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Abstract

This thesis presents a comprehensive investigation of web tracking practices across the Dutch
web. By analysing over 1,8 million “.nl” domains against a curated list of 8,069 known third-
party trackers, we quantify both the prevalence and structural features of online tracking.
The dataset was gathered by developing a custom, multithreaded Python scraper to collect
HTML content and extract external resources from over 30 million requests. Our empirical
findings demonstrate that Dutch websites load, on average, 3,04 trackers each, predominantly
operated by global platforms (98,2% of all instances), with local trackers accounting for
only 1,8%. Among the most frequently observed trackers are those operated by Google
and Meta, highlighting their dominance in the online tracking ecosystem. We then create a
network using this data, with webdomains as nodes and shared webtrackers as edges. Network
analysis reveals a densely interconnected, small-world structure (average path length 2,01,
diameter 5, density 0,12) dominated by a handful of hub domains. Centrality measures (degree,
betweenness, closeness) highlight major content-delivery and analytics platforms as critical
conduits for cross-site tracking. Community structure uncovers a pronounced modularity: five
large communities encompass over 30% of nodes, while the majority of clusters remain small.
The analysis shows that the Dutch web-tracking ecosystem is largely reliant on a small set
of tech-giants, such as Google and Meta. We conclude that targeting these few trackers may
yield the greatest reduction in the tracking of personal data. Our work contributes large-scale
research on Dutch web-tracking and can serve as a foundation for regulatory interventions.
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1 Introduction

When the internet was made available for public usage in 1993, it consisted of a simple network of
static documents. This era of the web was referred to as “web 1.0”. In 2004, the term “web 2.0”
was popularised to describe a web of dynamic, user-generated content and new monetization tools,
such as targeted advertisements.

In today’s data-driven economy, personal information has become a valuable asset for companies
seeking to take part in the lucrative businesses that comes with it, like targeted advertising. To
collect as much online data as possible and monitor user behaviour, companies use what is known
as web tracking, that is “The practice when some content (‘trackers’) embedded in a webpage
recognizes the users visiting the page.[22]” For example, when a user is reading a blog online, the
website may automatically load a script from an advertisement network. This script can record
the user visiting the website and how long they spend reading. This information is used to build
a profile based on a user’s interests and to show them more personalised advertisements in the
future. According to the GDPR [13], the collection of online data through web-tracking can put
users at risk of identity theft, fraud or discrimination. To avoid harming users’ rights, it is crucial
for websites and advertisers to abide by the GDPR data protection laws.

Although HTTP cookies are the most common example, web tracking methods can be distinguished
into two main categories: stateful and stateless tracking [26]. Stateful tracking techniques, commonly
known as cookies, store small strings of text in the client browser to record session state, preferences,
or identifiers. This data is sent back to the server on subsequent requests [7]. Stateless tracking, or
browser fingerprinting, “is the process of collecting information through a web browser to build a
fingerprint of a device” [19]. By combining attributes such as user-agent strings, screen resolution,
and installed fonts, fingerprinting creates a unique identifier that can re-identify users without
relying on stored cookies. Besides these two classes of web trackers, third-party trackers have
become increasingly prevalent. Unlike first-party trackers, which are owned and managed by the
domain, third-party trackers can monitor users across multiple domains [%]. This evolution has
made it significantly more difficult for users to prevent their data from being collected.

The new data economy has benefited many businesses and spawned new ways to engage with the
online world. A common practice in today’s digital economy is to offer seemingly “free” applications.
While requiring no upfront payment, users instead “pay” with their personal data [141]. While
this may seem advantageous for users, disclosing personal data raises serious privacy concerns.
If user data falls into the wrong hands, they could become a victim of identity theft, by having
fraudulent purchases made in their name, become victim to reputational damage from exposed
personal information, or even face physical harm [9].

1.1 Research Problem

Despite extensive global measurements of tracking on the most popular sites, there is a lack of
large-scale, country-specific studies. Several studies have researched global and historical data on
web-tracking. Su et al. [3/] studied the increase in tracking on educational websites, while Lerner et



al. [20] conducted a historical analysis on web-tracking. Others examine more common web-tracking
techniques and measure their efficacy: Sanchez-Rola et al. [20] provides an overview of web-tracking
techniques and applications, and Cahn et al. [7] studies how cookies are injected into the client
browser. However, little to no research gives insight into the inner workings of web-tracking in the
Netherlands, which, due to regulation from the EU and Autoriteit Persoonsgegevens (AP), can
exhibit unique online behaviour. This thesis will address this gap in measurement of the Dutch
web-tracking ecosystem and inform policymakers and regulators with local insights to improve
privacy interventions in the Netherlands. The research questions that we aim to answer are as
follows:

e RQ1: Which web-trackers are most prevalent on Dutch websites?
e RQ2: What is the difference in the usage of global versus local trackers on Dutch websites?

e RQ3: How does web-tracking vary across different categories of web-trackers?

We analyse over 1,8 million domains under the .nl top-level domain using an extensive list of more
than 8,000 known tracker domains. Furthermore, we identify the top local and global trackers and
use a subset of categorised trackers to see the most common applications of web-tracking. This
thesis will provide an overview of prior research on web-tracking, its applications and regulatory
and privacy issues. Then we will discuss the method of gathering the data and processing it to
obtain a clean dataset. Lastly, we analyse our data and in particular the large-scale network. We
use our findings to answer the research questions and discuss the conclusions in the final chapter



2 Related Work

Web-tracking has been extensively covered in past works, especially cross-domain studies. However,
research on a country level are rare. In this chapter, we will review prior works on web-tracking
from 3 different angles. Firstly, we will discuss large-scale empirical studies on web-tracking. Next
we discuss works that aim to provide an understanding of the mechanisms of web-tracking. Finally
we discuss studies that focus on the risks of web-tracking from a privacy and economic standpoint.

2.1 Measurements and Network Analyses

Without much notice from the general public, web tracking has increased significantly in our daily
online usage. Many studies have sought to quantify the prevalence of web-tracking on different
platforms and across different times. Su et al. [31] developed a framework to measure web-tracking
activity on more than 17,000 educational websites and compared it to a matched control group. They
found a significant increase in third-party tracker intensity over time. They suggest that this growth
is attributed to the increase in interactive features and raises concerns about privacy risks in educa-
tion. Lerner et al. [20] conducted a twenty-year “archaeological” study of web tracking. Analysing
the data from their tool, TrackingExcavator, reveals a substantial rise in third-party trackers, which
have become more complex in both data collection and behaviour. They argue that understanding
the historical context of web-tracking is crucial in any policy discussion surrounding it. Yang et al.
[37] compared web tracking on mobile devices and desktop browsers, showing that mobile tracking
has reached levels comparable to desktop tracking and poses potentially more severe privacy risks
due to continuous location monitoring and the collection of sensitive data. They suggest that users
should be informed about the privacy risks of web-tracking, especially on mobile devices. Network
analysis has been used to understand the dynamics of different complex systems, including offline
social networks [/, 31], social media networks [12, 21, 2], banking transaction networks [30], criminal
networks [32], collaboration networks [10, 28], dark networks [24, (], and terrorist networks [15]. In
this work, we use network analysis techniques to understand the dynamics of web-tracking networks.

2.2 Web Tracking Mechanisms and Techniques

Several studies have investigated the technologies and methods behind web tracking. Based on
when these researches have taken place, analysing web tracking has become an increasingly im-
portant topic. Sanchez-Rola et al. [20] provide a comprehensive review of web-tracking techniques,
applications, and countermeasures, distinguishing between stateful methods (cookies) and stateless
approaches (fingerprinting). They find that it is crucial to understand these techniques, especially
when creating policy around online privacy. Cahn et al.’s empirical study of web cookies [7] examines
how cookies are injected into the client browser and how they monitor and record user behaviour.
They conclude that third party trackers greatly outnumber first party trackers and are therefore a
much greater risk. Laperdrix et al. [19] present an in-depth analysis of fingerprinting techniques,
proving how combinations of device and browser attributes can generate unique identifiers for
cross-session tracking. They suggest that protection mechanisms are in a constant arms race with
new fingerprinting techniques. Castell-Uroz et al. [3] provide a comprehensive tutorial on web



tracking and how to detect and minimize it. They create ORM, an open source framework for a
crawler that collects data and labels trackers, to measure web-tracking and give an overview of the
top tracking domains.

2.3 Web-tracking from Privacy and Economic Perspectives

Mayer and Mitchell [22] did a combined study of the technology and the policy discussion surrounding
web tracking. They reviewed the US and EU privacy frameworks (in 2012) and showed that
mechanisms to protect users’ privacy, like self-regulatory opt-out functions, are lacklustre. In A
Model of Data Economy [11], Farboodi and Veldkamp highlight the growing value of user data,
illustrating how transactions that appear to be “zero cost” actually involve users paying with their
personal information. The paper also emphasizes the critical importance of privacy protection,
as businesses increasingly seek to collect and exploit this data. Privacy Harms [9] by Citron and
Solove define a legal framework for the different types of harms that can be inflicted on a person by
means of privacy violations. This article provides a topology of harm to help courts tackle cases.
Lastly, Peacock [3] suggests that current web tracking developments influences user agency and
calls using the internet for private affairs entering an “unconscionable contract”. This transaction
is found to be unjust, as it “puts the burden of an economic transaction wholly on one side and in
this case the online user.”



3 Dataset

The current dataset that has been acquired consists of the scraped data of more than 1,8 million
websites and more than 8,000 known tracking domains. The dataset was acquired in the following
steps:

3.1 Gathering Websites

The primary objective of this study was to compile a comprehensive list of Dutch domains (i.e.
domains ending in .nl). Determining the exact number of active .nl domains is challenging, since
registrations and deletions happen every day.

Instead, this research leveraged the 2024 Common Crawl datasets. Common Crawl is a non-profit
organisation that crawls the web and archives the data for the public to use. It captures HTML
content from webpages, such as links and content, which are then stored in large datasets. To
assemble as extensive a list as possible, we filter the 2024 crawls for hosts ending in .nl, and over
1,8 million unique Dutch domains were extracted. This was done with the help of a fellow student,
Daniel Gelencser.

3.2 Finding Trackers

To identify third-party trackers on a given website, a comprehensive reference list of known trackers
is required. Web trackers appear as external resource requests, among many non-tracking external
links, so accuracy depends on both breadth and quality of the tracker list. For this study, we
combined three authoritative sources:

1. Su et al. [31] provided 1,285 tracker domains identified in their empirical analysis .

2. WhoTracksMe, the open dataset published by Ghostery and Cliqz, contributed 5,288
third-party tracker domains [15].

3. Disconnect, via their publicly available tracking-protection database, added 6,379 tracker
domains, each annotated with a tracker category [L1].

After merging these lists and removing duplicate entries, the resulting master list contains 8,069
unique third-party tracker domains, of which 6,379 include category metadata.

3.3 Processing the Data

After collecting 1,8 million domains, we implemented a custom multi-threaded web-scraper, using
Python, to retrieve, parse, and process each page. The scraper uses the requests library combined
with url1ib3. Retry to perform HTTP GET requests, and a ThreadPoolExecutor (from Python’s
concurrent . futures module; original implementation by Brian Quinlan, 2009) to parallelize



downloads while preventing race conditions via a SQLite-backed queue. This way, all HTML files
of the domains are gathered.

Each HTML document is then parsed with BeautifulSoup4 to extract external links, from <a>,
<script>, <img>, and <iframe> tags as well as URLs embedded in JavaScript. Each external
domain is compared with our tracker database via simple SQL lookups. Discovered trackers are
recorded through foreign-key relationships in the database, HTTP response codes are saved for
each URL, and the raw HTML and script files are written to a structured directory for auditing
and later analysis. This resulted in an SQL database of over 30 million rows, where each domain
has one row for every external link that was scraped.



4 Research Method

In this chapter, we describe the methodology for processing the 1,8 million domains, constructing
the network from an undirected weighted graph and extracting key metrics from it.

4.1 Building the Network

We model the tracker—domain ecosystem as an undirected, weighted graph G = (V| E) using
Python’s networkX library, where each node represents a domain and each edge (u,v) is weighted
by the number of distinct third-party trackers shared between domains u and v. Node weights and
sizes are proportional to the weighted degree,

deg,,(v) = D Wy

ueV

To construct the tracker-domain network, we implement 2 stages of data processing in Python, with
the first stage for acquiring a mapping of domains to trackers and the second stage for building
the network and performing analyses. Firstly, the raw dataset consists of domain ID’s and tracker
ID’s. The url list and tracker list are merged to create a mapping of domain to trackers. Then the
list of domain-tracker mappings are filtered to only contain domains mapped to known trackers.
Furthermore, the trackers list is enriched with a column times_seen that shows the amount of
times each tracker appears in the mapping. Finally, we take a 6% random sub-sample of the full
dataset (7,299 domains, 3,183,635 edges) for computational tractability. From this sub-sample we
iteratively create the undirected, weighted graph by adding every domain as nodes and creating an
edge for each shared tracker with other nodes.

4.2 Analysing Graph Metrics

In order to extract useful information from our data, we perform a number of analyses:

e Firstly, it is important to list the top 20 most prevalent trackers. Every tracker is sorted on
times_seen. Then the top 20 trackers are put into a horizontal bar plot with each tracker’s
frequency.

e Next, we compute, for each domain, the number of unique known trackers. We plot the
distribution as the count of domains on the vertical axis against the number of unique trackers
in a bar chart.

e Finally, to analyse the prevalence of the tracker category, we take the subset of trackers that
are categorised and count the occurrence of categories per tracker. We plot the categories
and their frequency in a horizontal bar chart.

Next, we calculate key metrics from our weighted network:

1. Average degree is the mean number of connections per node. This shows whether nodes
have few or many neighbours on average and implies a certain level of connectivity.
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2. Average weighted degree is similar to average degree, but instead of averaging over the
number of distinct edges per node, sums the weight of all edges per node and takes their
mean. This captures the strength of connections in the network

3. Graph density is calculated by dividing the total number of distinct connections in the
graph by the total number of possible edges

4. Average path length is the mean shortest path distance between all pairs of nodes and
measures how fast information travels through the network. A lower value implies more direct
connectivity between nodes

5. Network diameter is the longest shortest path in the network. This metric reveals the
network’s maximal length

6. Degree distribution is the distribution of the frequency of node degrees (k) as the amount
nodes that have exactly (k) connections, Weighted degree distribution, similar to its
unweighted peer, shows the frequency of nodes by their weighted degree. Plotting these in
a log-log scale reveals whether the network exhibits a scale-free structure. We also perform
the Kolmogorov-Smirnov test to see whether the network fits a hypothesised power-law
tail. We compute the maximum distance D between the empirical and fitted distribution
functions. Lastly, we evaluate the p-value to determine whether the power-law hypothesis can
be rejected.

To identify structurally important domains in the network, we compute three centrality metrics:

e Degree centrality measures the proportion of direct connections a node has [27]. This helps
to identify domains that might share trackers with many other domains and populate much
of the web-tracking activity

e Betweenness centrality measures how often a node lies on the shortest path between other
node pairs. This metric identifies possible domains that connect larger community of nodes

e Closeness centrality of a node is calculated by taking the inverse of the average shortest
path distance from one node to all the other nodes. This indicates domains that can be easily
reached through other nodes.

Lastly, we run the Louvain community detection algorithm [5] on our network, which maximises
modularity in large graphs. Modularity is a metric that measures how strong a network is divided
into communities. The Louvain algorithms works by assigning each node to their own community.
Then repeatedly moves a node to a neighbouring community which results in the highest modularity.
Based on the communities found, it turns communities into “super-nodes” for a condensed graph
and repeats the process of optimising modularity until it can improve no longer. We apply the
Louvain algorithm to find clusters of domains that share many common trackers and highlight the
modular structure of the network.



5 Empirical Analysis

In this chapter we present the results from our analysis. We begin by discussing the prevalence of
the top tracking domains in the Netherlands, then examine their categories, the division between
global and local trackers and the overall distribution of unique trackers per domain. Next, we
analyse the metrics obtained from our weighted common-tracker network, explaining the different
characteristics it exhibits and what that implies for the Dutch web-tracking ecosystem. Finally, we
explore the results of the Louvain community detection algorithm and discuss the implications of
the domain clusters.

5.1 Top Trackers

Figure 1 shows the 20 most commonly observed third-party tracker domains in our dataset. Five of
these domains are operated by Google (including YouTube), occupying ranks 1, 3, 5, 7, and 12. The
most frequent tracker, fonts.googleapis.com, exceeds the runner-up, facebook.com, by 405.009
observations. According to Google’s privacy FAQ, requests to fonts.googleapis.com collect the
client’s IP address, the requested URL, and HTTP headers (including user-agent and referer), but
the Google Fonts API does not set cookies or build user profiles, its sole purpose is to serve web
fonts and leverage HTTP caching to improve performance [17].

Half of the top-20 domains are operated by major technology and social-media companies (Google,
Meta, Microsoft, Pinterest, and X, formerly Twitter). The remaining domains include website-
building platforms such as Shopify and WordPress, indicating that many third-party requests
support essential site functionality. Some noteworthy exceptions are:

e statcounter.com: provides visitor analytics by logging data such as timestamps, IP addresses,
browser and OS versions, device information, and referer URLs to help site owners understand
user behaviour [33].

e addtoany.com: a universal sharing-button platform that integrates with Google Analytics
to report sharing events directly within the analytics dashboard, which may explain its
prevalence [1]. Along with Statcounter, Addtoany provides a tracking service for commercial
purposes.

e unpkg.com: a fast, global CDN for delivering npm packages—commonly used to load JavaScript
assets in web templates—automatically mirroring every file published to npm with low latency
via Cloudflare’s edge network [35].

e gmpg.org: hosts the XHTML Friends Network (XFN) metadata profile, defining semantic
values for the HTML rel attribute to describe social relationships, a specification originally
developed by the Global Multimedia Protocols Group [16]. Meuser et al. [23] showed in a
2015 study that this domain was among the highest in Pagerank [25]. The domain being a
reference to a basic HTML function possibly explains its high frequency.

When classifying the top 20 trackers by functionality, we see that 40% of top trackers, such as
fonts.googleapis.com and unpkg.com, send resources to a website, boosting its performance.
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Figure 1: Top 20 trackers by amount of observations in dataset of 1,8 million web domains

30% of top tracker domains serve the purpose of driving analytics on a website (statcounter.com,
googletagmanager.com). The remaining 30% support social media websites or e-commerce plat-
forms (facebook.com, shopify.com). Among these top trackers, only one of them (google.nl) is
a Dutch domain.

From our findings it becomes clear that large tech companies such as Google and Meta dominate
the tracker activity on Dutch websites. The clear lack of .nl1 domains might imply that local online
analytics business is not as strong in the Netherlands and instead relies on the global analytics
market. Furthermore, it seems that website performance is a top priority on websites, with user
profiling as a close second.
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5.2 Distribution of Trackers

Figure 2 shows the distribution of unique trackers per domain, and Table 1 provides a concise
summary of these results. For instance, in our dataset the domain erfgoed20.nl contains the
maximum of 15 unique trackers, whereas 02023538046.nl contains only one. The distribution is
markedly right-skewed: the mode is 1, the mean is 3.04, and the median is 3—indicating that, on
average, Dutch websites include up to three trackers.

250000 ~

200000 -

150000 -

100000 -

Number of domains

50000 -

6 8 10 12 14 16
Unique trackers

Figure 2: Distribution of unique trackers per individual domain

To distinguish tracker origin, we classify them as local (domains ending in .nl) or global (all
other domains). Of the 8,069 distinct trackers, only 40 (0,5%) are local, while 8,029 (99,5%) are
global. Considering all 5,114,947 tracker instances, 92,526 (1,8%) originate from local domains and
5,022,421 (98,2%) from global domains (see Table 1 for details).

Figure 3 summarizes the distribution of the 8,069 distinct trackers in the Disconnect dataset. Of
these, 1,690 (20,9%) remain uncategorised, leaving 6,379 trackers distributed across 21 defined
categories. Among the classified trackers:

e Advertising trackers are by far the most common, with 3,754 trackers (58,9% of categorized
trackers).

e Analytics trackers (380) and site-analytics trackers (525) together account for 905 trackers
(14,2%).
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Figure 3: Categories of trackers, ranked by amount of distinct trackers

e Customer-interaction trackers make up 337 entries (5,3%), while email trackers (214) and
aggressive-email trackers (268) together total 482 trackers (7,6%).

e Each of the remaining categories contributes less than 3% of the total.

This distribution underscores the web’s heavy reliance on advertising for revenue generation and on
analytics for monitoring user behaviour. More advanced techniques, such as fingerprinting (both
general and invasive) and cryptomining, collectively represent fewer than 2% of all trackers.

5.3 Network Analysis

In order to understand the structure of the Dutch web-tracking ecosystem, we model the domain-
tracker network in an undirected, weighted graph. We will discuss the metrics found in this network
and examine the degree distributions to describe characteristics of the network.

Table 2 reveals an average degree of 872 and an average weighted degree of 873. This implies a high
level of interconnectivity. Furthermore, the similarity in values for the weighted and unweighted
average degree’s show that almost all nodes are connected to the same trackers, thus yielding
the same weights. The interconnectedness of the network is further strengthened by the graph
density of 0,12 and network diameter of 5. This means that out of all possible connections, 12% of
them are present in this network and the longest path from one end of the graph to the other is 5.
With the average path length of 2, this means the network exhibits small world properties; High
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Table 1: Summary of Unique-Tracker Distribution per Domain and Origin of Trackers

Metric Value %
Distribution of Unique Trackers per Domain
Mode — 1 —
Mean — 3,04 —
Median — 3 —
Maximum erfgoed20.nl 15 —
Minimum 0202338046.n1 1 —
Origin of Trackers
Distinct trackers (total) — 8,069 100%
Local trackers .nl only 40  0,5%
Global trackers Other domains 8,029 99,5%
Tracker instances (total) — 5,114,947  100%
Local instances From .nl domains 92,526  1,8%
Global instances From other domains 5,022,421 98,2%
Statistic Value
Number of nodes 7.299
Number of edges 3.183.635
Average degree 872
Average weighted degree 873
Network diameter 5)
Graph density 0,12
Average path length 2,01

Table 2: Key network characteristics for the tracker—-domain network.

interconnectivity, with relatively small paths within.

Figures 4 and 5 reveal a relatively right-skewed distribution. A few domains have a vast amount
of higher degree and weighted degree nodes, while a large majority of nodes form the mid range.
This middle range of moderate degree nodes explains why the average (weighted) degree remains
relatively high. While the (weighted) degree distribution is relatively right-skewed, it deviates from
a scale-free configuration. This is most likely due to the prominent middle range of moderate degree
nodes. These diagnostics imply that targeting the highest degree nodes can mitigate most of the
tracking activity, but more moderate (weighted) degree nodes should not be overlooked, as their
prevalence cannot be underestimated.

Observing the centrality metrics shows a correlation between the nodes with the highest degree
centrality and the amount of embedded social media links on a website [29]. Examining the number
one and two domains on degree centrality shows a large amount of social media links. Comparing
these domains to our dataset, it reveals that all trackers embedded in these domains appear in

13



.
103,
o®
]
]
w0 )
i)
-8 107 ¢
= o9
s o
. . .
o o * o o * e
=] - P ®
L 3 ool
E oy ]
S 10! U -
z o ol *
% e
e @ [ _J
e G @
] - epepe ®
10° 4 e 00 ¢ @ ¢ ©0OEDEEIEEN D
100 10! 10? 10°
Degree

Figure 4: Degree distribution in log-log scale
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Figure 5: Weighted degree distribution in log-log scale

Figure 1. This implies that the top trackers cause the highest interconnectivity. The websites
with the highest betweenness centrality share the same theme as those with the highest degree
centrality. By having very prominent trackers embedded in your site, the connection to other
webpages increases. Out of the 7,239 websites that were analysed, 260 of them have a closeness
centrality of 1,0. This means these 260 websites are connected to every other site in the network.
From a regulatory perspective, examining these 260 websites alone might capture the full extent of
the Dutch cross-site tracking.

Lastly, we run the Louvain community detection algorithm [5] on the network and discuss the
results. In this network consisting of domains and shared trackers, communities represent clusters
of domains that are interconnected with each other through a set of third party trackers, but
less connected to domains in other communities. By identifying these communities, we can gain
insight on groups of domains that share similar tracking behaviour and helps to locate areas where
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Table 3: Top 5 domains sorted by centrality

Domain Value

Degree Centrality

https://www.geldersefietsvierdaagse.nl 0,461
https://dutchbiz.nl 0,437
https://patrijs4Oursem.nl 0,430
https://ndz.nl 0,416
https://alsea.nl 0,410
Betweenness Centrality

https://dutchbiz.nl 226 660
https://www.jelrik.nl 225544
https://www.roges.nl 191 357
https://www.lazytiger.nl 190023
http://www.hanlitzgroup.nl 174 852

intervention is most effective. reveals 61 modules with hub-driven connectivity:

e The five largest communities contain 1,745, 1,009, 811, 594, and 561 nodes, collectively
accounting for over 30% of all domains. This could mean that a large portion of Dutch
websites have similar tracking behaviour. These large communities might represent sectors or
categories of websites that rely heavily on shared third-party trackers, such as webshops or
social media websites.

e Over half of the communities have < 4 nodes, representing niche clusters. This indicates that
the majority of domains in the network share smaller, more specialised trackers that would
be used by specific types of websites. Identifying these tracking communities and intervening
would therefore be more difficult as their tracking activity is more spread out.

Focusing on the core communities for intervention will have the greatest impact on reducing the
overall network connectivity, without disrupting the functionality of smaller, less connected sites.
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6 Conclusions

In this chapter we discuss the conclusions of the research and add some final words, as well as
explore potential limitations of the study and present future research that draws from this study.

Web tracking is defined as embedding third-party content, such as cookies or fingerprinting scripts,
into a webpage to gather information about users visiting the site. This information records the
user behaviour on the website and is commonly used by advertisers to build unique identifier of a
user to show them targeted advertisements.

The motivation for this research is the lack of country-specific studies on web-tracking. As outlined
in chapter 1, we wanted to explore which trackers were most prevalent on Dutch web-domains, find
the balance in local (.nl) trackers and global (.com, .net, etc) trackers and the distribution of
different categories of web-trackers across Dutch websites.

To answer these research questions, we analysed over 1,8 million “.nl” domains and more than
8,000 third-party trackers. Studying this data revealed that Dutch domains load 3 unique trackers
on average. Next we find that only 1,8% of all trackers on Dutch domains are local (.nl) trackers,
while the vast majority (98,2%) are global trackers (e.g. .com, .net, etc). Furthermore, of the
6,379 categorised trackers, 58,9% comprise advertising trackers, 14,2% comprise analytics, and
customer-interaction tools 5,3%. We see that the top 20 trackers are dominated by trackers from
tech giants, such as Google and Meta.

Next we construct a weighted, undirected network of common trackers, where each node represents a
domain and their edges are weighted by the number of shared trackers. This graph is created from a
subset of 7,299 nodes. Analysing this network reveals small-world properties [36] by metrics such as
an average path length of 2,01, diameter of 5 and a density of 0,12. This suggests a few major hubs
influence most of the tracking. An average degree of 872 and weighted average degree of 873 reveals
that most domains are highly interconnected. Finally, the Louvain community detection algorithm [5]
finds 61 communities, of which the 5 biggest communities contain 30% of all domains in the network.

From our findings we can conclude that blocking or disrupting highly connected trackers and tracker
hubs from our network, such as fonts.googleapis.com, may lead to a significant reduction of
cross-site tracking. This gives insight to users on how to mitigate potential tracking of their online
data and regulators on prioritising hub communities of web-trackers.

Because we constructed and analysed the network on a 6% sub-sample, we omitted a large section
of our dataset that may have included rare domain-tracker links, thus potentially introducing a
sampling bias. Another limitation of the research is the non-exhaustive list of trackers. We have
only seemed to find 8,069 tracker domains, which were not all present in the complete raw dataset
of 30 million rows. Finally, static HI'ML scraping, as done in this study, does not capture every
type of tracker loaded onto a website, such as dynamically loaded scripts. These unexplored trackers
may have revealed unique insight.
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6.1 Future work

Future studies will focus on measuring the changes in Dutch (“.nl”) webpages before and after the
introduction of the GDPR in 25 may 2018. This study will crawl historical data from websites (via
the Wayback Machine) and research the change in tracking activity after the GDPR. Through
this research we hope to quantify the impact that the GDPR has had on the Dutch web-tracking
ecosystem and identify potential privacy vulnerabilities that the GDPR does not address.

In addition, we plan to conduct a sectoral analysis of Dutch (“.nl”) domains, exploring different
categories in Dutch web-domains. By gathering data from a variety of sources (list of webshops,
news, government, etc), we can group websites by category and crawl their data to reveal tracking
activity within each group. This research may reveal what type of websites have the highest tracking
activity, informing users to be more careful of certain websites and helping policymakers to target
higher-risk groups.

17



References

1]

2]

[10]

[11]

AddToAny. Addtoany share buttons api. https://www.addtoany.com/buttons/api/, 2025.
Accessed 20 May 2025.

Ivan Bermudez, Daniel Cleven, Ralucca Gera, Erik T Kiser, Timothy Newlin, and Akrati
Saxena. Twitter response to munich july 2016 attack: Network analysis of influence. Frontiers
in big Data, 2:17, 2019.

Nataliia Bielova. Web tracking technologies and protection mechanisms. In CCS ’17: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages
26072609, 2017.

Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swaminathan. Mining
email social networks. In Proceedings of the 2006 international workshop on Mining software
repositories, pages 137-143, 2006.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Ezperiment, 2008(10):P10008, 2008.

Hanjo D Boekhout, Arjan AJ Blokland, and Frank W Takes. Early warning signals for
predicting cryptomarket vendor success using dark net forum networks. Scientific Reports,
14(1):16336, 2024.

Aaron Cahn, Scott Alfeld, Paul Barford, and S. Muthukrishnan. An empirical study of web
cookies. In Proceedings of the 25th International Conference on World Wide Web (WWW
'16), pages 891-901, 2016.

Ismael Castell-Uroz, Josep Solé-Pareta, and Pere Barlet-Ros. Network measurements for web
tracking analysis and detection: A tutorial. IEEE Instrumentation ¢ Measurement Magazine,
23(9):50-57, December 2020.

Danielle Keats Citron and Daniel J. Solove. Privacy harms. Technical Report Legal Studies
Research Paper No. 2021-11

Public Law Research Paper No. 2021-11, GWU Legal Studies, February 2021. Published
in Boston University Law Review, vol. 102, p. 793 (2022). Available at https://ssrn.com/
abstract=3782222 or http://dx.doi.org/10.2139/ssrn.3782222.

Giuditta De Prato and Daniel Nepelski. Global technological collaboration network: Network
analysis of international co-inventions. The Journal of Technology Transfer, 39(3):358-375,
2014.

Disconnect, Inc. License:  Creative  commons  attribution-noncommercial-
sharealike 4.0 international. Licensed under CC BY-NC-SA 4.0; summary at
https://creativecommons.org/licenses/by-nc-sa/4.0/.

18


https://www.addtoany.com/buttons/api/
https://ssrn.com/abstract=3782222
https://ssrn.com/abstract=3782222
http://dx.doi.org/10.2139/ssrn.3782222

[12]

[13]

[21]

[22]

[23]

[24]

David Ediger, Karl Jiang, Jason Riedy, David A Bader, Courtney Corley, Rob Farber, and
William N Reynolds. Massive social network analysis: Mining twitter for social good. In 2010
39th international conference on parallel processing, pages 583-593. IEEE, 2010.

European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such data (General
Data Protection Regulation). Official Journal of the European Union (OJ L 119, 4 May 2016,
pp. 1-88), May 2016.

Maryam Farboodi and Laura Veldkamp. A model of the data economy. Technical Report
Working Paper No. 28427, National Bureau of Economic Research, February 2021.

Ralucca Gera, Ryan Miller, Akrati Saxena, Miguel MirandaLopez, and Scott Warnke. Three is
the answer: Combining relationships to analyze multilayered terrorist networks. In Proceedings
of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining 2017, pages 868-875, 2017.

Global Multimedia Protocols Group. Gmpg — global multimedia protocols group. https:
//gmpg.org/, n.d. Accessed 20 May 2025.

Google. Privacy and data collection. https://developers.google.com/fonts/faq/privacy,
2024. Last updated 23 July 2024; accessed 20 May 2025.

Arjaldo Karaj, Sam Macbeth, Rémi Berson, and Josep M. Pujol. Whotracks.me: Shedding
light on the opaque world of online tracking, 2018.

Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. Browser fingerprinting:
A survey. ACM Transactions on the Web (TWEB), 14(2):1-33, 2020.

Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner. Internet jones
and the raiders of the lost trackers: An archaeological study of web tracking from 1996 to 2016.
In Proceedings of the 25th USENIX Security Symposium, pages 997-1010, Austin, TX, Aug
2016. USENIX Association.

Mariana Macedo and Akrati Saxena. Gender differences in online communication: A case
study of soccer. arXiw preprint arXiw:2403.11051, 2024.

Jonathan R. Mayer and John C. Mitchell. Third-party web tracking: Policy and technology.
In 2012 IEEE Symposium on Securilty and Privacy, pages 413-427, 2012.

Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The graph structure
in the web — analyzed on different aggregation levels. Journal of Web Science, 1:33-47, 2015.

Ryan Miller, Ralucca Gera, Akrati Saxena, and Tanmoy Chakraborty. Discovering and
leveraging communities in dark multi-layered networks for network disruption. In 2018
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pages 1152-1159. IEEE, 2018.

19


https://gmpg.org/
https://gmpg.org/
https://developers.google.com/fonts/faq/privacy

[25]

2]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

[37]

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. In Proceedings of the 7th International World Wide Web
Conference, pages 161-172, Brisbane, Australia, April 1998.

Iskander Sanchez-Rola, Xabier Ugarte-Pedrero, Igor Santos, and Pablo G. Bringas. The web is
watching you: A comprehensive review of web-tracking techniques and countermeasures. Logic
Journal of the IGPL, 25(1):18-29, 2017.

Akrati Saxena, Ralucca Gera, and SRS Iyengar. Estimating degree rank in complex networks.
Social Network Analysis and Mining, 8(1):42, 2018.

Akrati Saxena and SRS Iyengar. Evolving models for meso-scale structures. In 2016 Sth
international conference on communication systems and networks (COMSNETS), pages 1-8.
IEEE, 2016.

Akrati Saxena and Sudarshan Iyengar. Centrality measures in complex networks: A survey.
arXiv preprint arXiw:2011.07190, 2020.

Akrati Saxena, Yulong Pei, Jan Veldsink, Werner van Ipenburg, George Fletcher, and Mykola
Pechenizkiy. The banking transactions dataset and its comparative analysis with scale-free
networks. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, pages 283-296, 2021.

Akrati Saxena, Pratishtha Saxena, Harita Reddy, and Ralucca Gera. A survey on studying
the social networks of students. arXiv preprint arXiv:1909.05079, 2019.

Daniel M Schwartz and Tony Rouselle. Using social network analysis to target criminal
networks. Trends in Organized Crime, 12(2):188-207, 20009.

StatCounter. Statcounter support faq. https://statcounter.com/support/faq/, n.d. Ac-
cessed 20 May 2025.

Zhan Su, Rasmus Helles, Ali Al-Laith, Antti Veilahti, Akrati Saxena, and Jakob Grue Simonsen.
Privacy lost in online education: Analysis of web tracking evolution. In Xiaochun Yang, Heru
Suhartanto, Guoren Wang, Bin Wang, Jing Jiang, Bing Li, Huaijie Zhu, and Ningning Cui,
editors, Advanced Data Mining and Applications, pages 440-455, Cham, 2023. Springer Nature
Switzerland.

unpkg. documentation@14.0.3. https://app.unpkg.com/documentation@14.0.3, n.d. Ac-
cessed 20 May 2025.

Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of “Small-World” Networks.
Nature, 393(6684):440-442, 1998.

Zhiju Yang and Chuan Yue. A comparative measurement study of web tracking on mobile
and desktop environments. Proceedings on Privacy Enhancing Technologies, 2020(2):24-44,
April 2020.

20


https://statcounter.com/support/faq/
https://app.unpkg.com/documentation@14.0.3

	Introduction
	Research Problem

	Related Work
	Measurements and Network Analyses
	Web Tracking Mechanisms and Techniques
	Web-tracking from Privacy and Economic Perspectives

	Dataset
	Gathering Websites
	Finding Trackers
	Processing the Data

	Research Method
	Building the Network
	Analysing Graph Metrics

	Empirical Analysis
	Top Trackers
	Distribution of Trackers
	Network Analysis

	Conclusions
	Future work

	References

