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Abstract

Low-light conditions pose significant challenges for computer vision sys-
tems, particularly in real-time applications such as autonomous vehicles
and visual monitoring systems. While existing deep learning approaches
for low-light enhancement demonstrate high-quality results, they typ-
ically require substantial computational resources that make real-time
processing impractical.

This thesis presents a lightweight, real-time solution for low-light image
and video enhancement based on Retinex theory that addresses the fun-
damental trade-off between enhancement quality and processing speed.
Building upon the KinD++ [51] architecture, we add MobileNet-style
[16] optimizations, including depthwise separable convolutions and chan-
nel width multipliers, to significantly reduce computational complexity
while preserving visual quality. Our approach features a dual-branch net-
work structure for reflectance and illumination processing, using a width
multiplier of 0.5, which results in a lightweight model size with less than
35K trainable parameters and with its compact size, the model achieves
real-time performance of over 80 FPS on GPU hardware, making it suit-
able for real-time low-light enhancement tasks.

We perform comprehensive evaluations using both quantitative metrics
(PSNR, SSIM, LPIPS, Deltak) and qualitative visual analysis. Our exper-
imental results demonstrate that models trained without GAN compo-
nents, particularly using Mutual Input (MI) Loss, outperform GAN-based
variants across most metrics. The proposed method achieves promising
results.

Comparative analysis with state-of-the-art methods shows that our ap-
proach achieves competitive or superior performance on quantitative
metrics while offering significant advantages in computational efficiency
and practical deployment. The solution supports various input sources
including images, video files, and RTSP streams, with a multi-threaded
processing and efficient memory management for continuous video pro-
cessing.

This work demonstrates that high-quality low-light video enhancement
can be achieved in real-time without relying on computationally expensive
architectures, making advanced enhancement capabilities more accessi-
ble for resource-constrained applications where real-time performance is
critical.
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1 Introduction

Computer vision is a field of artificial intelligence that uses machine learning,
deep learning techniques and neural networks to teach computers to see, observe
and get meaningful information from visual inputs like images and videos. Com-
puter vision systems have become an inseparable part of the modern technology
with the applications in many fields. To make accurate decisions and provide
reliable outputs, the quality of the visual input is crucial.

One of the most significant challenges that computer vision systems face is
low-light conditions, where natural or artificial illumination is not sufficient, par-
ticularly in applications that require real-time analysis such as autonomous ve-
hicles and medical imaging. Underexposed frames often suffer from reduced
contrast, high noise levels, and loss of structural detail, which can severely de-
crease the performance of computer vision applications such as object detection
and scene understanding. While low-light image enhancement has been widely
studied, video enhancement in real-time introduces additional complexities, in-
cluding temporal consistency and computational efficiency.

In low-light environments, several factors affect and decrease image quality. The
reduced photon count leads to an increased signal-to-noise ratio (SNR), making
it difficult for sensors to capture weak light signals accurately. This results in
significant noise and artifacts in the captured images. Additionally, color informa-
tion becomes distorted in dark regions, leading to inaccurate color reproduction
and a reduced color range. The dynamic range of the captured images is also
making it challenging to preserve details in both bright and dark regions simul-
taneously.

While low-light image enhancement has been extensively studied, video enhance-
ment presents additional complexities that make it a more challenging problem.
The temporal nature of video requires maintaining visual consistency across
frames while handling motion between them. This becomes particularly difficult
in low-light conditions where longer exposure times are often necessary, leading
to motion blur and the loss of sharpness in moving objects. Furthermore, the
need to process multiple frames per second in real-time adds another layer of
complexity to the enhancement process.

Real-time low-light video enhancement plays a critical role in modern appli-
cations. For instance, in automotive systems, the ability to enhance low-light
video feeds in real-time is crucial for night-time driving assistance, pedestrian
detection, and lane detection. Similarly, in security applications, the capability
to process and enhance low-light video streams without delay is essential for



24 /7 monitoring, threat detection, and real-time alert systems. Medical imaging
applications also benefit from real-time enhancement capabilities, particularly in
surgical guidance, endoscopy, and patient monitoring in low-light conditions.

Current solutions in the field face significant limitations that obstruct their prac-
tical application. Deep learning models, while capable of producing high-quality
enhancements, often require substantial computational resources and memory,
making them unsuitable for real-time processing on standard hardware. There ex-
ists a fundamental trade-off between enhancement quality and processing speed,
where high-quality enhancement methods are typically too slow for real-time pro-
cessing, while faster methods may compromise the quality of the enhancement.
Additionally, hardware constraints in deployment environments, including limited
GPU resources, power consumption considerations, and cost constraints, further
complicate the implementation of real-time solutions.

This thesis proposes a lightweight, real-time solution for low-light image and
video enhancement based on Retinex theory [23]. Building on the baseline
of KinD++ [51], our approach introduces MobileNet-style optimizations [16],
specifically incorporating depthwise separable convolutions to significantly re-
duce computational complexity while maintaining visual quality. Unlike existing
methods, our model is designed with real-time performance in mind, including a
processing pipeline that supports multi-threaded execution for efficient resource
utilization and batch processing for improved GPU throughput. The solution
includes an advanced processing pipeline that utilizes multi-threaded processing
for efficient resource utilization and batch processing for improved GPU utiliza-
tion. The system is designed to support various input sources, including images,
video files and even RTSP streams while providing real-time performance mon-
itoring and error handling.

The proposed solution focuses on enhancing detail preservation in dark regions,
improving color accuracy, and reducing noise and artifacts through efficient
frame-by-frame processing. By optimizing the network design for real-time per-
formance with under 35K parameters and implementing efficient memory man-
agement for continuous video processing, our approach aims to bridge the gap
between high-quality enhancement and real-time processing capabilities by en-
suring high speed which we reached more than 80 FPS. This work aims to make
low-light image and video enhancement more practical and accessible for real-
world applications, particularly in scenarios where real-time processing speed is
crucial for decision making and system response.



1.1 Research Objectives & Questions

Low-light video enhancement presents a major challenge in computer vision ap-
plications such as robotics and autonomous systems, where clarity and visibility
are critical for tasks like object detection, tracking, and navigation. In these sce-
narios, underexposed frames often suffer from reduced contrast, color distortion,
high noise levels, and loss of structural details that severely degrade downstream
performance.

While deep learning-based approaches have achieved impressive results in low-
light image enhancement, many rely on large models or expensive computations,
making them impractical for real-time video processing. Video enhancement also
requires maintaining temporal consistency between frames, which adds further
complexity. Existing methods that offer strong visual results in offline settings
often fall short in real-time applications, especially on resource-constrained plat-
forms such as embedded systems, mobile devices, or live video pipelines.

This thesis aims to address these limitations by proposing a lightweight, real-
time low-light enhancement model tailored for continuous video streams. The
approach builds upon Retinex theory [23], a perceptually grounded model of
human vision, and uses KinD++ [51] as a baseline enhancement method. To
make the architecture suitable for real-time applications, we cooperate with
MobileNet-style optimizations [16], including depthwise separable convolutions
and channel width multipliers, which significantly reduce the number of param-
eters and computational cost. The model is further supported by system-level
improvements such as multithreaded frame handling, batch-based inference, and
runtime memory optimization to meet real-time constraints.

The proposed solution is evaluated using both standard image quality metrics
(PSNR, SSIM, LPIPS) and perceptual comparisons on a benchmark low-light
dataset. Additionally, runtime performance, including speed, memory footprint,
and GPU utilization, is measured to validate its suitability for real-world deploy-
ment.

This research aims to address fundamental challenges in real time low-light en-
hancement by investigating the following research questions:

1. Main Research Question
How can we design computationally efficient network architectures specif-
ically optimized for low-light video enhancement that maintain acceptable
visual quality while achieving real time performance?



2. Research Question 2
How does the inclusion or exclusion of GAN based training affect the
performance and visual quality of low light video enhancement models?

3. Research Question 3
How does our proposed approach compare with existing state-of-the-art
methods in terms of quantitative metrics assessment?

To address these research questions, this study presents a combined method
that brings together Retinex-based image decomposition with lightweight deep
learning techniques. The approach uses the loss functions from KinD++ [51],
which are effective for low-light enhancement, and applies MobileNet style [16]
depthwise separable convolutions to reduce model size and computation. Our
primary objective is to create an efficient network that performs well in real-
time settings while maintaining good visual enhancement quality. Then with
an ablation study that we made where we compare the usage of different loss
functions and inclusion and exclusion of GAN based training we observed the
effects.

1.2 Thesis Organization

This thesis is organized into eight chapters that systematically address the re-
search problem of efficient real time low-light video enhancement. The structure
follows a logical progression from theoretical foundations to practical implemen-
tation and evaluation.

Chapter 2: Related Work introduces existing literature that we have reviewed,
especially the ones that are relevant to our research, providing critical analysis of
current state-of-the-art methods in real time low-light enhancement and identi-
fying gaps that motivate the proposed approach.

Chapter 3: Background provides the technical background to low-light en-
hancement, especially the methods that we used in our thesis. The chapter be-
gins with an examination of some methodological approaches. Additionally, the
chapter covers fundamental deep learning components essential to understand
the proposed approach, including convolutional operations, efficient network ar-
chitectures, training optimizations, and architectural design patterns. The chap-
ter also introduces loss functions, training strategies, and data augmentation
techniques that form the technical background for the methodology.

Chapter 4: Methodology presents the core technical contribution of this the-
sis. The chapter begins with the theoretical framework, covering Retinex theory



[23] and RetinexNet [47] foundations, the role of convolutional neural networks in
image and video enhancement, and the principles of depthwise separable convo-
lutions. It then details the proposed architecture and network structure design.
Implementation details are thoroughly covered, including Sata Preprocessing,
Optimization Configuration, Learning rate scheduling and mixed precision train-
ing. We also cover depthwise separable convolution implementation and width
multiplier optimization techniques.

Chapter 5: Data and Preprocessing describes the datasets used in the study
and the preprocessing pipeline developed to prepare data for training and eval-
uation. This chapter ensures reproducibility by providing detailed information
about data preparation procedures.

Chapter 6: Experiments & Results presents the experimental evaluation
of the proposed method. This chapter includes both quantitative performance
analysis using standard image and video quality metrics and qualitative visual
assessment. The results demonstrate the effectiveness of the proposed approach
in achieving the balance between computational efficiency and enhancement
quality.

Chapter 7: Conclusion synthesizes the key findings of the research, evaluates
the extent to which the research objectives have been achieved, answers of the
research questions and it also discusses the broader implications of the work for
real time video processing applications.

Chapter 8: Future Work identifies potential extensions and improvements to

the current approach, outlining promising directions for continued research in
efficient real time low-light enhancement and related areas.

10



2 Related Work

In this section, we discuss the methods from our literature review on low-light
enhancement of both images and videos. We evaluate them in terms of method-
ologies, supervision types, network architectures, contributions, limitations, and
evaluation metrics.

2.1 Methods Used for Low-Light Enhancement

A wide range of methods, both classical and learning based methods, have been
developed to address low-light conditions in images and videos. Below is an
overview of the foundational approaches that form the basis of most state-of-
the-art methods today.

2.1.1 Histogram Equalization (HE)

Histogram Equalization is one of the simplest and earliest contrast enhancement
techniques. It works by spreading out the most frequent intensity values in an
image, thereby increasing global contrast. This technique assumes that a uniform
distribution of pixel values is visually better, which is often true for natural scenes.
However, it does not consider local context and as a result, it may introduce
noise or distort textures in low-light regions. Even though histogram equalization
was introduced in the early stages of image processing, it is thoroughly explained
in detail in the book by Gonzalez and Woods [10].

2.1.2 Gamma Correction (GC)

Gamma Correction is a nonlinear operation that brightens or darkens an image
based on a specific gamma value. It is particularly useful for adjusting mid-range
brightness levels and is widely used in image processing pipelines, including dis-
play calibration. However, gamma correction requires careful tuning and is typ-
ically applied globally, which may not be ideal for scenes with varying lighting.
Although the concept of gamma like transformations dates back to earlier devel-
opments in photographic science, a detailed explanation of the gamma correction
method in the context of digital imaging is provided in the book by Poynton
[36].

2.1.3 Retinex Theory-Based Methods

Retinex theory [23], which is short for Retina and Cortex, is based on the idea
that an observed image can be separated into reflectance and illumination com-
ponents. The reflectance contains the true color and texture information, while
the illumination varies with lighting conditions. Enhancement is performed by
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estimating and adjusting the illumination while preserving reflectance. This ap-
proach enables selective brightening of dark regions without overexposing bright
ones. It forms the conceptual basis for many modern algorithms, including those
that use learning-based decomposition.

Several methods are built on Retinex theory. For example, Beyond Brighten-
ing (KinD++) [51] separates illumination and reflectance for more targeted en-
hancement and denoising. Meanwhile, Zero-Reference Physical Quadruple Priors
[46] use physical priors and pretrained diffusion models to enable enhancement
without paired data.

2.1.4 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks have become a cornerstone in image processing
tasks due to their ability to learn spatial hierarchies of features [24]. In the
context of low-light enhancement, CNNs are trained to map dark input images
to their well-lit counterparts [30]. They automatically learn filters that enhance
texture, reduce noise, and correct colors, all in one unified framework. CNN-
based models are highly effective and can operate in real time with the right
optimization, making them suitable for both image and video enhancement.

2.1.5 Generative Adversarial Networks (GANs)

Generative Adversarial Networks involve two networks which are a generator
and a discriminator competing in a minimax game [11]. In low-light enhance-
ment, the generator learns to produce enhanced images that appear natural,
while the discriminator evaluates whether an image looks realistic or not. This
setup encourages the model to produce visually pleasing outputs with natural
textures and lighting [3]. GANs are especially useful when training data lacks
exact ground truth, as they can learn enhancement patterns from unpaired data

[19].

Some low-light image enhancement methods utilize Generative Adversarial Net-
works (GANs). EnlightenGAN [19] is the first to apply GANs in an unsupervised
setting, i.e., without paired low-light and normal-light images. However, the
model is large and not suitable for real-time use.

The ImCam framework by Dai et al. [5] combines the Retinex model with GANs
to enhance surveillance images in the wild. It first applies illumination correction,
then uses a GAN for enhancement, improving downstream classification accu-
racy on public surveillance datasets. Despite strong results, its generalizability
beyond surveillance and real time applicability remain uncertain.
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2.1.6 Temporal Models

For video enhancement, maintaining consistency across frames is essential. 3D
CNNs extend standard CNNs into the temporal dimension, allowing the model to
learn spatio temporal features [41]. Recurrent models, such as LSTM or GRU-
based architectures, maintain a memory of previous frames and help smooth
transitions between them. Additionally, optical flow techniques align neighboring
frames before enhancement, reducing motion blur and temporal flickering [2].

2.2 Classical Video Enhancement Methods

Video enhancement studies such as Kim et al. [20] use Kalman filtering and
nonlocal means (NLM) for noise removal, with gamma correction for contrast
enhancement. Their method works directly on CFA raw data, reducing memory
use, but suffers from color over saturation and format limitations.

Ding et al. [6] introduced Sparse Codes Fusion (SCF) for surveillance videos,
which fails under camera motion. Similarly, FACE by Ulhaq et al. [42] works well
in static scenes but degrades under dynamic conditions.

Zhang et al. [50] use progressive fusion for underexposed videos but struggle
with noise artifacts and fast motion. Aydin et al. [1] propose temporally coher-
ent tone mapping yet chrominance handling is limited.

Lee et al. [25] use fuzzy C-means clustering for adaptive contrast enhancement,
but it is sensitive to initial parameters and noise.

2.3 Real Time Based Approaches

Rajan et al. [38] explore privacy-preserving enhancement, combining quality im-
provement with secure video storage. Similarly, real time driving safety is tackled
by Mandal et al. [33] using adaptive gamma correction and bright channel prior,
improving visibility without high computational cost.

BSVD [37] enhances temporal video denoising with bidirectional buffers and
is suitable for online inference. Edge aware frameworks like in [22] perform
lightweight retraining on edge devices to maintain detection accuracy under
environmental changes.

13



2.4 Low-Light Image Enhancement

Autoencoder based LLNet [30] enhances brightness and reduces noise with
stacked sparse denoising layers. LIVENet [32] incorporates atmospheric scat-
tering and texture refinement for real-world low-light conditions.

Zero-DCE [12] and Zero-DCE++ [26] estimate pixel-wise curves without ref-
erence data, offering speed and simplicity however often at the cost of visual
quality.

SCI [31] prioritizes speed and robustness via flexible learning, whereas Staren-
hancer [40] focuses on real time enhancement with minimal latency.

R2RNet [14] decomposes images into illumination, reflectance, and denoising
branches trained on real-world data, performing strongly on downstream tasks
like face detection or object detection.

2.5 Low-Light Video Enhancement

Mandal et al. [33] propose a real-time enhancement framework based on adaptive
gamma correction and bright channel prior, offering fast yet effective enhance-
ment for streaming video. BSVD [37] integrates bidirectional temporal buffers
to denoise low-light video while maintaining temporal coherence for online pro-
cessing. Edge Adaptive [22] combines edge-aware streams with CNNs, enabling
lightweight retraining in adverse video environments such as fog, motion, or ex-
treme low-light. FastLLVE [28] leverages intensity aware lookup tables (IALUT)
with temporal consistency modules to achieve high-quality enhancement at the
fastest inference speeds among LUT-based video methods.

Kim et al. [20] present a classical Kalman filter-based enhancement that pro-
cesses CFA raw video frames with low memory overhead, while Ding et al. [6]
apply sparse code fusion for contextual enhancement in video. FACE [42] intro-
duces a rule-based night vision pipeline with DNN integration for full automation,
and Zhang et al. [50] apply perception-driven fusion strategies for progressive
video enhancement. VLight [53] brings a lightweight CNN solution optimized for
mobile video enhancement with a single tunable parameter for brightness control.

Aydin et al. [1] address temporal coherence explicitly through edge-aware fil-
tering in HDR video tone mapping.

14



2.6 Our Baseline and Approach

A milestone in Retinex-based enhancement is KinD [52] and its improved suc-
cessor KinD++ [51]. KinD++ incorporates structure aware smoothness loss
and layer-wise decomposition to better isolate illumination from reflectance. It
provides significant improvement in both PSNR and perceptual metrics across
multiple datasets and serves as a core baseline in the field.

This thesis adopts KinD++ as our primary methodological foundation, particu-
larly for its illumination-reflectance separation and supervised training strategy.
However, to make our method real time and deployable on edge devices, we
also draw on techniques from MobileNets [16], integrating depthwise separa-
ble convolutions to reduce computational complexity and parameter count. By
combining these techniques, this hybrid approach promises a fast low-light en-
hancement while ensuring speed and preserving image quality.

To sum up, although current state-of-the-art methods demonstrate strong per-
formance in low-light enhancement, they often face trade-offs between compu-
tational efficiency and visual quality. To address this gap and effectively respond
to our research questions, we propose an approach that builds on the KinD++
[51] framework by integrating depthwise separable convolutions inspired by Mo-
bileNets [16]. This combination aims to improve both processing speed and
enhancement quality, facilitating real time deployment without compromising
visual fidelity.

15



Method Architecture | Supervision | I/O Real-time Input Type | Key Feature / Contri-
Type Type Type Suitability bution
EnlightenGAN GAN Unsupervised | Image Low RGB Image First GAN-based unsuper-
[19] vised low-light enhancer
ImCam [5] Retinex + | Supervised Image Low Surveillance Retinex correction + GAN;
GAN RGB improves downstream clas-
sification
Kim et al. [20] Classical /| Supervised Video Medium CFA  Raw | Kalman filtering, gamma
Kalman Data correction, low memory use
Ding et al. [6] Sparse Cod- | Supervised Video Low RGB Video Context enhancement with
ing sparse code fusion (SCF)
FACE [42] Rule-based + | Supervised Video Low RGB Video Fully automated color
DNN night vision pipeline
Zhang et al. [50] Fusion-based Supervised Video Low RGB Video Perception-driven progres-
sive fusion
Aydin et al. [1] Tone  Map- | Supervised Video Medium HDR Video Temporally coherent tone
ping mapping + edge-aware fil-
ter
Lee et al. [25] Contrast Supervised Image Low HSV Image Adaptive partitioning via
Stretching fuzzy C-means
Rajan et al. [38] Classical + | Supervised Video Medium RGB Video Secret sharing + enhance-
Cryptogra- ment for surveillance
phy
Mandal et al. [33] | Classical + | Supervised Video High RGB Frames | Fast enhancement with
Prior adaptive gamma + bright
channel prior
BSVD [37] DNN Supervised Video High RGB Frames | Bidirectional temporal
buffers for online denoising
Edge  Adaptive | CNN + Edge- | Supervised Video High Edge Lightweight retraining on
[22] aware Streams adverse environments
LLNet [30] Autoencoder Supervised Image Medium RGB Image Stacked sparse denoising +
(DNN) adaptive brightening
LIVENet [32] CNN + | Supervised Image Medium RGB Image Scattering model + spatial
Retinex feature transforms
Zero-DCE [12] Curve Esti- | Zero- Image High RGB Image Fast enhancement using
mation Reference deep curve estimation
Zero-DCE++ Curve Esti- | Zero- Image High RGB Image Improved Zero-DCE; faster
[26] mation Reference inference
SCI [31] CNN Supervised Image High RGB Image Fast, flexible, robust en-
hancement for downstream
tasks
Starenhancer [40] | CNN Supervised Image High RGB Image Real-time, style-aware en-
hancement
R2RNet [14] CNN + De- | Supervised Image Medium Real-paired Real-world dataset with
composition RGB three-branch  decomposi-
tion
VLight [53] Lightweight Supervised Video High RGB Frames | Smartphone-optimized;
CNN single parameter control
Beyond Brighten- | Retinex- Supervised Image Medium RGB Image Illumination-reflectance
ing [51] based CNN separation without GT
illumination
Physical  Priors | Diffusion + | Zero- Image Medium RGB Image Quadruple priors + pre-
[46] Priors Reference trained diffusion model
FastLLVE [28] Lookup Table | Supervised Video High RGB Frames | Fastest LUT-based method
(IALUT) with temporal consistency
KinD++ [51] Retinex- Supervised Image Medium RGB Image Structure-aware decompo-
based CNN sition + global adjustment
Our Method Retinex + | Supervised Image / | High RGB Based on KinD++
MobileNet Video Frames framework + depth-
wise separable convo-
lutions to get fast yet
accurate results

Table 1: Comparison of related methods in terms of architecture type, supervision type, target domain, real-
time suitability, input type and key features.
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3 Background

Enhancing low-light images (or videos) is a challenging task due to the complex
interactions between noise, illumination, and reflectance. An ideal enhancement
technique must not only brighten dark regions but also suppress noise, preserve
texture, maintain color accuracy, and avoid overexposure or artifacts. These
competing goals create trade-offs between visual quality and computational ef-
ficiency. Over the years, researchers have developed a wide range of techniques
to address this problem.

In this section, we introduce the components and prior knowledge to the low-
light image and video enhancement, which we are using in our approach.

3.1 Convolutional Neural Networks

Motivation for CNN-Based Low-Light Enhancement

Convolutional Neural Networks (CNNs) have demonstrated strong effectiveness
in low-light image enhancement tasks due to their ability to learn hierarchical
feature representations.

In many enhancement frameworks, CNNs are structured into distinct compo-
nents, such as a decomposition module that separates an image into illumination
and reflectance layers and dedicated enhancement modules that process each
layer independently. This approach is motivated by the understanding that low-
light images typically exhibit two types of degradation: insufficient illumination
and a loss of fine detail.

The Challenge of Traditional CNNs

CNNs have become the standard approach for image enhancement tasks due to
their ability to capture both local and global image patterns. Traditional CNNs
use standard convolutions where each filter processes all input channels simul-
taneously, creating rich feature representations through cross-channel interac-
tions. However, this approach can be computationally expensive and parameter-
heavy, especially for deep networks, making real-time deployment challenging on
resource-constrained devices.

Hierarchical Feature Learning

In the context of low-light image enhancement, our methodology takes advan-
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tage of the power of CNNs through a carefully designed architecture that lever-
ages hierarchical feature extraction. The network employs a progressive learning
approach, where each layer builds upon the representations learned by previous
layers, creating increasingly sophisticated understanding of image content. Early
layers capture low-level features such as edges, textures, and local contrast pat-
terns, while deeper layers learn high-level semantic information about lighting
conditions, material properties, and spatial relationships.

This hierarchical structure is particularly valuable for low-light enhancement be-
cause it allows the network to simultaneously address multiple aspects of image
degradation. Low-level features help preserve fine details and textures that are
often lost in dark conditions, while high-level features enable the network to
understand the global lighting context and make informed decisions about en-
hancement strategies.

The Role of the Separation of lllumination and Reflactance

The decomposition network utilizes convolutional layers to learn the separa-
tion of illumination and reflectance components, a process that is fundamental
to effective low-light enhancement. This separation is motivated by the physical
principles of the Retinex theory, which states that the observed image intensity
is the product of illumination (lighting conditions) and reflectance (intrinsic sur-
face properties). By separating these components, the network can address each
type of degradation independently and more effectively.

Separation is crucial in low-light conditions, both illumination and reflectance
information are compromised, but in different ways. Illumination degradation
occurs as overall darkness and uneven lighting, while reflectance degradation
results in loss of detail, color distortion, and reduced contrast. Traditional end-
to-end enhancement approaches treat these problems as a single optimization
task, often leading to suboptimal results where improving one aspect degrades
the other. Thus, this separation approach allows the network to apply special-
ized enhancement strategies to each component, resulting in more natural and
effective enhancement.

3.2 Retinex Theory and RetinexNet

Our work is based on the Retinex theory, which declares that any image can
be decomposed into two components: reflectance and illumination. The theory's
name comes from the combination of “retina” and “cortex,” emphasizing the
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biological inspiration behind this approach. The Retinex theory, first proposed by
Land and McCann [23], suggests that human color perception is based on three
independent mechanisms: RGB (red, green, and blue) and that the perceived
color of an object is determined by the ratio of light reflected from the object
and the light reflected from surrounding objects. In the implementation, it is
modeled this relationship as:

I=R®L, (1)

where | represents an image, R represents the reflectance component and L rep-
resents the illumination component.

This theory led to the development of RetinexNet, a CNN based model, that has
been introduced in paper Deep Retinex Decomposition for Low-Light Enhance-
ment [47]. RetinexNet extends Retinex theory by learning the decomposition
through deep neural networks, separately enhancing both components and re-
combining them to produce the final enhanced image. The network consists of
three primary components working together in harmony: a decomposition net-
work that separates the input image into its illumination and reflectance com-
ponents, and two specialized enhancement networks that independently process
these components before recombining them to produce the enhanced image.

The original RetinexNet [47] implements the Retinex image formation model by
decomposing a low-light image into reflectance and illumination components us-
ing a deep neural network framework. The model consists of three sub-networks:
Decom-Net, Enhance-Net, and a reconstruction stage.

Decom-Net learns to extract a shared reflectance and separate illumination maps
for the low-light and normal-light input images. The training process enforces a
reflectance consistency loss to ensure the shared reflectance remains the same
across lighting conditions, and a structure-aware total variation loss is applied to
the illumination to encourage smoothness while preserving structural boundaries.

Enhance-Net operates on the illumination map predicted from the low-light im-
age. It employs an encoder—decoder architecture with multi-scale concatenation
to capture both local and global context for effective illumination refinement.
The refined illumination is constrained to the [0,1] range through a sigmoid ac-
tivation.

The reconstruction stage performs element-wise multiplication between the en-
hanced illumination and the original reflectance components, following the Retinex
[23] equation:

EnhancedImage = Enhancedlllumination ® Re flectance. (2)
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This multiplication preserves the physical relationship between the components
while applying the enhancement effects primarily through illumination adjust-
ment.

The total loss function combines the reconstruction loss, reflectance consis-
tency loss, and the structure-aware smoothness loss to guide the decomposition
and enhancement networks.

Below in Figure 1, the RetinexNet framework that proposed in paper Deep
Retinex Decomposition for Low-Light Enhancement [47] can be seen.

Decompasition Adjustment Reconstruction

Denoising Operation
Rnarmal

Conv + RelU
Conv + RelU

<+ Share weight

[Jaw =—p Skip Connection

Figure 1: The proposed framework for RetinexNet from the paper [47]. The
enhancement process has three steps. The decomposition step decomposes
the input image into reflectance and illumination. Then an encoder-decoder
based Enhance-Net brightens up the illumination. Multi-scale concatenation
is introduced to adjust the illumination from multi-scale perspectives. Final
step is the reconstruction of the adjusted illumination and reflectance to get
the enhanced result.

3.3 KinD+4+4

KinD++ [51] is an advanced low-light image enhancement framework that builds
upon Retinex theory [23], incorporating a refined decomposition and reconstruc-
tion architecture. The framework is designed around three core stages, decom-
position, enhancement and reconstruction.

The process begins with a Layer Decomposition network, which takes a low-

light image and separates it into its reflectance and illumination components,
following the Retinex theory. This network is trained to learn the intrinsic struc-
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tural and lighting components of the image by convolutional layers.

The reflectance branch further processes the extracted reflectance using a series
of convolutional and residual blocks. These layers are designed to preserve de-
tailed textures and suppress noise, which is common in low-light images. Residual
connections ensure stable learning, also ensuring that critical details of the scene
are preserved.

The illumination branch enhances the illumination component through convo-
lutional layers designed to improve brightness and contrast while maintaining
spatial smoothness. Structure aware total variation loss is employed to preserve
edge information and prevent artifacts in the illumination map.

In the reconstruction stage, the refined reflectance and illumination maps are
recombined using element-wise multiplication:

EnhancedImage = Enhancedlllumination ® Reflectance. (3)

To handle both global and local features effectively, KinD++ integrates multi-
scale processing, enabling the network to respond to varying feature sizes and
illumination levels.

Throughout the architecture, multiple loss functions are strategically integrated
to the training process. These include reconstruction losses that ensure the en-
hanced image resembles the ground truth, decomposition consistency losses that
maintain Retinex theory compliance, and perceptual losses that ensure visual
quality.
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Below in Figure 2, the framework of Kind++ [51] can be seen.

Conv&RelU 12
Conv&ReLU 64

Conv&RelU 12

Figure 2: The network architecture of KinD++. Two branches from the
input image are the reflectance and illumination. The model is divided into
three modules, layer decomposition, reflectance restoration, and illumination
adjustment. ® is the element-wise multiplication. The digits are channel
numbers

3.4 Fundamental Deep Learning Components

In this section we introduce the fundamental deep learning components that are
necessary to understand our work.

3.4.1 Convolutional Operations

Kernel Size and Filters

Convolutional Neural Networks (CNNs) operate by applying learnable filters,
which are known as kernels, in input images to extract hierarchical features.
These filters slide over local regions, allowing the network to detect patterns
such as edges, textures, and more complex structures at deeper layers. Typi-
cal kernel sizes are 3x3, 5x5 and 7x7, with the 3x3 kernel being the most
widely adopted due to its balance between computational efficiency and rep-
resentational capacity. Stacking multiple layers of smaller kernels, particularly
3% 3, effectively increases the input region while keeping parameter counts and
computational costs low.

Convolution Types
Standard convolutions apply a set of filters across all input channels simulta-

neously, producing output feature maps that integrate both spatial and channel
wise information. This operation enables the network to model complex spatial
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dependencies and textures, which is particularly crucial for tasks like low-light
image and video enhancement. In such contexts, capturing subtle gradients and
fine grained structural details can significantly influence the restoration qual-
ity. Variants of standard convolution, such as depthwise separable and dilated
convolutions, have also been introduced to reduce computation or expand input
regions, but standard convolution remains a foundational operation for captur-
ing dense local features in early and intermediate layers of enhancement models.
These convolution types are introduced in paper by LeCun et al. [24] in details.

3.4.2 Network Architectures

Depthwise Separable Convolutions
Our methodology incorporates MobileNet style [16] depthwise separable con-
volutions as a key architectural innovation to improve computational efficiency
while maintaining enhancement quality.

This approach factorizes the standard convolution operation into two separate
steps: a depthwise convolution that performs lightweight filtering, and a point-
wise convolution that combines the filtered outputs. The depthwise convolution
applies a single filter to each input channel independently, significantly reducing
computational complexity compared to standard convolutions. This is followed
by a pointwise convolution (1x1 convolution) that creates new features by com-
puting linear combinations of the depthwise convolution outputs.

This factorization dramatically reduces the number of parameters and compu-
tational operations required, making the network more efficient without signif-
icantly compromising its enhancement capabilities. The reduction in computa-
tional complexity is particularly beneficial for real world applications where pro-
cessing resources may be limited. The use of depthwise separable convolutions
throughout the network’s architecture enables the development of a lightweight
yet effective solution for low-light image enhancement.

The theoretical framework thus combines classical image processing theory with
modern deep learning techniques, creating a robust and efficient architecture
for low-light image enhancement. This integration of Retinex theory, CNNs, and
efficient convolution operations provides a solid foundation for addressing the
challenges of low-light image enhancement while maintaining computational ef-
ficiency.

Depthwise separable convolutions offer a more efficient alternative to standard

convolutions. That convolutions consist of two operations, depthwise convolu-
tion that applies a single filter per input channel and pointwise convolution that

23



uses 1x1 convolutions to combine the outputs of the depthwise convolution.

The computational complexity of depthwise separable convolutions is signifi-
cantly lower than standard convolutions, standard convolution’'s computatonal
complexity is calculated as:

Dk X Dkx M x NxDf xDf (4)

and depthwise separable convolution's computational complexity is calculated
as:
DkxDkxMxDfxDf+MxNxDfxDFf, (5)

where, Dk represents kernel size, M represents input channels, N represents out-
put channels and Df represents the feature map size.

Width Multiplier

The width multiplier a is a hyperparameter introduced to scale the number of
channels in a neural network, providing flexible control over the model's capacity
and computational complexity. By adjusting «, the number of channels in each
layer can be proportionally reduced or expanded, effectively modifying the net-
work’s size, speed, and memory footprint. For instance, setting o = 0.5 reduces
the number of channels by half compared to the baseline architecture, signifi-
cantly decreasing the number of parameters and floating-point operations.

This trade-off allows practitioners to tailor model architectures to meet the
constraints of specific deployment environments, such as mobile or real-time
systems, where computational resources are limited. Such configurations are
particularly advantageous in real time or limited resourced environments, where
speed and memory efficiency are critical.

3.4.3 Training Optimizations

Mixed Precision Training

As introduced in paper Mixed Precision Training [34], mixed precision train-
ing uses both 16-bit (half precision) and 32-bit (single precision) floating-point
representations during training. This reduces memory usage by 50% and ac-
celerates training on modern GPUs while maintaining model accuracy through
gradient scaling.
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Gradient Scaling
Prevents gradient underflow in mixed precision training by scaling loss values
before backpropagation, then restoring the original scale gradients before opti-
mizer updates. [34]

Batch Normalization

Batch Normalization, introduced by loffe and Szegedy [17], is a technique de-
signed to address the problem of internal covariate shift during training of deep
neural networks. As the distribution of activations changes across mini-batches
during training, the inputs to each layer may shift unpredictably, making learning
slower and more unstable.

To reduce these slowness and instability, Batch Normalization normalizes the
inputs of each mini-batch to have zero mean and unit variance, followed by a
learnable scaling and shifting operation. This stabilizes the input distribution
throughout the network, allowing for higher learning rates, faster convergence,
and improved generalization. It has become a standard component in modern
deep learning architectures because of its effectiveness and simplicity.

3.4.4 Architectural Design Patterns

Residual Connections

Residual connections, introduced by He et al. in the ResNet architecture [15], are
skip connections that enable the construction and training of very deep neural
networks. They address the degradation problem, where deeper models begin to
perform worse than shallower ones, not due to overfitting or vanishing gradients,
but due to optimization difficulties.

Instead of directly learning a mapping H (z), the network learns a residual func-
tion F(x) := H(x) — z, and reformulates the original mapping as:

y=F(x)+w, (6)

where F(z) is the residual mapping to be learned and x is the identity input
passed through a shortcut connection. This allows the network to learn easier
and identity mappings and accelerates convergence, enabling the training of net-
works with hundreds or even thousands of layers.

Multi-Scale Processing

Uses parallel convolution branches with different kernel sizes, 3x3, 5x5, 7x7,
to capture features at multiple scales, then combines outputs for more compre-
hensive feature representation.
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Encoder-Decoder Architecture

A symmetric network structure consisting of two main parts: the encoder, which
progressively reduces the spatial dimensions of the input while increasing the
feature depth to extract high level representations; and the decoder, which re-
constructs the output by gradually increasing spatial resolution, aiming to recover
the original input dimensions or generate a desired output.

3.5 Loss Functions and Training Strategies

3.5.1 Reconstruction Losses

L1 Loss (Mean Absolute Error)

The L1 Loss, also known as Mean Absolute Error (MAE), is a fundamental loss
function used in image processing and computer vision tasks. It measures the
absolute difference between predicted and target images.

L1 = (1/N) « X|I_pred(i, j) — I target(i, j)] (7)

where |_pred stands for the predicted/estimated image from the model, | _target
is the ground truth /target image, N is the total number of pixels (width x height
x channels), (i,j) states the pixel coordinates, the summation is over all pixels
and L1 is the resulting loss value.

lllumination Smoothness Loss

The lllumination Smoothness Loss is designed to ensure that the estimated
illumination map is spatially smooth and natural looking. It prevents the illumi-
nation map from having sharp, unrealistic transitions that would create artifacts
in the final enhanced image.

[llumination Smoothness Loss encourages spatial smoothness in illumination
maps using total variation:

Lsmooth = |Vx[’ + ’vy[‘a (8)

where, Vx | is the gradient of image | in the x-direction (horizontal), Vy | is the
gradient of image | in the y-direction (vertical) and L_smooth is the resulting
smoothness loss.

Gradient (V) represents the rate if change of pixel values. Vx represents how
much of pixel values change from left to right (horizontal) while Vy represents
how much pixel values change from top to bottom (vertical).
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3.5.2 Adversarial Losses

Generative Adversarial Networks (GANs) consist of two neural networks: a Gen-
erator G and a Discriminator D, engaged in a two-player minimax game. The
optimizing function that introduced in paper [11], their interaction is:

minmax V(D, G) = Eprpy, (@) [l0g D(2)] + Eenp. (o) [log(1 = D(G(2)))] (9)
where,  ~ pgaa(): samples drawn from the real data distribution, z ~ p,(z):
samples from the prior noise distribution (e.g., Gaussian or uniform), D(x): the
discriminator’s predicted probability that x is real, D(G(z)): the discriminator’s

predicted probability that the generated data are real.

Discriminator Loss The discriminator is trained to maximize this, which in
other words minimizing the following binary cross-entropy loss:

Lp = ~Eqpyue) 08 D(@)] — Bavy oy llog(1 - D(G(2)))]  (10)

This loss encourages the discriminator to assign high confidence to real data
and low confidence to generated data.

Generator Loss The generator aims to fool the discriminator by generating
samples that are classified as real. In the original form, this corresponds to min-
imizing:

L = Eunp.o llog(1 —~ D(G(2)))] (11)

However, this form may lead to vanishing gradients in the early training stages
when D(G(z)) is close to zero.

3.5.3 Consistency Losses

Equal Reflectance Loss

Equal Reflectance Loss makes sure that reflectance components to be similar
between low-light and normal-light image pairs by comparing the distance:

Lrefl - ||R|ow - Rnorma|||7 (12)

where, Rjo, is the reflectance map extracted from the low-light image using the
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decomposition network and R,omal is the reflectance map extracted from the
normal-light image.

Mutual Hlumination Loss

Mutual lllumination Loss ensures illumination consistency across related images
by comparing the distance:

Lillum - ||I|ow - ]norma|||7 (13)

where, [y, is the illumination map extracted from the low-light image and /,,oymal
is the illumination map extracted from the normal-light image.

3.6 Data Augmentation and Preprocessing

Spatial Augmentations
Random crops, horizontal flips, and rotations (0°, 90°, 180°, 270°) increase
dataset diversity and model robustness.

Tensor Preprocessing
Images or frames are normalized to [0,1] range and converted to CHW format
(Channels, Height, Width) for efficient GPU processing.

Multi-threaded Data Loading

Parallel data loading with configurable worker threads to prevent |/O bottlenecks
during training.
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4 Methodology

In this section, we introduce our methodology of our Retinex-based implemen-
tation in details. Our approach for video processing is that we adopt a frame-
by-frame approach where videos are decomposed into their frames, with each
frame processed through our enhancement model as if it were an image. This
methodology ensures that every frame receives the same level of enhancement
quality as individual images, maintaining consistency across the entire video se-
quence. After processing, the enhanced frames are reassembled to reconstruct
the complete enhanced video, preserving the original temporal structure while
significantly improving visual quality. This approach leverages the proven effec-
tiveness of our image enhancement architecture for video applications without
requiring specialized video processing components or temporal modeling.

4.1 Thoretical Framework
4.1.1 Ouwur Framework

Our aim for our model is to enhance low-light visual data in real time. The
input to the system is a low-light RGB image or video frame, represented as
a 3-channel tensor with pixel intensities in the range [0,1]. The output is an
enhanced RGB image or frame of the same resolution, with improved bright-
ness, contrast, and detail preservation. The system operates under a supervised
learning framework, where paired low-light and high-light images are used during
training. The model is trained to minimize reconstruction and consistency losses
that ensure visual quality and accuracy based on Retinex decomposition.

Our work is based on the Retinex theory, RetinexNet and KinD++4, which we
have already introduced and explained in Section 3.2 and Section 3.3.

Our proposed framework extends the original approach with several key inno-
vations that significantly enhance computational efficiency while maintaining
theoretical consistency. The algorithm introduces a width multiplier parame-
ter (a € [0.5,1.0]) that enables scalable deployment across different compu-
tational budgets, allowing the network to adapt from mobile devices to high-
performance systems. The decomposition network maintains the same three-
stage structure but incorporates MobileNet [16] style optimizations throughout.
The encoder begins with a standard convolutional layer (3 — 32«) followed by
three depthwise separable convolution layers that progressively increase channel
depth (320 — 64 — 128cx — 128a). Depthwise separable convolutions sig-
nificantly reduce computational complexity compared to standard convolutions,
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while maintaining feature extraction capability. These convolutions decompose
the standard convolution operation into two steps: a depthwise convolution that
processes each input channel independently, followed by a pointwise convolution
that combines the results.

Then we adopt and extend several loss functions from KinD-++ to ensure decom-
position consistency such as the Equal Reflectance Loss that ensures reflectance
consistency between low-light and high-light versions of the same scene, Mutual
[llumination Loss that maintains illumination consistency across different light-
ing conditions, Mutual Input Loss that preserves consistent input differences
across different lightning coniditions and Decomposition Consistency Loss that
enforces the physical constraint that reconstructed images should match the
original inputs. In Section 6, we present a comparison of the effects of using
each loss function individually and in combination. This helps us understand
how each component contributes to the final result and determine which com-
bination works best for enhancing low-light images.

We use the depthwise separable convolutions from MobileNet [16] Architec-
ture to make our model faster by reducing the computational complexity. We
also employ width multiplier from MobileNet architecture for ensuring scalable
deployment. In Section 6, our benchmark results with different width multipliers
can be seen.

When enhancing a low-light video, we take each frame of the video, enhance
each frame with our model and then reassemble the video with the enhanced
frames. Video Enhancement Pipeline is illustrated below in Figure 3.

. 1 [ i ] { Enhance Each Frame Reassemble Enhanced Frames
e J { into Frames, ’ [ (RetinexNet) H into Video H i Ea s e

Figure 3: The input video is split into frames, each frame is enhanced by
our model, and then the enhanced frames are reassembled into the output
video.

The dual decoders follow a similar optimization strategy, employing depthwise
separable convolutions for the majority of layers (128 — 64cc — 32a) before
transitioning to standard convolutions for the final output layers. The reflectance
decoder includes an additional intermediate layer (32cc — 16cv) before the final
1x1 convolution that produces the 3-channel reflectance map. The illumination
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decoder follows an identical structure but outputs a single-channel illumination
map. Both decoders maintain sigmoid activation to ensure output constraints.

A significant departure from the original algorithm is the introduction of dual en-
hancement networks that process both illumination and reflectance components
independently. The illumination enhancement network employs a delta-based
approach, where the network learns to predict an enhancement delta (A7) that
is added to the original illumination before applying sigmoid activation:

I _enhanced = o(I + Al). (14)

This residual learning strategy improves training stability and convergence com-
pared to direct prediction. The network consists of an initial convolutional layer
(1 — 32a) followed by five residual blocks, each containing depthwise separable
convolutions with batch normalization and RelLU activation.

The reflectance enhancement network is one of our contributions, as the original
RetinexNet did not enhance the reflectance component. This network processes
the 3-channel reflectance through an initial convolutional layer (3 — 32«) fol-
lowed by five multi-scale processing blocks. Each multi-scale block employs paral-
lel depthwise separable convolutions with different kernel sizes (3x3,5x5,7x7)
to capture features at multiple scales, enhancing the network's ability to preserve
fine details and textures. The outputs of these parallel branches are averaged
and combined with the input through a residual connection, followed by batch
normalization and RelLU activation.

The reconstruction stage performs element-wise multiplication between both
enhanced components:

EnhancedImage = Enhancedlllumination ® EnhancedRe flectance.
(15)
This approach provides greater control over the enhancement process and allows
for more sophisticated enhancement strategies that can address both lighting and
detail preservation simultaneously.

The training process uses loss functions that extends beyond the original for-
mulation to ensure both enhancement quality and theoretical consistency. The
primary reconstruction loss measures the ¢, distance between the enhanced out-
put and the high-quality ground truth. The smoothness loss penalizes spatial
gradients in the illumination map to maintain natural lighting transitions. The
equal reflectance loss enforces consistency between reflectance components ex-
tracted from low-light and high-light versions of the same scene, preventing
unrealistic reflectance modifications. The construction loss ensures consistency
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between the enhanced components and the final reconstructed output. The to-
tal loss combines these components with carefully tuned weights to balance the
various objectives. We also use standard loss functions that are commonly used
in image enhancement, Reconstruction Loss that ensures the enhanced image
macthes the ground truth, and Smoothness Loss that regularizes the smooth-
ness of the illumination maps.

The algorithm's efficiency improvements are substantial, with parameter counts
ranging from approximately 12K (for a = 0.25) to 100K (for a = 1.0) depend-
ing on the width multiplier a;, compared to the original RetinexNet's ~200K
parameters. This reduction is to enable the real-time performance (greater than
30 FPS on GPU) while maintaining or even improving enhancement quality.
The combination of depthwise separable convolutions, width multiplier scaling,
and enhanced loss functions creates a strong framework approach for low-light
enhancement that is both theoretically sound and practically efficient.
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Below in Figure 4, our proposed framework can be seen.
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Decomposition Network Enhancement Networks

Figure 4: Our proposed framework. The model is composed of a Decom-
position Network and two parallel Enhancement Networks. The Decompo-
sition Network separates the input image into reflectance and illumination
components using depthwise separable convolutions, a width multiplier «,
and sigmoid activations. The reflectance and illumination maps are then
independently enhanced using distinct multi-scale and residual block-based
networks. The final enhanced image is reconstructed through element-wise
multiplication of the enhanced components. The training is guided by mutual
input loss, illumination smoothness loss, and reconstruction loss to ensure
detail preservation and perceptual quality under low-light conditions.

4.1.2 Network Structure

Our proposed lightweight RetinexNet architecture consists of three main com-
ponents, Decomposition Network, Illumination Enhancement Network and Re-
flectance Enhancement Network.

Decomposition Network

Our Decomposition Network takes low-light image with three channels as in-
put and gives an illumination map with one channel and a reflectance map with
three channels as output. The architecture of this network is an encoder-decoder
structure with depthwise separable convolutions. Key features we have in this
network are, a width multiplier for flexible model size, mixed precision training
support, batch normalization and ReLU activation function.
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lllumination Enhancement Network

Our lllumination Enhancement Network takes Illlumination map from decompo-
sition network as the input and gives the enhanced illumination map as the out-
put. The architecture of this network is residual blocks with depthwise separable
convolutions. Key features we have in this network are, multiple enhancement
blocks, skip connections for better gradient flow and adaptive illumination ad-
justment.

Reflectance Enhancement Network

Our Reflectance Enhancement Network takes Reflectance map from decomposi-
tion network as the input and gives the enhanced reflectance map as the output.
The architecture of this network is multi-scale processing blocks. Key features
we have in this network are, parallel processing of different scales, feature fusion
for better detail preservation and color consistency maintenance.

4.1.3 Convolutional Neural Networks

The enhancement networks employ specialized convolutional architectures tai-
lored to their respective tasks, each designed to address the unique challenges
of their specific enhancement goals.

lHlumination Enhancement Network focuses on adjusting lighting conditions
while preserving spatial coherence. It employs a delta-based enhancement strat-
egy where the network learns to predict enhancement adjustments (A7) rather
than absolute values. This approach is implemented through residual blocks with
depthwise separable convolutions, which are particularly effective for illumination
enhancement because they can capture both local lighting variations and global
lighting trends. The residual learning strategy

(I_enhanced = o(I + AI)) (16)

ensures that the network can make both subtle and significant lighting adjust-
ments while maintaining training stability.

Reflectance Enhancement Network is designed to preserve and enhance ma-
terial properties, focusing on detail preservation and noise reduction. It employs
multi-scale processing blocks that use parallel convolutions with different kernel
sizes (3x3, 5x5, 7x7) to capture features at multiple spatial scales simultane-
ously. This multi-scale approach is crucial for reflectance enhancement because
it allows the network to preserve fine details (captured by small kernels) while
understanding broader material patterns (captured by larger kernels). The par-
allel processing ensures that information at all scales is preserved and enhanced
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appropriately.

Our methodology addresses the limitation we have introduced in section 3.1,
by leveraging depthwise separable convolutions, which decompose the standard
convolution operation into two efficient steps: a depthwise convolution that pro-
cesses each input channel independently, followed by a pointwise convolution
that combines the results. This optimization reduces computational complexity
by approximately 60% while maintaining feature extraction capability, enabling
real-time performance without sacrificing enhancement quality.

Our network architecture incorporates modern CNN design principles such as
skip connections and multi-scale processing, which are essential for effective im-
age enhancement. Skip connections enable the network to maintain fine details
by providing direct pathways for low-level features to reach deeper layers, pre-
venting the loss of important information that often occurs in deep networks.
This is particularly important for low-light enhancement, where preserving fine
details is crucial for natural-looking results.

Multi-scale processing allows the network to simultaneously consider informa-
tion at different spatial scales, which is essential for understanding both local
details and global image structure. This capability is implemented through the
multi-scale blocks in the reflectance enhancement network and the hierarchical
structure of the decomposition network. The design ensures that the network can
make informed enhancement decisions based on both local context (important
for detail preservation) and global context (important for lighting consistency).

The architecture also ensures end-to-end trainability, allowing all components to
be optimized jointly for optimal performance. This joint optimization is crucial
because the decomposition and enhancement processes are interdependent - the
quality of decomposition affects enhancement results, and enhancement quality
influences decomposition accuracy. The comprehensive loss function, which in-
cludes reconstruction loss, smoothness loss, equal reflectance loss, and construc-
tion loss, ensures that all components work together harmoniously to achieve
the best possible enhancement results.

This carefully designed architecture represents a significant advancement in low-
light image enhancement, combining the theoretical foundations of Retinex the-
ory with modern deep learning techniques to create a robust, efficient, and
effective enhancement system.

35



The learning process is guided by the network’s ability to understand local and
global image contexts through its hierarchical structure like we explained in sec-
tion 3.1. Local context helps the network identify fine details and textures in
the reflectance component, while global context enables understanding of light-
ing patterns and spatial relationships in the illumination component. This dual
understanding is essential for accurate decomposition and subsequent enhance-
ment.

4.1.4 Loss Functions

The training process employs comprehensive loss functions to make ablation
study from the loss functions, used in standard methods but especially used
in KinD-++ [51] which are highly promising, that extends beyond the original
formulation to ensure both enhancement quality and theoretical consistency.
The primary reconstruction loss measures the ¢; distance between the enhanced
output and the high-quality ground truth. The smoothness loss penalizes spa-
tial gradients in the illumination map to maintain natural lighting transitions.
The equal reflectance loss enforces consistency between reflectance components
extracted from low-light and high-light versions of the same scene, preventing
unrealistic reflectance modifications. The construction loss ensures consistency
between the enhanced components and the final reconstructed output. The total
loss combines these components with carefully tuned weights (Asmooth = 0.01,
Aequal = 0.009, Aconstruction = 0.1) to balance the various objectives.

We experimented with different loss function combinations to understand their
individual contributions to ensure we use the best one/ones for both enhance-
ment quality and adherence to Retinex theory principles. We talk in details about
the results and which loss functions we used in final in the section 6. The total
loss function combines several specialized terms, each addressing specific as-
pects of the low-light enhancement task.

Reconstruction Loss

The primary supervision signal is provided by the L1 reconstruction loss, which
measures the pixel-wise difference between the enhanced image and the ground
truth:

Lrecon = H[enhomced - [high‘ ‘1 (17>

where Ioppanced represents the network output and Ij;g, is the corresponding
high-quality ground truth image.

Decomposition Consistency Loss
To ensure adherence to Retinex theory, we enforce that the decomposed com-
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ponents can accurately reconstruct both the input and target images:
Ldecomp - ||R ® I — Ilow”l + ||R 0%y Ienhanced - Ihigh“l (18)

where R represents reflectance, I denotes illumination, I.,nanceq is the enhanced
illumination, and ® indicates element-wise multiplication.

Equal Reflectance Loss
This constraint enforces the assumption that reflectance properties remain con-
sistent across different lighting conditions:

Lequal,refl = HRlow - Rhigh| ’1 (19>

where Rjo, and Ry, are the reflectance components extracted from low-light
and high-light image pairs, respectively.

Mutual lllumination Loss
Measures consistency between input image pairs to preserve original image re-
lationships, we implement:

Lunutuat ittum = || Tiow — Ihign |1 (20)

This term helps the network learn proper illumination relationships across the
dataset.

Smoothness Regularization
Spatial smoothness in illumination maps is enforced through gradient-based reg-
ularization:

Lsmooth = Z(lvxl(ﬂ%y)‘ + \Vy[(m,y)D (21)
Z,y
This prevents artifacts and maintains natural illumination transitions.

Adversarial Loss (Optional)
When GAN training is enabled, an additional adversarial loss using binary cross-
entropy improves perceptual quality:

Ladv = E[lOg D([high)] + E[log(l - D([enhanced))] (22)
where D represents the discriminator network.
Total Loss Formulation
The final loss function combines all terms with carefully tuned weights:
Ltotal = )\1Lrecon + )\2Lsmooth + >\3Lequal,refl + >\4Lmutual,illum + )\5Ladv (23>
where the weights are set to A\ = 1.0, Ay = 0.01, A3 = 0.01, \y, = 0.01, and
A5 = 0.001 (when GAN training is enabled).
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4.1.5 Width Multiplier

The width multiplier implementation introduces a flexible scaling mechanism
that allows for dynamic adjustment of the network’s capacity and computational
requirements. This implementation involves multiplying the number of channels
in each layer by a scaling factor a;, where 0 < o < 1. The width multiplier affects
all layers uniformly, including both the depthwise and pointwise convolutions in
the depthwise separable convolution blocks. The implementation maintains the
architectural integrity while reducing the model's complexity proportionally. The
width multiplier is implemented in a way that preserves the relative proportions
of feature channels across different layers, ensuring that the network maintains
its ability to learn hierarchical features effectively. The implementation includes
proper handling of channel dimensions to ensure compatibility with subsequent
layers and operations, particularly in cases where the number of channels needs
to be rounded to the nearest integer.

4.1.6 Mixed Precision Training

The implementation of mixed precision training in our architecture represents a
sophisticated approach to optimizing both training speed and memory efficiency.
This implementation utilizes a combination of FP16 (16-bit floating point) and
FP32 (32-bit floating point) precision levels, where the majority of the network
operations are performed in FP16 while maintaining certain critical operations
in FP32. The implementation includes a dynamic loss scaling mechanism that
automatically adjusts the scaling factor to prevent underflow in the FP16 com-
putations. The forward pass is primarily executed in FP16, with careful handling
of the activation functions to prevent numerical instability. The backward pass
and weight updates are performed in FP32 to maintain training stability and
accuracy. The implementation includes proper handling of batch normalization
layers, where the running statistics are maintained in FP32 to ensure numerical
stability. The mixed precision training implementation also incorporates gradient
clipping and proper initialization strategies to prevent training divergence. The
implementation is designed to be compatible with modern hardware accelerators
that support mixed precision operations, particularly NVIDIA GPUs with Tensor
Cores. This approach results in significant memory savings and computational
speedup while maintaining the model’'s accuracy and training stability.
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4.2 Implementation Details

The training process incorporates several optimization strategies to ensure ef-
fective learning and model convergence.

4.2.1 Data Preprocessing and Augmentation

Input images are pre processed by resizing to 256 x256 pixels and normalizing
to the [0,1] range. Data augmentation techniques enhance training diversity
through random cropping to the target resolution, horizontal flipping with 50%
probability and random rotation among {0°, 90°, 180°, 270°}

4.2.2 Optimization Configuration

The network is optimized using the Adam optimizer [21] with the following
hyperparameters learning rate @ = 0.0002, momentum parameters 5; = 0.9,
By = 0.999, batch size = 16 and training epochs = 100.

4.2.3 Learning Rate Scheduling

A ReduceLROnPlateau scheduler monitors validation loss and reduces the learn-
ing rate by a factor of 0.5 when the loss plateaus for 5 consecutive epochs. This
adaptive scheduling enables fine-tuning in later training stages and helps achieve
better convergence.

4.2.4 Mixed Precision Training

To improve computational efficiency and reduce memory usage, we employ Py-
Torch’s Automatic Mixed Precision (AMP) training. This technique uses FP16
precision for forward passes and FP32 precision for gradient computation, main-
taining numerical stability while accelerating training.

4.2.5 Model Selection and Validation

Training progress is monitored through comprehensive validation after each
epoch. The model with the lowest validation loss is selected as the final model,
ensuring optimal generalization to unseen data. Key metrics tracked include re-
construction loss, individual component losses (smoothness, equal reflectance,
mutual illumination), adversarial loss (when GAN is in use).

The implementation ensures reproducibility through fixed random seeds across
all components, automatic device selection (GPU when available, CPU fallback),
regular checkpoint saving for training resumption, comprehensive logging and vi-
sualization of training metrics.
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4.2.6 Retinex Implementation

The RetinexNet class we implemented represents a comprehensive neural net-
work architecture designed for low-light image enhancement, based on the foun-
dational Retinex theory [23]. This architecture is implemented as a PyTorch
module, which enables effortless integration with PyTorch's deep learning frame-
work and automatic differentiation system.

The network’s constructor accepts two crucial parameters that define its ar-
chitecture characteristics. The width multiplier parameter, defaulting to 1.0,
serves as a network-wide multiplier that controls the model's capacity by ad-
justing the number of channels throughout the network. This multiplier enables
flexible scaling of the model's size and computational requirements. The num-
ber of enhance blocks parameter, defaulting to 5, determines the depth of the
enhancement networks by specifying the number of enhancement blocks to be
used, allowing for adjustable computational complexity and enhancement capa-
bility.

The implementation of the Retinex theory in our architecture follows a system-
atic approach that decomposes the input image into its fundamental compo-
nents. The decomposition network employs a series of convolutional layers with
carefully designed kernel sizes and activation functions to separate the illumi-
nation and reflectance components. The decomposition network employs four
convolutional layers with 3x3 kernels for spatial feature extraction. The first
layer uses standard convolution, followed by three depthwise separable convolu-
tion layers to efficiently increase channel dimensions. Each convolutional layer
is succeeded by a ReLU activation function, which introduces non-linearity and
ensures the non-negativity of the output, a crucial requirement for both illumi-
nation and reflectance maps.

4.2.7 Depthwise Separable Convolution Implementation

The implementation of depthwise separable convolutions in our architecture rep-
resents a significant optimization in terms of computational efficiency and model
complexity. This implementation decomposes the standard convolution opera-
tion into two distinct steps: depthwise convolution and pointwise convolution.
The depthwise convolution applies a single convolutional filter per input channel,
effectively performing spatial filtering while maintaining channel independence.
This is followed by a pointwise convolution, which employs 1x1 kernels to com-
bine the features across channels. The mathematical formulation of this process
can be expressed as follows: for an input tensor of size (H, W, C.in) and an
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output tensor of size (H, W, C_out), the depthwise separable convolution re-
duces the number of parameters from (K x K x C.in x C_out) to (K x K
x C.in + C.in x C_out), where K represents the kernel size. This reduction
in parameters leads to a significant decrease in computational complexity while
maintaining the network's representational capacity. The implementation relies
on PyTorch’s default weight initialization, which provides stable training per-
formance. Additionally, batch normalization layers are incorporated after each
convolution operation to normalize the feature maps and improve training sta-
bility. The implementation also includes proper padding strategies to maintain
spatial dimensions and ensure consistent feature map sizes throughout the net-
work.
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5 Data and Preprocessing

In this research, we approached real-time video enhancement as a frame-by-
frame image processing task. Accordingly, we trained and evaluated our model
using a combination of datasets mostly having low-light and normal-light image
pairs.

5.1 Datasets

Our primary dataset is the LoLl-Street Dataset [18], which provides 30,000
paired low-light and high-light images for training and validation. Its large size
and diverse scenes make it well-suited to our approach of treating video frames
as individual images.

To increase the diversity and robustness of our training data, we incorporated
several additional datasets. The LOL dataset, introduced in “Deep Retinex De-
composition for Low-Light Enhancement” [47], contributed 500 image pairs,
with 485 used for training and 15 for testing. This dataset primarily contains
indoor scenes with natural noise from the photo capture process, and all images
are standardized to a resolution of 400600 pixels. We also included the dataset
introduced at the NTIRE 2024 Low Light Enhancement Challenge [29], which
provides 438 training image pairs and 46 test images, featuring both indoor and
outdoor scenes.

To further expand our dataset, we used the Flickr30k dataset introduced in
the paper “Flickr30k Entities: Collecting Region-to-Phrase Correspondences for
Richer Image-to-Sentence Models” [35]. This addition significantly increased the
size and diversity of our training data.

In total, our dataset consisted of approximately 52,000 image pairs for train-
ing, 7,000 for validation, and 15 low-light test images. While we had test data
from multiple datasets, we chose to perform our evaluation on the LOL test set

to enable comparison with baseline models discussed in our literature review.

Below in Figure 5 references of images can be found from each dataset.
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(a) A high-light (b) A high-light (¢) A high-light (d) A high-light
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Street Dataset Dataset Flickr30k Dataset Dataset

Figure 5: Some sample pairs from the LoLI-Street, LoL, NTIRE and
Flickr30k datasets

5.2 Preprocessing

All images were resized to a uniform resolution of 256256 pixels and normal-
ized to a [0,1] range by dividing pixel values by 255. This ensured consistent
input dimensions and value ranges across datasets, which is essential for stable
training and convergence.

For training data, we applied data augmentation techniques including random
cropping, horizontal flipping, and random rotations (0°, 90°, 180°, and 270°) to
increase model robustness and prevent overfitting. Validation and test data were
only resized to preserve evaluation consistency.

We used batch processing with a batch size of 16, and enabled parallel data
loading with 4 worker threads. The pin_memory = True option in PyTorch
was used to speed up data transfer to the GPU. Error handling was integrated
into the pipeline to automatically detect and skip corrupted images.

This preprocessing pipeline, by combining standardization, data augmentation,
efficient loading, and error handling, provided a solid foundation for training our
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real time low-light enhancement model capable of generalizing across diverse
lighting conditions and image types.
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6 Experiments & Results

6.1 Experimental Setup

To ensure the reproducibility and validity of our proposed approach, this section
outlines the experimental setup used throughout the study. The setup includes
a detailed description of the hardware and software environments, as well as the
baseline methods.

6.1.1 Hardware Configuration

The computational experiments conducted in this study were carried out using
the gpu-long partition of the ALICE high-performance computing (HPC) cluster
at Leiden University. This partition is specifically designed for GPU-accelerated
tasks that require extended runtime, making it highly suitable for deep learning
applications such as our project of low-light video enhancement.

The gpu-long partition is equipped with NVIDIA A100 graphics processing units
(GPUs), each offering 40 GB of memory. These GPUs provide the necessary par-
allel processing power and memory capacity to handle complex neural networks
and large-scale video data efficiently.

The nodes in this partition are also provisioned with up to 512 GB of RAM,
enabling the handling of memory-intensive tasks, including the loading and pro-
cessing of high-resolution video sequences. Data storage and retrieval are sup-
ported by high-speed shared storage systems that ensure quick access to training
data and intermediate results.

The availability of such hardware resources was critical to the success of this
research, as they allowed for both the training of deep learning models and the
evaluation of their performance in a timely and efficient manner.

6.1.2 Software Environment

All experiments and implementations in this study were carried out using Python
version 3.9.21, managed within a Conda virtual environment. This isolated envi-
ronment ensured reproducibility and consistency across different computational
nodes on the high-performance computing infrastructure. The software environ-
ment was tailored specifically for deep learning-based image and video enhance-
ment tasks, incorporating both foundational and task-specific libraries.

The core of the deep learning framework was built using PyTorch 2.6.0, which
was compiled with CUDA 12.4 support and Torchvision 0.21.0, enabling flexible
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model development and efficient GPU-based training. Numerical computations
were handled with NumPy 2.0.2 and SciPy 1.13.1, while data manipulation and
preprocessing were facilitated using Pandas 2.2.3 and Scikit-Image 0.24.0.

To support model evaluation and performance tracking, several visualization
and monitoring tools were integrated. These included Matplotlib 3.9.4 for plot-
ting, TensorBoard 2.19.0 for real-time tracking of training metrics, and TQDM
4.67.1 for progress visualization during iterative operations.

Image processing and augmentation were supported by OpenCV 4.11.0.86 and
Pillow 11.1.0, both of which enabled efficient handling of input data and model
outputs. Perceptual quality metrics that used in evaluation were calculated using
the LPIPS 0.1.4 and PylQA 0.1.13 libraries, which are widely used in image en-
hancement research to determine visual accuracy beyond pixel-level comparisons.

This environment configuration, enabled through Conda, provided a modular
platform for the development, training, and evaluation of low-light enhance-
ment models, ensuring compatibility, reproducibility, and scalability throughout
the research process.

6.2 Evaluation Methodology

The evaluation of our RetinexNet based implementation employs a comprehen-
sive approach that combines both quantitative metrics and qualitative visual
assessment. This evaluation allows us to thoroughly assess the model’s perfor-
mance in terms of both objective measurements and subjective visual quality.
The evaluation is performed on the LOL dataset to ensure that performance
comparison is enabled with other methods. The evaluation process is designed
to measure not only the quality of the enhancement, but also the preservation
of important image characteristics such as color accuracy, structural details and
natural appearance.

6.2.1 Quantitative Metrics

The quantitative evaluation of our Retinex based enhancement network imple-
mentation employs a comprehensive set of metrics to evaluate various aspects of
image quality and enhancement performance. The evaluation includes both tra-
ditional image quality metrics and advanced perceptual metrics. Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are used to measure
the pixel-wise accuracy and structural similarity between enhanced and ground
truth images. The Mean Squared Error (MSE) provides a direct measure of the
reconstruction error. For perceptual quality assessment, we employ the Learned
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Perceptual Image Patch Similarity (LPIPS) metric, which uses deep learning
to measure perceptual similarity. Natural Image Quality Evaluator (NIQE) and
the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) are used
to assess the naturalness and quality of the enhanced images without requir-
ing reference images. Color specific metrics include Color Difference (DeltaE) in
color space and color saturation measurements. Contrast metrics such as RMS
contrast, Michelson contrast, and Weber contrast are used to evaluate the en-
hancement of image details.

In addition to image evaluation, we ran video-based tests to assess the real-
time performance of the enhancement network. Frames per second (FPS) were
measured to evaluate the model’s inference speed and suitability for live or
streaming applications.

All these metrics are computed using standardized implementations and val-
idated against established benchmarks to ensure reliable assessment of the
model’s performance.

6.2.2 Qualitative Evaluation

The qualitative evaluation of our Retinex based enhancement network imple-
mentation focuses on visual assessment of the enhanced images and their com-
ponents. The evaluation process includes a detailed visual analysis of the de-
composition results, including the illumination map, enhanced illumination map,
and reflectance map. The visual assessment is conducted through side-by-side
comparisons of original and enhanced images, allowing for direct evaluation of
the enhancement quality. The evaluation also includes visualization of the inter-
mediate components of the Retinex decomposition, providing insights into how
the model separates and enhances different aspects of the image. The quali-
tative assessment considers multiple aspects of the enhanced images, including
naturalness of the enhanced results, preservation of fine details and textures,
color accuracy and consistency, absence of artifacts or distortions and overall
visual appeal and aesthetic quality.

The qualitative evaluation is performed on a diverse set of test images cov-
ering various scenarios, including low-light conditions, mixed lighting situations,
complex textures and details, different color temperatures in various scene types
(indoor, outdoor, portrait, landscape), three different light conditioned videos
and a live stream.

Below in Figure 6 and Figure 7 two examples for the enhanced image can be
found.
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Figure 6: Qualitative comparison of the original and our network’s enhanced
image. Left side is the original image, right side is the enhanced image.

Figure 7: Qualitative comparison of the original and our network’s enhanced
image. Left side is the original image, right side is the enhanced image.
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The components of the images (the original image, the enhanced image, re-
flactance map, illumination map, enhanced illumination map and original image
with the enhanced image) can be seen below in Figure 8 and Figure 9.

Original

Enhanced

Reflectance

Illumination Enhanced Illumination
»

Original vs Enhanced

Figure 8: Components of the image. From left to right, the original image, the
enhanced image, reflactance map, illumination map, enhanced illumination
map and original image with the enhanced image.
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Original Enhanced Reflectance

Illumination Enhanced Illumination

Original vs Enhanced

Figure 9: Components of the image. From left to right, the original image, the
enhanced image, reflactance map, illumination map, enhanced illumination
map and original image with the enhanced image.

6.3 Ablation Study

This section presents the results of our experiments using various loss functions
and compares the performance of models trained with and without GAN com-
ponents.

Below in Table 2 the comparison of loss functions with or without the usage
of GANs can be found. Equal Refl. Loss stands for Equal Reflactance Loss. Met.
1 - Met. 8 stand for methods from 1 to 8, in order, with GAN only equal re-
flactance loss, with GAN equal reflactance and mutual input loss, with GAN
equal reflactance and mutual input loss as well as total loss, with GAN only
mutual input loss, without GAN only equal reflactance loss, without GAN equal
reflactance and mutual input loss, without GAN equal reflactance and mutual
input loss as well as total loss and without GAN only mutual input loss.
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Table 2: Comparison of different enhancement variants on the LOL Dataset’s
test set. FEach column represents a different configuration. Checkmarks in-
dicate inclusion of GAN and specific loss functions. Best values per metric
are in bold. Arrows indicate whether higher (1) or lower (|) is better.

Metric / Config Met. 1 Met. 2 Met. 3 Met. 4 Met. 5 Met. 6 Met. 7 Met. 8

GAN v v v v X X X X
Equal Refl. Loss v v v X v v v X
Mutual Input Loss X v v v X v v v
All Losses X X v X X X v X
PSNR 1 18.51 18.32 18.51 18.32 21.34 18.32 21.34 23.29
SSIM 1 0469 0.464 0.469 0.464 0.598 0464 0.598  0.718
NIQE | 8.33 8.28 8.33 8.28 8.39 8.28 8.39 8.85
BRISQUE | 47.06 4555  47.06 4555 49.16  45.55  49.16 31.71
LPIPS | 0.320  0.320 0.320 0.320 0.217 0.320 0.217 0.226
Brightness 1 3.06 3.10 3.06 3.10 2.49 3.10 2.49 2.05
Contrast 1 1.94 2.00 1.94 2.00 1.66 2.00 1.66 1.57
FPS 1 7898  84.94  33.86 74.06 74.71 76.76  86.89 84.94
DeltaE | 11.82 11.87 11.82 11.87 10.63 11.87 10.63 9.60

Table 2 presents the detailed evaluation of our models trained using various
combinations of loss functions, with and without the use of GAN components.

The evaluation metrics used in this study are metrics like PSNR (Peak Signal-
to-Noise Ratio) and SSIM (Structural Similarity Index) quantify the fidelity of
reconstruction and the preservation of structural information in comparison to
ground truth images, where higher values indicate better performance. Percep-
tual quality is assessed using NIQE (Natural Image Quality Evaluator), BRISQUE
(Blind /Referenceless Image Spatial Quality Evaluator) and LPIPS (Learned Per-
ceptual Image Patch Similarity), all of which are no-reference or deep-feature-
based metrics that estimate how natural or visually pleasing an image appears;
lower values are better for these metrics. DeltaE measures the perceptual color
difference between the enhanced and original images, with lower scores mean
more accurate color reproduction. FPS (Frames Per Second) is included to assess
runtime efficiency, as higher FPS reflects better suitability for real-time applica-
tions such as live video enhancement.

The results show that removing the GAN component and training the model
only with Mutual Input (MI) Loss gains the best overall performance across
multiple metrics. This model achieves the highest PSNR (23.29) and SSIM
(0.718), meaning strong pixel-level accuracy and structural preservation. It also
achieves the lowest BRISQUE (31.71) and DeltaE (9.60), shows perceptually
pleasing outputs. It also performs competitively in terms of LPIPS (0.226) and
FPS (84.94), showing a good balance between visual quality and real-time ap-
plicability.
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In contrast, models with GAN components tend to score slightly worse in met-
rics, but marginal gains in brightness and contrast. With the usage of GAN,
these aesthetic metrics are improved. However, they suffer from lower PSNR,
SSIM, and higher DeltaE.

That is why, our best performed model is the model without GAN and mu-
tual input loss only.

Below in Table 3, the quantitative comparison of our method with other en-
hancement methods as mentioned in a comparison table in paper [51] on the
LOL dataset can be found.

Table 3: Quantitative comparison on the LOL dataset. Best values per metric
are in bold.

Method PSNR 1t SSIM 1 NIQE | DeltaE |
BIMEF [48] (Ying et al. 2017) 138753 0.5771  7.6092  21.2383
CRM [49] (Ying et al. 2018) 17.2033  0.6442  8.0182  15.7743
Dong [7] (Dong et al. 2011) 16.7165  0.5824  9.1358 15.6163
LIME [13] (Guo et al. 2017) 16.7586 05644  9.1272  14.9474
MEF [8] (Fu et al. 2016) 16.9662  0.6422 97125 155635
RRM [27] (Li et al. 2018) 13.8765 0.6577 5.9416 20.7342
DUPE [43] (Wang et al. 2019) 16.7975 0.5187 8.4736 19.5868
SRIE [9] (Fu et al. 2016) 11.8552 04979  7.5349  25.2829
Retinex-Net [47] (Wei et al. 2018)  16.7740 0.5594 9.7289 15.8936
DPE [4] (Chen et al. 2018) 13.1728 0.4787 4.4931 12.2534
NPE [44] (Wang et al. 2013) 16.9697  0.5894  9.1352  15.3318
GLAD [45] (Wang et al. 2018) 19.7182 07035 6.7972 122776
KinD [52] (Zhang et al. 2019) 20.7261  0.8103  4.1352  9.8632
KinD++ [51] (Zhang et al. 2021)  21.3003  0.8226  3.8807  8.7425
Our Method 23.29 0.718 8.85 9.60

Table 3 provides a comparative evaluation of our method against other enhance-
ment methods on the LOL dataset using four key image quality metrics: PSNR,
SSIM, NIQE, and DeltaE.

Our method achieves the highest PSNR (23.29), indicating superior pixel-level
enhancement performance. The SSIM score (0.718) demonstrates strong struc-
tural preservation, and while it is slightly lower than KinD (0.8103) and KinD++
(0.8226), it still outperforms most other methods. In terms of NIQE, our model
scores 8.85, which is higher (worse) than some learning-based methods like
KinD+-+ (3.8807), shows room for improvement in perceptual realism. How-
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ever, the DeltaE value (9.60) indicates excellent color accuracy, ranking closely
behind KinD++ (8.7425) but better than all other methods in the table.

The results show that our approach effectively balances quantitative accuracy
and perceptual quality, especially in PSNR and color reproduction.

An important part of our study was testing whether adding a GAN improves
results. As seen in Table 2, the GAN-based models did not improve the PSNR
or SSIM scores. In fact, they sometimes performed worse and introduced un-
wanted artifacts. We also found that GAN training made the process less stable.
For this reason, we decided not to use a GAN in our final model, and we believe
this choice helped us get more reliable and consistent results.

Although our method does not outperform all other methods across every metric,
it achieves superior results on some metrics and shows promising performance
on others. As a result of these aspects, we are very satisfied with our results.
Our model achieves strong performance in terms of image quality, color accu-
racy, and speed. It improves over previous methods in key areas while remaining
lightweight and easy to deploy. We believe this makes it a useful solution for
real-time low-light image and video enhancement in real-world applications.
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6.4 Benchmark Results

Below in Figure 10 the benchmark results can be seen.

RetinexNet Model Size vs. Processing Speed
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Figure 10: Benchmark results showing the impact of width multiplier «, in-
put resolution, and batch size on inference speed (FPS), model size, and
parameter count. As « increases, models become larger and slower but po-
tentially more expressive, while smaller o values offer faster performance
with reduced model complexity making them suitable for limited resource
or real time applications.

Figure 10 presents a benchmark analysis highlighting how different configura-
tions of our model perform in terms of processing speed (measured in frames
per second, FPS) relative to their model size (in megabytes). The color gradient
in the plot represents varying values of the width multiplier o, which controls
the network's complexity by scaling the number of channels in the model.

From the graph, we can see a clear trade-off between model size and inference
speed. Models with smaller « values (e.g., & = 0.5, shown in darker colors) are
lightweight and offer significantly higher FPS, making them ideal for real-time
or resource-constrained applications. These models are especially fast when used
with smaller input resolutions or larger batch sizes, as indicated by the annota-
tion (e.g., B=4, 128x128).
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On the other hand, models with higher « values (e.g., & = 1.0, shown in yellow)
are larger in size and slower in terms of FPS, but they are likely to be more
expressive and capable of delivering better enhancement quality. These models
may be more suitable when computational resources are not a major constraint
and quality is the primary goal.

This benchmark shows how tuning « provides flexibility to balance performance
and efficiency. Depending on the application needs, whether it's low-latency de-
ployment on mobile devices or high-quality processing on powerful machines,
users can select an appropriate model configuration.
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7 Conclusion

This thesis presented a lightweight and real-time capable approach to low-light
image and video enhancement by integrating Retinex theory [23] with modern
efficient deep learning components. Building on the KinD++ [51] architecture,
we introduced MobileNet [16] style optimizations, including depthwise separable
convolutions and channel width multipliers, which substantially reduce model
complexity and computational cost without sacrificing perceptual quality.

We evaluated our method across multiple benchmark datasets using both quan-
titative metrics (PSNR, SSIM, LPIPS) and qualitative visual analysis. The results
demonstrate that our approach maintains competitive enhancement performance
while achieving real-time processing speeds. These results shows that our archi-
tectural modifications, particularly the dual enhancement networks and efficient
convolution strategies, offer a better trade-off between performance and effi-
ciency.

Our answers to our research questions while we are ending our paper are below.

Main Research Question: How can we design computationally efficient
network architectures specifically optimized for low-light video enhance-
ment that maintain acceptable visual quality while achieving real-time
performance?

To answer this, we designed a lightweight enhancement model based on Retinex
theory, with several MobileNet-style architectural optimizations. By incorporat-
ing depthwise separable convolutions, a width multiplier parameter, and a dual-
branch structure for reflectance and illumination processing, we were able to
reduce model size to under 35K parameters (for a = 0.5) while still achieving
real-time performance (>80 FPS on GPU). Despite the reduction in complexity,
the model maintains strong enhancement performance across several key quality
metrics, including PSNR (23.29), SSIM (0.718), and DeltaE (9.60). This con-
firms that real-time low-light enhancement is achievable without relying on large
or computationally expensive networks.

Research Question 2: How does the inclusion or exclusion of GAN based
training affect the performance and visual quality of low light video en-
hancement models?

The inclusion or exclusion of GAN-based training affects both the objective

performance and perceptual quality of low-light video enhancement models as
shown in Table 2, models trained without GAN components, particularly the
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configuration using only Mutual Input (MI) Loss, outperform GAN-based mod-
els across most quantitative and perceptual metrics. The NoGAN + MI Only
variant achieves the highest PSNR (23.29) and SSIM (0.718) values, indicating
superior pixel-wise fidelity and structural similarity to ground truth images. It
also yields the lowest BRISQUE (31.71) and DeltaE (9.60) scores, demonstrat-
ing enhanced perceptual naturalness and better color accuracy. Additionally, this
model maintains high real-time efficiency with FPS of 84.94, making it ideal for
live applications.

The models that use GANs tend to focus more on enhancing visual appeal,
since they outperformed slightly better in brightness and contrast scores, but
generally perform worse in terms of PSNR, SSIM, DeltaE, and perceptual met-
rics like LPIPS.

Therefore, our study shows for real-time low-light video enhancement tasks
where stability, color fidelity, and structural consistency are critical, non-GAN
approaches with targeted loss functions are more effective.

Research Question 3: How does our proposed approach compare with
existing state-of-the-art methods in terms of quantitative metrics as-
sessment?

Our approach outperforms or matches existing state-of-the-art methods on sev-
eral quantitative metrics. Specifically, it achieves the highest PSNR and SSIM
values on the LOL dataset among the compared methods, indicating superior
overall enhancement quality. It also records the lowest DeltaE value, demon-
strating effective color recovery. As seen in Table 3, while traditional methods
like MF or LIME perform slightly better in some perceptual metrics like NIQE,
they often fail to preserve structural consistency or realistic color in complex
scenes.

Our model's high frame rate and small memory footprint also give it a prac-
tical edge over many deeper and slower state-of-the-art methods.

As a result, our quantitative evaluations show that the proposed method is not

only competitive with other existing methods, but in some cases outperforms,
existing state-of-the-art solutions.
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8 Future Work

While this thesis demonstrates the effectiveness of combining Retinex-based
decomposition with loss functions from KinD++ [51] lightweight MobileNet
[16] style components, several aspects remain open for future exploration and
development.

Temporal Enhancement

One limitation of our current architecture is that it enhances each frame in-
dependently without exploiting temporal information. Extending the model to
process short video clips using temporal consistency mechanisms like 3D con-
volutions or recurrent architectures like ConvLSTM [39] could improve stability
and reduce flickering artifacts in live video streams.

Adaptation for Edge Devices

Although our architecture already incorporates MobileNet-style depthwise sepa-
rable convolutions to reduce computational complexity, additional optimization
is needed to support real-time enhancement on devices such as smartphones
and embedded systems. Future work could explore methods to make the model
even faster and smaller for running easily on mobile phones or small devices.
For instance, techniques like reducing the number of using smaller numbers or
automatically designing lighter versions of the model could help. These improve-
ments can lower the time it takes to run the model, use less memory, and save
battery, while still keeping the image quality high.

Real-World Dataset Collection and Generalization

While our model is trained on a diverse combination of existing datasets we
talked about in Section 5 and evaluated on the LOL dataset, many existing
datasets consist of synthetically darkened or controlled-scene imagery. A valuable
direction would be to collect a real-world low-light video dataset featuring diverse
lighting conditions, motion blur, and noise patterns. This could be modeled on
datasets like the See-in-the-Dark (SID) dataset [3], which focuses on extreme
low-light conditions. Additionally, testing the model on challenging tasks such as
night-time driving or underwater video would allow us to assess generalizability
under complex real-world conditions.
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