networks
(CNNs), which are a class of neural networks that utilize convolutional layers to extract features
from images [LBBH02]. CNNs can be further categorized based on dimensionality - a 2D CNN
processes images, while a 3D CNN can process videos or 3D data. Therefore, CNNs are crucial for
implementing a neural network model for watermarking.

2D Convolutional 
Layer

2D Convolutional 
Layer

+

Identity
ReLU

ReLU

Figure 1: A 2D residual block with ReLU activation function

To improve the performance of CNNs and enable deeper architectures, convolutional layers can be
arranged into residual blocks, as was introduced in the ResNet architecture [HZRS16]. A typical
residual block includes two convolutional layers with an activation function and a skip connection,
which helps to mitigate the vanishing gradient problem. An example of this block can be seen in
Figure 1.
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U-Nets are a type of convolutional neural network architecture originally proposed for biomedical
image segmentation [RFB15]. They are composed of two parts, an encoder and a decoder. The
encoder reduces the spatial dimensions of the input while increasing feature abstraction, helping
the network capture high-level information. The decoder is concerned with the reverse process - the
number of features are reduced to reconstruct the spatial dimension until the original dimensions
have been achieved. Furthermore, the encoder layers are connected to decoder layers with the same
spatial dimension by skip connections. These connections allow the network to preserve spatial
information. This configuration enables the network to combine high-level semantic understanding
with spatial detail, making it well-suited for segmentation or watermarking. A diagram of this can
be seen in Figure 2.

Skip connection

Encoder Decoder

Image Features

Figure 2: The U-Net architecture

3.2 Transformer Architectures for Vision Tasks

While convolutional neural networks have been the leading architecture for image processing tasks,
recent advancements have shown that transformer architectures, which were originally developed for
natural language processing [VSP+17], can also be effective for visual data. Transformers capture
global dependencies through self-attention layers, allowing them to capture long-range dependencies
across an image. This global context awareness enables transformers to perform well in tasks where
spatial relationships and overall structure are important. This technique was successfully used
on vision tasks in the Vision Transformer model or ViT, which showed that a transformer-only
architecture can achieve similar results as CNNs [DBK+20]. A diagram of a transformer encoder is
shown in Figure 3. In the context of watermarking, these properties may improve the robustness
and accuracy of message extraction, especially when information is distributed across multiple
regions or frames.

4 Method

This thesis aims to balance the previous temporal information integrating approaches and Video
Seal by distributing the watermark over a small number of frames instead of embedding the full

6



MLP

+

Norm

Multi-Head
Attention

+

Embedded Patches

Norm

L ×

Figure 3: A diagram of a transformer encoder, where L is the number of layers

binary message on a single frame. Furthermore, to improve efficiency, a watermark propagation
technique is introduced that enables robust watermarking without generating a watermark for
every frame. Similarly to Video Seal [FEYM24] this approach utilizes a ResNet-based U-Net for
the embedder, although with 3D convolutional layers, and a Vision Transformer for the extractor
[DBK+20].

At a high level, the model receives a set of frames from the video being watermarked and a
binary message to be embedded. The frames are then encoded into a latent representation and
combined with an embedding of the binary message. The features are merged and decoded into a
watermark, which is subsequently blended with the original frames of the video. To recover the
original message, frames are divided into image patches which are encoded into features. A weighted
pooling mechanism aggregates the information from multiple frames and patches to reconstruct
the hidden message. The model can be applied to videos of arbitrary length and resolution. It is
implemented in PyTorch, and the source code and weights are publicly available.

4.1 Architecture

The architecture of the proposed watermarking model can be divided into two main components:
an embedder, which is responsible for generating the watermarks, and an extractor, which extracts
a hidden message from a watermarked video. A high-level diagram of this can be seen in Figure 4.
This thesis will go on to specify each component in further detail.
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Binary message
[0, 1, 0, 1, 1, ..., 0]

Video frames

Embedder
Message and video are combined.

Watermark

Watermarked video

+

Transformations

Extractor
Transformed video is processed.

Perceptual loss
(SSIM and LPIPS)

Extracted message
[0, 1, 0, 1, 1, ..., 0]

Extraction loss
(BCE)

Figure 4: A diagram depicting a high-level overview of the model.

4.1.1 Embedder

The embedder consists of a 3D ResNet-based U-Net and a message embedding part. The input to
the embedder is F frames of video x ∈ R(3×F×H×W ) and a binary message m ∈ {0, 1}nbits where nbits

is the length of the message. The output of the embedder is a watermark w ∈ R(3×F×256×256) that
can be additively blended with the original video. While the number of frames F and the message
length n can be chosen arbitrarily, for this model, F = 3 and nbits = 96 was chosen. This amount
of bits was chosen because other models, such as Video Seal [FEYM24], are also trained on 96 bits,
making comparisons easier. The amount of frames was chosen because the model does not reduce
the size of the temporal dimension during the encoding part of the U-Net, which means the frame
count should remain low. Furthermore, a lower number of frames ensures that the training can be
successfully completed within the time frame of the thesis. Table 1, demonstrates the structure of
the embedder in further detail.

The U-Net is structurally similar to the one used in Video Seal and TrustMark [BAC23]. However,
instead of 2D convolutional layers, 3D ones are used instead to account for the temporal dimension.
The U-Net is further made up of a decoder, which uses upscaling blocks, and an encoder, which
uses downscaling blocks. The blocks are connected with skip connections. Downscaling blocks or
DownBlocks, consist of a bilinear downscaling layer, which only downscales the last two spatial
dimensions, and a 3D ResNet block. Similarly, upscaling blocks or UpBlocks consist of a bilinear
upscaling layer and a 3D ResNet block. ResNet blocks are made from two convolutional layers
with ReLU and batch normalization. A skip connection is implemented with a convolutional layer,
having a kernel size of 1.
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First, the video frames are resized to 256 by 256 and go through an initial 3D ResNet block.
Three DownBlocks encode the frames into dvid feature maps, to which the message embedding
is concatenated. The message embedding is constructed from a binary message lookup table
T ∈ R(n×2×dmsg). This means that the table contains unique features for every bit position and for
each of the two states. The features for each bit are added together to achieve one representation
r ∈ Rdmsg for the whole binary message. Finally, the message embedding is repeated so that it
matches the size of the feature maps for the video.

The concatenated features are then merged by three bottleneck 3D ResNet blocks, which reduce the
amount of channels back to dvid. Next, three UpBlocks with skip connections reduce the number of
channels and increase the spatial dimensions. A final 3D ResNet block decodes the features back
into video frames, which now represent the watermarks. These watermarks are multiplied by a
watermark strength constant α and added to the original frames to produce watermarked frames.
For this embedder, dmsg = 192 and dmsg = 128 was chosen as Video Seal, which this embedder is
based on, has shown success using these parameters.

Encoder Decoder & Embedding

x ∈ R(3×3×H×W ) m ∈ {0, 1}nbits

Resize → R(3×3×256×256) Embedding, Repeat → m ∈ R(dmsg×3×32×32)

3DResNetBlock → R(dvid/8×3×256×256) Concat → R(dmsg+dvid×3×32×32)

3×DownBlock → R(dvid×3×32×32) 6×Bottleneck → R(dvid×3×32×32)

3×UpBlock → R(dvid/8×3×256×256)

3DResNetBlock → R(3×3×256×256)

Table 1: Architecture of the embedder.

4.1.2 Extractor

The input for the extractor are the watermarked video frames x ∈ R(3×F×256×256). The output
is a logit representation of the binary message m ∈ {0, 1}nbits hidden in the watermarked video.
The extractor consists of four main parts: a patch embedding module which divides the video
frames into 16 by 16 pixel patches over a token embedding dimension dmodel, a vision transformer
[DBK+20][LMGH22], which processes the patch tokens into dmodel features, a convolutional neck,
which projects features into a lower-dimensional space and fuses the features temporally, and
a final weighted pooling layer which combines all patch tokens in one video to produce a logit
representation of the binary message. While this implementation is similar to the work done in
Video Seal, it instead uses a smaller number of transformer blocks, uses 3D convolutions in the
neck and uses weighted pooling instead of mean pooling. Table 2, shows the architecture of the
extractor.

First, the temporal and batch dimension are merged, as all frames are first processed individually.
Next, all frames of the video are divided into 16 by 16 dmodel dimensional tokens with a 2D
convolutional layer. Learned positional embeddings are added to the tokens. These tokens are
passed to L transformer encoder blocks. The last part of the patch extractor is used to normalize
the encoded patches.
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The convolutional neck receives the encoded patches and convolves over the batches, combining the
temporal dimension and patch embedding dimensions. Weighted pooling is applied to the tokens to
produce dmodel features for a video. A final feed-forward layer produces a logit representation of
the binary message. For the extractor, dmodel = 384 and L = 6 was chosen as a reasonable balance
between expressiveness and efficiency.

Patch Extractor (BF = B · F )

x ∈ R(B×3×F×256×256)

Reshape → R(BF×3×256×256)

PatchEmbed → R(BF×16×16×384)

Positional Embedding → R(BF×16×16×384)

L× ViTDet Block → R(BF×16×16×384)

Reshape → R(B×384×F×16×16)

Neck (Conv3D/LayerNorm) → R(B×256×F×16×16)

Flatten + Permute → R(B×(F ·256)×256)

Weighted Pooling → R(B×256)

Linear → R(B×nbits)

Table 2: Architecture of the extractor.

4.2 Training Pipeline

The model is trained end-to-end, both the extractor and the embedder are trained at the same
time. A diagram of how all components are combined can be seen in Figure 4. Since the training
involves multiple objective functions and complex transformations, the training of the model is
divided into multiple parts, which will be discussed in section 5.1.

4.2.1 Training Objectives

The training objectives or losses are divided into two categories: perceptual losses and extraction
loss. The perceptual losses are responsible for the imperceptibility of the watermark, while the
extraction loss is responsible for the robustness or the accuracy of the extraction. While many
previous models such as DVMark [LLC+23] or Video Seal [FEYM24] also include an adversarial
loss, this model omits the use of this loss in favour of more perceptual losses. The reason for this is
that adversarial training comes with a computational overhead, which could not be afforded in the
training of this model.

The perceptual losses chosen for this model are Learned Perceptual Image Patch Similarity (LPIPS)
[ZIE+18] and Structural Similarity Index (SSIM) [WBSS04]. These two metrics were selected due
to their complementary properties in capturing perceptual quality:

• LPIPS compares feature representations of given images from pre-trained convolutional
networks. This can align well with human perception of image similarity. It has been shown
to perform better than pixel-wise losses in measuring perceptual closeness.
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• SSIM, on the other hand, shows the structural similarities between images, providing a more
robust metric, where pre-trained networks might overlook details.

SSIM is implemented in PyTorch, while LPIPS is provided in a python package with the same
name. The VGG based back-end neural network for LPIPS was used for faster and more stable
training.

The extraction loss for the watermark is Binary Cross Entropy (BCE), as the problem of predicting
a binary message is a binary classification problem. It penalizes wrong bit predictions and provides
a stable gradient signal during training. Furthermore, BCE loss is commonly used in prior work
such as in Video Seal and TrustMark [BAC23].

To optimize the training process, the losses are combined using both adaptive weights and non-
adaptive weights. The adaptive weights scale the loss by the norm of its gradient, which is an
approach also utilized in Video Seal [FEYM24]. This approach addresses the gradient scale imbalance
between the losses. The non-adaptive weights are set manually, but can be adjusted during the
training to direct the goals of the model. The values for the non-adaptive weights are discussed in
section 5.1. The full loss of the model is then defined by the following equation:

L = λBCE ∗ λ̃BCE ∗ lBCE + λLPIPS ∗ λ̃LPIPS ∗ lLPIPS + λSSIM ∗ λ̃SSIM ∗ lSSIM

Where λ refers to non-adaptive weights, λ̃ refers to adaptive weights and l refers to a loss value.

4.2.2 Transformations

Transformations take place between the embedder and the extractor. They are important for the
robustness of the model, as the goal is to simulate both intentional and unintentional attacks
on the watermark. For the network to be fully end-to-end trainable, the transformations must
be differentiable, which is not the case for many available implementations. Therefore, multiple
transformations have been implemented from scratch for differentiability and speed. These are
categorized into three groups: valuemetric, which change the pixel values, geometric, which modifies
the geometry of a frame, and overlay, which adds overlays to a frame. All the implemented
transformations can be seen in Table 3.

It is possible to further separate the transformations into per-frame and per-video transformations.
In the model, per-frame transformations mean that all the frames in a video are modified the
same way and with the same parameters, whereas per-video transformations utilize inter-frame
information, which affects different frames in distinct ways. For example, a per-frame brightness
change translates to all the frames of the video being subjected to a brightness change, using the
same parameters. However, a per-video compression transformation would introduce artifacts that
are not uniform across multiple frames. For this model, the only per-video transformations are
video compression algorithms. The rest of the transformations are applied uniformly across all
frames.

Most video compression algorithms are non-differentiable, which means that gradients of the
objective function can not be back-propagated to update the weights of the embedder. One way to
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Transformation Type Parameters and choice for training Probability
Brightness Valuemetric Brightness α, random uniform in range 0.8 − 1.2 1.0
Contrast Valuemetric Contrast α, random uniform in range 0.8 − 1.2 1.0
Saturation Valuemetric Saturation α, random uniform in range 0.8 − 1.2 1.0
Hue Valuemetric Hue shift α, random uniform in range −0.2 − 0.2 1.0
Gaussian blur Valuemetric Kernel size k, random uniform odd in range 3−11 0.2
JPEG Com-
pression

Valuemetric Quality q, random integer in uniform range 50−85 0.8

Rotation Geometric Radians r, random uniform in range −1.2 − 1.2 0.4
Horizontal flip Geometric - 0.4
Crop Geometric Top t, left l, bottom b and right r percentages, all

random uniform in range 0.1 − 0.2
0.4

Perspective Geometric Horizontal shift h and vertical shift v, both ran-
dom uniform in range −0.2 − 0.2

0.4

Sticker overlay Overlay Random sticker x, scale s, top t and left l percent-
ages. Scale uniform in range 1.0 − 2.0, top and
left uniform in range 0.0 − 1.0

0.6

Emoji overlay Overlay Random emoji x, scale s, top t and left l percent-
ages. Scale uniform in range 1.0 − 2.0, top and
left uniform in range 0.0 − 1.0

0.8

Frame overlay Overlay Random frame f 0.4
H.264 Com-
pression

Valuemetric Constant rate factor c in integer range 12 − 27 0.8 × 1
3

AV1 Compres-
sion

Valuemetric Constant rate factor c in integer range 12 − 27 0.8 × 1
3

VP9 Compres-
sion

Valuemetric Constant rate factor c in integer range 12 − 27 0.8 × 1
3

Table 3: All transformations with the type and parameters used during the training of the model.

circumvent this limitation is to use an approximate differentiable version of a video compression
algorithm instead [ZKJFF18]. However, implementing differentiable approximations for multiple
algorithms is a monumental task. Therefore, another solution was chosen, similarly to Video Seal
[FEYM24], where a gradient of a non-differentiable operation is approximated using the identity
function [BLC13].

xtransformed = xidentity + nograd( T ( xidentity ) − xidentity )

Where T is the non-differentiable transformation function and nograd represents a function in
which gradients are not propagated. The method, known as the straight-through estimator, allows
gradients to bypass the non-differentiable transformation by treating it as the identity during
back-propagation. While approximate, it has been shown to work well in tasks such as watermarking.

The per-frame transformations implemented are: brightness, contrast, saturation, hue, rotation,
horizontal flip, crop, perspective, Gaussian blur, sticker overlay, emoji overlay, frame overlay and
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JPEG compression. All valuemetric transformations take place in the HSV color space, which means
there is a minimal approximation error between the non-transformed and transformed images.
The per-video transformations are: H.264 compression [Ric11], AV1 compression [DRH18] and
VP9 compression [MBG+13]. These compression transformations are implemented using PyAV,
which is a python wrapper for the FFmpeg library. JPEG compression is implemented with the
PyTurboJPEG package, which is a wrapper for the TurboJPEG library. All other transformations
are implemented solely in PyTorch.

While valuemetric and geometric transformations are common in data augmentation for machine
learning [MG18], the overlay transformations are a more novel approach created for the training
of this model. The overlay transformations utilize a library of emojis, stickers and frames with
transparent backgrounds. These overlays are then combined with the original video frame by alpha
blending. Emojis and stickers may have various scales and positions, however, frames are always
the full size of a video. The stickers differ from emojis by complexity and size - stickers are bigger
and can exhibit more complex blending. These transformations were created to achieve greater
robustness against possible attacks on the watermark. Examples are visible in Figure 5. The emojis
were downloaded from OpenMoji [Ope24], the stickers were downloaded from various sources all
with an MIT license, and the frames were manually designed in a vector graphics editor. The frames
are available in the project repository.

(a) Frame transformation. (b) Sticker transformation. (c) All overlay transformations.

Figure 5: Examples of overlay transformations.

4.3 Inference

For real-world use, the model needs to be capable of handling longer than three frame sequences
and high resolution videos. However, the model is trained at a fixed sequence length and video
resolution - 3 and 256 by 256 respectively. Therefore, two methods are introduced to make it
possible to watermark longer and larger videos with the model.

The first method addresses high resolution videos, which involves bilinearly scaling the watermark
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to fit the size of full resolution video frames. This is defined by the following equation:

xwatermarked = xidentity + α · resize(y)

Where x is video frames, y is the watermarks and function resize resizes the watermark y to the
dimensions of x using bilinear interpolation. Furthermore, the watermark strength can be adjusted
via a scaling factor α ∈ [0, 1]. This method is also used in Video Seal and TrustMark [BAC23].

Original Video

... ...

Set to be watermarked

Model
embedder

Watermarks

Watermarks are also copied to adjacent frames

... ...

Figure 6: Depiction of how watermarks are propagated over a video sequence. s = 1

The second method addresses how videos longer than the amount of frames the model was trained
on can be watermarked. For this model, the chosen frame amount f is 3. This means that the model
only watermarks three frames of video at a time. While it is possible to process all frames in a video
three frames at a time, this is inefficient. Inspiration is taken from the Video Seal model, where a
watermark is only generated at an interval k frames, after generation, k − 1 further frames receive
the same watermark. However, this method cannot be directly applied to this watermarking model
as watermarks for multiple frames are generated in parallel. Therefore, a modified approach defines
a constant s ∈ N indicating the spread of a watermark. The frames to be watermarked are chosen
by selecting the frame after every 2s frames, except for the beginning of the video where a frame is
selected after s frames. This method ensures that each selected frame is surrounded by s unselected
frames in both temporal dimensions. After the watermarks are generated, three at a time, the
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resulting watermark for every chosen frame is also copied to s adjacent ones. This approach is also
visualised in Figure 6, where s = 1. The benefit of this approach is that a frame always receives the
closest possible watermark, which means that the watermark is more imperceptible and temporally
stable.

5 Experiments

To answer the research questions posed in Section 1, the model is trained and the results are
compared against previous models. This section will also discuss the positive and negative aspects
of the proposed approach. Furthermore, an experiment is conducted to evaluate the usability of the
watermarking models for real-world scenarios.

5.1 Training

The model is trained on an Nvidia A100 GPU for 200 epochs with 1500 steps per epoch and a
batch size of 16. The AdamW [LH17] optimiser is used along with a cosine scheduler, where the
starting learning rate 1.0 × 10−5 is gradually reduced to zero.

The Segment Anything video dataset [RGH+24] is used for training. This dataset was chosen for its
size, availability and diversity of real-world video content. During every step, three-frame sequences
are randomly selected from the videos, which are downscaled to 256×256 resolution and normalized
to the range [−1, 1]. Since the structure of the model relies on the temporal dimension of videos,
there is no image pre-training as in some other models [FEYM24].

To make learning easier in early epochs, a training schedule is used to gradually introduce transfor-
mations to the model. The model starts learning without any transformations. On epoch 5, the
valuemetric transformations and JPEG compression are introduced. On epoch 10, the geometric
transformations are enabled. Overlay transformations are enabled on epoch 15, and video compres-
sion is introduced in epoch 30. Early transformations such as valuemetric and JPEG compression
preserve the structure of the input to the extractor, making them easier to learn from. However,
later transformations like geometric, overlays, and video compression significantly alter the videos,
making early learning unstable, which is why these are introduced later. The transformations and
their types are shown in Table 3.

The training objectives are not introduced all at once. During the first 100 epochs, the model
optimises only BCE and MSE losses with the weights 1.0 and 0.1 respectively. This is also done to
stabilize the training process in the early epochs as the other objectives, SSIM and LPIPS, have
higher variance and less stable gradients. The SSIM and LPIPS are both introduced with a weight
of 0.05 after the 60th epoch, while the other two losses retain their weights throughout the training
process. Furthermore, the gradient norm based adaptive weights are also included after epoch 80,
with the aim to further optimize for imperceptibility. The full loss equation and individual losses
are discussed in Section 4.2.1.

The model is validated every 5 epochs on the validation split of the Segment Anything video
dataset. The final model is chosen based on the lowest combined loss validation performance. This
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training schedule, both in augmentations and objectives, was found to improve convergence speed
and imperceptibility of the model. Graphs for the training process are shown in Appendix B.

5.2 Results

To gain insight into the performance of the model, it is compared against four other watermarking
models: VideoSeal [FEYM24], CIN [MGH+22], HiDDeN [ZKJFF18] and MBRS [JFZ21]. The bit
capacity and image processing size of the models is reported in Table 4. The aim is to compare and
motivate performance in three key aspects: robustness, imperceptibility, and efficiency. Capacity,
which was introduced in Section 1.2, is not included in the evaluation due to architectural constraints:
each model has a fixed capacity, which is not adjustable without architectural modifications and
retraining. A proper analysis of capacity trade-offs would require reimplementing each model across
a range of capacities, which is an important direction for future work, but beyond the scope of this
thesis.

The baseline models tested in this paper are all solely image-based models except for Video Seal,
which is designed to watermark both images and videos. This is because of the availability of
trained video watermarking models. For example, influential models like DVMark [LLC+23] and
ItoV [YGW+23] do not have public code repositories or weights. However, the comparison between
models is still relevant as a video can be watermarked by separately watermarking every frame.

HiDDeN CIN MBRS Video Seal This model
Bit Capacity 48 30 256 96 96
Image Resolution 256 × 256 128 × 128 256 × 256 256 × 256 256 × 256

Table 4: Bit capacity and image resolution specifications for the compared watermarking models.

All key aspects are evaluated using the test split of the Segment Anything video dataset, however,
the models were all trained on datasets used in their original papers. Furthermore, to account for
the proposed model which spreads the watermark over three frames, and ensure a fairer comparison
between the models, all models are required to watermark videos in three frame segments for which
the reported metrics are averaged.

5.2.1 Robustness

Watermark robustness can be evaluated as the bitwise accuracy of the predicted message to the
original message. However, since the models do not have the same bit capacity, the metric can be
misleading as it is easier to reconstruct shorter messages. Therefore, to evaluate robustness relative
to capacity, a p-value associated to a given bit accuracy is calculated, similarly to the analysis done
in Video Seal [FEYM24]. Furthermore, as noted in the paper, the logarithm of the p-value can
also be interpreted as the probability of observing a given bit accuracy or higher under the null
hypothesis of a random guess. Lower log10(p) values (e.g., below -15) indicate strong robustness.
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The p-value normalizes accuracy by accounting for the difficulty of predicting longer messages. The
formula is as follows:

p-value(mpred,m) =

nbits∑
j=k

(
nbits

j

)
·
(

1

2

)nbits

Where nbits is the capacity of the model and k is defined as:

k = ⌈bit accuracy(mpred,m) · nbits⌉

And bit accuracy is defined as:

bit accuracy(mpred,m) =
1

nbits

nbits∑
i=1

1
[
m

(i)
pred = m(i)

]
Bitwise accuracy and its associated p-values are reported for each of the models over six experiments,
testing different categories of transformations between watermarking and watermark extraction:

1. Identity / No transformations.

2. Valuemetric transformations with the probability of each transformation 1.0.

3. Geometric transformations with the probability of each transformation 1.0, except horizontal
flip and Gaussian blur which both have a probability of 0.5.

4. Overlay transformations with the probability of sticker and emoji overlay 1.0 and frame
overlay 0.5.

5. Compression transformations, with all probabilities 1.0.

6. All transformations combined with the aforementioned probabilities.

All transformations, their corresponding parameters and types are listed in Table 3. For all models
and experiments, the order of videos to be watermarked, the seed for the random transformations,
and the messages to be embedded are fixed. This makes for a more fair comparison. The results are
reported in Table 5.

HiDDeN CIN MBRS Video Seal This model
Bit acc. log10(p) Bit acc. log10(p) Bit acc. log10(p) Bit acc. log10(p) Bit acc. log10(p)

Identity 1.00 −14.4 1.00 −9.0 1.00 −77.0 0.99 −28.9 0.99 −28.9
Valuemetric 0.92 −10.2 0.98 −9.0 0.99 −72.5 0.99 −28.9 0.98 −26.9
Geometric 0.50 −0.3 0.50 −0.2 0.50 −0.3 0.89 −15.8 0.86 −13.2
Overlay 0.75 −3.4 0.83 −3.8 0.86 −15.6 0.91 −17.7 0.98 −26.9
Compression 0.71 −2.9 0.72 −2.0 0.75 −9.0 0.85 −13.2 0.92 −18.8
Combined 0.50 −0.3 0.50 −0.2 0.50 −0.3 0.82 −10.3 0.84 −11.7

Table 5: Bitwise accuracy and associated p-values under various transformations.
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The achieved results for baselines in the experiments for identity, valuemetric and geometric are
comparable to the reported results in the Video Seal paper with the exception of HiDDeN, where
the authors reimplemented the model and trained it on extra transformations that were not in the
original HiDDeN model. Bigger differences arise in the compression experiment, which could be
due to the strength of the compressions and the extra compression algorithms implemented in this
thesis. Furthermore, since the models HiDDeN, MBRS and CIN are trained with transformations
that do not modify the geometry of the image, the models did not achieve notable results in the
corresponding experiments with performance approximating that of random guessing.

Compared to Video Seal, which received the best results of all baseline models, the model im-
plemented in this paper had comparable, but slightly inferior results in identity, valuemetric,
and geometric transformation experiments. This could be attributed to the smaller size of the
model and a shorter training process. However, in the overlay and compressions transformations
experiments, Video Seal observed worse results. This is significant as it indicates that the extra
information applied to frames and the loss of the original frame information in places where the
overlays are applied, have an effect on the robustness of the Video Seal model. For the other models,
overlay transformations also presented a challenge, reinforcing the importance of including such
transformations in the training process.

Overall, in the combined transformations experiment, the proposed model achieved slightly higher
performance in robustness than Video Seal and much greater performance than other baseline
models. This indicates that spreading message information over multiple frames does improve the
robustness of the model. However, since the proposed model is not as deep as the model proposed
in Video Seal, the potential robustness gains of this technique could be even bigger.

5.2.2 Imperceptibility

To measure and compare the imperceptibility of the watermarks, three metrics are introduced. These
are: Peak Signal to Noise Ratio (PSNR), SSIM [WBSS04], and LPIPS [ZIE+18]. The details of SSIM
and LPIPS are described in Section 4.2.1 as these metrics are used as losses to train the proposed
model. Higher SSIM (ranging from 0 to 1) and PSNR values indicate higher imperceptibility while
lower LPIPS (also ranging from 0 to 1, with lower being better) values indicate lower perceptual
difference. PSNR is a standard and widely adopted metric in image and video processing to assess
the degradation between an original and a distorted signal. It provides a simple and interpretable
measure of how much a watermarked frame deviates from the original. Typically, PSNR values
above 30 dB indicate more imperceptible distortions to the human eye, while values below that
may introduce visible artifacts. However, it must be noted that while all three metrics give a
good indication about the imperceptibility of a watermark, the values do not always perfectly
correlate with human perception. This is especially true for videos as some perturbations in the
frames are more noticeable than others, while yielding similar scores in the introduced metrics.
Therefore, samples of generated watermarks are displayed in Figure 7, to serve as an indication of
how noticeable a watermark might be. Furthermore, the watermarks displayed in the figure have
also been strengthened so that they are more visible. The results for the imperceptibility metrics
averaged over the test split of the dataset are given in Table 6.
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(a) Original (b) CIN (c) MBRS

(d) HiDDeN (e) Video Seal (f) Proposed model

Figure 7: Examples of generated watermarks for a video frame.

HiDDeN CIN MBRS Video Seal This model
PSNR 32.18 42.32 43.66 46.86 38.79
SSIM 0.934 0.984 0.989 0.997 0.994
LPIPS 0.194 0.021 0.009 0.012 0.033

Table 6: Imperceptibility metrics for the tested models.

To evaluate the proposed models performance, the results are compared for every metric. Firstly,
the proposed model achieves a PSNR of 38.79, which is higher than HiDDeN, but lower than the
other baseline models. This suggests that while the model achieves reasonable visual fidelity, it
introduces more signal level perturbations than the top baselines. However, it still exceeds the
35 dB commonly accepted threshold for imperceptibility. For SSIM, the proposed model achieves a
score close to Video Seal, which performs the best out of all the baselines. This indicates that the
structural information of the original frames is very well preserved. The proposed model places in
the middle in terms of LPIPS, which shows that while the watermarked frames are perceptually
close to the original, there may be more noticeable artifacts compared to leading baselines.

From visual inspection of Figure 7, it can be seen that the generated watermarks by the proposed
model are similar to those generated by Video Seal - more washed out blobs instead of sharper
artifacts produced by other baseline models. This may indicate that the model is more suitable for
video watermarking than the image-based baselines, as smoother artifacts are less noticeable in
motion. While the proposed model does not achieve state-of-the-art PSNR or LPIPS scores, the
visual quality remains high and well above conventional thresholds.
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5.2.3 Efficiency

To compare the relative efficiency of the models, the number of Floating Point Operations (FLOPs)
is measured separately for both the extractors and the embedders. Because these operations
dominate the computational cost in neural networks, FLOPs provide a hardware-agnostic measure
of model efficiency. Fewer number of FLOPs generally implies faster inference times and reduced
energy consumption, making it a useful metric for comparing model efficiency. For this experiment,
FLOPs are measured per inference pass, excluding the computations for loss and back-propagation.
The spatial dimension of the frames passed to the models is indicated in Table 4. Furthermore, the
metric will be reported in Giga-FLOPs (GFLOPs) as the number of FLOPs for modern neural
networks can be large. To make the comparison fair between the baselines, which can watermark one
frame at a time, and the proposed model, which watermarks three frames at a time, the watermark
propagation techniques need to be taken into account.

For the baselines, the propagation technique introduced in Video Seal [FEYM24] is used, which
entails generating only one watermark per k + 1 frames. More concretely, generating one watermark
applies it to k adjacent frames. For the proposed model, the propagation technique introduced in
Section 4.3 is used. The propagation techniques are balanced when the proposed model’s propagation
algorithm’s spread value is s = k

2
, which means that all the models need to generate the same

amount of watermarks to watermark a specific number of video frames. Since the propagation
algorithms can be balanced by selecting a fitting s and k, the GFLOPs for minimum number of
frames that need to be watermarked is measured, which, due to the architecture of the proposed
model, is 3. Therefore, during the test, all models are given 3 frames to watermark. For the baselines,
3 is the batch size and for the proposed model, 3 is the temporal dimension of the input. The
results are reported in Table 7.

HiDDeN CIN MBRS Video Seal This model
Embedder GFLOPs 67.2 49.8 96.6 126.0 47.8
Extractor GFLOPs 117.0 53.7 81.0 9.3 12.9

Table 7: GFLOPs for embedders and extractors of each model.

The proposed model demonstrates the lowest embedding cost among all tested models, with only
47.8 GFLOPs per inference pass. In comparison, the Video Seal model requires over 2.5 times more
computations, reaching 126.0 GFLOPs. This highlights the architectural efficiency of the embedder
for the proposed model, with the efficiency gains coming from the ability to watermark multiple
frames at once. The embedder, while structurally similar to Video Seal, is not as deep, but uses 3D
convolutional layers to spread the message over multiple frames as explained in Section 4.1.1.

In terms of extraction, the proposed model remains lightweight at 12.9 GFLOPs. However, it is not
as minimal as Video Seal’s 9.3 GFLOPs, which could be due to the use of 3D convolutional layers in
the patch decoder to reconstruct the message temporally. The structure of the extractor is explained
in Section 4.1.2. Furthermore, it is significantly more efficient than HiDDeN (117.0 GFLOPs)
and MBRS (81.0 GFLOPs), both of which use more complex or deeper decoders. Overall, the
proposed model shows great efficiency for both the embedding and extraction processes, justifying
the approach of spreading watermark information across multiple frames.
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5.3 Transformations Ablation

This experiment aims to determine whether the robustness performance of the model in the
experiments conducted in Section 5.2.1 is primarily due to architectural design or exposure to
novel transformations during training. To evaluate this, the proposed model is re-trained with
these transformations excluded. The novel transformations are: AV1 Compression [DRH18], VP9
Compression [MBG+13], Sticker Overlay, Emoji Overlay, and Frame Overlay. The model is trained
the same way as specified in Section 5.1 and the robustness is reported similarly to Section 5.2.1.
The results for the proposed model trained with and without the novel transformations are displayed
in Table 8.

With novel transforms Without novel transforms
Bit acc. log10(p) Bit acc. log10(p)

Identity 0.99 −28.9 0.99 −28.9
Valuemetric 0.98 −26.9 0.98 −26.9
Geometric 0.86 −13.2 0.86 −13.2
Overlay 0.98 −26.9 0.90 −16.7
Compression 0.92 −18.8 0.82 −10.3
Combined 0.84 −11.7 0.76 −6.8

Table 8: Robustness results for the proposed model trained with and without novel transformations.

From the results, it can be observed that the robustness for identity, valuemetric and geometric
transformations is largely unchanged. This indicates that the introduction of the novel transforma-
tions during training does not affect the robustness for other transformations. For the experiments
with overlay and compression transformations, there is a significant drop in performance, although
the model still retains some robustness against these transformations. This suggests that the other
transformations and the architecture of the model already contribute to the robustness against
overlays and extra compression algorithms. For example, the geometric transformation random
crop could partially contribute to the robustness against overlays, as there is a loss in watermark
data when a video frame is cropped, similarly to when an emoji or a sticker is applied to a video
frame. For compression, the artifacts produced by H.264 and JPEG compression can be similar to
those produced by VP9 and AV1, which helps with robustness against the two novel compression
algorithms. In conclusion, while the model does see a significant drop in robustness, it is still
competitive with the robustness results of the baseline models as seen from Table 5. This suggests
that while the novel transformations do play a significant role, other transformations and the
architecture of the model also contribute to overall robustness against the novel transformations.

5.4 Real-world scenario

An experiment is conducted to evaluate the real-world effectiveness of video watermarking models.
The experiment involves manually altering a set of watermarked videos, to emulate how videos
could be shared on the internet. The edited videos will be uploaded to a video sharing platform,
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after which they are re-downloaded and the watermark message extracted. This is motivated by
the fact that video sharing platforms often use proprietary video compression algorithms, which
can not be simulated in the training process. Furthermore, training time transformations can differ
from real-world edits considerably.

5.4.1 Set-up

YouTube was chosen as the video sharing platform to conduct the experiment on, as the platform
is one of the most widely used, having more than a billion users [Kem25]. While this experiment
could be conducted on multiple platforms, due to time constraints, this is an endeavour for future
studies. Five user scenarios were created for the experiment, which serve as a guide for modifying
the videos that are uploaded to the selected video-sharing website. These scenarios are listed in
Appendix A. By describing each scenario according to the four categories of “User”, “Story”,
“Video”, and “Edits”, the selection of the original video and alterations to the video are motivated.
“User“ identifies the kind of user sharing a video. “Story” provides context for the potential reasons
why a user might share that content online. “Video” provides more details about the kind of video
being shared, while ”Edits” outlines the alterations made to the original video before it is uploaded.

The next stage of the experiment involves watermarking five videos selected by the user scenarios
with a random binary message, which is done before any of the described alterations are made
to the videos. The models evaluated in this experiment are Video Seal [FEYM24] and the novel
model proposed in this thesis. Notably, the other baseline models tested in Section 5.2 are omitted,
due to their poor robustness performance in the combined transformations experiment. For the
proposed model, the video is watermarked according to the watermark propagation technique
introduced in Section 4.3 with the spread factor s = 2. For Video Seal’s propagation technique,
the interval k = 4 is chosen, which was the value used in the original paper. Furthermore, this
means that both models need to watermark the same number of frames as the condition s = k

2

introduced in Section 5.2.3 is satisfied1. The described text, pictures, and filters are superimposed
on the original watermarked video using a video editor. The watermarked and edited videos are
then compressed using high quality H.264 encoding (CRF = 18) in 1080p resolution at 24 frames
per second. Furthermore, the videos yet to be uploaded become a baseline for the comparison. As
the platform offers multiple resolutions, each resolution will be evaluated separately to compare
robustness under various compression levels. An example of a video edited according to a user story
is displayed in Figure 8.

1We have that s = 2 ∧ k = 4 ∧ s = k
2 which holds, since 2 = 4

2 =⇒ 2 = 2.
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(a) Unedited video, which is watermarked. (b) Edited video according to the user story.

Figure 8: Example of a video edited according to the News Organisation user story.

5.4.2 Results

The binary message is extracted from the downloaded and baseline videos for which average bit
accuracy and logarithm of the p-value are reported as defined in Section 5.2.1. The results are
reported in Table 9.

Video Seal This model
Bit acc. log10(p) Bit acc. log10(p)

Baseline videos 0.70 −4.56 0.65 −2.84
YouTube @ 144p 0.52 −0.42 0.49 −0.28
YouTube @ 240p 0.50 −0.28 0.53 −0.52
YouTube @ 360p 0.48 −0.21 0.52 −0.42
YouTube @ 480p 0.54 −0.62 0.50 −0.28
YouTube @ 720p 0.62 −2.04 0.57 −1.04
YouTube @ 1080p 0.68 −3.82 0.61 −1.80

Table 9: Bit accuracy of the extraction for the real-world study.

Both of the models show greatly degraded robustness when compared to the experiments in Table
5, even for the baseline video message extraction. This could be attributed to the complexity of the
alterations made on the videos. For example, in Figure 8, the area cropped for the edited video is a
small section of the unedited video, causing a large loss of watermark information. Furthermore,
due to the aspect ratio change introduced by the cropping, when the video is resized to be passed
into the extractor, a large spatial distortion is introduced between the unedited and the edited
video. This indicates that while the train time transformations aid in performance, they fail to
fully account for the potential real-world transformations. The train time transformations for both
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models also do include temporal transformations, such as moving images or text superimposed on
the video, which could also explain the degradation of robustness.

For low resolution videos (140p, 240p, 360p and 480p), both models failed to extract the original
messages with the performance approximating that of random guessing. This shows the unreliability
of using the models for real-world scenarios. For high resolution videos (720p and 1080p), the
extraction accuracy was better, however not as good as baseline video extraction accuracy. This
indicates that YouTube’s proprietary compression pipeline has a significant effect on the robustness
of the models, even when trained on extra video transformations such as VP9 and AV1.

While the experiment demonstrated that the models are not yet ready for real-world usage without
a large amount of error correction bits, it also showed the importance of conducting similar studies
in the future and the need for more temporal and spatial redundancy in the watermarks.

6 Conclusions

In this thesis, a video watermarking model was proposed to address the limitations of current
models and to optimize the trade-offs between robustness, efficiency, capacity, and imperceptibility.
Furthermore, novel overlay based video transformations and additional compression algorithms
were introduced to the training process to refine the robustness of the proposed model. The model
achieved comparable robustness results to the Video Seal model [FEYM24], while maintaining
reasonable watermark imperceptibility compared to other baseline models. Though the model
could benefit from a deeper architecture, the results demonstrate the effectiveness of spreading the
watermark over multiple frames - including the temporal dimension in the embedding process. A
reasonable efficiency gain was also demonstrated, where the proposed model exhibited the most
efficient embedder and an extractor efficiency comparable to the most efficient baseline extractor,
further reinforcing the potential of the temporal architecture.

An ablation study was conducted to measure the impact of the introduced transformations on
the robustness of the model compared to the impact by architecture. It was found that while the
novel transformations do play a significant role, other transformations and the architecture of the
model also contribute to overall robustness against the novel transformations. This shows that it is
beneficial to include the transformations in the training process for future models, although the
architecture of the model is equally important to achieve good robustness.

A pilot study was conducted to evaluate the robustness of the video watermarking models for
real-world scenarios. The results showed that while the current models are able to extract messages
from heavily modified video content, they are not robust enough to be reliable for widespread use.
The models especially struggled under low resolutions and heavy compressions where the accuracy
approached that of a random guess.

The research questions are addressed directly:

How do overlay transformations and compression techniques impact the robustness and impercepti-
bility trade-off of the model and performance in real-world scenarios?
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The additional video transformations and compression techniques positively affect the robustness of
the proposed watermarking model, while allowing the model to maintain reasonable imperceptibility.
However, since the proposed model does not include a typical GAN style discriminator, it is difficult
to say if the imperceptibility loss was induced by the additional transformations or due to the
training objectives. Furthermore, the proposed model did not achieve better results for the real-world
experiment than the other baseline, which was trained without the additional transformations.
While the results could be due to the architecture of the model, this still suggests that more complex
video transformations should be included in the training for future models.

How does utilizing the temporal dimension by spreading the watermark across multiple frames impact
the trade-off between robustness, imperceptibility, and efficiency in a watermarking model?

The proposed model, by utilizing the temporal dimension, achieved comparable robustness results
to top performing baseline models, while significantly reducing the computational cost. While the
watermarks generated by the model are not as imperceptible as the best performing baseline models,
this cannot be attributed to the architecture alone, as training objectives and extra transformations
also contribute to the loss in imperceptibility to not sacrifice the robustness.

How do overlay transformations, compression techniques, multi-frame embedding and model size
affect the robustness, imperceptibility, and efficiency of deep learning based video steganography
models?

Overall, this thesis confirms that multi-frame embedding and extended transformations mitigate
some of the key limitations in deep learning based video watermarking, allowing for better balancing
of the key trade-offs. However, scalability to real-world platforms remains challenging.

6.1 Further Research

Further research could focus on developing a model with variable-length messages, which could
be achieved by scaling the message length based on the number of frames the message is encoded
in. In the future, more in-depth hyper-parameter tuning could also be conducted to improve
imperceptibility and extraction accuracy of the proposed model, as this work had hardware and
time limitations.

The real-world scenario study in Section 5.4 shows the gaps in robustness for current watermarking
models, particularly under heavy platform specific compression and broad video edits. Large-scale
experiments replicating these conditions should be conducted for evaluating model robustness in
the future. Furthermore, more complex and temporal transformations could be included in the
training process, to account for complex video edits of the real world.
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A User Stories Table

User Story Video Edits
News Organisation The user discovers police

footage showing the ar-
rest of a suspected crimi-
nal. To inform their audi-
ence, they aim to create a
news segment using this
video

A low-resolution
video captured
from a body camera
showing an arrest
in progress

In order to enhance viewer engage-
ment, the user overlays a red circle
around the individual committing
the robbery. In addition, they su-
perimpose a short and captivating
caption to attract interest and con-
vey the message of the video

Political party Seeking to influence pub-
lic opinion for an up-
coming election, the user
searches for video ma-
terial that portrays a
political opponent un-
favourably

An AI-generated
video filmed from
a concealed smart-
phone perspective,
depicting an op-
position politician
accepting a bribe

To clarify the events that transpire
in the video, the user adds an ani-
mated arrow pointing at the politi-
cian when they take the bribe. The
logo of the political organisation
is also added as well as some on-
screen text summarizing the events
and urging viewers to support their
political party

Animal Rights Or-
ganisation

The user seeks to raise
awareness about the
poor conditions that
captive animals live in

They find a video
depicting the harsh
treatment of an orca
that is held captive
in an animal park.
The video is filmed
from someone in the
audience of a live
show, where a staff
member is seen to
mistreat the orca

The original video includes a warm
color filter. The user wants to en-
hance clarity by adding a magnified
circle to highlight the mistreatment
scene. There is also a faint logo
of the organisation in one corner,
along with some text at the top,
describing the incident

An elderly individ-
ual

This user frequently
browses social media
to find entertaining
videos to share with
their grandchildren or
all their followers

The user finds an
AI-generated video
of a puppy playing
with a ball in a park
and decide to repost
it

They add a color filter to the video,
as well as some text. Due to the
format discrepancies between the
original video and the social media
platform, the video only takes up
about two-thirds of the screen

A video game enthu-
siast

This person is an avid
fan of video games, and
therefore regularly uses
social media to consume
video game-related con-
tent. In anticipation of a
new video game release,
they search for related
footage

They find a
YouTube video
in landscape orien-
tation of someone
playing an early
version of the game
and decide to repost
it on their social
media

As the video is originally in land-
scape, the person crops the video
to fit the vertical format of the so-
cial media platform. They also add
a visual filter, insert enthusiastic
text and add stickers to express
their excitement for the release of
the game

Table 10: Overview of user stories and associated video edits for the real-world experiment.
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B Proposed Model Training Plots
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