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Abstract

Several universities have adopted ChocoPy, a Python to RISC-V compiler framework, as the
practical component of their compiler construction course. This thesis focuses on the educational
value of this framework by providing a thorough review grounded in empirical analysis. Our goal is
to contribute to enhancing compiler education tools. Our evaluation reveals that while ChocoPy
excels in areas such as documentation quality, skeleton code structure, and testing infrastructure,
there are several opportunities for enhancement in its educational approach. We identify three key
areas for improvement: the documentation of semantic analysis error messages, adherence to RISC-V
calling conventions, and the absence of optimization techniques in the curriculum. To incorporate
the latter we propose to add an additional assignment, balancing the workload by reducing the
scope of semantic analysis. To validate our proposed improvements, we extended ChocoPy with a
Three-Address Code intermediate representation and implemented several optimization techniques.
Through extensive benchmarking across five workloads, we demonstrate that these optimizations
can reduce the total number of executed RISC-V instructions by an average of approximately
36%, with improvements ranging from approximately 6% to 56%. Based on these results, we
provide recommendations for integrating optimization techniques into the curriculum, emphasizing
both educational value and performance impact. Our findings suggest that incorporating these
optimizations would significantly enhance the educational value of ChocoPy by providing students
with hands-on experience in modern compiler optimization techniques while maintaining a balanced
approach to compiler construction education.
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1 Introduction

Compiler construction combines many subjects in the computer science field in interesting and useful
practical application. Thus, a well-structured and challenging practical assignment should accompany
the theory. The ChocoPy framework [PSH19] is used by multiple international universities to teach
compiler construction. The ChocoPy framework consists of the ChocoPy programming language (a
subset of Python) skeleton code as basis to help implement a compiler and a reference implementation
of the compiler. The framework consists of three assignments; each implements a different stage of
the compiler pipeline. The complete compiler pipeline consists of Lexical Analysis, Syntax Analysis,
Semantic Analysis, Intermediate Representation and Optimizations, and Target-specific Machine
Code Generation and Optimizations. In the assignments, Lexical Analysis and Syntax Analysis are
integrated into a single assignment, while Semantic Analysis and Machine Code Generation are
addressed as separate, individual assignments. Intermediate representation is not addressed in the
framework.
ChocoPy has undergone formal evaluation twice, both conducted by researchers at Lund University
[Kar21, GA22]. The first evaluation primarily compared the execution time performance of ChocoPy
programs with Python, using an alternative back-end targeting the x86 64 architecture. The second
evaluation focused on extending the back-end to support lists, a feature already present in the
standard ChocoPy implementation. The primary objective of this thesis is to evaluate the current
ChocoPy framework and explore possibilities for improvement. Ultimately, this research aims to
contribute to a more effective, engaging, and comprehensive educational compiler construction
framework. To do so, the primary question is posed:

“What is the educational value of the ChocoPy framework and how can this be improved?”

To address this question, we evaluate the ChocoPy framework with a particular emphasis on
its educational value. Additionally, we explore ways to enhance the framework by extending its
functionality, particularly through the introduction of optimizations.
To thoroughly understand the educational value of the framework, the following sub-questions must
be answered:

RQ1: “How effectively are the aspects of the educational value handled in the ChocoPy framework?”

RQ2: “How can the deficiencies in the educational value of the ChocoPy framework, as identified
through evaluation, be addressed and improved?”

These sub-questions aim to provide insight into the suitability of the framework as an educational
tool and identify areas for improvement. This analysis will naturally lead to a second set of research
questions, as we observe that optimizations are notably absent from the framework.

RQ3: “How can an optimization exercise be implemented into the ChocoPy framework?”

RQ4: “Which optimizations should be present in the framework based on the educational value and
impact on total RISC-V instructions executed”
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This approach is motivated by the appealing nature of optimizations, which are both theoretically
rich and practically engaging. Our goal is to maximize the number of theoretical concepts addressed
in the practical assignments. Furthermore, we speculate that students will find optimizations
engaging, which could enhance their learning experience and deepen their understanding of compiler
construction.

1.1 Thesis Overview

We begin by implementing the assignments provided by the ChocoPy framework. In Chapter
4, we analyze the educational value of the framework, with an emphasis on identifying its key
strengths and areas requiring improvement. We provide suggestions for the latter in Chapter 5.
This includes an investigation into the possibilities of extending ChocoPy with an optimization
assignment and corresponding recommendations. In Chapter 6, we extend the framework by
introducing Three-Address Code (3AC) as an intermediate representation (IR) with optimizations.
Specifically, we implement Function Inlining, Dead Code Elimination, Constant Propagation,
Constant Folding, and Register Allocation. Finally, we compare the optimized implementation of
ChocoPy to the reference implementation by analyzing the total number of RISC-V instructions
executed across five benchmarks included in the framework. These benchmarks serve to provide
accurate recommendations on the optimizations to include and how the assignment may be
structured.
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2 Background

This section presents the technical aspects and key definitions essential to this thesis. We first
examine the concept of educational value and relevant programming language principles necessary
for understanding ChocoPy. Additionally, we provide an overview of compilers and the compilation
process, establishing the context for ChocoPy as a programming language, its compiler, and the
broader ChocoPy framework.

2.1 Educational Value

The concept of educational value encompasses several aspects. M. Mernik and V. Zumer [MZ03]
identify certain educational values, which we adopt and expand upon. We incorporate the following
aspects:

1. Balance between Theory and Practice

The degree to which theoretical concepts are complemented by their application in practical
components, ensuring a cohesive integration of abstract and hands-on learning.

2. Relevance to Modern Practices

This aspect assesses the framework’s alignment with contemporary techniques and tools,
ensuring relevance to current practices and applications in the field. While important, this is
not the most important aspect. This should provide context and motivation for further study
to the student, not implement the practical for them.

3. Translational Challenges from Theory to Practice

The identification and resolution of obstacles that students may encounter when applying
theoretical knowledge to practical tasks. This includes mitigating challenges that are not
inherently related to the core theory, such as by revising or simplifying assignments, or by
providing instructional materials.

4. Quality and Comprehensiveness of Supporting Documentation

The extent to which the provided documentation facilitates understanding and guides students
in navigating assignments and overcoming challenges effectively.

5. Motivation and Learning Support

Mechanisms that promote student engagement, motivation to complete the practical assign-
ments, and provide support during the learning process, such as feedback systems, progress
tracking, and other motivational tools. Additionally, it examines the extent to which diverse
learning styles and varying paces of student progress are accommodated.

2.2 Programming languages

Programming languages are varied and are quite complex. Typing, abstraction level and executable
creation may differ greatly between them. These subjects are key to understanding compiler
construction and this thesis.
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2.2.1 Type Systems

Type systems serve as formal mechanisms for associating data types with variables within program-
ming language paradigms. Type classification is characterized by two orthogonal dimensions: type
determination timing (static/dynamic) and type mutability (strong/weak) [MMMP90].
In static type systems, variable types are explicitly declared by the programmer at compile-time,
enabling early type verification. Conversely, dynamic type systems defer type resolution to runtime,
with type assignments performed by the compiler’s runtime mechanism.
Strong typing enforces strict type immutability, prohibiting runtime type transformations. Whereas
weak typing permits implicit type conversions and type reassignments later in the program [Pie02].
Type width refers to the number of bytes required to store a specific data type. A value of a type
with fewer bytes can be stored in a type with a larger byte width without loss of information, a
process known as promotion [Str13]. This introduces ambiguity in type mutability and permits
implicit type casting in languages like C++. To address this, guidelines such as MISRA C [Lim04]
prohibit implicit casting to ensure type safety.

2.2.2 Abstraction

High-level and low-level programming languages are distinguished by their level of abstraction from
the underlying hardware. High-level languages provide greater abstractions to simplify programming,
often at the expense of increased overhead [FBC+09]. In contrast, low-level languages offer minimal
abstraction, granting developers finer control over hardware resources and enabling more efficient
code [ALSU06]. However, this increased control comes with added complexity.
The process of creating executables differs between high-level and low-level programming languages.
High-level languages often use interpreters that translate source code line by line at runtime,
simplifying debugging but adding performance overhead. Low-level languages are typically compiled
into machine-specific executables, optimized for the system instruction set architecture (ISA) to
eliminate runtime overhead.

2.2.3 Instruction Set Architecture

An ISA defines “the specification of the machine’s native language: that is its instructions and
their actions” [Wri09]. Most computers are equipped with Intel or AMD processors that use a
closed-source complex instruction set computer (CISC) architecture, specifically x86-64. In contrast,
reduced instruction set computer (RISC) architectures aim to minimize the number of available
instructions compared to CISC. This approach comes with a trade-off, as RISC architectures
typically require longer sequences of instructions to perform the same operation. In return it
provides a small but complete instruction set [WLPA11]. This does not necessarily imply the
architecture is inherently slower [BMVS15].

2.2.4 RISC-V

RISC-V was developed in 2010 at the University of California, Berkeley, and was specifically
“designed to support computer architecture research and education” [WLPA11]. As its name
suggests, RISC-V is based on a reduced instruction set computer (RISC) architecture. It provides a
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base set of instructions that can be extended. This thesis focuses on RISC-V 32-bit assembly with
integer multiplication and division extension (RV32IM).
The RISC-V ISA includes 31 general-purpose registers, each capable of holding integer values. The
RISC-V calling convention outlines how these registers should be used. Each register has a specific
role and a saving convention, which dictates whether the caller or the callee function is responsible
for storing the register’s contents in memory during function calls. Roles specify which registers
should be used for a generic task, such as function arguments and return values.

2.3 Compilers

A compiler is a software tool that translates human-readable programming languages into machine-
readable code [ALSU06]. This process is performed through a pipeline, see Figure 1, which analyzes
the input for syntax and semantic errors, applies optimizations when applicable, and generates the
corresponding target machine code.

Figure 1: Compiler pipeline overview depicting the various stages of the compiling process [ALSU06]
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2.3.1 Front-end

The front-end of a compiler consists of the lexical analysis (lexer), syntax analysis (parser) and
semantic analysis. The stream of incoming characters from the source file is tokenized by the lexer.
The lexer first groups the character stream into lexemes. For each identified lexeme, a corresponding
token is generated. These tokens contain metadata about the original lexeme and are subsequently
passed to the parser. Among other functions, lexical analysis facilitates the specification of keywords
and enables the detection and handling of errors arising from unrecognized or invalid character
combinations.
The parser creates a parse tree from the token stream. This tree represents the syntactic structure
and order of the source file according to the grammar rules of the language. Tokens are matched to
grammar rules, and errors are reported when no valid rule applies.
Lastly, the semantic analyzer validates the parse tree against the semantic rules defined by the
language. This stage ensures that the program is meaningful and adheres to contextual constraints,
such as type compatibility, scope resolution, and proper use of identifiers. Upon completion of this
stage, the source file is validated, and the parse tree is prepared for transfer to the back-end for
further processing.

2.3.2 Back-end

The back-end consists of intermediate representation (IR) generation and target-specific machine
code generation. IR serves as an abstracted form of machine code, facilitating machine-independent
optimizations. Different types of IR exist, varying in their levels of abstraction. High-level IR closely
resembles the source code, while low-level IR is more akin to machine code.
The final step involves translating the IR into target-specific machine code. This process accounts
for the architecture and instruction set of the target system to ensure the generation of valid,
executable code. To enhance performance, various optimizations may be applied during this stage.

2.3.3 Optimizations

Compiler optimizations are applied in the back-end to enhance performance. These include machine-
independent optimizations (applied during intermediate representation generation) and machine-
dependent optimizations (applied during target-specific machine code generation). Optimizations
may target goals such as space, energy, or execution efficiency, however, this thesis focuses exclusively
on execution efficiency. In this thesis, we discuss the optimizations function inlining, dead code
elimination, constant propagation, constant folding, and register allocation.

1. Register allocation assigns registers to variables based on heuristics. These techniques identify
variables that are simultaneously live or conflicting and assign them accordingly.

2. Dead code elimination removes code that does not affect program output. This includes
finding dead variables, which might be declared but are not significant for the program output.

3. Constant propagation replaces variables with their known constant values to simplify compu-
tations.

4. Constant folding computes constant expressions at compile time, replacing them with their
results.
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5. Function inlining replaces function calls with the function’s body to eliminate call overhead.

Three-address code (3AC) serves as an intermediate representation (IR) that facilitates optimization
processes. This IR resembles machine code but allows flexibility in its specific implementation.
3AC lacks a hierarchical structure, necessitating the formation of basic blocks to enable effective
optimizations. Basic blocks are linear sequences of statements executed sequentially, which can be
interconnected to form a control-flow graph (CFG), representing the potential execution paths of
the program.

2.4 ChocoPy

ChocoPy is a framework developed at the University of California, Berkeley, for use in compiler
construction courses [PSH19]. It defines a restricted subset of the Python programming language
and targets machine code for the RISC-V RV32IM architecture. The framework is implemented in
three assignments.

2.4.1 ChocoPy as Programming Language

Python is a programming language created by Guido van Rossum [VRD09]. It was designed with
an emphasis on ease of learning and readability. Python features strong, dynamic typing and is
traditionally interpreted. ChocoPy is a strong, statically typed, restricted subset of Python and,
as such, does not support all Python features. Notable omissions include packages, dictionaries,
exceptions, and default arguments. As a subset, all ChocoPy programs are valid Python code. The
language employs native Python type hints to enforce strong, static typing, allowing ChocoPy
programs to be compiled. ChocoPy’s static typing and compilation model make it more suitable
for illustrating how high-level code is transformed into lower-level assembly, helping students
understand the underlying processes of program execution and optimization in a way that Python
does not.

2.4.2 ChocoPy Compiler

The ChocoPy compiler employs the JFlex lexer [Kle23] for lexical analysis and the CUP parser
[CSAP14] for syntactic analysis. These tools generate an abstract syntax tree (AST), a specialized
form of a parse tree. Both frameworks are explicitly designed for compatibility and are supported
by extensive documentation, enhancing their accessibility for educational use. The compiler targets
RV32IM assembly code, chosen to align with the educational goal of using a modern architecture. To
evaluate correctness and performance on common x86 machines, the compiler’s output is executed
on a simulator. ChocoPy utilizes the Venus simulator [VEP22] for this purpose.

2.4.3 ChocoPy as Framework

The ChocoPy framework, implemented in Java, is structured into three assignments, each addressing
one or two stages of the compiler pipeline. The first assignment includes both lexical and syntactical
analysis, building an AST for the program. The second assignment is focused on semantic analysis,
where the generated AST is validated and detailed error messages are implemented. In the final
assignment, the validated AST is translated directly into RISC-V machine code. Additionally,
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this assignment allows the import of custom RISC-V assembly files to define standard (built-in)
functions, with several predefined functions already provided by the framework.
The framework provides extra functionality for executing the Java program, including an obfuscated
reference implementation and unit tests. The obfuscated reference serves as an executable program,
though its source code remains inaccessible. The unit tests serve as an automatic grading system
and not all unit tests are shown to the students. For the second and third assignments, students
have the option to use either their own implementation from the preceding compiler stages or the
provided reference implementation.
Additionally, it enables interaction with the Venus simulator, allowing users to execute ChocoPy
programs or analyze the number of instructions executed. Finally, the framework provides a web-
based editor, enabling students to write ChocoPy programs and execute the three assignment
stages. Programs can be parsed, semantically analyzed, and compiled into machine code with their
own implementation or the reference implementation. The machine code generation initiates a
web-based Venus environment, which supports step-through debugging and provides a detailed
view of registers and memory, including their respective values.
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3 Related work

In this section, several related works are highlighted to provide context and background for the
contributions of this thesis. This section reviews relevant works about compiler construction, works
related to ChocoPy, as well as research on enhancing compiler construction courses.
The book “Compilers: Principles, Techniques, and Tools” [ALSU06], commonly referred to as the
“Dragon Book”, is a prominent work in the field of compiler construction and is widely used as
a textbook in many compiler design courses. It provides a comprehensive overview of both the
theoretical foundations and practical techniques involved in building compilers. Several concepts
and methodologies presented in this thesis are aligned with the principles outlined in this book,
particularly in the context of compiler construction and optimization. Another influential book
about compilers and programming languages is “types and programming languages”. This book
adopts a more theoretical and mathematical approach, focusing on type systems, programming
language semantics, and formal reasoning about compilers. It serves as a valuable complement to the
Dragon Book, providing deeper insight into the theoretical underpinnings of programming languages.
This book has been used to provide a theoretical framework for ChocoPy’s type system and related
concepts, while the Dragon Book has informed the practical aspects of compiler implementation
and optimization.
The authors of ChocoPy published a paper [PSH19] that provides insights into the design motivation
of the framework and briefly addresses performance considerations. The authors aimed to create a
subset of a widely-used programming language to enhance its relevance to real-world applications.
Furthermore, they selected a modern and sufficiently simple assembly language by implementing
the aforementioned RV32IM architecture. The paper also notes that student-implemented compilers
could “easily outperform the official Python implementation”. However the methodology used is
unclear. Presumably the benchmarks were conducted on a RISC-V computer or emulator rather
than the Venus simulator, as the latter incurs a significant performance penalty. Additionally, it is
unclear whether the reference code generated by the framework also outperforms Python. If this is
the case, student implementations could outperform Python without requiring optimizations, raising
questions about the framework’s ability to motivate students to explore advanced optimization
techniques. We seek to investigate how student implementations could surpass the reference
implementation by employing techniques that are currently challenging to implement due to the
framework’s limited optimization support. Such enhancements would likely achieve significant
performance gains over the Python interpreter when executed in a native environment.
Lund University in Sweden uses a modified version of ChocoPy in their compiler construction
course [Kar21]. Their version uses a different toolchain and, more importantly, compiles directly to
x86 64. In this paper, a short evaluation of the ChocoPy framework is done with these changes and
was deemed to be good for their compiler construction course. This version was also benchmarked
against Python and found to be much faster, which would be for good educational value. We use a
different back-end (RISC-V) with a simulator, which makes the performance measured in the paper
unobtainable due to the overhead. Lund University also later extended their version of ChocoPy
with lists and classes on the heap with garbage collection [GA22]. ChocoPy was researched on
the opportunities to be extended, extended with these features and benchmarked against Python.
This paper is not relevant to our work as in our framework classes and lists are already featured.
Garbage collection is not featured, but is outside of the scope of this thesis.
A recent study by Zhang et al. [ZHZ+21] explores the potential of shifting the focus in undergraduate
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compiler construction courses toward machine code generation and optimizations. This approach
involves team-based competitions. Performances varied across teams, with some able to outperform
GNU GCC -O2 in 10 predefined test cases. This approach offers a compelling perspective on struc-
turing compiler courses, emphasizing hands-on, competitive learning to enhance student engagement.
We want to explore opportunities to shift the balance of the current assignments and dedicate more
time to code generation and optimization to create a similar engaging experience. However, we do
not intend to base grading primarily on competition between students, as this approach may not
accommodate diverse learning paces and styles, potentially diminishing educational value.
LISA is a tool used and evaluated in a paper by M. Mernik and V. Zumer [MZ03]. The tool is
designed to enhance understanding of compiler front-end construction and meant such as “lex”
and “yacc”. The paper examines various aspects of its educational value, or “didactical benefits”,
including support for diverse learning styles and paces, as well as its potential to increase learner
motivation. These aspects were carefully analyzed and, where applicable, integrated into our
definition of educational value.
The Amsterdam Compiler kit (ACK) [Tan83] is a historically significant compiler toolkit. ACK
is based on the core principle of UNCOL (Universal Computer-Oriented Language), a theoretical
intermediate language designed to facilitate portability across different source languages and machine
architectures. ACK was also used in compiler courses at universities like the Vrije Universiteit
Amsterdam and the University of Amsterdam. As a comprehensive compiler toolkit, ACK ensures
seamless integration of all stages of the compilation process, making it well-suited for use in compiler
courses. It exemplifies the modular nature of compiler design by supporting the translation of
multiple programming languages into a shared IR. The IR used in ACK is Experimental Machine
1 (EM-1). This language is a stack-based machine without registers; however, it can be used to
effectively allocate registers. This is different from the 3AC used in this thesis, as this tries to
minimize the use of a stack. Nonetheless, ACK provides a historically significant and conceptually
distinct implementation of compiler construction and IR.
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4 Educational value of ChocoPy

This section discusses the educational value of the ChocoPy framework along with specifying
strengths and weaknesses. Suggestions to improve the latter will be discussed in the next section. The
analysis is conducted with reference to the criteria previously established in regards to evaluating
educational value in Chapter 2.1. Notable strengths of the framework include comprehensive
documentation, well-structured skeleton code, a robust feedback and progression system through
unit tests, a web-based editor with supportive features, and a reference implementation for verifying
correct output. Identified areas for improvement include better documentation of error messages in
the semantic analysis, incorrect calling convention in machine code generation, and addressing the
absence of optimization techniques.

4.1 Qualities

All assignments are comprehensively documented and well-structured, providing students with
clear guidance throughout the process. All relevant features of the framework are explained in
detail, ensuring that students have a solid understanding of its functionality. Additionally, partially
functional example code is provided, which allows students to quickly familiarize themselves with
the program. This minimizes the time spent on setup and enables students to focus directly on
applying theoretical concepts to the implementation. This increases the educational value through
the quality and comprehensiveness of supporting documentation, along with the translation of
challenges from theory to practice.
The inclusion of the reference implementation and the modularity of the pipeline design enhance the
educational value of the framework by demonstrating the practical application of modular design
principles. This approach also allows students to learn at their own pace and in their preferred
style. Additionally, it accommodates students who may not have completed previous assignments
or lack confidence in their own implementations by enabling them to focus on understanding new
concepts without being hindered by prior work.
The education value is further increased through motivation and learning support by the included
unit tests and web-based editor. The integration of unit tests to quantify students’ progress, offers
a clear measure of their accomplishments. This structured approach not only enhances the learning
experience, but also motivates students to complete the assignment by providing tangible milestones.
The web-based editor further supports diverse learning styles and paces by enabling students to
experiment with and debug both their own implementations and the reference implementation.
This functionality facilitates a deeper understanding of language specifications and machine code
generation.
JFlex and CUP simplify the lexing and parsing process, while providing relevance to modern
compiler tools, increasing the educational value. Additional, newer and more powerful tools, such
as ANTLR [PQ95], could be included in the project to improve the relevance to modern practices.
However, this would undermine the challenges in translating theory into practice and ultimately
lose more educational value. RISC-V was chosen for its relevance to modern architectures [PSH19]
and thus it also enhances the educational value.
The code generation assignment assigns priority to multiple features to be implemented, creating a
checkpoint system. This approach supports diverse learning styles and paces by providing flexible
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guidance to students through a complex assignment, while allowing autonomy and encouraging
independent judgment.

4.2 Areas of Improvement

The front-end assignments are largely complete and offer high educational value. However, the
semantic analysis assignment requires improvement in the aspect of translational challenges from
theory to practice. Currently, the error message strings checked by the unit tests, and thus the
grading system, must match exactly. Problematically, these strings are undocumented and can only
be found through the unit tests or experimentation with the reference implementation.
In machine code generation assignment we identified a deficiency regarding the proper implementa-
tion of the register calling convention. The implementation guide explains the calling convention
used by ChocoPy well and therefore does not diminish educational value this way. However, this
does not align fully with the RISC-V calling convention. This documentation details function
arguments to be only passed via the stack rather than through the designated argument registers.
This also applies to built-in functions, except the “alloc” and “abort” functions. This deviation
from the prescribed calling convention diminishes the educational value of the assignment, as the
theoretical concepts of calling conventions are not adequately reflected in the practical implementa-
tion. Consequently, students are not fully exposed to an essential aspect of low-level function calls,
which undermines the goal of balancing theory and practice and quality of documentation.
Lastly, we find the balance of theory and practice lacking. The ChocoPy framework does not
incorporate any optimizations in the machine code generation, nor does it have an IR generation
stage with optimizations. While the framework offers a bonus exercise on optimizations, this exercise
is structured as a competition, rewarding only the best implementations. This approach has reduced
educational value as it does not accommodate all learning styles and paces, leading some students
to forgo participation due to limited time or motivation. Furthermore, implementing machine-
independent optimization techniques directly on RISC-V code is impractical, as it adds unnecessary
complexity and detracts from the foundational understanding of optimization techniques.
The absence of optimizations in the primary implementation diminishes the educational value of
the assignment, as it disrupts the balance between theoretical concepts and practical application.
In addition, optimizations are often regarded as particularly engaging and intellectually stimulating
by students. Introducing optimizations as a core part of the practical would provide students with a
more comprehensive understanding of real-world compiler design practices and enhance the learning
experience. We find the lack of optimizations to be the largest diminishment of the educational
value and significant focus will be put on solving this.

4.3 Conclusion

To determine the educational value of ChocoPy, we systematically correlated the qualities and
areas for improvement of ChocoPy with their corresponding educational values, as summarized in
Table 1. Certain factors may appear in multiple categories, as they may contribute to or detract
from the educational value in multiple aspects.
The framework demonstrates a well-structured design and significant educational value. Supported
by its alignment with modern practices, the quality and comprehensiveness of its documentation,
and its capacity to effectively foster motivation and support learning. These strengths substantially

15



Aspects of Educational
Value

Qualities of ChocoPy Areas of Improvement
for ChocoPy

Balance between Theory
and Practice

Complete compiler pipeline
Extensive semantic analysis

Absence of optimizations
Non-conventional function
argument passing

Relevance to Modern Prac-
tices

Python subset
JFlex and CUP
RISC-V

N/A

Translational Challenges
from Theory to Practice

Documentation on the assign-
ments, the language specification,
and the guide to RISC-V
Skeleton code
Checkpoint system in code gener-
ation

Lacking documentation on
error messages

Quality and Comprehensive-
ness of Supporting Docu-
mentation

Documentation on the assign-
ments, the language specification,
and the guide to RISC-V

N/A

Motivation and Learning
Support

Reference implementation
Unit tests
Web-editor

N/A

Table 1: Evaluation of the Educational Value of ChocoPy. N/A: no significant areas for improvement
were identified for this aspect of educational value.

contribute to its overall quality as an educational tool. Nonetheless, certain areas require further
development. Specifically, the framework could be improved in the transitional challenges from
theory to practice, balance between theory and practice. These findings will guide our efforts to
enhance the educational value of ChocoPy. We identify the absence of optimizations as the most
significant weakness in the educational value of the assignment. Therefore, the second part of this
thesis will primarily focus on overcoming this limitation by incorporating optimizations into the
framework.
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5 Improvements

This section presents solutions to address the identified areas of improvement, namely the error
messages in the semantical analysis, the incorrect calling convention and lack of optimizations.
Suggestions on how to include an optimization assignment are also provided.

5.1 Error Messages

To address the issue with undocumented error messages, we propose the following solutions. We
recommend documenting these messages in the assignment materials and/or including a file in the
framework with predefined string variables for use in the code. The latter option would eliminate
copying errors, thereby enhancing the educational value more effectively than the former.

5.2 Calling Convention

The calling convention used by the ChocoPy framework should be improved to better represent the
RISC-V calling convention. We propose updating the documentation to accurately describe the
function argument register calling convention and changing the reference implementation to reflect
this. Modifying the reference implementation itself to align with these updates would require signif-
icant effort, so we acknowledge that such changes may not be feasible. However, the documentation
should explicitly highlight this deviation from the standard RISC-V calling convention. Providing a
clear reference or summary would ensure that students understand the theoretical underpinnings,
even if they are not directly reflected in the provided reference implementation.

5.3 Optimizations and Extending ChocoPy

To enhance the educational value of ChocoPy, an intermediate code stage should be introduced to
facilitate the application of optimization techniques. In the current implementation, the framework
already handles the process of translating (high-level) IR into (low-level) machine code. Consequently,
the proposed optimization stage would focus exclusively on applying optimization techniques,
without requiring students to translate the AST into IR and the IR into RISC-V code. By isolating
the optimization process, students can focus on understanding and implementing optimization
concepts, ensuring a more targeted and effective learning experience. A new assignment should be
created for this.

5.4 New Assignment

Introducing an entirely new assignment to the framework is not feasible given the current scope
and workload of the existing assignments. Due to this, the framework currently only discusses
optimizations in a bonus exercise.
We believe a bonus exercise does not motivate all students to give it a proper attempt, still leaving
the theory and practice out of balance. To address this, we propose reducing the scope of the
semantic analysis assignment while retaining its core objectives, to allow the addition of another
two- to three-week assignment on optimizations to the framework. The primary goal of the semantic
analysis assignment is to teach how semantic checks are performed and how meaningful error

17



messages can be generated. These messages can be categorized into types such as definition errors,
type errors, and class member errors. We recommend allowing flexibility in the specific messages
students implement, with requirements for a minimum number per category and a total minimum.
This approach preserves the original assignment’s educational objectives, while reducing total
development time.
The new optimization assignment should be positioned after the machine code generation assignment.
At this point, students will have developed a solid understanding of the fundamental concepts
involved in compiler design, as well as the potential for optimizations. This sequential progression
will ensure that students are well-prepared to tackle optimization techniques, as they will have
already gained the necessary background knowledge and practical experience to effectively apply
them.

5.4.1 New Provisions in the Framework

The new assignment should introduce a low-level IR similar to 3AC. Since RISC-V instructions are
already in 3AC form, students should be familiar with this assembly at this point; we recommend
designing an IR modeled closely after RISC-V instructions. As outlined previously, the translations
from the AST to the new IR and from the new IR to machine code should be pre-implemented.
Additionally, detailed documentation should accompany this assignment, akin to the current
framework, and include a list of potential optimizations. To maximize educational value, the
provided optimizations should encompass a diverse and impactful selection, encouraging motivation
through meaningful achievements and exposing students to varied techniques. Similar or low-impact
optimizations would fail to effectively balance theory and practice or adequately engage students, as
the lack of tangible results from their efforts could be highly demotivating. To ensure high-quality
recommendations for this assignment, we will extend ChocoPy with 3AC and optimizations and
benchmark the generated code to the reference implementation.
If desired, a bonus exercise can still be incorporated, offering rewards for additional optimization
implementations or organizing a competition, as in the current framework. This approach would now
enhance the educational value, as all students would have already engaged with the foundational
theory and begun with an equal baseline.
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6 Three-Address Code Extension

In this section, we address the lack of IR generation and optimization present in ChocoPy. We do
this by implementing 3AC with translations between the AST and machine code and equipping
the 3AC with optimizations, namely register allocation, constant folding, constant propagation,
dead code elimination and function inlining. Furthermore, to provide accurate recommendations
on what optimizations to include in a new assignment, various optimizations are benchmarked.
Finally, we will provide recommendations on the most suitable optimizations for a new optimization
assignment, along with a suggestion on implementation order. This is based on the benchmarking
data and the educational value of implementing each optimization.

6.1 Method

This section outlines the newly proposed pipeline and implementation of the optimization stage, as
depicted in Figure 2. The process begins with the transformation of the AST into 3AC. Subsequently,
a control-flow graph (CFG) is constructed, followed by the execution of liveness analysis and optional
machine-independent optimizations. These optimizations can have a synergistic effect. For instance,
constant propagation and constant folding may enhance one another, as the former generates
additional constants that the latter can simplify, and vice versa. Finally, we perform register
allocation, and translate the optimized 3AC into RISC-V assembly. This high-level overview serves
as the foundation for a more in-depth exploration of specific design decisions and implementation
strategies, which we discuss in subsequent sections. Notably, built-in functions are not optimized
as these are hand-written RISC-V assembly code and the contents are inserted separately from
the user-generated code. Consequently, these strings of instructions are exactly the same as the
reference implementation.

6.1.1 3AC instructions

The 3AC instructions we implemented in this thesis are based on the RISC-V instructions. Addition-
ally, we corrected ChocoPy’s calling convention by employing the appropriate registers, according
to the RISC-V calling convention [WLPA11]. The primary objective of the 3AC is to abstract
complex instruction sequences and memory management required for functional RISC-V machine
code. To aid in this abstraction, instructions such as “param”, “call” and “ret” are incorporated,
following the approach in the Dragon book [ALSU06]. These additions result in more concise code
that can often be translated directly to RISC-V instructions. Sometimes, a 3AC instruction directly
match their RISC-V equivalents, making translation trivial. Additionally, the compactness of 3AC
simplifies reasoning and transformations, as chains of instructions can be condensed into a single
3AC instruction. Compared to the AST, 3AC offers significant advantages, as it employs simple,
sequential instructions that are much closer to the target machine code. This structure provides a
more suitable foundation for the application of optimizations.

6.1.2 Function inlining

To inline a function, we first check to see if the function contains recursion. Recursively called
functions are inlined a fixed number of times, while non-recursively called functions are inlined until
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no function calls are left. Additionally, function arguments are directly substituted, eliminating the
need for intermediary function argument registers. Lastly, class methods are not inlined due to
time constraints and challenges with polymorphism.

Figure 2: An overview of the intermediate code stage pipeline. Various Machine Independent Opti-
mizations may be performed sequentially. In our implementation this includes constant propagation,
constant folding, dead code elimination, and function inlining.

6.1.3 Constant Propagation and Folding

These optimizations are trivial to implement and in terms of their transformation of the assembly.
Constant folding does not require additional considerations. However, constant propagation requires
an accompanying heuristic, which is highly comparable to liveness analysis, as it determines the
points in the program where a variable retains a constant value. This similarity may diminish the
educational value of the optimization by introducing redundancy, thereby disrupting the balance
between theory and practice.
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6.1.4 Dead Code Elimination

The implementation of dead code elimination is carried out in two independent stages. First,
unreachable code is identified and eliminated by analyzing the CFG. Second, the liveness analysis
is used to detect dead variables, allowing the removal of unnecessary instructions.

6.1.5 Register Allocation

This thesis employs a basic [CAC+81] register allocation algorithm [ALSU06]. An adjacency matrix
is built utilizing the live sets from the liveness analysis, enabling efficient register assignments.
Registers designated for passing function arguments and return values are reserved to ensure
proper functionality, if function calls are present. Priority is given to assigning caller-saved registers,
providing greater flexibility during function calls by requiring only the preservation of variables
needed after the call. This approach reduces the number of instructions required for saving and
restoring register contents. Lastly, register spilling is not implemented. This omission reduces
the educational value as the theory is not fully executed in practice. However, this reduces the
complexity of the register allocation optimization and the framework, furthermore, this is not
required for the used benchmarks. After the registers are successfully assigned, the machine code
generator generates valid RISC-V machine code.

6.2 Experiments

In this section we will record the impact of applying various optimization techniques to ChocoPy’s
code generation process. The performance is determined by counting the total amount of executed
RISC-V instructions. By analyzing the results, the educational value of different optimizations
can be determined and substantiated recommendations on the new assignment can be provided.
We hypothesize that register allocation and function inlining will have the greatest impact on
the performance. Additionally, we anticipate that the combination of multiple optimizations will
result in cumulative benefits. Through this experimental framework, we seek to identify which
optimizations are most beneficial, as well as to understand their educational significance in the
context of compiler design and optimization techniques.

6.2.1 Experiment Setup

Quantifying the total RISC-V instructions executed is handled by the Venus simulator used by
the framework through a command-line argument. The execution of all benchmark programs is
deterministic, and therefore the count remains consistent, not requiring replication for statistical
reliability. The actual execution time is not measured. However, reducing the number of executed
instructions will give a decent estimate of real-world performance improvements.
The experiments will employ five benchmark programs included in the framework, each designed
to evaluate different aspects of the programming language and code generation process. These
benchmarks assess key computational features, including recursion, string and list manipulations,
and object-oriented programming. The benchmarks and their primary tested features are as follows:

• Exp computes repeated exponentiation using a recursive function. This benchmark primarily
evaluates recursion within very short functions.
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• Prime iteratively computes prime numbers and primarily assessing control flow mechanisms
such as while loops and conditional statements.

• Sieve implements an algorithm similar to the Sieve of Eratosthenes for prime number compu-
tation. This benchmark primarily tests list manipulation and object-oriented programming,
including polymorphism.

• Stdlib converts a number to a string and back, testing extensive if-else chains, string and list
manipulation, recursion, and built-in function calls.

• Tree constructs a tree data structure by inserting nodes. This benchmark primarily evaluates
recursion and object-oriented programming.

The implemented optimizations, namely function inlining, constant propagation, constant folding,
dead code elimination, and register allocation, will be tested individually and in combination on
these benchmarks. This approach facilitates a comprehensive understanding of the interactions
between different optimizations and their cumulative effects within the optimization pipeline.

6.3 Results

This section discusses the results from running the benchmarks with various configurations of
optimizations. This aims to show the effectiveness of individual optimizations and combinations
of these varying optimizations. First we will show the impact of these variations compared to
the reference implementation of the framework. Afterwards, we will take the register allocation
configuration as the baseline and compare the additional optimizations to highlight and clarify
their effectiveness.
In Figure 3, we observe notable improvements in most of the benchmarks with increased active
optimizations, demonstrating the synergistic effects of applying the optimizations collectively.
Register allocation alone yields an average performance improvement of 24.30%, establishing a
significant baseline compared to the reference implementation. However, the Stdlib benchmark does
not exhibit notable reductions in the number of executed instructions in this configuration. As
the performance does increase with other optimizations, we suspect the extensive usage of built-in
function calls for string and list operations diminishes the effectiveness of register allocation in this
workload. The greatest performance gains are observed when all optimizations are applied together,
resulting in an average reduction of 35.73% in the total number of executed RISC-V instructions,
with a maximum reduction of 56.20% and a minimum of 6.26%. An exception to this trend is
observed in the Sieve benchmark. Analysis of the generated assembly code reveals that the machine
code generation introduces a significant number of load and store operations surrounding function
calls. These instructions are primarily introduced as safety measures to ensure program correctness.
However, multiple of these operations were observed to be unnecessary in specific situations,
indicating possible further refinement through complementary machine-dependent optimization
techniques. The function calls remain due to the lack of inlining member method calls.
To illustrate the impact of the various optimization configurations more effectively, Figure 4 uses
the configuration with only register allocation as the baseline. This comparison demonstrates that
combining multiple optimizations generally leads to improved performance. However, individual
optimizations do not always reduce the total instruction count. For example, constant folding
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Figure 3: Relative reduction in executed instructions across benchmarks with different optimization
configurations. Not all combinations have been graphed to limit the size and complexity of the
graph. RA: Register Allocation, CP: Constant Propagation, CF: Control Flow Optimization,
DCE: Dead Code Elimination, FI: Function Inlining.

does not change instruction counts. From the perspective of the Venus instruction counter, this
transformation merely replaces one instruction with another, such as converting a binary operation
into a move or load operation. Other optimizations are generally ineffective on user-generated
code, such as dead code elimination [ALSU06], especially in these workloads. When combined,
constant propagation and constant folding decreases total executed instructions only in the Stdlib
benchmark by 0.07% compared to only constant propagation. This combination does not report
significant results for these workloads. Function inlining represents a notable outlier in its impact
on instruction counts. This can significantly decrease the executed instructions, but it can also lead
to an increase depending on workload. Once more the outlier result of the Sieve benchmark can be
observed. As mentioned above, this is due to an increased amount of load and store operations.
The class method calls present in this benchmark are not optimized, which is also the case for Tree
which does not benefit as much from inlining as Exp or Sieve. Moreover, we can observe Stdlib
gaining a noticeable performance increase with these additional optimization techniques. This is on
par with the Tree benchmark, indicating register allocation as an ineffective optimization for this
benchmark.
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Figure 4: The relative reduction in instruction count compared to only Register Allocation. These
are the same data points as in Figure 3, emphasizing the impact of the other optimizations.

The configuration with all optimizations except function inlining, achieves a maximum of 10.72%
decreased instructions executed with an average of 4.25% and a minimum of 1.03%. Including
function inlining leads to a significant maximum of 38.17% and an average of 14.86%, but also a
minimum with an increase of executed instructions of −3.22%. This maximum observed in the Exp
benchmark effectively illustrates the impact of this optimization. The benchmark features shorts
functions and recursion, meaning stackframe construction and destruction is a large part of the
executed instructions. These instructions are significantly reduced or even completely removed,
leading to a significant reduction of executed instructions.

6.4 Recommended optimizations

This research aims to enhance balance between theory and practice by introducing compiler
optimizations. Implementing these optimizations is expected to produce a measurable impact
on performance, thereby motivating students to improve their designs and implement additional
optimizations, which will further enhance the educational value. Additionally, the process of
implementing these optimizations introduces new theoretical concepts, while avoiding unnecessary
repetition, to further increase the overall educational impact.
The first optimization proposed is register allocation, as it introduces a foundational and broad
concept within compiler construction theory. Benchmark results demonstrate that this optimization
significantly reduces the number of executed instructions, contributing substantially to the overall
performance improvement observed. Additionally, the heuristics and graph-based structures required
for register allocation can serve as a foundation for other optimizations. Following register allocation,
function inlining should be implemented. This optimization contributes the second largest impact to
the benchmarking results. Additionally, its theoretical framework is distinct from other optimizations,
making it a valuable and independent concept for students to study. This optimization does not
guarantee a decrease in executed instructions count, negatively impacting educational value as
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this might demotivate students. However, this does teach an important lesson about the trade-offs
in compiler optimizations, demonstrating that while function inlining can reduce function call
overhead, it may also lead to code bloat and increased executed instructions in certain cases. It
should also be noted that both register allocation and function inlining are typically applied once
during compilation and therefore lack the iterative or synergistic effects of combining multiple
optimizations.
Subsequent optimizations, while not yielding significant standalone reductions in executed instruc-
tions, emphasize the importance of combining optimizations to achieve synergistic effects. We
recommend implementing dead code elimination as the next optimization. When the heuristics
from register allocation are correctly implemented, dead code elimination becomes relatively trivial
to implement. Importantly, this reuse does not diminish the educational value due to theoretical
repetition, as it does not require the implementation of a concept that is overly similar to those
already covered. Additionally, dead code elimination reduces executed instructions and cleans up
the code, making debugging easier for students.
The final two techniques, constant propagation and constant folding, do not individually meet
the criteria for a highly impactful optimization. Constant propagation relies heavily on heuristics
similar to those used for register allocation and dead code elimination, while constant folding does
not independently yield measurable performance improvements in our benchmarks. However, when
applied in combination with other optimizations, they contribute to a noticeable reduction in the
total number of executed instructions. We propose packaging these two techniques together, as
constant folding is straightforward to implement and complements constant propagation effectively.
This approach ensures that students still gain experience implementing repeatable, synergistic
optimizations. To compensate for the limited impact of these techniques, existing benchmarks can
be modified or additional benchmarks can be introduced. These benchmarks should be specifically
designed to provide more optimization opportunities for these techniques. Nonetheless, this approach
does not fully address the imbalance between theory and practice caused by the overlapping heuristics
required for constant propagation. However, we argue the educational value gained by implementing
synergistic optimizations and relevant benchmarks overall increases the total educational value.
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7 Conclusion

This thesis evaluates the ChocoPy framework as an educational tool and explores opportunities for
improvement. For the evaluation we look specifically at how effectively the aspects of educational
value are handled by the Chocopy Framework (RQ1). ChocoPy meets all five criteria of educational
value with several aspects of the framework. These criteria are balance between theory and
practice, relevance to modern practices, translational challenges from theory to practice, quality
and comprehensiveness of supporting documentation, and motivation and learning support.
To enhance the educational value (RQ2), we identified three key areas. Here, improvements could
enhance the balance between theory and practice, as well as mitigate translational challenges from
theory to practice:

• Semantic Analysis: The framework should provide a reference, in documentation or code,
for required error messages, as searching for exact wording is not a core theoretical aspect of
compiler error handling.

• Calling Convention: The current implementation of function argument passing does not
fully align with the RISC-V calling convention and requires revision.

• Optimizations: The absence of optimization techniques reduces the educational value, neces-
sitating their inclusion. We implemented, extensively analyzed, and provided recommendations
on this.

Incorporating optimizations into the framework as an assignment (RQ3) requires some reorganization
of the current course structure to accommodate additional content without overwhelming students.
To address this, we recommend reducing the scope of the semantic analysis assignment by limiting
the number of required error messages to be implemented. This adjustment would make room for an
additional two- to three-week assignment focused on optimizations. By providing pre-implemented
translations between the IR, front-end, and machine code, students can focus solely on optimization
techniques.
To guide which implementations to include and the order of implementations (RQ4), we implemented
and benchmarked 3AC with several optimizations. We recommend introducing register allocation
and function inlining first due to their strong theoretical foundation and significant impact on
benchmark results. Dead code elimination should be implemented next, as it simplifies the 3AC,
thereby easing the implementation of other optimizations. Implementing this optimization alongside
constant propagation and constant folding further reduces executed instructions and enhances
the educational value by teaching the importance of synergistic effects between optimizations. To
further demonstrate the effectiveness of these benchmarks, new benchmarks or modifications to
the existing benchmarks could be introduced. When all optimizations are applied, we observed
an average reduction of 35.73% in the total number of executed instructions, with a maximum
reduction of 56.20% and a minimum of 6.26%. These results highlight the substantial benefits of
incorporating optimization techniques into the curriculum, further strengthening ChocoPy as a
comprehensive and effective educational tool.
Finally, we can confidently conclude that ChocoPy holds significant educational value. By im-
plementing the proposed changes, its effectiveness can be further enhanced, providing a more
comprehensive and impactful learning experience. This not only addresses our main research
question but also strengthens ChocoPy as a comprehensive and effective educational tool.
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7.1 Discussion and Future work

Our assessment of the educational value of ChocoPy primarily focuses on the structure and
implementation of the framework. However, this evaluation lacks formal surveys to measure the
impact of using ChocoPy on students’ knowledge acquisition. The original ChocoPy paper did
conduct an informal survey, however, a more rigorous and formal study would provide valuable
insights. Future research could involve the development of a standardized, scientific methodology for
evaluating educational frameworks and assignments such as ChocoPy. Several papers on compiler
construction practical assignments were reviewed, but identifying a comprehensive and clearly
defined set of criteria for assessing educational value proved challenging.
Benchmarking the constructed ChocoPy compiler could also be improved and extended. Our current
approach measures the number of executed instructions. This benchmarking could be expanded
by utilizing RISC-V hardware to compare native performance or by employing emulators such
as QEMU to better compare ChocoPy’s output to other real languages, such as Python or C++.
Unfortunately, due to time constraints, these additional benchmarking methodologies were not
incorporated into the conducted experiments. Furthermore, enhancing the framework to guide
students through the installation process and enabling comparisons with real-world programming
languages would make the optimization assignment more engaging. Similar to efforts at Lund
University, the inclusion of additional ISA backends in the framework would provide students with
practical experience in comparing performance across different architectures. This expansion would
also demonstrate the modularity of a compiler by allowing students to target different architectures
as part of the optimization assignment. However, this is a large effort if no tools exist yet. We
recommend running the assembly through emulation as relative performance to Python should
remain consistent, additionally, students are not likely to have prior experience with such software.
Furthermore, our implementation has significant potential for improvement through the enhancement
of existing optimizations and the inclusion of additional techniques. One notable limitation of the
current implementation is that function inlining does not support the inlining of class methods.
Extending this functionality would require analyzing the program for potential conflicts arising
from inheritance and handling them appropriately. This feature was not implemented due to time
constraints. We think this functionality would dramatically increase the performance on these
benchmarks. Calling class methods requires even more instructions to complete and the methods in
the benchmarks are similarly short to the functions in the Exp benchmark.
The current 3AC generation introduces opportunities for further optimization. Specifically, the code
generation simplifies binary operations by splitting them into multiple instructions, facilitating ease
of implementation. This design choice makes the implementation of copy propagation a particularly
impactful optimization, as it could significantly reduce the number of redundant instructions. This
optimization was also not implemented due to time constraints. We did not want to expand the
3AC to mitigate this splitting as we believe this to be the responsibility of optimizations.
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A Appendix

The implementation of ChocoPy was carried out with the assistance of a reference implementation
by Gan Tu, available on GitHub [Tu19]. Access to the Git repository containing all code related to
this thesis can be requested by contacting the supervisors via email.
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