98- Universiteit
47 Leiden
The Netherlands

Bachelor Computer Science

Godapt: Introducing general video game Al

to the Godot game engine.

Thijs Wim Dekker

Supervisors:
Matthias Miiller-Brockhausen & Mike Preuss

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 16/07/2025



www.liacs.leidenuniv.nl

Abstract

General Video Game Playing (GVGP) is a rich and evolving area of research, posing significant
theoretical and practical challenges. Previously explored methods to achieve general Al in
games have oftentimes been pestered with limitations, such as frameworks being built in
custom languages, or the Al agent being restricted to a limited set of video games. This thesis
presents the results of a new approach to GVGP agent creation, namely an integration into
the already existing Godot video game engine. It looks at both the possibility of such an
integration and lays the foundation for GVGP tools by introducing a program we developed
for this purpose: Godapt.

Where other projects before us have made reinforcement learning frameworks for the Godot
game engine by adding nodes within the editor, we have explored the possibility of external
integration. This allows our framework to interact with games made within Godot, without
the user having to change anything within the game. In this research we empirically show
that it is possible to adapt Godot in a way that enables the creation of both learning and
planning algorithms within the engine. All of the code, including the benchmark agents, is
available in the public domain.



Contents

1 Introduction

1.1 Problem statement . . . . . . . . .,

1.2 Thesis overview

2 Related Work

2.1 GVGAL . . .
2.2 GymGodot . . . . L
3 Background Information
3.1 Monte-Carlo Tree Search . . . . . . . . . . . . . . . ...
3.2 Godot . . . .
4 Godapt
4.1 Functionalities . . . . . . . . . e
4.1.1 Setup . . . .
4.1.2  Settings . . . . . . .
4.1.3 Documentation . . . . . . . . . .
4.2 Design . . . ..
4.2.1 Design Rationale . . . . . . . . ...
4.3 Limitations . . . . . . . . .
4.3.1 Major Limitations . . . . . . . . ...
4.3.2 Minor Limitations . . . . . . . . . ..o

5 Experiment

5.1 Frozen Lake (Learning) . . . . . . . . . ..

6 Conclusions
6.1 Further Research

References

16
16

18
18

20



1 Introduction

The idea and interest in machines outperforming humans in games has been around for a long
time. One of the earliest instances of such a machine can be traced back to the 1700s, where
the “Mechanical Turk” dominated its opponents in chess. It was discovered, however, that this
automaton was operated by a chess master from within the machine | ]. Whilst the Mechanical
Turk turned out to be a fake, the curiosity behind it was not, as would be shown by the rise of chess
engines in the 20th century. The swift improvement in both the quality of software and hardware
led to the iconic match between the chessbot Deep Blue and the then reigning chess world champion
Garry Kasparov| ]. Deep Blue won the match, becoming the first ever chessbot to defeat
a world champion. Whilst the improving chess engines garnered a lot of attention, scientists also
broadened their vision for even more complex environments.

With the rise of computers came new frontiers. Video games became ever more prevalent in a
computer-oriented society. This led to some scientist focusing their attention towards developing
AT players in video games. There are two paths to improving an Al agent in games: make the
agent perform as good as possible in a single game, or make the agent perform as good as possible
over several different games. The latter is a more niche field of research, namely the field that
looks into General Video Game Playing (GVGP). A prominent project utilizing a framework to
help develop general agents was the Arcade Learning Environment (ALE)] ]. The ALE
framework was designed to develop general Al agents capable of playing a wide range of Atari 2600
games, significantly advancing research in general Al creation.

A problem that the ALE and many of its successors ran into, was that such a framework severely
limits the scope and capabilities of Al agents made specifically for it. One of ALE’s problems is that
the set of games is finite and limited, which makes it so the agents will never be able to play video
games that are not within its dataset. A more modern framework, widely adopted by researchers,
is the General Video Game Artificial Intelligence (GVGAI) framework. The GVGAI framework
is built upon its own programming language, the Video Game Description Language (VGDL), as
proposed in Towards a Video Game Description Language] |. Having a language instead of a
set amount of games solved the issue of having a finite test set. Due to the consistent and structured
nature of the VGDL, the GVGAI framework became popular with scientists researching general Al
This fact, combined with the frequent GVGAI competitions using the GVGAI framework, has led to
new methods being explored and numerous articles written for GVGAI research. Notable examples
include deep learning by interfacing to the OpenAl gym environment by Torrado et al.] ,

or the exploration of diversifying the objectives of general Al heuristics by Guerrero-Romero et
al.| ].

The rise in popularity of general Al research demands both better Al agents and better development
frameworks. The GVGAI framework has proven itself to be a popular choice for research, but even
such a well-established framework leaves room for improvement. Many aspects of the framework
could be updated to allow for other more complex situations, such as multi-agent or multi-player
GVGALI or even automatic game design, as discussed by Perez-Liebana ]. The GVGAI
framework might have solved the problem of having access to a finite amount of games, but there
is still the inherent issue with the VGDL language. It restricts the agents into playing games only
made with VGDL, which excludes all games created using more common methods, such as libraries
or game engines.



1.1 Problem statement

This thesis seeks to explore the feasibility of developing a general video game Al framework utilizing
existing games. In order to achieve this, the Godot game engine has been chosen, due to its
popularity and the open-source nature of the software. The research question for this thesis is as
follows: Is it possible to make an Al framework built within Godot similar to GVGAI in which
agents can play games using both planning and learning methods? To answer this question, the
research has been split up into four distinct steps. The first goal is to find out whether it is possible
to run a random agent in a Godot project, without having to edit anything within the pre-existing
game.

Second, the feature of Reinforcement Learning support will be explored, by recreating the frozen
lake environment from openAI’s Gymnasium library! | ]. Data from Q-learning agents
in both the framework and the Gymnasium environment will be compared to ensure that the
framework produces the same results.

Lastly, the possibility of making a Forward Model (FM) and using Monte-Carlo Tree Search
(MCTS) within the framework needs to be implemented. This is due to the fact that some general
AT implementations rely on the possibility of MCTS, such as the Self-Adaptive MCTS agents
made by Sironi et al.| ]. While other approaches such as Rolling Horizon Evolutionary
Algorithms (RHEA) are also an often used approach to Al agents, they will not be explored within
this research in regards to the relatively small scope of a bachelor’s thesis.

By creating an external framework in Godot that can both facilitate the creation of Reinforcement
Learning agents and supports the use of MCTS within a FM, the goal of showing the possibility of
a general video game Al framework utilizing existing Godot games within the test and training
sets will have been achieved.

1.2 Thesis overview

This bachelor thesis, created within LIACS and supervised by Matthias Miiller-Brockhausen and
Mike Preuss, begins with an exploration of the underlying problem here in section 1. Section 2
discusses related work; Section 3 includes the definitions and relevant background information;
Section 4 goes into the design and inner workings of the Godapt framework; Section 5 describes the
experiment and its outcome; Section 6 concludes, goes into further detail about the shortcomings
of the software and presents possible future research.

https://gymnasium.farama.org/environments/toy_text/frozen_lake/


https://gymnasium.farama.org/environments/toy_text/frozen_lake/

2 Related Work

Many different wrappers and bindings have been developed for most major game engines, such
as Unity, Unreal Engine and Godot. Most of these solutions convert the game environment to an
OpenAl Gym environment or a similar construction to be able to access it through Python. While
this is an apt solution for Reinforcement Learning alone, it does not take into account planning
through algorithms such as MCTS, which require a separate simulation of the game world; a
feature not yet implemented within the aforementioned engines. We will be looking into one of the
Reinforcement Learning projects for Godot, namely GymGodot, after discussing the project that
inspired this research: GVGAL

2.1 GVGAI
The General Video Game Artificial Intelligence (GVGAI) framework| ] is a well-known
platform built upon the Video Game Description Language (VGDL)] | and introduced as a

means to evaluate general game-playing agents over a diverse set of games. Written in Java, GVGAI
offers many 2D environments for researchers to test or train agents.

The framework can be seen as “split in two”. Firstly there is the planning track in the original
framework that focuses on letting agents simulate a future environment: a so-called Forward Model
(FM) | |. AT agents can use algorithms such as MCTS or RHEA to make probability-based
decision with the knowledge they can extract from the FM. In 2017, a new interface was implemented
on top of the original GVGAI framework, in which the agents were restricted from accessing the
FM. This created a learning environment where Reinforcement Learning agents could be trained
and tested by continuously replaying the games available. This learning environment is where the
well-known GVGAI competitions started.

Despite its widespread use, the original implementation of GVGAI has several limitations. Not all
of them will be discussed here, but an important limitation that is relevant to this research is its
dependency on VGDL. VGDL limits the flexibility of the logic by enforcing that the game stays
grid-based and avatar-centric. Having such rules makes it easier for agents to communicate with
the framework, as discrete worlds and other such limitations carry over into every single game,
making it so that there is an overlap of rules between games. While this makes it easier to learn
these games as a general agent, it also severely limits how “general” the agent truly is, as it will
never come into contact with aspects such as continuous motion or physics. This ends up limiting
the variation of games that are available, and thus limits the learning scope of agents interfacing
with GVGAL

The GVGAI book mentions a possible solution, saying: “This can be complemented with adding
an integration with other systems. Different general frameworks like like OpenAI Gym | l,
ALE | | or Microsoft Malmé | | already count on a great number of games (single,
multi-player, model free and model based). Interfacing with these systems would increment the
number of available games which all GVGAI agents could play via a common API.” (Perez-Liebana,
2019, | |). This solution would alleviate some of the problems that come from having a
framework built upon VGDL, but the solution that the research in this paper proposes is to avoid
VGDL entirely in order to acquire a broader amount of games with a bigger set of differences
between them, giving agents more freedom.



2.2 GymGodot

A popular approach to Reinforcement Learning agent integration in game engines is to set up
communications between the game engine and a Python OpenAl Gym environment. It essentially
makes it so that there is an agent and environment within the engine that can be accessed through
an API within Python. One of the projects that has been implemented in such a way within Godot
is the GymGodot project.

Godot Python

Other scene nodes

1 Training script
(using PyTorch, Tensorflow, etc.)

Environment node Gym environment API

geL observation() step(action), reset(), etc.
get reward()
etc.

O gym-server

< (Gym environment)
GymGodot node

(GymGodot.tscn)

Figure 1: Overview of the GymGodot framework communication (from Hugo Tini, 2021, https:
//github.com/HugoTini/GymGodot)

The way GymGodot achieves this is through a WebSocket. The custom ServerEnv class sets up the
server side in Python and the custom WebSocketClient class uses the built-in WebSocketPeer on the
Godot side to connect as a client. The framework is used similarly to a normal implementation of the
OpenAl Gym environment on the Python-side, with the a similar API. Behind the scenes, however,
the Server Environment sends these function calls through the WebSocket to Godot, where an
Agent node and an Environment node process these requests and send the results back through the
WebSocket to the Python side, as seen in figure 1. A big restriction such an implementation imposes
is the fact that the game’s scene needs to be changed in order to facilitate the GymGodot and
Environment Nodes, meaning the game itself needs to be edited in order to be used by GymGodot.

This framework enables the creation of RL agents that can make use of the plethora of Python
libraries designed to aid with RL, such PyTorch and Tensorflow, while also utilizing Godot and
its potentially infinite set of games. While this framework is not necessarily designed to be used
by general Al agents, it can easily be used this way by swapping out the Godot side each time
the agent wants to play a different game. An project with a similar approach as GymGodot
is Avalon| |, a 3D video game environment and benchmark designed for Reinforcement
Learning research. Avalon shows the viability and practical utility of the WebSocket approach.

What this framework lacks in order to facilitate proper creation of general agents, is a planning

4


https://github.com/HugoTini/GymGodot
https://github.com/HugoTini/GymGodot

track. In order the use algorithms such as MCTS or RHEA, a simulation of the environment and
its future state, separate of the original game environment, needs to be created. Currently, the
Godot side of this framework only facilitates a single SceneTree, as is the case in an unedited build
of Godot. A hard limit of only one SceneTree makes it impossible to create a simulation of the
environment parallel to the current game environment, thus making it an unfeasible option for
agents that use planning instead of learning.

3 Background Information

This section covers the technical aspects and definitions behind this research. This paper assumes a
basic understanding of Reinforcement Learning (RL), with all RL definitions used being based upon
those found in Reinforcement learning: An introduction (2nd ed.) by Sutton and Barto, 2020 [SB20].
However, this section will quickly dive into the basics of Monte-Carlo Tree Search (MCTS) 3.1,
as this is an integral part of the final steps of this research. For those without experience with
the Godot game engine and its specifics, there will be an overview of its general layout and inner
workings in section 3.2.

Although the reader’s general knowledge of Al in games is implied, there are distinctions to be
made between General Game Playing (GGP) and General Video Game Playing (GVGP). In GGP,
the game, often a turn-based board game, is defined using a declarative approach that specifies the
game’s logic. In the article General video game playing, the field of General Video Game Playing
(GVGP) was introduced. GVGP was described by Levine et al. as follows: “In GVGP, computational
agents will be asked to play video games that they have not seen before. At the minimum, the
agent will be given the current state of the world and told what actions are applicable. Every game
tick the agent will have to decide on its action, and the state will be updated, taking into account
the actions of the other agents in the game and the game physics” [LCE"13].

Repeated X times
+—{ Selection }—>{ Expansion H Simulation H Backpropagation }j

The selection function is
applied recursively until
a leaf node 1s reached

One or more nodes
are created

One simulated The result of this game is
game 1s played backpropagated in the tree

Figure 2: Outline of a Monte-Carlo Tree Search (from Chaslot et al., 2008, p.3[C'W U 08])



3.1 Monte-Carlo Tree Search

This section is a summarized version of “Section 2: Monte-Carlo Tree Search” in the article
Progressive Strategies for Monte-Carlo Tree Search | | and covers the basics needed to
understand 1it.

MCTS is a best-first search method that is compromised of four different stages, as can be seen in
figure 2. The algorithm begins with the selection stage, where it starts out in the root node R
(the current state, in terms of games). From the root node the algorithm recursively visits children
nodes N, selecting them based off of a selection function. This thesis does not dive into complex
heuristics and exclusively uses random selection during the selection stage. Once the selection stage
reaches a leaf node L, it will start the expansion stage. The current leaf node will be expanded
by storing one or more of its children into memory. From this point the simulation stage starts,
where moves will be selected until either the end of the game (often the case when simulating
a zero-sum game), or until a set amount of moves or time is exceeded. This thesis will not use
anything more complex than random selection during the simulation stage. Once the playout is
done, the backpropagation stage starts. The backpropagation takes the result of the simulated
game k and propagates it backwards through all the visited nodes starting from the selected leaf
node L, while also updating the visit count ny of each node. The value of a node is computed by
taking the average value vy of all simulated games that have used node N, using the formula:

LRy

nn

UN

These four stages get repeated X amount of times or until a certain time threshold has been
exceeded. Once this is the case, the program will play the move corresponding the the “best” child
of the root node. There are numerous ways to define which child is best using the value and visit
count of each node. This thesis will be using the Max child: the child with the highest value.

An example of pseudo-code based off of Chaslot et al., 2008, p.4 | ] can be found in
algorithm 1. In this pseudo-code, ST stand for the set of nodes that are loaded into memory and
thus are part of the search tree. The SELECT(Node N) function call is the selection function that
decides which children to choose during the selection stage. EXPAND(Node N) chooses one of
the node’s children and expands it. The function PLAY_SIMULATED_GAME(Node N) does a single
playout starting from the child node chosen during the expansion stage and returns the result.
This corresponds to the simulation stage. BACKPROPOGATE(Float/Integer R) calculates the new
value for the node using the earlier mentioned formula. The function P1CK_BEST_CHILD(Node N)
picks the best child after all four stages have stopped looping.



Algorithm 1 Monte-Carlo Tree Search

1: function MCT'S(root_node)

2 while has_time do

3 current_node <— root_node

4: while current_node € ST do

5: last_node < current_node

6 current_node <— SELECT(current_node)
7 end while

8 last_node <— EXPAND(last_node)

9: Result + PLAY_SIMULATED_GAME(last_node)
10: while current_node € ST do

11: current_node. BACKPROPOGATE( Result)
12: current_node.visit_count += 1

13: current_node = current_node.parent

14: end while

15: end while

16: return PICK_BEST_CHILD(root_node)

17: end function

3.2 Godot

Godot is a cross-platform game engine that supports both 2D and 3D game creation. Godot’s
free and open-source nature, supported by an MIT license, makes it an excellent choice for game
development and research. An understanding of the underlying structure of Godot is crucial to
understanding the design choices and results of this thesis. This section will give a rundown of the
important factors of Godot that have shaped the decision making and design of the research.

While Godot supports C# directly and other languages through its GDNative feature, the Godot
editor mainly relies on its built-in programming language: GDScript. GDScript is a high-level,
dynamically typed programming language, designed with integration with the C++ engine in mind.
The language is oftentimes compared to Python, with the two languages sharing very similar syntax.
While the two are similar, GDScript lacks the vast number of libraries that Python has access to,
making it less suited for problems that would be solved easier using a pre-made library.

Godot uses a unique structure for its engine. Every game is built entirely from Nodes, the building
blocks of Godot. Every possible thing in Godot inherits from this node class, with many different
types available. User-made scripts can be attached to these nodes, giving them unique behaviors,
with nodes always having the functions _ready (), called when this node and all of its children
have entered a new tree, _process(), called each frame, and _physics_process(), called for each
physics frame, along with a handful of other functions that handle features like inputs. These nodes
are arranged in a tree called a Scene, with nodes having parent-, sibling-, or child-nodes. These
trees or their sub-trees can be saved as an individual PackedScene, functioning similar to “prefab”
objects in other engines. Scenes also make up the environments and levels of your game.

At the heart of the GDScript side of the engine lies the MainLoop class, an abstract class designed
to control the game loop of Godot. The SceneTree inherits this from the MainLoop, but adds in all



the utility needed to manage a Scene and the Nodes within it, making it the default implementation
of the MainLoop in most use cases. The SceneTree and the classes that inherit from it are the
main connection from the C++ engine to the user-written GDScript side of things. The loop on
the C++ side calls functions such as _process() and _physics_process(). The SceneTree handles
its logic, but also makes sure that all the Nodes in its current scene have their respective process
functions called as well. An important detail to note here is that the MainLoop class, and thus the
SceneTree through inheritance, is defined as a singleton, meaning that in the current release of
Godot only one instance of such a class is allowed, otherwise undefined behavior might occur. This
attribute complicates the creation of a secondary Mainloop, making the development of simulations
complicated.

4 Godapt

In order to answer the research question of this thesis, a framework integrated with Godot had to
be built. The final result of this project is the software called Godapt: an open-source framework
developed in GDScript using a custom-built version of Godot. While this means that the project
technically does not run on a normal version of Godot, the custom-built version of Godot makes
sure that games built with the original engine also run within this custom version, which is in line
with one of our design philosophies: Any arbitrary game created within Godot version 4 must be
compatible with Godapt. The code behind the framework itself and the custom Godot build can
be found on their respective Github pages.

This section is split up into several distinct subsections that each touch on a different part of the
research. Section 4.1 is meant as user manual that teaches the reader how to use the software
themselves, from the setup to interacting with the API, meaning this section is not of importance
to the results of the research itself. Section 4.2 explains how to software is built and structured and
explores why these design choices were made. It goes into further detail about which options were
considered and why some of these approaches deemed infeasible or unviable. Lastly, section 4.3
looks into the current framework and its limitation. It mainly touches on why these limitations
exist, whereas section 6 goes into further detail on how to fix some of these issues for possible
further research.

4.1 Functionalities

Godapt runs on a Godot executable compiled for x64 Windows and uses a shell script to start
up, meaning a x64 Windows operating system along with an installation of Bash is required
in order to use the program. While Linux is not directly supported, it is possible to compile
a Linux version of the custom Godot engine by cloning it from the Github page?, compiling it
using scons platform=linux target=template_debug, putting the acquired executable in the
\GodotBuilds folder and linking it in the RunFramework. sh file.

2https://github.com/T-Dekker/godot


https://github.com/T-Dekker/godot

4.1.1 Setup

This setup guide assumes the user already has a Godot game set up in which they would like to
use Godapt. These first steps explain how to set up the bare minimum of Godapt within your own
Godot project.

Basic setup:

1.

Create a folder named Godapt within your existing Godot project, on the same level as your
project.godot file.

Clone the Godapt Github repository® into the newly made folder, either by downloading it
directly or by using git clone https://github.com/T-Dekker/Godapt.

If an agent GDScript file has already been created, move it anywhere into the project. If not,
create a GDScript file anywhere in your project that extends the Agent class, by starting the
script with class_name CustomAgentName extends Agent.

Open up the project in your preferred version of Godot. This ensures Godot registers the
new files, otherwise these would not be accessible during runtime.

After these steps, Godapt is successfully linked within your Godot project. The following steps
guide you on your way to make your first agent interact with the game.

First time running:

1.

Set up the desired settings within the settings.JSON file. For more information on each
variable’s function, please refer to section 4.1.2.

. Run the project through the framework by running the RunFramework.sh file, using the

command line options.

(a) -w runs the project in windowed mode. Without this command, the program runs
headless. This option is currently not supported in combination with MCTS, due to
limitations that will be discussed in section 4.3.

(b) -v runs the project in verbose mode. This is no different than Godot’s own verbose
mode.

(¢) -2 runs the project using the most recent version of Godapt. This is a less stable version
of Godapt that allows for FM creation.

4.1.2 Settings

Godapt comes with a settings.JSON in which several variables can be set. Some of these variables
have to be set in order for the framework to function as intended. An explanation for these settings
can be found in table 2. Some settings are purely optional and only intended to help change variables
within the agent without having to hard-code them. While possibly anything can be sent to the
agent this way, these settings were meant for certain purposes, which can be found in table 1.

3https://github.com/T-Dekker/Godapt


https://github.com/T-Dekker/Godapt

Table 1: Overview of optional settings

Setting ‘ Type ‘ Default ‘ Description

train Boolean | true Boolean sent to the agent. Meant to
select a training or playing mode.

load data path | String e A string sent to the agent. Meant to

indicate the file path of an RL agent’s
data, so it can load it before running.
save_data path | String " A string sent to the agent. Meant to
indicate the file path of an RL agent’s
data, so it can save it after running.

4.1.3 Documentation

This section goes over how to properly make use of Godapt’s features, which includes the Agent
class’s functions that should be overwritten and how to set up a scene. This section will not go into
detail about the inner workings of the framework, for that, refer to section 4.2.

Because of Godapt’s design, it does not have an API in the original sense. It can not be called
through code the same way libraries are, but instead it has a loop for itself where you can insert
parts of your own code. The main loop in the framework calls functions within the user made Agent
class. By overriding these functions, the user can interact with the game while getting a constant
feed of information, thus making it possible to develop agents within Godot.

The Agent class follows the rules of a classic RL agent. After initializing, it continually stays in a
loop where it receives a reward r; and a state s; from the environment, with which it can make
a choice for its next action a; and update its own data. The loop itself is inaccessible in Godapt,
but the functions on the custom agent class are called accordingly. In table 3 are all the functions
available and how to utilize them.

For selecting actions, the Agent class has been provided with the variable actions: Array[StringName]
that contains all the inputs that were provided in the settings.JSON file. Using these actions, the
agent is expected to either press or release these actions themselves in the Godot engine. Godot
contains a global Input class, with two functions that can manipulate the state of certain actions,
namely the action_press() and action_release() functions. Using these, the agent can set their
action a; for the next timestep.

10



Table 2: Overview of configuration settings

Setting

Type

‘ Default ‘ Description

custom_agent

Boolean

true

Enables the use of a custom agent. Uses
a the default agent class when false.

running_scene

String

Sets the scene being ran by Godot. Uses
the main scene set in Godot when left
empty.

inputs

Array[String|

(]

Names of the inputs registered in
Godot that the agent should have ac-
cess to. A list of all options can be
found in the Godot editor, Project —
ProjectSettings — InputMap.

step_duration

Float

0.0

Step size given to all nodes in
the scene during process() and
physics_process() calls, also known
as delta.

env_node_paths

Array[String|

(]

An array filled with the nodes that is
sent, as the state to the agent class.

reward_node_path

String

The name of the node that should be
sent as the reward to the agent class.

MCTS

Boolean

false

Boolean as to whether the framework
should initialize and use a second Scene-
Tree used as a FM.

MCTS_timeout

Float

0.0

The time in real-time seconds that the
agent is allowed to use the FM set by
the MCTS setting before it has to make
a step in the original simulation.

random_seed

String

The seed used for Godot’s built-in Ran-
domNumberGenerator class. This seed
needs to be set in order for the FM to
work as intended.

11



Table 3: Overview of over-writable Agent functions

Function

Description

Called During

initialize()

Called with the train, save data_path and
load data_path parameters. Used to load in
data and initialize any needed data structures.

Called once before the
main gameplay loop
has started.

select_actions()

Sets whether each action is pressed or not.
This is done manually within the function by
calling Godot’s Input class and not returned.

Gets called at the start
of each new simulation
step.

update ()

Used to update any internal data structures
using its new variables.

Gets called each new
simulation step.

set_environment ()

Passes the environment node array as a pa-
rameter to the agent.

Gets called each new
simulation step before

update().
Gets called each new
simulation step before
update().

set_reward () Passes the reward as a parameter to the agent.

exit () A function that lets the agent finish up what- Gets called when the
ever needs to be done. Mainly used to save framework closes.
data after training.
4.2 Design

This section is closely tied to section 4.3 that discusses Godapt’s limitations, as certain limitations
were the reason behind some design choices and vice versa. This section starts out with an
explanation of the current design and inner workings of Godapt. This will be followed up by an
explanation of the design philosophy, along with other designs that were considered and the reason
behind their failure.

The program starts out by calling a custom build of Godot. There are only a few changes within this
version of Godot, with the most important one being the possibility to create multiple SceneTrees
and the ability to call their _process() and _physics_process() functions from within the
GDScript side of the program. This feature enables the possibility to run Godot one step at a time,
along with the potential to create several different SceneTrees at the same time. After calling the
custom executable of Godot, it gets fed a custom Mainloop class, called Framework.gd. This is
where a vast majority of processes take place.

Now that Godot considers Godapt’s framework as a Mainloop, it will keep calling its _process()
function as it would for any other game instance. A diagram depicting this function and the classes
it calls can be found in figure 3. After the framework initializes both an instance of the user made
custom Agent class and the CustomLoop class, it enters its loop in _process(). This loop follows
a classic approach to RL. It starts out simulating one in-game frame in the environment by calling
the one_step() function on the CustomLoop class. This simulates both a step in _process()
and _physics_process() within the game environment. After doing so, the framework collects
the environment nodes, the reward node and checks if the game is over. If not, it forwards the

12



Godapt
Cu stom Framework
GO dOt Custom Agent Class
select_actions()
CustomLoop.gd

4 one_step()

Actions running_scene

Environment _process()
Nodes Data

Figure 3: A simplified diagram depicting Godapt’s design without the FM implementation.

environment and reward nodes toward the custom Agent, and calls its _update () function. After
this, the agent is prompted to select its actions for the next timestep, thus completing the full RL
loop.

The previous paragraph was an example of the learning track of Godapt. The planning track is
different, but works in a similar manner. Please keep in mind that the planning track is currently
not in a stable state, which will be discussed later on. Instead of constantly prompting the same
CustomLoop object to simulate its environment, the planning track instead creates two distinct
CustomLoops, each with its own scene. One of these is designated the main tree, while the other
is used as a FM. In this situation, the framework switches between the two. It first simulates a
single step in the main tree, after which it switches to the secondary FM tree. When this happens,
a timer starts. As long as this timer is running, the framework keeps calling the FM instead of
the original. During this time the agent can use planning algorithms such as MCTS or RHEA to
determine its next step within the original tree. Once the timer runs out, another single step can
be taken in the original SceneTree, thus completing the loop.

The way that the secondary SceneTree loads in a copy of the original tree is suboptimal. The
reason as to why it is designed this way, is discussed in section 4.2.1. The primary SceneTree
keeps track of all the moves it has performed up until this point, by registering them in an array.
The secondary SceneTree loads in the same scene file as the original SceneTree, meaning that it
is loading in the same scene, yet it starts from the very beginning. To properly make sure that
the secondary tree starts out as a copy of the original environment, as is required of a FM, the
_process() function dedicates time to simulate ever single timestep with the exact same actions
that the original SceneTree has taken. This is also the reason why a random seed has to be set in
the settings in order to use the FM, otherwise it would not be able to exactly recreate the same
environment. The use of an internal RandomNumberGenerator object is also not allowed within
the game project, as it would not fall under the same random seed as the global object. Once the

13



secondary tree has reached the same state as the original, it can be used as previously stated. If
the secondary tree reaches an end state before the timer runs out, it will have to re-simulate back
to the state of the primary tree.

4.2.1 Design Rationale

While most design choices are either trivially explained or were small enough to end up not
influencing the program in any substantial way, some ended up having big effects on the outcome
of this research. The following examples ended up significantly impacting the framework itself.

Why is everything done within the MainLoop’s process function, and not within an
internal loop?

An internal loop has been considered and tried out. This loop was called from the process function,
thus decoupling the MainLoop from the rest of Godot, seeing as it would never leave the process
function after entering this loop. While most parts of Godot were still working fine, this ended up
having adverse side effects, such as physics interpolation no longer functioning correctly. Another
major issue that this brought with it is the inability to properly render the game to a window.
While rendering is not needed for a proof-of-concept, it made debugging extremely hard. These two
issues combined were the reason to choose to handle things in the process function.

Why does the FM SceneTree scene need to built from scratch for every simulation?
Several different approaches of saving and loading were considered and explored through implemen-
tation. The obvious approach would be to see if it would be possible to either duplicate the original
scene directly, or to save and load the scene using one of Godot’s built-in features. The SceneTree
itself can not be duplicated, due to its singleton attribute, though only the scene itself needs to be
copied. Unfortunately, there is no built-in way to directly duplicate a full scene within Godot. To try
to achieve this, two approaches were tested. The first approach consisted of saving the entire scene
in the TSCN (text scene) format. However, this format does not support dynamically allocated
nodes and variables, meaning it only saves the initial state of the scene and not the current state,
thus making it unfit for Godapt’s purposes. The second approach consisted of copying over every
node into the new SceneTree. Each node had its data stored, which consisted of its node type,
its place within the tree, all inspector values, any attached script and all variable values within
that script. These nodes were then recreated one by one inside the new SceneTree, thus recreating
the original. This approach proved successful for trying to recreate the scene itself. Two main
problems arose, however. First of all, these new nodes were added into the SceneTree, meaning
their _ready () function was called once again, leading to unexpected behavior. While turning off
the _ready() function when adding them to a new SceneTree by making an exception within the
engine-side could have been used as a solution for this, some nodes relied on the _ready () function
to link either their signals on certain variables that were linked or set within the _ready () function.
Though a working version of this implementation was not successfully created, the potential of it
will be discussed further in section 6.

Why can the agent only be developed in GDScript?

This is because it does not matter for the research question whether the agent can be developed in
GDScript or Python. It has been proven before by different projects that it is possible to interact
with Godot through other scripts. One of these ways is the approach of GymGodot, which sets
up a WebSocket class that listens to calls from a Python server. Another approach was taken by

14



GodotAIGym?, a project similar to GymGodot. GodotAIGym allocates a block of shared memory
that both Python and GDScript can access, thus setting up a way of communication between them.
Setting things up exclusively using GDScript allowed Godapt to be developed faster and with a
focus that lies more on manipulating the engine into allowing the creation of a FM.

4.3 Limitations

Godapt suffers from a collection of limitation. Some of these are due to the design of the software,
while other can be considered bugs. These range from hard restriction to minor inconveniences,
and will be separated into two degrees of severity accordingly. For a deeper explanation for some of
the major limitations, refer back to section 4.2.1.

4.3.1 Major Limitations

The array tracking the moves of the primary SceneTree grows linearly larger with each
timestep, meaning the longer the game keeps running, the larger this array grows.
This means that it is impossible for a game to keep running indefinitely, and weaker machines
will quickly run out of available memory in their heap. This will eventually lead to the program
crashing.

The game needs a set random seed in order to use the FM.

In order to recreate the scene from scratch, the secondary tree needs to replicate every move made
so far. Because of this, it can not use a different seed each time, otherwise the result would vary
and it would not properly simulate the primary SceneTree. This also leads to the unfortunate
consequence that agents will never have to keep a different random state in mind, but instead will
always play the same game.

The game can not use an instance of the RandomNumberGenerator when enabling
the FM.

As discussed earlier, the secondary tree needs to replay the game from scratch to replicate the
original game state. Many games, however, make use of the class RandomNumberGenerator instead
of the global random functions. This would exclude them from being played using Godapt.

The game can not use Ul or other mouse position related events.

Godapt exclusively makes use of the Input class in Godot. This means that keeping track of mouse
position is currently impossible. This limitation excludes games that rely on mouse position clicks,
such as most Real Time Strategy (RTS) games or top down Role Playing Games (RPG).

The game needs to reset the scene themselves whenever it ends.

There is currently no support for resetting scenes through Godapt. This is because the framework
was developed with the philosophy that a game would not have to be edited in order to be compatible
with Godapt. In reality, this leads to many different issue and limitations, though they do not
impact the research itself. This issue could be fixed by finding a balance between leaving the game
untouched and editing/adding nodes.

“https://github.com/lupoglaz/GodotAIGym

15


https://github.com/lupoglaz/GodotAIGym

4.3.2 Minor Limitations

The custom agent needs a reboot of the Godot editor.

This project has tried to keep the already developed game and the framework separate. A newly
created custom Agent class, however, needs to be registered within the project, and the only way
to do so currently is to boot up the specified game within the Godot editor. This could possibly be
solved with a script on the custom engine side, but this was outside the scope of this research.

The loop being in Framework.gd limits the use of Godapt for uncommon purposes.
Currently, Godapt is always stuck in the same loop, with the only user-made interaction being
inside the Agent class. There are various reasons why the user would want to control and customize
this loop for themselves, for example: having several agents at the same time. This is currently not
possible without editing Godapt’s files yourself.

The step size (delta) is always set.

This was done for the ease of development, as it made creating example agents significantly easier,
and had no adverse effects on the research itself. This leads to the agent never learning to keep
delta in mind, which sometimes a wanted feature when developing an agent.

All code is limited to GDScript.

Python is the industry standard for Al programming, due to its vast amount of libraries available
for data manipulation. GDScript does not have access to any libraries, causing programmers to
have to program complex algorithms and data structures from scratch. While technically the same
things are possible in both programming languages, doing so in GDScript is oftentimes implausible.

Godapt exists with a plethora of errors and memory leaks.

Due to our design approach, we are instantiating several singelton objects. Godot is not designed
with this action taken into consideration, leading to unintended behavior and memory leaks when
Godot tries to clean up after running. No adverse side effects have yet to be discovered during
runtime, but not cleaning up memory is generally considered poor practice.

5 Experiment

In order to make sure Godapt worked as intended, test projects were set up. Not all results will be
shown, as a working random agent is trivial when RL agents in the same environment have been
shown to perform as intended. Therefore, the two most significant projects will be shown. The
only proper experiment that has been sit up discussed thoroughly in section 5.1. This is due to the
fact that this is the only experiment with quantifiable data. Most features, such as letting agents
interact with several different games, are proven empirically and do not have a separate experiment
set up. The planning track is not discussed here, seeing as whether the current implementation
works, does not change the outcome of this research.

5.1 Frozen Lake (Learning)

To test the possibility of creating learning agents within Godapt, a recreation of OpenAI’s Gymna-
sium Frozen Lake environment was created within Godot, which can be seen in figure 4. Apart

16



from slight differences, such as the Godot version resetting automatically and making use of the
Input class for actions, they function identically.

For this experiment Q-learning was chosen in combination with the e-greedy policy as the RL
agent’s algorithm, due to the following reasons. First of all, its simplicity not only makes it easy
to implement, it also makes it easier to check if all features, such as the learning loop or reward
system, work as intended. Secondly, Q-learning produces repeatable and interpretable data, making
correctness verification easier by looking at the reward per timestep or the Q-table itself. Thirdly,
the algorithm can be easily implemented without the use of Python libraries, leading to significantly
faster development time in GDScript.

¢
@

7
7
7 &

(a) The standard 4x4 Frozen Lake environ-(b) Godot recreation of the official 4x4
ment. Image from the official website. Frozen Lake environment.

Figure 4: A visual comparison between the original Python Frozen Lake environment and
Godapt’s adaptation. In Godot, yellow indicates the start, green indicates the present
(goal), red indicates a hole (reset) and blue indicates walkable tiles.

The hyperparameters for the following experiments are: ¢ = 0.1 and v = 0.9. Both the Python
and Godapt implementations were tested using learning rates a of 0.5 and 0.1. These values are
commonly recognized as effective defaults for Q-learning in most environments. Seeing as the main
focus of these experiments is to examine if an agent in Godapt learns correctly and similarly to an
agent in Python, attention to these parameters will be limited. The reason for having two varying
learning rates, is to see if both agents react similarly to a change of parameters. Each experiment
was ran 100 times, with each attempt lasting 3000 episodes. Due to the large amount of episodes
and the sporadic nature of the recorded rewards, a rather high window size of 200 has been chosen
for the rolling window calculation smoothing.

To make the comparison as fair as possible, both the Python and Godapt agent were programmed
with the same functions called in the same order. All code from the GDScript agent was copied to
Python and adjusted when needed. The only major change in behavior is that the Godapt agent
has to call the Input class to register an action, while the Python agent registers its chosen action
as a return variable.

The results shown in figure 5 indicate no significant difference between the learning capabilities of
an agent developed within Python compared to Godapt. The slight differences between the two can
be attributed to the inherent randomness in RL and the stochastic nature of the e-greedy policy.

17


https://gymnasium.farama.org/environments/toy_text/frozen_lake/

These findings suggest that RL agents developed in Godapt are capable of learning correctly and
performing comparably to those created in more established environments.

Smoothed Average Reward per Timestep in the Frozen Lake Environment

—— Godapt: Alpha=0.5
Godapt: Alpha=0.1
Python: Alpha=0.5
Python: Alpha=0.1
Random Godapt

0.08 A

0.06

0.04 4

Average Reward

0.02

0.00 4

T T T T T
0 500 1000 1500 2000 2500 3000
Timestep

Figure 5: A comparison of Q-learning agents in both Python and Godapt in the Frozen Lake
environment, each with a learning rate of 0.1 or 0.5, accompanied with the results of a random
agent. All results have been smoothed with a window of 200.

6 Conclusions

This research has introduced a framework called Godapt, implemented within Godot, that lets its
users develop and train Al agents that utilize the engine’s games as environments. Using Godapt
we have empirically shown that it is possible to create Reinforcement Learning agents that train on
arbitrary Godot scenes directly within the engine.

There was less success in the development of planning agents, however. While we have attempted
many different ways to get a FM to work within Godot, the engine simply has not been implemented
with its support in mind. We have managed to find a workaround, though it imposes severe
limitations. Because of this, we conclude that a FM is currently not possible in the way we imagined
it.

6.1 Further Research

In order to prove the research question, the creation of a proper FM must be possible. To achieve
this, a feature must be developed that lets the framework duplicate existing scenes. As of now,
Godot 4 will not be getting a dynamic scene duplication feature. A promising alternative was an

18



approach considered and implemented within this research, namely the copying of all node data
into a newly created scene. While we were not able to create such a feature successfully, we believe
that there is potential in this approach, either through implementing it engine-side or by doing it
within the framework itself. Though many edge-cases must most likely be considered, implementing
such a feature would allow the creation of several FMs and thus prove the research question.

Though the FM is the main point of attention, many other angles and aspects of Godapt can use
improvements. As discussed in section 4.3, there are currently a collection of limitations plaguing
Godapt. Most of the major limitations are tied to the current implementation of the FM feature.
Many of the minor limitations can be fixed by adding or changing certain aspects of Godapt. For
example: Godapt could be improved by adding cursor position support, letting agents keep track of
the mouse’s screen position. A major overhaul could also allow the creation of agents within other
programming languages, as has been proven by projects such as GymGodot.

New features tying Godapt to GVGALI could possibly be added. For example: a script that lets
people convert their old GVGALI agents into Godapt compatible agents. While GVGALI has stopped
organizing its yearly competitions, similar competitions could be organized within Godapt. While
currently not as robust as GVGAI, Godapt could organize such competitions even in its current
state, seeing as all GVGAI competitions solely took place in its learning track.

References

[AFFT22] Joshua Albrecht, Abraham J Fetterman, Bryden Fogelman, Ellie Kitanidis, Bartosz
Wréblewski, Nicole Seo, Michael Rosenthal, Maksis Knutins, Zachary Polizzi, James B
Simon, and Kanjun Qiu. Avalon: A benchmark for RL generalization using procedurally

generated worlds. In Thirty-sizth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2022.

[BCP*16] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiw preprint arXiv:1606.01540, 2016.

[BNVB13] M.G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

[CHhHO02] Murray Campbell, A.Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artificial
Intelligence, 134(1):57-83, 2002.

[CWUT08] G.M.J.B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy. Progressive strategies for monte-carlo tree search. New Mathematics and
Natural Computation, 2008.

[ELL*13] M. Ebner, J. Levine, S.M. Lucas, T. Schaul, T. Thompson, and J. Togelius. Towards a
video game description language. Dagstuhl Follow-Ups, 6, 2013.

[GRLPL17] C. Guerrero-Romero, A. Louis, and D. Perez-Liebana. Beyond playing to win: Diversi-
fying heuristics for gvgai. 2017 IEEE Conference on Computational Intelligence and
Games (CIG), pages 118-125, 2017.

19



[JHHB16]

[LCE*13]

[PLLG*19]

[SB20]
[Sch99]

[SLPL*18]

[TBT*18]

M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo platform for artificial
intelligence experimentation. [JCAI, 2016.

J. Levine, C. Bates Congdon, M. Ebner, G. Kendall, S. M. Lucas, R. Miikkulainen,
T. Schaul, and T. Thompson. General video game playing. Dagstuhl Follow-Ups,
Volume 6, 2013.

D. Perez-Liebana, S.M. Lucas, R.D. Gaina, J. Togelius, A. Khalifa, and J. Liu. General
Video Game Artificial Intelligence, volume 3. Morgan & Claypool Publishers, 2019.
https://gaigresearch.github.io/gvgaibook/.

R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction (2nd ed.). MIT
Press, 2020.

S. Schaffer. “Enlightened Automata”, in Clark et al. (Eds), The Sciences in Enlightened
Furope. The University of Chicago Press, 1999.

C.F. Sironi, J. Liu, D. Perez-Liebana, R.D. Gaina, I. Bravi, S.M. Lucas, and M.H.
Winands. Self-adaptive mcts for general video game playing. In International Conference
on the Applications of Fvolutionary Computation, pages 358-375. Springer, 2018.

R. Torrado, P. Bontrager, J. Togelius, J. Liu, and D. Perez-Liebana. Deep reinforcement

learning for general video game ai. 2018 IEEE Conference on Computational Intelligence
and Games (CIG), pages 1-8, 2018.

20


https://gaigresearch.github.io/gvgaibook/

	Introduction
	Problem statement
	Thesis overview

	Related Work
	GVGAI
	GymGodot

	Background Information
	Monte-Carlo Tree Search
	Godot

	Godapt
	Functionalities
	Setup
	Settings
	Documentation

	Design
	Design Rationale

	Limitations
	Major Limitations
	Minor Limitations


	Experiment
	Frozen Lake (Learning)

	Conclusions
	Further Research

	References

