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ABSTRACT

Audio-Visual Sound Event Localization and Detection (AV-SELD) is a multimodal task

recently introduced in the DCASE Challenge. It requires systems to jointly detect, classify,

and localize sound events in 3D space by combining audio and visual information. While

recent methods have achieved promising performance, they typically rely on excessively

large models, limiting their practical deployment. Furthermore, little systematic investi-

gation has been conducted into the optimal balance between audio and visual modalities.

To address these challenges, we propose a dynamic dimension adjustment strategy for sys-

tematically exploring audio-visual modality ratios. Building upon recent AV-Conformer

architectures, we optimize the visual encoder and network architecture, achieving substan-

tial parameter reduction. Experiments show that balanced (1:1) or slightly audio-biased

configurations yield the best overall performance. Notably, we find that heavy visual en-

coders are unnecessary for this task, and that a single fusion Conformer layer is sufficient.

Overall, our approach reduces the number of parameters by 88% while improving F1 per-

formance by 9.6%.

In summary, our work systematically investigates the impact of audio-visual modality ra-

tios and provides guidance for future research. In addition, we introduce a lightweight and

effective model with clear potential for deployment on edge devices, which sets a direction

for future lightweight research in AV-SELD and related multimodal tasks.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Sound Event Localization and Detection (SELD) is a multi-task learning problem that can

be divided into two sub-tasks [1]: Sound Event Detection (SED) and Sound Source Lo-

calization (SSL). Of these, SED focuses on identifying the temporal activities and textual

labels of sound events [2], which are individual sounds that describe what is happening

in the environment [3], such as knocking, music, or human speech. In most real-world

scenarios, the system needs to detect multiple overlapping sound events. Meanwhile, SSL

aims to estimate the direction and position of sound sources with respect to the microphone

[1]. The direction is commonly expressed using the Direction of Arrival (DOA), which

includes both azimuth and elevation angles. In some cases, the position may also involve

estimating the distance between the sound source and the microphones.

Consequently, the SELD task has been applied in many real-world domains. One important

application is wearable devices that convey sound location information through vibration.

Such devices, including belts, earphones, and hats [4][5], can help users with hearing im-

pairments. Beyond wearables, SELD is applied in robotics for human-robot interaction

[6], enhancing both response efficiency and accuracy. It also provides spatial acoustic in-

formation to support environmental perception in tasks such as navigation and autonomous

driving [7][8]. Furthermore, SELD is crucial for automated monitoring systems, enabling

audio surveillance, safety alerts, and anomaly detection.[9][10][11]

This thesis is based on the SELD task of the DCASE 2024 Challenge1. The task was first

introduced in 2019. A synthesized dataset was generated by convolving random sound

1https://dcase.community/challenge2024/
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events with randomly chosen impulse responses (IRs) at fixed locations [12]. From 2020

to 2022, the SELD task continuously evolved by introducing real-world acoustic environ-

ments, multilingual speech events, and diverse microphone array configurations. In 2023,

DCASE incorporated visual modality into the SELD task for the first time, enabling models

to learn from both audio and visual sources. Building on this, the 2024 task continued with

the multimodal audio-visual setting and introduced distance information to support both

localization and distance-aware evaluation [2]. In our work, following the DCASE 2024

requirements, we implement audio-visual 3D spatial localization by estimating both DOA

and distance.

1.2 Motivation and Contributions

Since 2023, DCASE has introduced video into the task to enhance the spatial sensitivity of

audio-based systems. Previous studies have shown that the visual modality provides spa-

tial cues, which improve stability when fused with audio in cases where the audio signal

degrades [13]. Visual information is important as it complements audio. There are many

studies investigating modality complementarity, particularly in the tasks of audio classifi-

cation [14] and automatic speech recognition [15][16]. However, in the field of AV-SELD,

studies on modality complementarity remain relatively scarce.

In the DCASE 2024 challenge, many teams have proposed AV-SELD models that achieved

good performance. However, their parameter sizes are typically between 60M and 90M,

with some models reaching up to 400M. Considering that AV-SELD is often applied in

resource-constrained scenarios such as robots, AR/VR headsets and other edge devices,

excessive model complexity would hinder energy efficiency and real-time responsiveness.

Therefore, it is important to design an efficient and compact model that can still achieve

comparable performance for real-world applications.

Based on the above background and challenges, we propose an audio-dominant lightweight

AV-SELD model. The main contributions of this work are as follows:
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• We conduct a systematic analysis of audio-visual feature ratios and fusion dimen-

sions in AV-SELD. The results reveal the dominant role of the audio modality and

show that a balanced ratio with an appropriate total feature dimension achieves op-

timal performance. These findings provide practical guidance for future multimodal

architecture design.

• We propose an audio-dominant lightweight AV-SELD model based on the baseline

of Berghi et al. [17], achieving an 88% parameter reduction while improving F1

score from 40.8% to 44.7%. This demonstrates that our design successfully balances

efficiency with accuracy.
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CHAPTER 2

RELATED WORK

This chapter reviews related work on the AV-SELD task. First, we introduce different

feature extraction methods, including commonly used approaches for both audio and visual

features. Then, we discuss audio-visual fusion strategies along with their implementation

approaches, such as feature concatenation and attention mechanisms. Finally, we review

existing research on modality ratio optimization in domains such as Audio-Visual Speech

Recognition (AVSR) and identify the research gap in AV-SELD tasks.

2.1 Feature Extraction

Audio and visual modalities complement each other in both temporal and spatial aspects.

Audio provides strong temporal cues and remains effective in detecting sound events even

when the source is occluded or not visible. Meanwhile, visual information can assist with

localization and detection when audio signals are weak or absent[13]. Given this comple-

mentarity, many studies in AV-SELD have applied different feature extraction strategies to

leverage both modalities.

In the AV-SELD task, audio feature extraction typically combines spectral content with

spatial directional information. A common approach is to extract log-Mel spectrograms

and intensity vectors to capture these two types of features, respectively. Therefore, some

studies[18] [19] have adopted the combination of log-Mel spectrograms and intensity vec-

tors as input features. Additionally, Berg et al.[20] explored both Mel spectrogram and

MFCC for spectral feature extraction. For spatial feature extraction, they employed Neural

GCC-PHAT (NGCC-PHAT) to extract the TDOA between microphone channels.

Pretrained models for video have been shown to be effective for extracting visual features.

For example, ResNet-50 pretrained on ImageNet is widely used as a visual feature extractor
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in AV-SELD tasks. In addition, some studies, such as the one by Berg et al.[20]., introduced

Panoformer, a depth estimation model pretrained on panoramic images, to assist in distance

prediction.

2.2 Audio-Visual Fusion Strategies

Feature fusion has been approached in various ways. Jiang et al. [21] propose a two-stage

strategy. First, a ResNet-Conformer backbone fuses audio features with Gaussian-based

visual features at the feature level. Subsequently, they employ visual cues to refine the au-

dio predictions, specifically using object detection and human keypoints to correct sound

source localization.

Some studies employ mid-level fusion, where high-level features are extracted from au-

dio and visual modalities using separate encoders, and then fused in the feature space.

This method preserves modality-specific information and enables interaction at a higher

and more abstract level. For example, Kim et al. used 3D convolutional networks to ex-

tract multi-source visual features, which were then fused with audio features via element-

wise addition after the audio encoder[19]. Another study proposed two fusion strategies:

feature-level fusion by concatenating audio and visual embeddings; and CMAF, which em-

ploys multi-head self-attention (MHSA) and multi-head cross-attention (MHCA) modules

to dynamically model inter-modal relationships[17].

2.3 Audio-Visual Complementarity and Ratio Studies

In some domains, many studies have demonstrated that audio and visual modalities are

complementary, and their combination often outperforms using a single modality. Nanni et

al. designed an audio classification framework that integrates acoustic and visual features,

achieving superior performance compared to unimodal approaches[14]. In audio-visual

speech recognition, Petridis et al. proposed an end-to-end model based on BLSTM that

extracts features from both raw pixels and spectrograms[15], showing that visual cues can
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complement the audio modality in noisy environments, thereby improving overall system

robustness. Many studies have also examined how the ratio between modalities affects

performance. A study compared the contribution of audio and visual modalities to perfor-

mance using MSHMM[16]. They found that the best performance was achieved with an

80% audio and 20% visual weighting. However, after normalizing to eliminate the scale

differences between the two modalities, the actual contributions were found to be approx-

imately equal. Besides, Gimeno-Gómez and Martı́nez-Hinarejos proposed a parameter-

efficient AVSR model based on Branchformer. They employed an adaptive fusion module

to automatically learn the contribution ratio of audio and visual modalities, which con-

verged to approximately 70% for audio and 30% for video in their experiments[22]. The

ratio increases for the visual modality in noisy environments, while audio remains domi-

nant in clean conditions.

Although the importance of using visual information to complement audio has been widely

acknowledged, studies on optimal modality ratios have led to notable improvements in cer-

tain fields. However, in AV-SELD, determining the optimal audio-visual ratio remains

largely unexplored. Prior AV-SELD work has largely relied on fixed 1:1 audio-visual ratios

without investigating alternative configurations. This limitation restricts our understanding

of multimodal fusion mechanisms and may lead to suboptimal performance. Therefore, we

explore various audio-visual feature configurations for AV-SELD, aiming to address this

gap and provide insights for future lightweight model design.
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CHAPTER 3

DATASET CONSTRUCTION

This chapter introduces the datasets used for the AV-SELD task. The primary dataset is

Sony-TAu Realistic Spatial Soundscapes 2023 (STARSS23), which provides synchronized

First-Order Ambisonics (FOA) audio and 360° panoramic video, serving as a real-world

benchmark for AV-SELD. In addition, we used the SpatialScaper library [23] to gener-

ate approximately 30 hours of synthetic data to address dataset imbalance and scarcity

issues. The following sections describe the characteristics and generation procedures of

each dataset.

3.1 Dataset Overview

This study employs the STARSS23[24] dataset for training and evaluation. STARSS23

consists of real indoor acoustic scenes recorded in Tampere, Finland, and Tokyo, Japan,

covering 13 classes of targeted sound events: female speech, male speech, clapping, tele-

phone, laughter, domestic sounds, footsteps, door, music, musical instruments, water tap,

bell, and knock. The audio is recorded in 4-channel FOA format with a sampling rate of 24

kHz, and the video consists of 360° panoramic recordings at 1920×960 resolution.

The STARSS23 dataset provides precisely synchronized multimodal audio-visual data,

along with annotations for each sound event, including class labels, temporal activity, spa-

tial direction (azimuth and elevation angles), and distance from the microphone array. The

development set contains 7 hours and 22 minutes of audio-visual recordings, consisting of

168 clips, which are split into 90 for training and 78 for testing. The dataset features a high

occurrence frequency of common daily sound events such as female and male speech, mu-

sic, and domestic sounds. While certain categories, like knock, appear in only 9 seconds of

the entire training set. It also includes complex overlapping scenarios and multiple sources
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Figure 3.1: A 360° video frame from the STARSS23 dataset illustrating a domestic acoustic
scene containing various potential sound sources.

of the same class, with some scenes containing more than five simultaneous sound sources.

Therefore, STARSS23 is both highly suitable for and challenging to the AV-SELD task.

3.2 Synthetic Dataset

To address the class imbalance in the STARSS23 and improve the model’s generaliza-

tion capability, we used an external synthetic dataset generated with the SpatialScaper li-

brary[23]. The synthetic dataset is based on existing sound events from datasets such as

Freesound Dataset 50K (FSD50K) and Free Music Archive (FMA), combined with room

impulse responses (RIRs) and random room configurations. Parameters for DOA and dis-

tance are also included to simulate realistic spatial sound scenes. In addition, we augment

70% of the synthesized data with background noise to simulate real-world conditions. The

background noise is sampled from various environmental sources within the SpatialScaper

framework, such as ambient sounds, crowd babble, and Heating, Ventilation, and Air Con-

ditioning (HVAC) systems. Based on the reference level in decibels relative to full scale

(dBFS), we divide the noise intensity into three levels: low noise (-75 to -65 dBFS, 30%),

medium noise (-65 to -50 dBFS, 50%), and high noise (-50 to -40 dBFS, 20%). In total, we

generated approximately 30 hours of FOA-format audio, with each clip lasting 60 seconds,

and generated labels aligned with the STARSS23 format.
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The synthetic dataset consists of 70% noisy and 30% clean audio recordings. To match

the polyphonic nature of STARSS23, we created synthetic data with three scene complex-

ity levels: simple (one source), medium (1–2 overlapping sources), and complex (up to 3

overlapping sources), distributed at ratios of 55%, 35%, and 10%, respectively, as shown

in Figure 3.2. This distribution is intended to support robust learning of individual sound

events while providing sufficient training samples for multi-source overlapping scenarios.

Figure 3.2: Scene complexity distribution of the synthetic dataset. The pie chart illustrates
the proportions of the three complexity levels: simple (55%), medium (35%), and complex
(10%).

The number of sound events in each scene follows a normal distribution, and dynamic

class weighting is applied to ensure the inclusion of rare classes such as water tap, bell,

and footsteps. Figure 3.3 shows the class distribution of the synthetic dataset. The 13

sound event classes are relatively balanced, with an average of 1,257 events per class.

The footsteps class has a higher count (1,807 events) to compensate for its scarcity in the

original STARSS23 dataset. Some infrequent sound events, such as bell and water tap,

were also supplemented in the synthetic dataset.

10



Figure 3.3: Class distribution of the synthetic dataset, with balanced representation across
13 classes of sound events.
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CHAPTER 4

METHOD

In this chapter, we introduce the lightweight AV-SELD model proposed in this work, which

builds upon the work of Berghi et al[17]. By optimizing the architecture, reducing feature

dimensions, and adopting a lightweight visual encoder, we reduce the number of parame-

ters from 87M to 10M, achieving an 8.7× compression rate while maintaining competitive

performance.

We selected this baseline for three main reasons: (i) it is open-source and has been pub-

lished in a peer-reviewed ICASSP paper, (ii) in the DCASE 2023 challenge it ranked 5th

overall but was effectively the second-best among distinct teams. Together, these reasons

make it a competitive yet tractable baseline.

This chapter is structured as follows: Section 4.1 introduces the overall architecture. Sec-

tion 4.2 describes the audio and visual encoders, where the audio encoder employs a pre-

trained Convolutional Neural Network (CNN)-Conformer architecture (Section 4.2.1) and

the visual encoder adopts an efficient ShuffleNet-Conformer architecture (Section 4.2.2).

Section 4.3 introduces our adaptive dimension adjustment strategy and the fusion layer.

Section 4.4 presents the ADPIT loss function, which is specifically designed to handle

polyphonic sound events and overlapping sources.

4.1 Overall Architecture

As shown in Figure 4.1 , the proposed AV-SELD model takes as input 4 channel FOA audio

signals and 360° videos, employs audio and video encoders, and uses an AV-Conformer for

multimodal feature fusion. The audio encoder is based on a CNN-Conformer architecture,

where four convolutional layers are used to extract spectral features and a single Conformer

layer models temporal dependencies. The visual encoder adopts ShuffleNet with a single

12



Conformer layer to extract visual features. After concatenating the audio and visual fea-

tures, we employ a single Conformer layer as the fusion module to model cross-modal de-

pendencies. Finally, a fully connected layer produces a 156-dimensional multi-ACCDOA

output. The output includes three detection tracks, each providing four-dimensional infor-

mation for 13 sound event classes, to achieve parallel detection and localization of multiple

sound sources.

Figure 4.1: System architecture of the lightweight AV-SELD framework

4.2 Audio and Visual Encoder

Audio Encoder The audio encoder is based on a CNN-Conformer architecture. It first

converts the 4-channel FOA signals into log-Mel spectrograms and computes 3 intensity

vectors, forming a 7-channel audio feature representation X ∈ R7×Tin×Fin , which serves as

13



the input to the audio encoder. The network employs a CNN with four convolutional blocks

to extract multiscale spectral features. Each block consists of two 3× 3 convolutional lay-

ers with residual connections, followed by batch normalization and ReLU activation, and

uses average pooling with a stride of 2 for temporal–spectral downsampling. The chan-

nel dimensions increase from 64 → 128 → 256 → 512, resulting in feature maps of size

R512×Tin/16×Fin/16. Subsequently, the feature maps are averaged along the frequency dimen-

sion to obtain a representation of size R512×Tin/16. This representation is then transposed to

RTin/16×512 to form the temporal feature representation. To obtain a compact feature repre-

sentation, a linear layer reduces the feature dimension to RTin/16×128. Finally, the features

are processed by a 4-layer Conformer with 8 attention heads, a kernel size of 51, and a

feed-forward dimension of 1024. The output audio features have dimensions of RT×128

with temporal alignment for subsequent fusion.

Visual Encoder To reduce computational complexity for practical deployment, the vi-

sual encoder employs a lightweight ShuffleNet v2 architecture in place of the ResNet50

used in baseline approaches, combined with a single Conformer layer. We chose Shuf-

fleNet v2 because it is an efficient CNN designed for mobile deployment. It balances

speed, accuracy, and parameter size, which matches the goal of our lightweight AV-SELD

model. ShuffleNet introduces pointwise group convolution to reduce computational cost

and employs channel shuffle to ensure effective cross-channel information flow within 1×1

convolutions[25]. As illustrated in Figure 4.2, each ShuffleNet unit consists of a 1×1 point-

wise group convolution, a 3 × 3 depthwise convolution, and a residual connection. This

design significantly reduces computation while preserving accuracy. In our design, the vi-

sual encoder consists of ShuffleNet v2 pretrained on ImageNet, with the classification layer

removed for visual feature extraction.
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Figure 4.2: ShuffleNet unit architecture with pointwise group convolution and channel
shuffle[25]

The ShuffleNet is combined with a single Conformer. The visual encoder processes

video frames with a shape of RT×224×448×3, where T is the number of frames, 224 × 448

is the frame resolution, and 3 represents the RGB channels. Since ShuffleNet v2 ×0.5 is

designed for 224 × 224 input, while the preprocessed video frames have a resolution of

224 × 448, we split each frame into two 224 × 224 sub-images. After feature extraction,

each sub-image produces a 1024-dimensional feature vector, which is concatenated to form

RT×2048. Finally, the concatenated features are fed into a single Conformer layer with 8

attention heads, a kernel size of 51, and a feed-forward dimension of 1024, producing an

output of size RT×128.

4.3 Audio-Visual Feature Fusion Strategy

4.3.1 Adaptive Dimension Adjustment

To explore the optimal allocation ratio of audio and visual features, we introduce an adap-

tive dimension adjustment strategy under the constraint of a fixed total fusion dimension.

As shown in Figure 4.3(a), we add a learnable linear projection layer after the CNN en-
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coder and before the audio Conformer. A similar linear projection layer is also added in

the visual branch, between the output of ShuffleNet and the visual Conformer.

The projection layers adjust the 512-dimensional CNN output and 2048-dimensional Shuf-

fleNet output to the target dimensions da and dv for audio and visual features, respectively,

under the constraint da + dv = 512. With this design, the Conformer parameters are com-

puted on the reduced feature dimensions, enabling flexible feature allocation while main-

taining computational efficiency.

(a) Fixed total dimension with varying ratios

(b) Variable total dimensions with fixed ratio (1:1)

Figure 4.3: Two dimension adjustment strategies: (a) explores audio-visual ratios under
fixed total dimension; (b) varies total fusion dimension with balanced allocation.

Beyond allocation ratios, we also study the effect of the total fusion dimensionality. As

shown in Figure 4.3(b), we map both audio and visual features to a common dimension

d ∈ {64, 128, 256, 512, 1024}. The fused representation is their concatenation with size

2d. This setup tests whether increasing the fusion space improves performance or instead

induces overfitting, given the limited training data. This strategy enables systematic ex-

ploration of both audio-visual dimension ratios and total fusion capacity within a unified
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framework. The projection layers balance efficiency and representation capacity by flexibly

adjusting features while preserving critical information.

4.3.2 Fusion and Output Representation

After adjustment, the aligned audio and visual features, with each having a size RT×128, are

concatenated along the feature dimension to form a fused representation of size RT×256.

These features are then fed into a single Conformer layer, with 8 attention heads, a kernel

size of 51, and a feed-forward dimension of 1024. The Conformer block captures cross-

modal relationships between audio and visual features through its attention mechanism and

convolutional components.

The resulting bimodal feature representation is mapped to a 156-dimensional output via

two fully connected layers. The output applies the Multi-track Activity-Coupled Cartesian

Direction of Arrival with Distance (Multi-ACCDOA) format. In this representation, the 156

dimensions correspond to 3 tracks, 4 parameters, and 13 sound event classes. For direction

prediction, we use the tanh activation function to constrain the output to the range (−1, 1),

whereas for distance prediction, a ReLU activation is applied to enforce non-negativity.

4.4 ADPIT Loss

In our task, up to three sources of the same class may occur simultaneously. To handle this

multi-source scenario, we adopt the Auxiliary Duplicating Permutation Invariant Training

(ADPIT) loss function. In the ADPIT strategy, the training labels are organized into a five-

dimensional tensor, referred to as target, whose shape is defined as:

target ∈ RB×T×N×A×C

where B is the batch size, T is the number of time frames, N is the number of dummy

tracks, A is the feature dimension, and C is the number of different sound event classes.
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Here, we set B = 32, T = 30, and N = 6 in our implementation. The six dummy tracks

(N = 6) correspond to A0, B0, B1, C0, C1, and C2, where A, B, and C represent cases with

one, two, and three overlapping sound sources of the same class per frame, respectively.

For each time frame t ∈ {1, . . . , T}, dummy track n ∈ {1, . . . , N}, and sound event class

c ∈ {1, . . . , C}, the corresponding label consists of five elements: a flag anct ∈ {0, 1} in-

dicating the detection activity, a DOA vector Rnct ∈ [−1, 1]3 representing the 3D position

(x, y, z) of the sound source with |Rnct| = 1, and a distance value Dnct ∈ [0,∞).

Permutation Construction Since each sound event class allows at most three simulta-

neously active sources, the total number of distinguishable permutations is:

Table 4.1: All 13 distinguishable permutations used in ADPIT training

Type Permutations

A-type (1 source) A0A0A0

B-type (2 sources) B0B0B1 B0B1B0 B0B1B1 B1B0B0 B1B0B1 B1B1B0

C-type (3 sources) C0C1C2 C0C2C1 C1C0C2 C1C2C0 C2C0C1 C2C1C0

We extract target A0 to target C2 from the original tensor target ∈ RB×T×N×A×C

by multiplying the activity flag with the corresponding DOA and distance values. Each re-

sulting tensor has the shape RB×T×4×C where the 4 dimensions represent (x, y, z, dis).

Then, we construct permutations by concatenating three selected tracks along the third di-

mension. The 13 permutations, used to align the target labels with the model output in the

presence of overlapping sources, are summarized in Table Table 4.1. Each combined target

tensor (from target A0A0A0 to target C2C1C0) has a shape of RB×T×12×C .

MSE Loss Computation The ADPIT loss function is based on the Mean Squared Error
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(MSE), which is defined as:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2

Each permutation (from target A0A0A0 to target C2C1C0) is compared with the

output tensor by computing the MSE along the third dimension. This involves averaging

the feature-wise differences (x,y,z and distance) across all tracks for each frame and class.

As a result, we obtain 13 loss tensors, each with a shape of RB×T×C .

Padding To avoid misleading zero values from other tracks when only one overlap case

is active, each permutation is padded with content from the other dummy tracks. For

example, target A0A0A0 is augmented with information from target B0B0B1 and

target C0C1C2. The dummy padding strategy may introduce overlapping content across

different permutations, but it ensures non-zero targets and enables a branch-free implemen-

tation [5].

Minimum Loss Selection The 13 loss tensors are stacked along a new first dimension

into a tensor of shape R13×B×T×C . By selecting the minimum across the permutation di-

mension, we then find the best-matching permutation index for each frame and class and

obtain the corresponding minimum loss index tensor with shape RB×T×C . Based on these

indices, the corresponding loss values are selected, and the overall batch loss is computed

by averaging the selected values.
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we investigate the impact of audio–visual feature ratios on performance

and validate the effectiveness of our lightweight model. Sections 5.1 and 5.2 describe the

training settings and evaluation metrics, which establish the foundation for the subsequent

analysis. Then, the experiments are approached from three perspectives. Section 5.3 ex-

amines how the balance between audio and visual features influences model performance.

Section 5.4 investigates the impact of total fusion dimensions. Section 5.5 integrates these

findings and systematically explores different architectural configurations to determine the

optimal lightweight design.

5.1 Training Settings

For training setup, we use an NVIDIA RTX 4090 GPU with 24 GB memory and employ

a two-stage training strategy: the audio encoder is first trained on the synthetic dataset

for 60 epochs; the full audio-visual model is then trained on the STARSS23 dataset for

20 epochs, initialized with the pretrained audio encoder. For hyperparameters, we set the

batch size to 32 and the learning rate to 5 × 10−5, with a decay factor of 0.95 applied

after the 30th epoch. To increase sample diversity during training, the audio is split into

3-second segments with 0.5-second overlaps. During testing, 3-second segments without

overlap are used to ensure consistent evaluation. The audio sampling rate is set to 24 kHz,

and the video frame rate is 10 fps. For feature extraction, audio features are obtained from

128-bin log-Mel spectrograms and 7-dimensional intensity vectors, while visual features

are extracted using ShuffleNet. The audio features are initially computed at 160 Hz and

then downsampled to 10 Hz to match the label resolution and video frame rate.
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5.2 Evaluation Metrics

In our experiment, we use the macro-averaged F1 score, DOA error, and relative distance

error as the main evaluation metrics. The F1 score evaluates detection accuracy under a

location constraint, DOA error measures the angular localization accuracy, and relative dis-

tance error measures the distance component of localization accuracy. These three metrics

combine to form the SELD score, with lower values indicating better overall performance.

The final model is selected based on the lowest SELD score to optimize both detection and

localization.

Fmacro =
1

C

C∑
c=1

TPc

TPc + FPspatial,c + 0.5× (FPc + FNc)
(5.1)

Here,
∑C

c=1 TPc is the number of correctly detected sound events across all frames and

classes. A detection is considered correct if it exists in both prediction and ground truth

labels, and satisfies the spatial localization constraints: θij ≤ 20◦ AND ρij ≤ 1.0, where

θij is angular error and ρij is relative distance error.

FPspatial is the number of false positives caused by incorrect spatial localization. Specifi-

cally, if a predicted event matches the correct class label in the ground truth but fails to

meet the spatial localization constraints, it is counted as FPspatial. FPc counts false positives,

including cases where a class is over-predicted compared to the ground truth and cases

where the predicted class doesn’t exist in the ground truth at all. Conversely, FNc is the

number of undetected events, which are present in the ground truth labels but missed by

the prediction.

The DOA error measures the angular accuracy of predicted sound source directions and

is computed only for sound events that are present in both the prediction and ground truth

labels. It is defined as:

DOAmacro =
1

C

C∑
c=1

∑NTP,c

i=1 θi
NTP,c

(5.2)
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Here, NTP,c denotes the number of correctly matched event pairs for class c. θi is the

angular error of the i-th matched pair. It is defined as the angular distance between the

ground-truth and predicted direction vectors in 3D space:

θ = arccos(v̂gt · v̂pred)×
180

π
(5.3)

In this equation, v̂gt and v̂pred denote the ground-truth and predicted direction vectors after

normalization, respectively.

RelDistEmacro =
1

C

C∑
c=1

∑NTP,c

i=1 δi
NTP,c

(5.4)

The relative distance error calculation is also computed for successfully matched event

pairs, where δi denotes the relative error for the i-th matched pair, defined as:

δi =
|dgt,i − dpred,i|

dgt,i
(5.5)

where dgt,i and dpred,i are the ground-truth and predicted distances of the i-th matched pair,

respectively. The error is divided by the true distance to normalize it and make different

distance scales comparable.

The SELD (Sound Event Localization and Detection) score is employed as an overall per-

formance metric. It is computed as the arithmetic average of three normalized metrics,

providing a balance between detection and localization:

SELD =
1

3

[
(1− F1) +

DOA Error
180

+ RelDistE
]

(5.6)

5.3 Audio-Visual Comparison

We designed an audio-visual comparison experiment to quantify the contributions of differ-

ent audio and visual feature ratios and to explore the optimal dimensional configuration for
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feature fusion. With the total fusion dimension fixed at 512, the allocation between audio

and visual representations was varied to find an optimal trade-off between performance and

efficiency.

In this setup, both visual and audio features are compressed to target dimensions through

linear layers, from ShuffleNet outputs and 512-dimensional CNN encoder outputs respec-

tively. Both features are then concatenated to form a 512-dimensional input to the fusion

Conformer module. All experiments are conducted using the same 4-layer Conformer ar-

chitecture, with only feature dimensions varied to ensure a fair comparison. The specific

allocation is summarized in the table below, covering configurations from audio-dominant

to visual-dominant.

Table 5.1: Performance of audio–visual feature dimension allocations with the total fusion
dimension fixed at 512. Bold values indicate the best in each metric. Overall, balanced or
mildly skewed allocations provide more stable performance than extreme audio- or visual-
dominant settings.

Model F1 Score (%)↑ DOA Error (°)↓ Relative Distance Error (%)↓

A64 V448 34.0 20.6 28.37
A128 V384 43.5 17.9 30.91
A192 V320 42.8 17.7 30.91
A256 V256 43.9 17.5 30.26
A288 V224 44.9 17.9 30.34
A320 V192 42.7 18.5 30.84
A384 V128 43.9 18.3 30.51
A448 V64 44.5 18.1 30.27

Table 5.1 summarizes the performance of different audio and visual feature dimen-

sion configurations. The results show a complex, non-linear relationship between the fea-

ture dimensions and the overall performance. Specifically, increasing the audio dimension

from 64 to 288 improves the F1 score from 34% to 44.9%, representing a gain of ap-

proximately 10 percentage points. However, when further increasing it to 448, the F1

score first decreases and then gradually recovers towards 44.5%, showing a non-monotonic
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trend. Meanwhile, as the audio dimension increases, the relative distance error remains

around 30%. Although the trend is non-linear, the audio-dominant configurations achieve

overall superior F1 scores. For example, A288 V224 achieves the best performance with

an F1 score of 44.9%, followed by A448 V64 with 44.5%. Conversely, reducing the au-

dio feature dimension to a minimal size leads to a sharp performance degradation, with

A64 V448 achieving only 34.0% F1—10.9 percentage points lower than the optimal con-

figuration. This shows that compressing the audio dimension to 64 severely impairs model

performance and suggests a practical lower bound for effective audio representation.

Meanwhile, different evaluation metrics exhibit varying sensitivities to the dimension allo-

cation. The DOA error achieves its lowest value when the audio and visual feature dimen-

sions are balanced, as in the A256 V256 configuration. The relative distance error performs

best when the visual feature dimension is high. Excessively increasing the visual dimen-

sion, such as to 448, presents a trade-off: while it improves distance estimation, the F1

score drops significantly. This highlights the need to balance multiple evaluation metrics.

Such a non-linear relationship may result from a multi-objective training strategy, where

multiple evaluation metrics are optimized jointly. These results suggest that the model im-

plicitly balances detection precision, localization accuracy, and distance estimation.

Experimental observations indicate that a balanced audio-visual configuration achieves bet-

ter trade-offs among detection, localization, and distance estimation. Therefore, we choose

A256 V256, a 1:1 ratio setup, as the baseline to explore the impact of overall fusion di-

mensionality. This ratio is kept constant in all subsequent experiments.

5.4 Fusion Dimension Analysis

This experiment is designed to analyze the impact of the total feature dimension on model

performance and to explore its potential for lightweight model design. In contrast to the

experiment in Section 5.3, which varies the dimensional allocation ratio between audio and
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visual features, here the ratio is fixed while the total dimension is adjusted. We designed

six total dimension configurations ranging from 128 to 2048, as shown in Table 5.2.All

configurations share the same network architecture.

Table 5.2: Performance of AV-SELD models with different total fusion dimensions under
a fixed audio-visual ratio.

Model F1 score DOA Error Relative Distance Error Parameters(%)↑ (°)↓ (%)↓
AV 64 64 34.7 21.0 30.53 10,054,452
AV 96 96 41.4 18.8 36.49 13,140,468
AV 128 128 42.2 17.2 30.44 16,570,548
AV 256 256 43.9 17.5 30.46 33,731,508
AV 512 512 43.4 17.1 30.54 84,305,844
AV 1024 1024 43.0 16.8 30.78 252,302,772

From the Table 5.2, the model performance first increases and then declines as the to-

tal fusion dimension increases, especially in terms of the F1 score, which shows signs of

saturation beyond a certain point. The F1 score reaches its peak at AV 256 256 and then

declines, while the DOA error continues to improve as the fusion dimension increases.The

relative distance error fluctuates around 30%, suggesting that this metric is not particularly

sensitive to changes in fusion dimension.

Besides, some outliers such as AV 64 64 with a low F1 score and AV 96 96 with a high rel-

ative distance error may be due to the limited model capacity caused by the small feature

dimensions. Therefore, small feature dimensions are insufficient for effective modeling,

and increasing the total fusion dimension enhances performance until it reaches a satura-

tion point.

The model’s parameter size grows exponentially as the fusion dimension increases. When

the performance reaches saturation, further increasing the dimension leads to an unnec-

essary computational burden. To balance performance and model complexity, we choose

AV 128 128, with a total fusion dimension of 256, as the lightweight configuration. This

model achieves 96% of the highest F1 score (AV 256 256) while reducing parameters by
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approximately 51%, and even slightly improving DOA error and relative distance error,

making it a strong candidate for deployment in resource-constrained scenarios.

5.5 Model Efficiency Analysis

To develop a lightweight model for the AV-SELD task, we conducted a series of progressive

lightweight experiments that systematically reduced model parameter complexity while

evaluating performance changes.

First, we compared different visual encoders, including ResNet18 and ShuffleNetV2, with

the baseline ResNet50. With significantly fewer parameters, these encoders allow us to

evaluate the performance impact of reduced visual complexity. From Table 5.3, it can be

observed that the F1 scores remain consistent across different visual encoders, all around

42%. For DOA error, ResNet18 achieves the best performance at 17.1°, followed closely by

ShuffleNet (17.2°), while ResNet50 shows slightly higher error at 17.6°. Moreover, Shuf-

fleNet achieves the lowest relative distance error, 30.44%, outperforming the other models.

While maintaining competitive performance, ShuffleNet requires only 341,792 parame-

ters, representing a 98.5% reduction compared to ResNet50. These findings suggest that

high-capacity visual encoders do not necessarily lead to performance improvements in AV-

SELD. In contrast, lightweight and efficient designs can substantially reduce computational

and storage costs while maintaining competitive performance.

Table 5.3: Comparison of visual encoder architectures in terms of AV-SELD performance
and parameter efficiency.

Visual Encoder F1 score DOA Error Relative Distance Error Parameters(%)↑ (°)↓ (%)↓
ResNet50 42.1 17.6 30.91 23,508,032
ResNet18 42.0 17.1 31.43 11,176,512
ShuffleNet V2 42.2 17.2 30.44 341,792

Then, we conducted an ablation study to investigate the effect of varying the number of
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Conformer layers on the overall performance. Based on the optimal dimension configura-

tion (A128 V128), we first varied the number of visual Conformer layers, evaluating four

structural variants: 4–4–4 (baseline), 4–3–4, 4–2–4, and 4–1–4. The three numbers repre-

sent the number of audio Conformer layers, visual Conformer layers, and fusion Conformer

layers, respectively. Next, we varied the audio Conformer layers, including experiments on

audio-only models that excluded the visual encoder. Finally, we tested different numbers of

fusion Conformer layers, ultimately reducing them to a single layer in the 4–1–1 configu-

ration. The results are summarized in Table 5.4. By comparing different visual Conformer

Table 5.4: Performance comparison under different architecture configurations. Each con-
figuration is denoted as A–V–F, where A, V, and F indicate the number of Conformer layers
in the audio encoder, visual encoder, and fusion module, respectively.

Configuration F1 score DOA Error Relative Distance Error Parameters(%)↑ (°)↓ (%)↓
Baseline 40.8 17.7 30.50 85,354,420
4 4 4 42.2 17.2 30.44 16,570,548
4 2 4 43.0 18.4 29.28 15,269,298
4 1 4 44.3 18.5 29.76 14,618,673
4 1 1 44.7 17.7 31.15 10,032,942
2 1 1 30.3 19.6 30.38 –

layer configurations from 4-4-4 to 4-1-4, we observe that F-score improves from 42.2% to

44.3% as visual layers decrease, despite a slight increase in DOA error. This suggests that,

for AV-SELD, stacking multiple visual layers offers little benefit. A single-layer visual

Conformer is sufficient to capture the essential spatial cues from 360° panoramic videos.

Deeper visual layers may introduce noise or lead to overfitting, which could explain the

observed performance degradation.

We also observe that reducing the fusion layer further improves performance, with the F-

score increasing from 44.3% to 44.7% while the DOA error decreases from 18.5° to 17.7°.

Although the relative distance error increases slightly from 29.76% to 31.15%, the parame-

ter count is reduced by approximately 38%, from 16.57M to 10.03M. This finding suggests

that efficient cross-modal interaction does not require extensive fusion mechanisms, achiev-
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ing parameter reduction while preserving performance.

Notably, reducing the audio encoder depth causes substantial performance decline. In the

2 1 1 configuration, F1 score drops from 44.7% to 30.3% and DOA error increases from

17.7° to 19.6°. This result confirms that audio dominates the AV-SELD task, and the 4-layer

CNN-Conformer structure is essential for extracting spatial audio features and preserving

performance.

Overall, the 4 1 1 configuration achieves the optimal balance between performance and ef-

ficiency. It significantly reduces parameters from 85.35M to 10.03M, improves the F1 score

from 40.8% to 44.7%, and maintains the DOA error at 17.7°, with only a slight increase in

relative distance error. It substantially reduces parameters, not only maintaining baseline

performance but also improving detection accuracy. These results validate the effectiveness

of the audio-dominated lightweight design for AV-SELD and highlight its practicality for

deployment on resource-constrained devices.
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CHAPTER 6

CONCLUSION

In this work, we propose an audio-dominant lightweight AV-SELD model that reduces

parameters by 88% while significantly improving detection performance. This design suc-

cessfully achieves the dual goals of efficiency and accuracy.

Our study revealed several key findings. First, a balanced 1:1 ratio between audio and vi-

sual features achieves the best overall performance, particularly in DOA error and relative

distance error. With this ratio fixed, performance improves as the total feature dimension

increases, but reaches saturation at 256 dimensions. Beyond this point, further increases

only add computational overhead without yielding meaningful gains. Second, the results

show the dominance of the audio modality in AV-SELD tasks. This allows us to employ a

lightweight visual encoder using a simple feature extractor with a single-layer Conformer,

which still outperforms deeper counterparts in our experiments. Third, a single fusion layer

is sufficient to model audio-visual complementarity, while excessive stacking of layers and

features can introduce noise or lead to overfitting.

We believe that large models tend to overfit on small datasets, often memorizing noise and

dataset-specific patterns instead of learning generalizable features. While we compress

the model to 10 million parameters, the limited capacity forces it to focus on the essential

acoustic features and spatial cues. Therefore, the smaller model enhances generalization

and robustness against environmental noise and irrelevant visual distractors. Additionally,

excessive parameters lead to optimization difficulties, such as gradient vanishing/exploding

and poor local optima. In contrast, lightweight models reduce training complexity, making

optimization more stable and convergence faster.

Our work has important practical implications. AV-SELD is widely used in smart surveil-

lance, robotics, and smart home applications, which often operate on resource-constrained
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edge devices. The proposed lightweight model, with only 10M parameters, can be directly

deployed on embedded systems, mobile devices, and IoT platforms, enabling practical

deployment of multimodal perception systems.Meanwhile, our findings offer valuable in-

sights for designing lightweight architectures in other multimodal tasks, highlighting the

importance of tailoring architectures according to the relative contributions of different

modalities to the target task.

Despite the promising results, several aspects of this work remain to be improved. First, the

ADPIT loss function for multi-task joint learning requires balancing multiple objectives,

which may lead to trade-offs in individual metrics. Second, the model was only evaluated

on STARSS23, so its generalization to other datasets remains to be tested. Therefore, future

work may focus on the following directions:

• Exploring knowledge distillation and quantization techniques to achieve further model

compression.

• Designing adaptive loss weighting strategies to better balance the objectives in multi-

task learning

• Validating the model’s generalization performance on additional SELD datasets be-

yond STARSS23.
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