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Abstract

Robot navigation in crowded environments is a task that must balance safety and efficiency.
This thesis investigates whether agents (robots) using adaptive risk-taking strategies can
outperform static risk-taking strategies in dynamic environments across a few standard metrics.

To perform this investigation, a 2D grid simulation was developed containing static
obstacles representing walls, and dynamic obstacles representing people. Three static risk-
taking strategies, ‘safe’, ‘risky’, and ‘very risky’, with different safety distances were compared
against two adaptive risk-taking strategies that adjust risk levels based on crowd density and
movement status. Five path-finding algorithms were tested across 100 runs each, using a set
of performance metrics.

The results of the experiments revealed some unexpected findings. Firstly, the intermediate
risky’ agent performed worse than both extremes, showing similar collision rates to agents
using a ‘very risky’ strategy, while being slower due to spending more time in crowded areas.
Secondly, adaptive risk-taking agents achieved zero collisions but were slower than static
approaches. In addition, the adaptive risk-taking agents using 2 levels of risk were faster than
those using 3 levels of risk, suggesting that binary risk-taking strategies may outperform
approaches that use intermediate values under certain environmental conditions.

These findings contradict assumptions of a linear correlation between risk and performance
and indicate that extreme strategies may be more effective than moderate ones in certain
contexts. They also suggest that adaptive risk-taking, which has been proven to have perfor-
mance benefits in certain environments, requires specific conditions in order to yield these
results, otherwise, it will perform worse than static risk strategies.
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1 Introduction

In robotics, navigating crowded environments is one of the biggest and most studied challenges,
including the need to balance safety and efficiency | |. This thesis aims to investigate
risk-taking in the context of path planning, focusing on comparing static risk and adaptive risk in
a simulated 2D environment with both dynamic obstacles, representing people, as well as static
obstacles for walls etc. The goal is to assess how being able to change the levels of accepted risk
may impact the performance of the agent in the number of collisions and speed.

The motivation for this research comes from real-world scenarios in which robots have to operate
in a crowded environment in which humans are also present. In such cases, it is crucial for the
robot to keep a safety distance; however, if the distance chosen is too conservative, the robot may
be too cautious and stop more than necessary, leading to lower efficiency. Aggressive behavior, on
the other hand, may lead to an unsafe environment for people, which is even more undesirable.
Keeping this in mind, a robot capable of adapting its behavior to fit the situation it finds itself in
could balance safety and speed to attempt to achieve higher efficiency than a conservative agent,
but also higher safety than an aggressive one.

1.1 Thesis overview

To compare static and adaptive risk-taking strategies, an agent-based simulation was developed. In
addition to simulating agents using static risk-taking strategies, an agent was developed to use an
adaptive risk-taking strategy, which dynamically adjusts the risk level based on whether the agent
gets stuck, as well as the density of the crowd around it, i.e., how many people are within a certain
radius of the agent. The performance of the adaptive risk-taking agent was evaluated using a series
of metrics and compared to those of the agents with static risk. Three static risk-taking strategies
were used and will be referred to as ‘safe’; ‘risky’, and ‘very risky’. This thesis aims to answer the
following research question:

Can adaptive risk-taking strategies improve the efficiency of an agent navigating a
2D grid while maintaining or improving its safety compared to agents using static
risk-taking strategies?

In order to conduct this research, a 2D grid environment was created with static obstacles (walls),
and moving obstacles (simulating people). The ‘people’ in this environment use the A* algorithm
to go to their assigned goals. The goals are scattered throughout the grid and are chosen at random
for each agent upon reaching their previous goal. This is done to make the agents move in a way
that is similar to how a human would move and to avoid undirected or random moves that may
be unrealistic. The grid also contains an agent that attempts to reach a fixed goal from a given
starting point using on of the following path-planning algorithms: A*, Bi-directional A*, Dijkstra,
Breadth-First Search, and Best-First Search. Agents using each of the static risk levels ‘safe’; ‘risky’,
and ‘very risky’ were tested. Two agents using adaptive risk-taking were also tested: one that
changes between all 3 risk levels and one that only changes between ‘safe’ and ‘very risky‘. The key
measurements used to compare performance are (1) number of collisions, and (2) speed of traversal.



The following is the structure the thesis will follow:
e Review of related work about risk aware navigation and adaptive risk-taking.

e Description of the setup used for the simulation, the agents, and the path-finding algorithms
used.

e Description of the measurements taken and the experiments
e Results obtained
e Discussion on the implications of the results, the possible improvements

e Conclusion regarding the findings from the thesis and discussion on possible future work

2 Related Work

2.1 Risk-aware navigation in robotics

Risk-aware navigation is one of the biggest challenges in robotics, and within that field, there is
research that focuses on navigating environments in which humans are present. In robot navigation,
risk refers to the probability of colliding given a certain way of acting. For example, a robot that
tries to always stay at least 3 meters away from an obstacle is taking less risk than one that allows
itself to be within 1 meter. Most of the traditional approaches to robot navigation have often set
safety margins that are too conservative, leading to the robot stopping more times than may be
necessary, and so making it less efficient than it could be | ]

The work by Borenstein et al. (1991) on the Vector Field Histogram (VFH) method established
some of the principles used for obstacle avoidance | ]. It was not based on risk, but it was used
to understand how robots can adjust their behavior based on the conditions of their environment to
balance safety and efficiency. Their approach also demonstrated that reactive navigation methods
could reach reasonable performance, however, it is possible that more sophisticated risk assessment
methods could outperform it.

Fox et al. (1997) developed the Dynamic Window Approach (DWA) by building on these founda-
tions [ |. This approach evaluated the potential trajectories of the robot based on several
criteria like safety, how direct the path to the goal was, and the speed. DWA was one of the first
examples of multiple objective optimization in navigation, however, it weighted the objectives
statically and did not use adaptive risk. This was something that limited its efficiency in complex
environments with people in them.

2.2 Social navigation

Models of social navigation had a big impact on robot navigation. Helbing and Molnar (1995)
introduced the Social Force Model (SFM) as a model that simulates how pedestrians navigate
crowded environments | |. It captures the movement patterns of humans and gives insight for



robots that can navigate in a way considered socially acceptable.

Sisbot et al. (2007) expanded on this and developed frameworks for social robots in which the
comfort of people and the social rules were kept in mind | ]. Their work showed that in order
for robots to navigate environments with people naturally, they needed to take into account more
variables than collisions, such as how their own movement patterns and presence may affect those
of the people around them. With this, we can conclude that in order to have socially acceptable
navigation, we can not just focus on the efficiency of the paths chosen.

One of the key concepts we will use is personal space in human-robot interaction, developed by Hall
(1966) | ], who proposed that humans have a series of comfort zones around them depending
on a series of things, like context, cultural factors, etc. Pacchierotti et al. (2006) then expanded on
this idea, explaining that, for robots, it is important to adapt their safety margins depending on the
state of their environment and the social context instead of keeping a static safety distance. | .
An example of this could be the following: imagine a robot that acts as a guide in a mall, if the area
it is in is empty it has no reason to come close to people, since that would just create uncomfortable
situations, however, if the area is crowded and people are packed close to each other, the robot
may come closer to them in order to keep moving.

2.3 Path-finding algorithms

Classic path-finding algorithms like A* | |, or Dijkstra have been studied a lot and used
in robot navigation. The A* algorithm guarantees computational efficiency, but due to its static
nature, it tends to fall short in dynamic environments. A variation of it was created by Stentz
(1995): D* (dynamic A*), which allowed the agent to re-plan when the environment changed | ].

Bidirectional search algorithms have a computational advantage, since they search both from the
start and from the goal at the same time | ]. Even though these methods have this upside,
they still struggle with dynamic environments for the same reason as A*. The combination of
bidirectional algorithms and adaptive risk-taking is one that has not had much attention and is
relatively new.

Breadth-first search and variations of it, like best-first search, have different trade-offs between
optimality and computational efficiency | ]). Choosing different search algorithms can affect
how the agent responds to changes in the environment, which is a critical part of adaptive risk-taking,
however, there is little research on the combination of these algorithms with adaptive-risk taking in
dynamic environments.

2.4 Adaptive risk

Robots are nowadays being deployed in more complex environments, and with it, the concept of
adaptive risk-taking taking appeared. Althoff et al. (2009) developed methods for probabilistic
collision checking that change depending on the conditions of the environment | |. They
demonstrated that, often, using static safety margins can be inefficient.



Chen et al. (2017) worked on adaptive risk taking in crowded environments and developed algorithms
that would take into account flow patterns and crowd density in order to adjust their safety
margins | ]. They demonstrated that adaptive risk-taking can lead to better results than
static risk-taking, specially when crowd densities are changing. However they did not explore the
interaction between different path-finding algorithms and different adaptive risk mechanics.

2.5 Performance metrics

Originally, path-finding methods measured performance with a series of metrics such as path length,
planning time, and success rate [ |, however, since risk-aware navigation makes the problem
more complex, other measurements are required in order to track performance accurately.

An example can be seen in Kuderer et al. (2012); a framework for social navigation in which
the following things were taken into account: human comfort, path efficiency, and collision avoid-
ance | |. Other popular measurements can be collision frequency and severity, for example.
The key takeaway from this study, as well as others similar to it, is that balancing multiple objectives
is crucial for a risk-adapting agent in order to change its priorities based on the situation.

In stochastic environments, measuring speed and efficiency can sometimes be difficult. Trautman
and Krause (2010) developed a series of probabilistic models for human motion prediction in order
to make it easier to take these measurements in crowded environments | |.

2.6 Current gaps in the literature

Despite the recent work done in this field, there are still some gaps in the literature. For example,
most of the current work is either reactive or uses global planning methods. The combination of
different path-finding algorithms and different adaptive risk approaches is something that has not
been explored extensively in existing literature. Another gap lies in the relationship between crowd
density and optimal risk strategies, since we have not fully understood it.

2.7 Adaptive risk-taking

The foundations for adaptive risk-taking are from a series of different disciplines, like decision
theory, game theory, and behavioral psychology. The Prospect theory, developed by Kahneman and
Tversky (1979), showed how humans make decisions when they are not certain: risk-averse when
faced with gains, but risk-seeking when faced with losses | |. This is an example of a theory
that could be used to develop navigation strategies similar to those of humans.

Combining theoretical frameworks and navigation algorithms is a topic that is still in development.
In this thesis, the aim is to contribute to this development by combining different path-finding
algorithms and adaptive risk strategies and comparing them to their static risk counterparts. This
approach is inspired partially by the work by Trautman ans Krause | |, who highlighted the
importance of considering interaction-aware strategies, which motivates the exploration of adaptive
risk levels that are capable of responding to changes in the environment



3 Methods

This section describes details of the simulation environment, including the simulation of ‘robot’
and ‘people’ agents. It also describes the different path-finding strategies that were implemented
and the criteria for varying risk-taking in adaptive 'robot’ agents. Finally, it describes how the
performance metrics were measured.

3.1 Simulation Environment

The experiments were carried out on a custom-built 2D grid simulation that was made using the
pygame library, allowing for visualization. This was done to make the debugging process easier and
for demonstration purposes. Figure 1 is a screenshot of a running simulation:
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Figure 1: Example of the environment. The gray cells are walls, the purple cell is the ‘robot” agent,
the red cells are ‘people’ agents, the yellow cell is the start, the green cell is the robot’s goal, the
orange cells are the goals between which “people” must navigate. Here is a URL to the pygame
library: https://www.pygame.org/docs/

The size of the grid is 50x50, and each cell is either walkable (black) or an obstacle for a robot
(gray). Static obstacles consist of the walls shaped in a structure similar to that of a maze. These
walls can be edited in the visualization by clicking on them to create and delete them in order to
allow us to see how the robot would act under different conditions. The unedited grid, shown in
Figure 1, was designed to have areas in which the robot may move more freely, as well as room-like
areas that, at times, may get more crowded. This is to ensure the ‘robot’ agent faces the challenges
that it would be expected to overcome in possible real-world scenarios.

3.2 The Robots

The 'robot’ agent, or robot, as the agent shall be referred to from now on, is the main focus of the
experiments. It is tasked with reaching a fixed goal located in the position (47, 47) of the grid from
a fixed starting position at (2, 2) on every individual run. In order to do this, the robot will use a



variety of path-finding algorithms mixed with different risk-taking strategies that will be discussed
in the coming sections.

The ‘people’ agents, which for simplicity will be referred to as people, or a person, for the remainder
of the thesis, are simulated as moving obstacles that are present on the grid and that the robot
must avoid. When talking about an individual one, in the future, it will be referred to as a person.
There is 20 people in each simulation.

People are initialized in random walkable positions of the grid, then they are randomly assigned a
goal out of a set of goals made only for people, the ‘robot’ agent ignores these goals. People use
the A* algorithm to find a path to their goal. While a person does not actively avoid other people,
their paths are recalculated frequently so that they are rerouted around other people. Every time
step, each person updates their position and direction as they follow a path, and recalculates their
path if their current one is blocked. In addition, each person checks if they are at their current goal,
and if so, they randomly select a new one.

The goal of the implementation of the people is to create dynamic obstacles that move in a manner
that resembles human navigation. Around each person, there is a radius R that, with X probability,
may become a temporary obstacle for the robot. This X depends on the risk level, which is connected

to a variable called AGENT_SAFETY _DISTANCE. For example, if X = 50% there is a 50%
chance of the positions of that R being considered as obstacles by the robot.

3.3 Risk-Taking

Risk-taking is the main concept of this thesis. In this context, it is connected to the safety distance
between the robot and people: the risk accepted by the robot is the distance it tries to maintain
from the people around it, higher risk meaning it allows this distance to be lower. The three static
risk levels and the two adaptive risk-taking strategies will now be explained.

3.3.1 Static Risk

The three risk levels used were the following, with the explanation of their respective X values
below:

e Safe: the safety distance chosen was 6 cells, i.e., R = 6.. If at any point the robot comes into
contact with the area around a person, due to the movement of the person and not the robot,
the robot stops moving until the person has moved far enough that the robot is again outside
of this range. X = 100.

e Risky: the safety distance is R = 4. If the agent ends up inside this range, it has a 50% chance
of moving anyway. This is to avoid stopping too often. This, however, may cause collisions,
since the agent and the person may move into the same cell. . X = 70.

e Very risky: the safety distance is R = 2. If the agent ends up inside this range, it has a 95%
chance of moving anyway. X = 10.

Here is a more detailed explanation on how X works: for very risky X is equivalent to 10%, and
so there is a 10% chance of the positions of R being considered as obstacles by the robot when



planing the path and carrying out checks when moving, and so it is more likely for the robot to see
a path through this area as walkable. This value is 70% for risky and 100% for safe. These values
of X are not to be confused with the probabilities of the agent moving despite being in R. Said
probabilities are also shown above (0%, 50% , and 95% , respectively). They allow the agent to
move regardless of R being considered an obstacle to give agents higher chances of leaving crowded
areas and avoiding getting stuck.

In summary, the safety distance is the area around a person that the robot considers an obstacle
when choosing a path. The robot can, however, stochastically ignore these obstacles with different
probabilities depending on the risk level. This is to allow the robots to more easily exit crowded
areas.

3.3.2 Adaptive Risk-Taking

The two types of adaptive risk-taking robots were tested:

e Three levels of risk: this type of robot changes its risk level among the three static risk levels
mentioned above.

e Two levels of risk: this type of robot changes its risk level among only two of the previous
static risk levels: safe and very risky.

Both types would change their risk levels following the same logic. A record of the robot’s moves
are kept, as well as the density of people within a radius of 5 cells of the robot. If the robot does
not move for a certain period of time, it considers itself stuck, and to avoid pausing for longer,
it increases the accepted risk level. The same would be the case if the density around it were to
increase, or, in other words, there were too many people around it. Once the robot is moving freely
and the density around it has decreased, the accepted risk is decreased. Algorithm 1 provides the
corresponding pseudocode for managing risk level.



Algorithm 1: Update Risk Level Based on Density and Movement (3 risk levels)
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Input: Robot position p,qpe, list of persons P, current time ¢
Output: Updated safety distance d
if last position is not initialized then
laStprS < DProbot
last_time < ¢
return current_safety_distance
end
if last_pos # Propor then
successful_move_count <+ successful_move_count + 1
stuck_time < 0
if successful_move_count > threshold then
‘ is_stuck < False
end
else
stuck_time <« stuck_time + (t — last_time)
successful_move_count <+ 0
if stuck_time > stuck_threshold and not is_stuck then
‘ is_stuck <— True
end

end
laStprS < Probot
last_time <« ¢
density <— number of persons within radius r of p,opot
if density > high threshold then
‘ d < minimum safety distance (very risky)
else

if density = medium threshold or is_stuck then
‘ d < medium safety distance (risky)
else
| d <+ maximum safety distance (safe)
end
end
return d




In the case of the robot using two risk levels, the safety distance is lowered to a minimum when it
is stuck or the density rises, and goes back up when the state of the environment allows it.

This logic aims to prevent excessive stopping caused by crowds of people, but also prevents the
robot from getting too close to people in situations where it is not necessary. This way, the robot
will maintain socially acceptable behavior by keeping a distance when possible and getting close
when needed.

3.4 Path-finding

The robot employs different path-finding algorithms to select the path it can take to the goal. If a
path becomes unavailable for some reason, the robot selects a new path using the same algorithm.
Five popular path-finding algorithms were implemented using the pathfinding library:

o A%

e Dijkstra’s Algorithm

e Bi-directional A*

e Breadth-First Search (BFS)

o Best-First Search

Diagonal movement was disabled for all algorithms. Consequently, diagonal movement was also
disabled for the people because they shared the same A* implementation.

Separate simulations were run for each combination of path-finding algorithms and risk-taking
strategies.

Paths would be calculated every 0.5 seconds to acknowledge changes in accepted risk levels as well
as changes in the environment, such as the position of the people on the grid. The robot is allowed
to move every 0.1 seconds as long as the position it is moving to is safe. The people, on the other
hand, move every 0.2 seconds.

In some cases, no path would be found because of the position of the people, in these cases the
robot would freeze. To avoid this, a timeout of 1 second was set, and the run would be skipped.
Since the people move every 0.2 seconds, 1 second was considered enough time for them to move in
such a way that a path may be found.

3.5 Movement and Collisions

At each step, the robot tries to move to the next position in its path, but before doing so, it checks
that the new position is safe according to the current state of the environment, according to the
risk acceptance that is active at the moment. If this safety condition is not met, then the robot will
act according to its risk-taking strategy, i.e., either using a static risk level or an adaptive strategy.



3.6 Performance Metrics

Each simulation run was evaluated using the following set of performance metrics:

e Time to goal: total time taken by the robot to reach the goal.

Average safety distance (this measurement applies only to adaptive robots): amount of time
each safety distance was used on average throughout the run.

Collisions: number of proximity violations (following the rules explained above).

Average distance to people: average Euclidean distance from the robot to all people.

Number of path recalculations: number of times the robot had to change the path it came up
with.

Collisions are tracked depending on proximity and risk level:

e For ‘very risky’ robots, collisions were counted when the robot was one position away (not
counting diagonal moves).

e For ‘risky’ robots, collisions were also counted when the robot was one position away (not
counting diagonal moves).

e For ‘safe’ robots, collisions were counted when the positions were the same.

The reason behind for the difference in counting collisions is that when it comes to social nav-
igation, it is not seen as acceptable to speed past a person while leaving such little distance.
Since the safe robot stops when close, people would not be startled by it, however, the other
two types of robots would keep moving. This way we count as collisions not only when the posi-
tions are the same, but also when the robot gets into a situation that would startle people in real life.

In the case of adaptive risk-taking robots, the logic used for collisions was dependent on the accepted
risk level that was being used.

Euclidean distance was used to measure the distance between the 'robot’ agent and other objects.
In order to make it easier to understand and work with, the thresholds of the Euclidean distance
required to count collisions were changed to act as described above. This allowed the thresholds to
act in intuitive ways.

3.7 Experiment Design

The experiments were divided into three phases. First, for each of the static risk levels, the different
path-finding algorithms were tested over 100 runs using the same environmental setup. Then
the adaptive risk robot with three risk levels was tested, also over 100 runs and using the same
path-finding algorithms, and finally the same was done for the adaptive risk robot with two risk
levels. After each phase, a series of plots were produced with a series of metrics. At a later time, we
will go over these plots to see what the outcome of the experiments was and what conclusions we
may draw from this.
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4 Results

In this section, the results obtained from the simulations will be shared. These results will be
interpreted and discussed in the section that follows this one.

4.1 Static risk robots

Using the experiments described in the Experiment Design section, static risk 'robot’ agents
were tested for the following: average number of collisions, average time to goal, average path
recalculation,s and average distance to people. The combinations of the different risk levels and
algorithms were measured and will be shown below.

4.1.1 Average Collisions

The number of collisions is used to see how often the 'robot’ agent collides with people. This is
something that should be avoided, and so the lower the number of collisions, the better. As seen
below, in Table 1, safe had no collisions, meanwhile risky and very risky had similarnumbersiof
collisions on average.

*

Risk Level | <
Safe | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Risky | 1.29 | 1.16 | 0.59 | 1.19 | 0.81

Very Risky | 1.25 | 1.12 | 0.99 | 1.21 | 1.07

Dijkstra
Bidirectional A*
Breadth-First Search
Best-First

Table 1: Average number of collisions across algorithms for the static risk levels

4.1.2 Time to Goal

The time to goal describes how fast the robot’ agent gets from the start to the goal. This is
something that should be minimized to be as fast as possible. In the Table 2 it can be seen that
very risky is the fastest, followed by risky, and finally by safe.

11
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With the notable exception of Bidirectional A*, which demonstrated approx. 60% more collisions for the Very Risky condition compared to the Risky condition.


Dijkstra
Bidirectional A*
Breadth-First Search|
Best-First

Risk Level iﬂ
Safe | 15.00 | 14.46 | 15.75 | 15.36 | 14.78

Risky | 12.22 | 12.32 | 12.12 | 12.21 | 11.78

Very Risky | 9.69 | 9.79 | 9.78 | 9.74 | 9.70

Table 2: Average time taken by the robot to reach the goal across the different algorithms for the
static risk levels.

4.1.3 Path Recalculations

Path recalculations measure how often the robot had to change the path it came up with. This is
something that should be balanced, as having to recalculate the path leads to longer times to get
to the goal, but not recalculating it could mean taking paths that may lead to a lot of collisions.
Because of this, a different balance is required for different strategies. The very risky 'robot’ agent
does not need to recalculate its path as often because it accepts routes with higher probabilities
than the other two risks, as seen in Table 3.

Dijkstra
Bidirectional A*
Breadth-First Search
Best-First

Risk Level ﬁf.
Safe | 20.22 | 19.89 | 20.23 | 20.34 | 20.82

Risky | 20.58 | 20.89 | 20.85 | 20.52 | 20.47
Very Risky | 18.51 | 18.72 | 18.55 | 18.58 | 18.53

Table 3: Average number of times the robot changed its calculated path in a run across the different
algorithms for the static risk levels.

4.1.4 Distance to People

The distance to people shows how far the 'robot’ agents are on average from the people on the grid.
This helps understand the amount of time the 'robot’ agents spend near people. In Table 4 it can
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be seen risky has the lowest distance, meaning it spends the most time near people.

Dijkstra
Bidirectional A*
Breadth-First Search
Best-First

Risk Level :1
Safe | 27.90 | 28.69 | 28.09 | 28.34 | 28.47

Risky | 25.98 | 25.90 | 26.63 | 26.32 | 27.16

Very Risky | 27.97 | 27.94 | 27.97 | 27.92 | 28.19

Table 4: Average distance to the people in the grid across the different algorithms for the static
risk levels.

4.1.5 Description of the results for static risks

The risky robot, as seen by looking at Table 1, had a higher number of collisions on average than
the safe robot and a similar number to the very risky, with some algorithms even surpassing it.
When it comes to the time taken to reach the goal, if we look at Table 2, we see that while it is
faster than the safe robot, it is slower than the very risky robot.

4.2 Adaptive risk robots

Once again, the setup from the Experiment Design section will be used. In this case, adaptive risk
'robot” agents were tested for the following: average number of collisions, average time to goal, and
time spent using each risk level. The combinations of the different strategies, 2 levels and 3 levels
of risk, and algorithms were measured and will be shown below.

4.2.1 Average Collisions

Like before, the number of collisions is used to see how often the robot’ agent collides with people.
This is something that should be avoided, and so the lower the number of collisions, the better. As
it can be seen in Table 5, both strategies averaged 0 collisions.
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Table 5: Average number of collisions across the different algorithms for the adaptive robots.

4.2.2 Time to Goal

The time to goal, again, describes how fast the 'robot’ agent gets from the start to the goal. This is
something that should be minimized. In the Table 6 it can be seen that using 2 levels of risk leads
to better results.

*

Risk Level | <
2 levels | 17.8 | 188 | 18.7 | 17.8 | 19.6
3 levels | 23.3 | 22.8 | 22.8 | 23.0 | 27.2

Dijkstra
Bidirectional A*
Breadth-First Search|
Best-First

Table 6: Average time taken to reach the goal across the different algorithms for the adaptive
robots.

4.2.3 Risk level used

The following tables show the average time each risk level was used per run for the two different
adaptive strategies. This gives information on which risk levels were accepted more often and which
were accepted less often for the different adaptive risk strategies.

In Table 7 it can be seen that the Safe distance was used the most. In Table 8 it can be seen that
safe was again used the most, followed by risky, and then very risky.
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*

Risk Level | <
Safe | 12.0 | 12.4 | 12.3 | 11.7 | 12.7
Very Risky | 52 | 6.0 | 6.2 | 6.1 | 6.2

Dijkstra
Bidirectional A*
Breadth-First Search|
Best-First

Table 7: Average time using the different safety distances across the different algorithms for the
adaptive risk strategy with 2 risk levels.

*

Risk Level | <
Safe | 14.1 | 13.5 | 13.3 | 14.1 | 15.5
Risky | 84 | 84 | 82 | 83 |10.2

Very Risky | 1.14 | 0.90 | 1.19 | 0.93 | 1.16

Dijkstra
Bidirectional A*
Breadth-First Search|
Best-First

Table 8: Average time using the different safety distances across the different algorithms for the
adaptive risk strategy with 3 risk levels.
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4.2.4 Description of the results for adaptive risks

Given the results seen while studying static risk, it was decided that implementing two different
adaptive risk robots to further study these findings would be needed, one that used all three risk
levels and one that used only safe and very risky. Both of them were capable of safely navigating
the environment, as shown by Table 5; however, the robots using only 2 levels managed to do so
faster (see Table 6).

5 Discussion

The theory that adaptive risk-taking could outperform static risk approaches could not be proven.
While Table 5 shows that the average number of collisions per run for adaptive risk robots was 0,
Table 6 shows higher times to reach the goal than Table 2.

The following section will go over some of the key findings of this thesis, including the ones required
to answer the research question, as well as unanticipated discoveries.

The first key finding was one that was discovered unintentionally while trying to measure the
performance of the static risk levels. Thewriskyrobotrisislowerrthantheweryrisky robot, and it
does not see any safety benefits when compared to it, as seen in the Description of the results for
static risks. This goes against the hypothesis that was originally formulated, in which a balance
between safety and speed would make it perform safer than very risky in exchange for a slower speed.

In order torfindranvexplanation'torthistbehaviorywerwillnlookrateTabled. In it, we see that on
average, the distance between the robot’ agent and the people is lower for the risky robots. This
means that itrtendsrtorspendrmorertimerinerowdedrareas. The safe robot tends to stop before
entering crowded areas or avoids them if possible, thesweryriskyrrobotrisimorenwillingrtorgorinto
crowdedrareasybutralsorexitsithemfaster, meanwhile the risky robot enters them but is incapable
of exiting them as fast, causing it to spend more time in areas with higher density, and so making
it more probable for it to collide.

The second key finding came from comparing the static risk robots and the adaptive risk robots. As
mentioned above, the adaptive risk robots demonstrated the capability to safely navigate the envi-
tonment; howeverytheywereslower than therstatieriskirobots. This, however, does not mean these
findings can be generalized to all adaptive risk applications. Prior research, e.g., | , ],
showed that adaptive strategies can outperform static ones in more complex or uncertain environ-
ments.

5.0.1 Connection to the literature and background

Previous research, e.g., | |, showed adaptive risk navigation to perform better than its
staticrcounterpart; this thesis has not found evidence to support or refute this claim. This is
because of the nature of the simulation more than the concept of adaptive risk itself, however, the
research presented here faisesisomerinterestingrquestionsraboutitherspecifiercontexts where adaptive
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risk-taking performs better.

Kuderer et al. (2012) expressed the need to balance between multiple objectives as a crucial part of
adaptive risk-taking [ |, however, the trade-off between efficiency and safety used for this
experiment was not complex enough to produce benefits in performance in comparison to static
risk.

Certain conditions must be met in order to see the benefits of adaptive taking. Overssimplified
environments and interactions may cause the results to contradict the previous findings. Given this
non-continuous environment with simple interactions between elements, we see that this is indeed
the case. The risk levels chosen and the probability cutoffs were also not optimized and so may
not generalize across environments. The behaviorofpeoplerinttherenvironment wasralsorsimplified.
They domotrformrgroupsyreactrtorotherpeopleporreactitorthenrobot, ctc. This on the other hand,
is something we would expect people to do in real life scenarios.

5.1 Implications and future research

The results found suggest that, forsomersettingsybinary riskistrategiesmmayroutperformcontinuots
ones in which the risk level may vary along a spectrum, suggesting the trade-off between risk and
performancemmaymotiberlinear. This is because the extremes may perform better than intermediate
values. It can not be said under which specific conditions this will be true, but further research
on the topic may be able to identify them and compare binary and continuous strategies under a
variety of conditions.

Finally, it was also seen that the results were similar regardless of which navigation algorithm
was used, allowing us to conclude that risk strategies will show similar behavior no matter the
navigation algorithm used.

6 Conclusion

The main question this thesis tried to answer was the following: Can adaptive risk-taking improve
the efficiency of a robot navigating a 2D grid while maintaining or improving its safety compared
to robots using static risk levels?

Based on the results, it can be said that for the environment used, adaptive risk-taking did not
improve performance compared to static approaches. While adaptive robots did avoid collisions,
they were slower than the static robots.

A key finding was that the intermediate risk level, which was expected to balance caution and speed,
actually performed worse than the extremes. It had similar collision rates to very risky robots and
longer goal times. This was likely due to the robot getting stuck in crowded areas without either
stopping or pushing through quickly.

This led to the discovery that binary risk strategies (safe and very risky only) might be more
effective under certain conditions than continuous or multi-level approaches. However, these results
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cannot be generalized. The simplicity of the environment and the limited interactions between
robots and people affect how the different approaches perform.

In conclusion, while this thesis did not prove the superiority of adaptive risk-taking, it revealed
that intermediate strategies may not always be the most effective. These findings suggest the need
for future research into when adaptive risk can be most useful and how to design environments and
robots that benefit from it.
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