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1 ABSTRACT

Self-supervised learning (SSL) and contrastive learning are essential for extracting meaningful
representations from vast amounts of unlabeled audio data, significantly enhancing classification
performance. While most contrastive learning research focuses on images and spectrograms, there
are fewer works focused on raw audio inputs. We propose an enhanced framework using SampleCNN
[14] for feature extraction directly from raw audio, enabling efficient transfer learning. Our approach
builds on Spijkervet et al.’s CLMR framework[21], adapting SimCLR for music by introducing
novel audio augmentations and architectural modifications like residual networks in the linear
evaluation.

Our study explores the impact of audio augmentations, including harmonic distortion, dynamic
range compression, and simulated radio effect, on music genre classification. We benchmark our
approach on the fault-filtered GTZAN dataset and assess scalability using subsets of the Free Music
Archive (FMA) dataset [6].

2 Introduction

Traditionally, methods which used CNNs and supervised learning have been successful in tasks
like key detection, and music recommendation. However, these depend a lot on the availability
of labeled datasets, which are difficult and costly to curate. Whereas, in the context of music,
there is a lot of raw, unlabeled data readily available [12]. This challenge has led to an increased
interest in self-supervised learning (SSL) techniques, which aim to learn meaningful representations
directly from unlabeled data. SSL’s ability to generalize within smaller datasets makes it very
attractive and suitable for music classification, where a shortage of labeled data can make it hard to
proceed. Recent work shows SSL good for the task of genre classification, because it learns to build
robust representations that capture important audio features even without relying on labeled data
[19].

Historically, music genre classification has relied on spectrogram-based methods such as mel-
spectrograms and MFCCs to represent audio in time-frequency domains [22, 16]. While effective,
these methods often aggregate information over time, potentially losing subtle temporal dynamics
crucial for genre differentiation, particularly in genres characterized by distinctive dynamic ranges
or harmonic features. Models like ResNet and VGG, initially designed for image data, have been
adapted to process spectrograms for musical tasks [9, 5], though this adaptation may compromise
the temporal precision needed for nuanced genre classification. A prominent approach within SSL is

1



contrastive learning, which encourages models to learn invariant representations by distinguishing
between augmented versions of the same sample (positive pairs) and other samples (negative
pairs)[24]. By leveraging augmentations like pitch shifts or time stretching, contrastive learning
enables models to focus on essential genre characteristics that remain consistent across different
acoustic and recording environments [27]. Recent work, such as Spijkervet’s Contrastive Learning of
Musical Representations (CLMR) [21], has shifted focus toward using raw audio waveforms directly,
avoiding the transformation of raw audio to image spectrogram construction. By analyzing the
original signal, methods that work with raw waveforms might potentially extract richer features,
allowing for a deeper comprehension of the signal’s properties in both the frequency and temporal
domains. The SampleCNN architecture in CLMR processes raw audio using small convolutional
kernels, learning features directly from the data without needing preprocessing like log-scaling
or normalization[14]. This method preserves both temporal and frequency details, often lost in
spectrograms, making it effective for music genre classification.

The fault-filtered GTZAN dataset, a curated version of the original dataset is a widely recognized
benchmark in music genre classification[23]. It has been pivotal in evaluating the effectiveness
of various algorithms for music genre classification. Data augmentation is crucial in contrastive
learning, as it generates positive pairs that simulate real-world variations in audio data. Beyond
common augmentations like pitch shifting and time stretching, our study introduces three distinct
augmentations—Dynamic Range Compression (DRC), Harmonic Distortion, and Radio Effect—each
inspired by real-life recording environments. DRC mimics volume compression to balance dynamic
levels, potentially enhancing genre classification by stabilizing amplitude variations[17], especially
in genres with wide dynamic ranges like classical and metal. Harmonic Distortion, by introducing
controlled overtones, enriches the harmonic content, making it valuable for genres where timbral
characteristics are significant, such as rock and jazz. Radio Effect, which adds band-pass filtering
and background noise, emulates lower-quality transmission audio, offering robustness to timbral
deterioration and improved generalization in a variety of playback settings and environments. We
discuss further in Section8 how we simulate these effects for our experiments.

In this study, we leverage the CLMR model, which was originally trained on the MagnaTagATune
dataset [13]. Inspired by the SimCLR framework, it extracts meaningful representations directly
from raw audio data, enabling downstream tasks like music genre classification[21]. This process
effectively combines self-supervised learning on large-scale audio datasets with a lightweight classifier
for fine-tuned evaluation.

Our contributions include introducing novel, real-life recording environments and human experience-
inspired augmentations aimed at enhancing contrastive learning performance for genre classification.
We aim to determine whether genre-specific augmentations can reduce mis-classifications in chal-
lenging genres and improve classification robustness across all genres. Additionally, we evaluate the
impact of more complex architectures in the linear evaluation stage, exploring the effect of additional
layers and residual blocks, as discussed in the section.This study addresses two key questions:

• How do novel data augmentation techniques impact genre classification perfor-
mance? We investigate the effects of augmentations like harmonic distortion, dynamic range
compression, and formant shifting on genre classification accuracy. While the augmentations
in the original work yielded promising results on certain genres like Classical and Metal,
our goal is to assess if our novel augmentations inspired by real life recording environments
hypothesized to further enhance model robustness by working well across genres where the
model fails to classify correctly.
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• What improvements can enhanced classification architectures bring to genre
classification? We experiment with more complex linear classification architectures beyond
the basic multi-layer perceptron, incorporating additional layers and residual blocks to examine
if we can achieve better accuracy and genre wise performance.

The rest of this paper is organized as follows: Section 3 reviews related work in music genre
classification. Section 4 discusses the datasets used, including subsets of the Free Music Archive
(FMA) dataset [6]. Section 5 introduces the main definitions and metrics used in this study. Section
6 describes the baseline network CLMR, while Section 7 details additional network architectures.
Section 8outlines the experimental setup, including parameters and procedures, and Sections 9 and
10 present the results and conclusions.

3 Related Work

Representation learning focuses on discovering features that simplify prediction tasks and improve
robustness to complex variations in natural data [2]. In the context of supervised learning for
music genre classification, several methods have achieved notable success on the GTZAN dataset.
Zhang et al. [26] reported an accuracy of 87.4% using a 10-layer CNN combined with classical data
augmentation techniques. They observed that cutting songs into smaller 3-second clips significantly
improved classification accuracy, consistent with earlier findings by Gjerdingen and Perrott [8]. Liu
et al. [15] utilized a bottom-up broadcasting architecture to process time-frequency information from
mel-spectrograms, achieving a state-of-the-art accuracy of 93.9%. Additionally, K-nearest neighbors
(K-NN) with 3-second input features achieved an accuracy of 92% [18]. These results highlight
the importance of advanced architectures and diverse training data for improving classification
performance.

In contrast, unsupervised and self-supervised learning (SSL) approaches aim to extract meaningful
representations without labeled data. Generative modeling and likelihood-based methods [11, 10]
attempt to reconstruct observations from learned representations. Among SSL techniques, contrastive
learning has proven particularly effective in audio tasks. Contrastive Predictive Coding (CPC)
[24] introduced a universal contrastive learning approach for tasks such as speaker and phoneme
classification using raw audio. Saeed et al. [20] developed the COLA framework, which processes
audio segments into log-mel spectrograms and applies a multi-class cross-entropy loss (N-pair
loss). COLA achieved 73% accuracy on music genre classification, demonstrating the potential of
contrastive methods for extracting genre-relevant features. Similarly, CLAR [1], inspired by SimCLR,
applied augmentations like time-stretching, pitch shifting, and noise injection, leading to improved
representation quality and training efficiency.

Using pretrained masked autoencoders, M2D achieved 83% accuracy on GTZAN by encoding
visible patches and predicting masked patch representations. Castellón et al. explored contrastive
pre-training using OpenAI’s Jukebox model, achieving approximately 68% accuracy with a million-
parameter setup and 79% accuracy with a billion-parameter setup on audio classification benchmarks[3].
The CLMR framework [21], which directly operates on raw audio waveforms, achieved 55% accuracy
on the GTZAN dataset using eight audio-inspired augmentations under contrastive learning, when
pretrained on MagnaTagATune dataset. The study highlighted misclassifications in several genres
like Pop, Jazz, Rock and Blues, emphasizing the need to have robustness acrros closely related
genres. Prior research indicates that applying compression to test data can improve classification
accuracy as demonstrated by [17].
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Motivated by these advancements, our study explores novel augmentations inspired by real-world
acoustic environments, such as dynamic range compression, harmonic distortion, and radio effects, to
improve model performance. These augmentations address the need for greater robustness in genre
classification, especially for closely related genres such as blues and jazz, pop, and hiphop. While
harmonic distortion emphasizes overtones characteristic of genres like rock and metal, radio effects
simulate low-fidelity playback environments. By evaluating these strategies, we aim to contribute
to the development of more robust music genre classification models. On top of the simple linear
classifier, we introduce 2 classifiers; one with additional layers and one with Residual blocks.

4 Datasets

This section provides an overview of the primary datasets utilized in this study: MagnaTagATune,
FMA, and the fault-filtered version of GTZAN. Each dataset offers unique characteristics pertinent
to music genre classification and analysis.

• Pretraining Dataset MagnaTagATune : The MagnaTagATune dataset comprises over
25,000 music clips, each approximately 29 seconds long, annotated with multiple tags describing
various attributes such as genre, instrumentation, and mood. Players of the TagATune game
contributed insightful tags for the music clips, which allowed for the collection of these
annotations. The dataset is a useful tool for music information retrieval problems because
it consists of a variety of genres, including rock, jazz, and classical [13]. The self-supervised
pretraining on this dataset allows the model to learn general audio representations.

• FMA Dataset: The Free Music Archive (FMA) dataset is an extensive collection of 106,574
tracks from 16,341 artists and 14,854 albums, organized into a hierarchical taxonomy of 161
genres[7]. It provides full-length, high-quality audio files along with pre-computed features
and metadata, including track and user-level information, tags, and free-form text such as
artist biographies. We will utilise the Small dataset of the FMA for our purposes. It contains
8000 songs of balanced 8 genres of 1000 songs each.

• GTZAN Fault-Filtered Dataset: The GTZAN dataset is a widely used benchmark for music
genre classification, containing 1,000 audio tracks each 30 seconds long, evenly distributed
across 10 genres[23]. However, it has been identified to contain several faults, including
repetitions, mislabelings, and distortions. A fault-filtered version of GTZAN has been curated
to address these issues, removing problematic tracks and ensuring no artist repetition across
training, validation, and test sets. This refined version contains 443 and 290 files in the training
and test dataset [23].

5 Fundamentals

In this chapter, the key fundamentals for this thesis are introduced, including concepts such
as convolutional neural networks, transfer learning, data augmentations, and evaluation metrics.
These are basic concepts and definitions used in the methods and approaches discussed in later
chapters.

5.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are powerful architectures widely used in image recognition
and have been adapted for audio classification tasks as well. CNNs use convolutional layers with
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trainable kernels that slide over the input, producing feature maps that highlight important
characteristics like edges or, in our case, musical patterns. Max-pooling layers are often applied
to reduce the feature map dimensions, and dropout layers help mitigate overfitting by randomly
setting certain activations to zero during training.

5.2 Transfer Learning

Transfer learning is a technique in which knowledge gained through one task or dataset is used to
improve model performance on another related task and/or different dataset. So, transfer learning
uses what has been learned in one setting to improve generalization in another setting.

5.2.1 SampleCNN as Encoder

SampleCNN is a specific CNN model architecture optimized for music audio data, operating directly
on raw audio waveforms. It employs small 1D convolutional kernels to capture patterns in the
audio signal. In the context of this thesis, SampleCNN serves as the encoder within the CLMR
(Contrastive Learning of Musical Representations) framework, processing audio inputs to generate
robust embeddings that are later used for genre classification tasks.

5.3 Data Augmentations

Data augmentation is a technique to enhance the variability of training data and improve model
generalization. In the context of music, augmentations may include random cropping, polarity
inversion, gain adjustments, and time/frequency manipulations. By making it more difficult for
models to detect subtle changes in audio, these variations promote the extraction of generalizable
features and aid in the learning of more robust representations.

5.4 Evaluation Metrics

To assess model performance, two key metrics are used: accuracy and confusion matrices.

5.4.1 Accuracy

Accuracy is defined as the ratio of correct predictions (True Positives and True Negatives) to the
total number of predictions. In this study, accuracy reflects the proportion of correctly classified
genres out of the total classifications:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP represents True Positives, TN represents True Negatives, FP represents False Positives,
and FN represents False Negatives.

5.4.2 Confusion Matrix

The confusion matrix provides a detailed view of the model’s performance by displaying the true
versus predicted class labels. This matrix helps identify specific areas where the model may misclassify
similar genres, enabling targeted improvements. An example confusion matrix for Jazz and Rock
classifications is shown in Table 1.
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Predicted

Actual
Jazz Rock

Jazz 5 3

Rock 7 3

Table 1: Confusion matrix example for genres Jazz and Rock.

In this example, Jazz and Rock genres show notable overlaps in misclassifications, The first row
shows that 5 out of 12 Jazz classifications were correctly classified, but in many cases, Jazz and
Rock are confused with each other.

6 Baseline : CLMR

6.1 Contrastive Learning

Contrastive learning is a self-supervised method that trains models by distinguishing between similar
and dissimilar data points without needing explicit labels. In music genre classification, it involves
learning genre-relevant features by pulling together representations of similar audio segments (such
as augmented versions of the same track) and pushing apart those of different segments(can be
considered as negative samples), allowing the model to directly extract important features from the
audio input, such as rhythm and harmony.

6.2 Contrastive Loss Function

The contrastive loss function is a key component in contrastive learning frameworks, where the goal
is to learn embeddings that bring similar pairs of samples closer together while pushing dissimilar
pairs farther apart in the feature space[4]. This is achieved by minimizing the contrastive loss, which
measures how well the model can distinguish between positive (similar) and negative (dissimilar)
pairs[24].

The contrastive loss function can be defined as:

Li,j = − log
exp (sim(zi, zj)/τ)∑2N

k=1⊮[k ̸=i] exp (sim(zi, zk)/τ)
(2)

[24]where:

• zi and zj represent the embeddings of the anchor and positive samples, respectively.

• sim(·) denotes the similarity measure between the embeddings, typically computed as the
cosine similarity:

sim(zi, zj) =
zi · zj
∥zi∥∥zj∥

(3)

• τ is a temperature parameter that controls the scale of the logits, influencing the sharpness of
the similarity scores.

• N is the batch size, and the denominator in the contrastive loss includes all negative pairs
(i.e., samples that are not the anchor-positive pair), making the task harder by increasing the
number of negative samples.
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• ⊮[k ̸=i] is an indicator function that equals 1 when k ̸= i, ensuring that the positive pair is
excluded from the denominator.

The contrastive loss is often referred to as the Normalized Temperature-scaled Cross-Entropy (NT-
Xent) loss. By using this loss function, the model is encouraged to maximize the similarity of the
positive pair sim(zi, zj), while minimizing the similarity between the anchor zi and all other negative
examples in the batch zk for k ̸= i[24].

Figure 1: Illustration of the CLMR framework: it processes raw audio waveforms, applying contrastive
learning in the latent space of augmented audio pairs to learn meaningful musical representations.

Image source[21]

This objective enables the model to learn embeddings that capture important semantic similarities in
the data, which can be leveraged in downstream tasks such as classification or retrieval. In this thesis,
transfer learning allows us to use a model pre-trained on the MagnaTagATune dataset and apply
it to genre classification on the GTZAN dataset. For our baseline, we utilize CLMR (Contrastive
Learning of Musical Representations)[21] to compare the out-of-domain applicability for genre
classification on the GTZAN dataset with our method. Augmentations used in Original experiment
were : 8 augmentations with set prtobabilities applied stochastically. These augmentations were
applied in a sequence which was hypothesized to achieve contrastive representations of the audio
samples which will help the model learn about different genres better.

Image source[25]

Figure 2: Overview of the CLMR process
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With an encoder built to handle raw audio waveforms with contrastive learning, our CLMR baseline
configuration is based on Spijkervet and Burgoyne’s implementation and is especially tested on the
GTZAN dataset [25]. Each of the encoder’s nine 1D convolutional layers is paired with max pooling,
ReLU activation, and batch normalization. Inspired by the SimCLR architecture created by Chen
et al.[4], these layers are followed by a projection head that converts the encoded representations
into a 128-dimensional latent space where contrastive loss is applied. The original CLMR setup for
SampleCNN uses NT-Xent contrastive loss for optimization, a batch size of 96, and an input sample
rate of 22,050 Hz[21].

Table 2 provides the parameter configurations for this baseline network:

Parameter Value

Input size 59,049 samples at 22,050 Hz
Batch size 96
Optimizer Adam
Contrastive Loss NT-Xent with temperature scaling (0.5)
Encoder Parameters 2.5 million

Table 2: Parameter configurations for the baseline CLMR network.

In the linear evaluation phase, the learned representations from the frozen encoder are classified
using a linear classifier on GTZAN, assessing the model’s transferability without in-domain data
fine-tuning. This baseline allows us to evaluate the generalization capacity of self-supervised CLMR
when faced with a new dataset and provides insights into CLMR’s applicability in cross-domain
genre classification task.

7 CLMR +

Our method investigates the impact of three novel audio augmentations—Dynamic Range Com-
pression, Harmonic Distortion, and Radio Effect—on the training set for music genre classification.
The performance is evaluated using a baseline linear classifier, a modified classifier with additional
layers, and another with residual blocks. The results demonstrate how these augmentations enhance
feature learning and classification accuracy across different classifier model architectures.
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Pretrain Encoder
(Contrastive Learning, SampleCNN)

Load Pretrained Encoder
(Frozen Weights)

Apply Augmentations on Audio
(DRC, Harmonic Distortion, Radio Effect)

Train Baseline
Linear Classifier

Train Classifier 2
(More Layers)

Train Classifier 3
Residual Blocks

Evaluate Classifier Performance
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Pipeline Overview:

• Pretraining Encoder with Contrastive Learning on MagnaTagATune: The Sam-
pleCNN encoder is pretrained on the MagnaTagATune dataset using contrastive self-supervised
learning. Each audio sample is augmented twice to create a positive pair, while other samples
in the batch serve as negatives. The contrastive loss ensures the encoder learns meaningful
musical representations, capturing general musical features like rhythm, pitch, and timbre.

• Loading Pretrained Encoder Weights (Frozen): The pretrained weights of the encoder
are loaded, and the encoder is kept frozen by setting requires grad = False. This ensures
the pretrained representations are used without being modified during training.

• Applying Data Augmentation on GTZAN: The GTZAN dataset undergoes various
augmentations during training to enhance data variability. These include :

– Harmonic Distortion: Aims to improve accuracy in genres with prominent harmonic
content, such as Metal and Rock, while avoiding over-distortion in subtler genres like
Jazz and Blues.

– Dynamic Range Compression: Helps manage dynamic variations in genres like
Classical and Metal, ensuring consistent amplitude features across tracks.

– Radio Effect: Focuses on midrange frequencies critical for instruments and vocals,
improving performance in genres like Blues and Jazz where timbral and melodic elements
dominate.

Validation and test datasets use minimal augmentations, such as normalization and fixed-length
padding.

• Training Linear Classifier on Extracted Representations: The LinearEvaluation class
implements the linear classifier, which maps the frozen encoder’s representations to GTZAN
genre labels. A single linear layer maps representations (hidden dim = 512) directly to output
classes (output dim = 10). Cross-Entropy Loss is used as the criterion, with optimization
handled by the Adam optimizer. The ReduceLROnPlateau scheduler reduces the learning rate
when validation loss plateaus.

• Evaluating Classifier Performance: The evaluate function computes predictions on the
test set and calculates key metrics like Accuracy, Classification Report and Confusion Matrix
to visualize the classifications. Evaluation ensures the quality of the pretrained representations
and the classifier’s performance in the genre classification task.

Linear Classifier Architecture: The last projection layer of the encoder of 128 dimensions
is removed and instead the penultimate 512-dimension layer is utilised by the classifier. The
linear classifier processes the fixed-length 512-dimensional representations extracted by the frozen
encoder. Its simplicity allows direct evaluation of the pretrained features’ quality without introducing
additional complexity. By experimenting with both configurations, we assess the robustness and
generalization of the learned representations for music genre classification. We propose two enhanced
linear classifiers in addition to the baseline simple linear evaluator. The first, Classifier 2, introduces
additional layers with batch normalization and dropout to increase the capacity for capturing
intricate patterns in the data. The second, Classifier 3, integrates residual blocks inspired by ResNet,
enabling deeper feature extraction while maintaining gradient flow. Our method, CLMR+, will first
be evaluated on the baseline linear classifier and subsequently on these two advanced classifiers to
explore their effectiveness in music genre classification.
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Base Classifier 1

Input

Linear (Hidden Dim)

ReLU

Linear (Output Dim)

Output

Classifier 2

Input

Linear (512)

ReLU + BatchNorm
+ Dropout (512)

Linear (256)

ReLU + BatchNorm
+ Dropout (256)

Linear (Output Dim)

Output

Classifier 3

Input

Linear (512 → 1024)

ReLU + BatchNorm
+ Dropout (1024)

Residual Block 1
(1024 → 1024)

Residual Block 2
(1024 → 512)

Residual Block 3
(512 → 256)

Linear (Output Dim)

Output

Figure 3: Architectures of Base Classifier 1, Classifier 2 with additional layers, and Classifier 3 with
residual blocks.

• Classifier 2 (Additional Layers):

– By introducing extra dense layers with batch normalization and dropout, this classifier
enhances the model’s ability to capture more intricate patterns while reducing overfitting.

– The architecture consists of three fully connected layers, each followed by ReLU activation,
batch normalization, and dropout for regularization.

• Classifier 3 (Residual Blocks):

– Residual connections improve gradient flow and allow for deeper architectures, enabling
the model to learn more complex representations without degradation.

– The architecture includes a linear layer for initial processing, followed by 2 residual blocks
and a final linear layer for classification.

8 Experimental Setup

In this section, we outline the experimental setup designed to investigate the impact of audio
augmentations on genre classification performance. Our approach utilizes a pretrained encoder,
frozen during linear evaluation, and systematically applies augmentations to the GTZAN dataset in
a controlled manner. Each augmentation is tested under a base setting and two alternative settings,
with application probabilities of p = 0.2, p = 0.5, and p = 0.8.

8.1 Base Setting : CLMR+

A foundational augmentation, Random Cropping, was applied across all experiments to ensure
uniformity in input length and prevent overfitting to specific segments of audio. This served as a
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base augmentation, over which 3 additional augmentations were layered. On top of the base setting,
we designed two alternative configurations to represent lower and higher effects of the augmentation.
These configurations were applied with varying probabilities p, allowing us to systematically analyze
how different augmentation intensities and their probabilities influenced the audio features and,
subsequently, the genre classification performance. We will then take the best values of each
augmentation setting, based on imapct on genre classification and overall accuracy and use them to
assess the 2 classifiers we proposed in later sections.

8.1.1 Harmonic Distortion

Harmonic Distortion introduces controlled nonlinearities, adding harmonic richness to the signal to
create harmonic overtones. It emulates genre-specific effects like overdrive and guitar distortion.

Algorithm 1 Harmonic Distortion

Input: Audio waveform w, distortion level δ
Output: Distorted waveform wdistorted

w← w · (1 + δ) ▷ Apply gain scaling
wdistorted ← tanh(w) ▷ Apply soft clipping
Return wdistorted

Settings:

• Base: δ = 0.5

• Alternative 1: δ = 0.25 (milder distortion for subtler harmonic enrichment)

• Alternative 2: δ = 0.7 (higher distortion for prominent harmonic features)

8.1.2 Dynamic Range Compression (DRC)

Dynamic Range Compression attenuates louder parts of the signal, enhancing consistent feature
extraction. This augmentation is particularly useful for handling dynamic amplitude variations in
genres like Classical and Pop.

Algorithm 2 Dynamic Range Compression

Input: Audio waveform w, threshold θdB, ratio r
Output: Compressed waveform wcompressed

θ ← 10(θdB/20) ▷ Convert threshold from dB to amplitude
mask← |w| > θ
wcompressed[mask]← sign(w) · (θ + (|w| − θ)/r)
Return wcompressed

Settings:

• Base: θdB = −20.0, r = 2 : 1

• Alternative 1: θdB = −25.0, r = 1.5 : 1 (gentler compression for preserving dynamics)

• Alternative 2: θdB = −15.0, r = 3 : 1 (stronger compression for louder dynamics)
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8.1.3 Radio Effect

The Radio Effect applies a band-pass filter and Gaussian noise to simulate the frequency response
of radio transmissions. This augmentation focuses on midrange frequencies critical for genres like
Rock and Jazz.

Algorithm 3 Radio Effect

Input: Audio waveform w, sample rate fs, noise level ν, band-pass limits [flow, fhigh]
Output: Radio-augmented waveform wradio

wfiltered ← BandPass(w, flow, fhigh, fs)
wnoisy ← wfiltered + ν ·GaussianNoise()
wradio ← clip(wnoisy,−1, 1)
Return wradio

Settings:

• Base: flow = 200Hz, fhigh = 4000Hz, ν = 0.02

• Alternative 1: flow = 300Hz, fhigh = 3000Hz, ν = 0.02 (narrower band to emphasize midrange
frequencies)

• Alternative 2: flow = 150Hz, fhigh = 4500Hz, ν = 0.01 (broader range with reduced noise)

9 Results

9.1 CLMR+

To evaluate the impact of different augmentation configurations on genre classification performance,
we conducted experiments using RandomCrop as the base augmentation technique, supplemented
with additional augmentations such as Radio Effect, Dynamic Range Compression (DRC), and
Harmonic Distortion. Each augmentation was applied with varying probabilities to assess their
effectiveness individually and in combination with the base augmentation. The following analysis
compares the classification performance of the baseline model (RandomCrop) against models
augmented with one additional technique (base +1 aug) across overall metrics and genre-specific
metrics. The confusion matrix in Figure 4 displays the genre classification performance using the
original set of augmentations in the CLMR framework, as implemented by Spijkervet [21]. This
baseline configuration reveals how well the model distinguished between different music genres under
the original augmentation settings. High precision in specific genres, such as Metal and Classical,
suggests robust feature extraction for certain music styles. However, noticeable misclassifications
in genres like Blues and Rock indicate potential overlaps in the learned representations for these
categories.

The primary goal of these experiments was to explore the effectiveness of various audio augmentations
on genre classification, benchmarked against the GTZAN dataset. The results are summarized
in Tables 3, 5, and 6. Table 3 compares the performance of our best model configurations with
prior state-of-the-art methods. Our approach demonstrated competitive accuracy and F1-scores,
highlighting the effectiveness of tailored augmentations with specific parameter settings in improving
genre classification.
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Figure 4: Confusion Matrix for Genre Classification using Original CLMR Augmentations by
Spijkervet[25]

Table 3: Comparison with Prior Work and Our Best Augmentation Settings
Method Accuracy (%) Precision F1-Score

Spijkervet et al. [CLMR] 55.2 0.52 0.51
Baseline (Random Cropping) 59.0 0.58 0.58
CLMR+ (Harmonic Distortion, δ = 0.7, p = 0.5) 62.1 0.62 0.60

Table 4: CLMR Classification Report

Genre Precision F1-Score Common Misclassifications

Blues 0.321 0.305 Rock, Jazz

Classical 0.861 0.925 None significant

Country 0.533 0.533 Blues, Rock

Disco 0.571 0.625 Hip-hop

Hip-hop 0.512 0.618 Pop, Reggae

Jazz 0.476 0.417 Country, Pop

Metal 0.605 0.707 Rock

Pop 0.519 0.491 Disco, Hip-hop

Reggae 0.565 0.531 Hip-hop, Pop

Rock 0.250 0.136 Metal, Blues

Macro Average 0.520 0.521 -

Weighted Average 0.553 0.539 -

9.1.1 Best Settings by Genre CLMR+

The effectiveness of different augmentations varied across genres. Table 5 highlights the best
augmentation settings for each genre, including specific parameter values and probabilities, with the
optimal settings marked in bold. Results demonstrate that specific augmentations, such as Dynamic
Range Compression (DRC) and Harmonic Distortion, were particularly beneficial for genres like
Metal and Jazz when appropriate parameter values were used.
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Table 5: Best Augmentation Settings for each genre with parameter Values for CLMR+
Genre Augmentation Parameters Precision F1-Score

Blues Radio Effect flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8 0.31 0.33

Classical Radio Effect flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.5 1.00 1.00

Country DRC θdB = −20 dB, r = 2 : 1, p = 0.8 0.69 0.71

Disco DRC θdB = −25 dB, r = 1.5 : 1, p = 0.2 0.63 0.69

Hip-Hop DRC θdB = −20 dB, r = 2 : 1, p = 0.8 0.80 0.77

Jazz DRC θdB = −20 dB, r = 2 : 1, p = 0.8 0.43 0.48

Metal Harmonic Distortion δ = 0.5, p = 0.5 0.96 0.92

Pop Harmonic Distortion δ = 0.25, p = 0.2 0.67 0.59

Reggae Harmonic Distortion δ = 0.7, p = 0.5 0.61 0.67

Rock Radio Effect flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8 0.79 0.48

9.1.2 Best Augmentations with Random Cropping

The baseline performance using only Random Cropping achieved an overall accuracy of 59%. Table
6 outlines the genre-wise performance under this configuration.

Table 6: Genre-wise Performance : No augmentation (Random Cropping)
Genre Precision Recall F1-Score

Blues 0.15 0.13 0.14
Classical 0.94 1.00 0.97
Country 0.62 0.67 0.65
Disco 0.55 0.76 0.64
Hip-Hop 0.67 0.81 0.73
Jazz 0.38 0.52 0.44
Metal 0.85 0.85 0.85
Pop 0.62 0.53 0.57
Reggae 0.58 0.54 0.56
Rock 0.50 0.19 0.27

Our augmentation strategies contributed to balanced improvements across multiple genres, enhanc-
ing the model’s generalization capabilities and some enhanced performance compared to CLMR
results.

• Harmonic Distortion (δ = 0.7, 0.5, p = 0.5): This augmentation worked exceptionally well
for genres like Metal and Rock, where distortion is a natural characteristic of the music. For
Disco, it also improved performance significantly under higher distortion levels (δ = 0.7).
Additionally, Pop benefited under a slightly lower distortion setting (δ = 0.5), demonstrating
the augmentation’s adaptability across genres. Overall, Harmonic Distortion contributed
positively to multiple genres.

• Dynamic Range Compression (DRC) (θdB = −20dB, r = 2 : 1, p = 0.8): It was
particularly effective for improving performance in genres like Reggae, Pop, Country, and
Hip-Hop. The lower threshold (θdB = −20) allowed the model to capture quieter musical
elements, which enhanced recognition in subtler genres like Blues . A gentler ratio (2:1)
maintained the natural dynamics of these genres. A variant of DRC (θdB = −25, r = 1.5 : 1,
p = 0.2) was highly effective for Disco, Pop, and Reggae, delivering better accuracy overall for
these genres.
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• Radio Effect (flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8): This augmentation,
which focuses on midrange frequencies, was especially effective for Classical and Hip-Hop,
where melodic and vocal elements dominate. The band-pass filter emphasized critical frequency
ranges, leading to significant improvements. It performed well for Jazz and Rock under settings
with noise level ν = 0.02, low cutoff flow = 300Hz, and high cutoff fhigh = 3000Hz, with
p = 0.5, achieving accuracy of 62%. However, under p = 0.8, it excelled for Blues and Rock,
highlighting its adaptability across genres.
Genres like Blues, Jazz, and Rock continued to pose classification challenges, with persistent
misclassifications such as Blues being classified as Jazz and vice versa. However, certain
augmentation settings led to improved accuracy for both genres, and overall, the classification
performance for Rock showed notable improvement as seen in 7.

Table 7: Comparison of Precision and F1-Score: CLMR vs CLMR+

Genre CLMR Precision CLMR F1-Score CLMR+ Precision CLMR+ F1-Score

Blues 0.321 0.305 0.31 0.33

Classical 0.861 0.925 1.00 1.00

Country 0.533 0.533 0.69 0.71

Disco 0.571 0.625 0.63 0.69

Hip-Hop 0.512 0.618 0.80 0.77

Jazz 0.476 0.417 0.43 0.48

Metal 0.605 0.707 0.96 0.92

Pop 0.519 0.491 0.67 0.59

Reggae 0.565 0.531 0.61 0.67

Rock 0.250 0.136 0.79 0.48

Figure 5: Confusion Matrix for
CLMR+Classifier1 with DRC

Figure 6: Confusion Matrix for
CLMR+Classifier1 with Radio Effect

By systematically testing different configurations with varying parameter values and probabilities,
we get the best settings for each augmentation and proceed to use them.
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9.2 CLMR+ Classifier 2 and 3

Classifier 2: We test the best performances of the 3 augmentations using the 2 proposed classifiers
with the best performing parameter values from the previous experiments and compare them with
the CLMR+ base classifier results. Under the Radio effect, we see the overall accuracy improved to
63%, with Classical achieving near-perfect performance. Blues, Jazz, and Rock remain challenging,
showing frequent misclassifications such as Blues as Jazz or Pop, and Rock as Blues or Pop. Notable
improvements were observed in Country, Disco, and Hip-Hop. With the Dynamic range compression,
we also achieve comparable performances.

Classifier3 :The DRC augmentation achieved an accuracy of 58%, with Classical performing best
(F1-score: 0.98), but struggled with challenging genres like Blues and Jazz. Misclassification trends
included Blues frequently being classified as Jazz or Pop and Rock as Blues or Pop. The Radio
Effect augmentation slightly improved accuracy to 60%, again excelling in Classical . However, Pop
(F1-score: 0.47) and Rock (F1-score: 0.42) remained challenging, with Blues often misclassified as Pop
or Disco, and Rock confused with Blues or Pop. Similarly, the Harmonic Distortion augmentation
achieved 59% accuracy, Blues often classified as Pop or Disco, and Rock as Blues or Reggae.

Figure 7: Confusion Matrix for
CLMR+Classifier2 with Radio effect

Figure 8: Confusion Matrix for
CLMR+Classifier3 with Radio Effect

Table 8: Genre wise performance for CLMR+ Classifier 2

Genre F1-Score (Best) Precision Augmentation Method

Blues 0.19 0.20 Radio Effect (flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8)
Classical 0.99 0.98 Radio Effect (flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8)
Country 0.67 0.65 Harmonic Distortion (δ = 0.7, p = 0.5)
Disco 0.68 0.63 DRC (θdB = −20 dB, r = 2 : 1, p = 0.8)
Hiphop 0.68 0.65 Radio Effect (flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8)
Jazz 0.49 0.45 DRC (θdB = −20 dB, r = 2 : 1, p = 0.8)
Metal 0.87 0.87 Harmonic Distortion (δ = 0.7, p = 0.5)
Pop 0.58 0.63 DRC (θdB = −20 dB, r = 2 : 1, p = 0.8)
Reggae 0.63 0.61 Harmonic Distortion (δ = 0.7, p = 0.5)
Rock 0.34 0.45 Radio Effect (flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8)
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Table 9: Genre wise performance for CLMR+ Classifier 3

Genre F1-Score (Best) Precision Augmentation Method

Blues 0.26 0.30 Harmonic Distortion (δ = 0.7, p = 0.5)
Classical 0.98 1.00 DRC (θdB = −20 dB, r = 2 : 1, p = 0.8)
Country 0.69 0.71 Radio Effect (flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8)
Disco 0.70 0.65 Radio Effect (flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8)
Hiphop 0.72 0.68 DRC (θdB = −20 dB, r = 2 : 1, p = 0.8)
Jazz 0.48 0.41 Radio Effect (flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8)
Metal 0.87 0.88 DRC (θdB = −20 dB, r = 2 : 1, p = 0.8)
Pop 0.53 0.52 DRC (θdB = −20 dB, r = 2 : 1, p = 0.8)
Reggae 0.67 0.65 Radio Effect (flow = 300Hz, fhigh = 3000Hz, ν = 0.02, p = 0.8)
Rock 0.45 0.48 Harmonic Distortion (δ = 0.7, p = 0.5)

Table 10: Comparative Results for Different Models and Classifierswith F1 scores

Genre CLMR CLMR+ CLMR+Classifier2 CLMR+Classifier3

Blues 0.305 0.33 0.19 0.26
Classical 0.925 1.00 0.99 0.98
Country 0.533 0.71 0.67 0.69
Disco 0.625 0.69 0.68 0.70
Hip-Hop 0.618 0.77 0.68 0.72
Jazz 0.417 0.48 0.49 0.48
Metal 0.707 0.92 0.87 0.87
Pop 0.491 0.59 0.58 0.53
Reggae 0.531 0.67 0.63 0.67
Rock 0.136 0.48 0.34 0.45

9.3 FMA Experiments

Based on the previous experiments, we choose to go with the CLMR+base classifier1 as it did
decently well with most genres to test the scalability across a bigger dataset. There are some new
genres like Folk, International, Experimental, with some classic ones like Pop, Rock & Hiphop in the
FMA Small dataset. Across all augmentations, the best overall accuracy achieved was 53%. The top-
performing genres included International and Hip-hop, with F1-scores ranging from 0.62 to 0.69 across
Dynamic Range Compression (DRC), Radio Effect, and Harmonic Distortion augmentations. While
International consistently excelled, Hip-hop also demonstrated strong performance with balanced
precision and recall. However, certain genres remained challenging: Rock and Electronic showed low
F1-scores (0.35–0.38) under DRC and Harmonic Distortion, while Folk and Instrumental struggled
with moderate F1-scores (0.52–0.55) under the Radio Effect and Harmonic Distortion.
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Figure 9: FMA Small with CLMR+Classifier1
with Radio effect

Figure 10: FMA Small with CLMR+Classifier1
with Harmonic Distortion

Table 11: Genre-wise Best Results for FMA Small Dataset Across Augmentations

Genre F1-Score Augmentation Parameters

Electronic 0.26 DRC p = 0.5, θdB = −20
Experimental 0.48 Radio Effect flow = 300Hz, fhigh = 3000Hz
Folk 0.42 Radio Effect p = 0.8, ν = 0.02
Hiphop 0.52 DRC p = 0.5, θdB = −20
Instrumental 0.38 Harmonic Distortion δ = 0.7, p = 0.5
International 0.51 DRC p = 0.5, θdB = −20
Pop 0.46 Radio Effect flow = 300Hz, fhigh = 3000Hz
Rock 0.44 Radio Effect p = 0.8, ν = 0.02

10 Conclusion

The experiments conducted with augmentations and classifiers demonstrate the importance of well
considered augmentation methods, advanced classifier architectures, and parameter adjustment for
music genre classification tasks. Augmentations like Radio Effect, Dynamic Range Compression
(DRC), and Harmonic Distortion were essential for improving performance across challenging genres,
especially when employed with intermediate probability (p = 0.2 to p = 0.5). For instance, Harmonic
Distortion (δ = 0.7) raised F1-scores for distortion-heavy genres like metal and rock, while DRC
(θdB = −20 dB, r = 2 : 1) enhanced categorization for dynamic genres like hip-hop and reggae.

In all setups, Classical consistently produced near-perfect results, which reflected its unique audio
characteristics, but Blues, Rock, and Jazz greatly benefited from residual-based classifiers and
tailored augmentations. The residual blocks in CLMR+Classifier3 worked best for complicated
genres like jazz and rock, capturing nuanced features and improving F1-scores. Meanwhile, Classifier2
excelled in rhythmic genres like Disco and Hiphop by leveraging dropout and additional layers to
enhance generalization. Augmentations applied at optimal probabilities introduced variability and
improved model robustness without overwhelming genre-specific features, while over-augmentation
led to performance degradation. These findings emphasize the necessity for deeper representations
in difficult classification tasks and the importance of selecting augmentation kinds and parameters
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with genre features.

Overall, the combination of genre-specific augmentations and advanced classifiers like CLMR+Classifier3
enhanced accuracy and generalization, which could be used for further research on real-world appli-
cations in music genre classification.

11 Future Work

We could focus on expanding the diversity and size of pre-training datasets could improve the gener-
alization of self-supervised models, enabling them to capture more nuanced audio representations.
Developing genre-specific augmentations tailored to the unique characteristics of challenging genres
like Blues, Jazz, and Rock could help mitigate persistent misclassification trends. Based on the
experiments, we could try a more comprehensive search for the parameters for the augmentations
and the experiments involving them to get the best results. Though we were able to simulate the
desired audio effects, we could try a more precise and perhaps a more scientific implementations of
the augmentations used in the experiments. Additionally, integrating these augmentations during
the pre-training phase may lead to better-aligned representations that capture genre-specific fea-
tures more effectively. Finally, improving the model’s robustness to real-world variations, such as
background noise, recording inconsistencies, and live performances, could significantly enhance its
practical utility and reliability in diverse audio environments.
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