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Abstract

This paper provides a systematic comparison between OpenAl’s Proximal Policy Optimization
(PPO) and Deepseek’s Group-Relative Policy Optimization (GRPO) algorithms. The goal is
to determine whether GRPO can serve as an alternative to the current state of the art, namely
PPO. To investigate this, both algorithms were implemented and tested in two reinforcement
learning environments. Their performance was compared across key metrics, such as stability,
efficiency and overall results. Although, PPO generally performs marginally better than GRPO,
GRPO yields competitive results. These findings highlight GRPO’s strong potential, especially
considering future work in hyperpapameter optimization and the fact that PPO is a well-tuned
and studied algorithm, while GRPO may still need that attention.



Contents

1 Introduction

1.1 Research Alm . . . . . . . .
1.2 Thesis OVerview . . . . . . . . o o,

2 Related Work

3 Preliminaries

3.1 Theoretical Framework . . . . . . . . . . . ..
3.1.1 PPO . . .
3.1.2 GRPO . . . . e
4 Methodology
4.1 PPO and GRPO Implementation . . . . .. .. .. ... ... ... .........
4.1.1 PPO . .
4.1.2 GRPO . . . .
4.1.3 Understanding GRPO . . . . . . .. .. ..
4.2 RL Environments . . . . . . . . ..
4.3 Evaluation Metrics . . . . . . . .. L
5 Results
5.1 Effect of Group Size in GRPO (on-policy) . . . .. ... ... ... .. ......
5.2 Effect of Group Size in GRPO (greedy) . . . . . .. . .. .. ... ... ...,
5.3 PPO vs GRPO . . . . . .
6 Discussion
6.1 Diminishing Returns of larger Group Sizes . . . . . . . . . . . ... .. ... .. ..
6.2 Choosing the Group Size G . . . . . . . . ..
6.3 Reflections on Experimental Design . . . . . . . .. .. ... ... o0

7 Conclusions and Further Research

References

Appendix

12
12
14
16

20
20
21
22

22

25

26



1 Introduction

Deep Reinforcement Learning (DRL) combines two major sub-fields in Artificial Intelligence (AI),
namely Deep Neural Networks (DNN) and Reinforcement Learning (RL)| ]. In DRL, an agent
iteratively interacts with the environment, with the goal of maximizing cumulative rewards. DNNs
are used to approximate the policy function, and potentially also the value function, while RL is
utilized to efficiently update the models based on the agent’s observations. DRL has a wide range
of applications, as it is implemented in robots| |, gaming| ], healthcare | Jand
various other fields| ].

In this paper, DRL agents are implemented in environments modeled as Markov Decision Processes
(MDPs), where the future outcomes solely depend on the current state and action, therefore
satisfying the Markov property. To train agents in such environments, the policy gradient method
called Proximal Policy Optimization (PPO), a very popular method in DRL, was introduced by the
team at OpenAl in 2017 | |. PPO is an on-policy RL algorithm that improves upon previous
policy gradient methods by using a clipped surrogate objective function to limit large updates
to the policy, thereby ensuring more stable learning. Alternatively, DeepSeek’s new developments
in the field of DRL have introduced a new and more efficient method to train Large Language
Models (LLMs), which is the Group Relative Policy Optimization (GRPO)]| ]. As described by
DeepSeek, GRPO avoids the critic model needed in PPO and instead utilizes a group mechanism
for policy updates | |. Effectively, this leads to faster training and more stability, as only an
actor model is needed.

As RL continues to play a more important role in large language models (LLMs), Deepseek’s
adoption of GRPO for its training framework marks an important milestone in the field of Al
[ ]. Deepseek-R1 achieved comparable results to OpenAlI’s ol model. Remarkably, this was
accomplished with lower computational cost, by leveraging the benefits that RL methods such as
GRPO provide.

It introduced improvements over the ol model, as it does not require any supervised fine-tuning
(SFT), which relies on human-annotated data and introduces limitations, such as dependency on
high-quality labeled data and overfitting. By directly applying RL without SFT, DeepSeek-R1
demonstrates that reasoning capabilities emerge through reinforcement learning signals alone, allow-
ing for greater adaptability and improved long-term performance in reasoning tasks. Additionally,
the DeepSeek-R1 model is computationally more efficient than the OpenAl-ol model, as it only
requires an actor model, as opposed to an actor and critic model, making it computationally more
efficient. In conclusion, Deepseek’s R1 model seems to perform similarly to OpenAI’s ol model
with less resources and less computational power, highlighting the efficiency of a pure RL-based
approach.

While GRPO has shown promising results in the context of LLMs, it is important to note that the
structure of LLM tasks differs significantly from RL environments. In traditional RL, the agent acts
within a well-defined simulation or physical environment. States and actions are clearly separated,
with the environment providing a low-dimensional and structured state, and the agent selects
from a discrete or continuous action space. Furthermore, each action leads to a state, modeled
by a transition function, and is followed by an immediate reward, emphasizing the fact that RL
environments provide frequent feedback. Usually, these environments are episodic, resetting after
truncation or termination. In contrast, LLM tasks operate in a high-dimensional space where the
state is the current sequence of tokens and actions are the predictions of the next token. States



and actions are intertwined as the action becomes part of the next state. Transitions are also
dependent on the model rather than the environment. Moreover, rewards are sparse and typically
apply to the entire predicted sequence of tokens, as opposed to singular actions | |. These
distinctions are important to make, as GRPQO’s strong performance in LLM tasks, more specifically
in Deepseek-R1, do not imply a similar good performance in RL environments.

Since GRPO is a recent development in RL, there is little research conducted on this new model
and its performance in RL environments. Therefore, this study aims to shed light on GRPO’s
potential broader applicability and given that PPO has been the industry standard so far, assessing
GRPO’s effectiveness could have significant implications for future reinforcement learning research
and applications.

1.1 Research Aim

This research presents one of the first systematic comparisons of GRPO and PPO in general RL tasks.
The goal is to thoroughly investigate their relative performance by answering the following questions:

Main question: How does GRPO compare to PPO in reinforcement learning environments?

Subquestion 1: How do the two methods perform in terms of their converged performance
and their convergence speed?

Subquestion 2: Do the methods’ performances change depeding on the reinforcement learning
environmnent?

Subquestion 3: What effect does the group parameter G have on GRPO’s performance?

1.2 Thesis Overview

This research is structured to provide a comprehensive comparison of GRPO with PPO. Section 2
discusses similar papers that this research is based upon. Section 3 presents detailed descriptions
of PPO and GRPO, outlining their theoretical foundations. Section 4, describes the GRPO and
PPO implementations, the RL environments used and the metrics selected. The results of these
experiments are shown in Section 5, which is followed by a critical discussion in Section 6. Lastly,
Section 7 summarizes the key findings and implications for future studies.

2 Related Work

On of the foundational algorithms to this thesis is PPO, introduced by OpenAl as an alternative
to Trust Region Policy Optimization (TRPO) | ]. TRPO was designed to ensure safe
policy updates by enforcing constraints on the divergence between consecutive policies | ].
It achieves this by using complex second-order optimization, which involves calculating matrices of
second derivatives, called Hessians, making it computationally very complex and expensive. PPO
addresses this issue by introducing a clipped surrogate objective function, which uses first-order
optimization. As a results, PPO is a much more efficient and scalable algorithm, which has become



a widely used baseline in RL.

Its relevance to this thesis is, firstly, the PPO agent implemented in this work uses the original
PPO formulation. Secondly, GRPO builds upon PPQO’s clipped objective function, but replaces a
critic network with group-based comparisons. By directly comparing GRPO to PPO, this thesis
aims to address whether GRPO can provide comparable stability while benefitting from reduced
architectural complexity:.

This thesis builds upon the foundational work presented by DeepSeek in the paper DeepSeekMath.:
Pushing the Limits of Mathematical Reasoning in Open Language Models | |. This was
their first paper introducing GRPO in LLMs, popularizing this RL algorithm, which leverages an
actor-only approach and replaces a critic network by grouping multiple responses (roll-outs) to
the same prompt. With this implementation, it calculates group-based advantages, which are then
incorporated into a clipped PPO-style loss. The original GRPO work demonstrated promising results
in LLM tasks, especially in mathematical reasoning, achieving better results to the then open-source
models. Further research on this topic, such as the DeepSeek-R1 paper | ], showcased GRPO’s
strong potential, with the DeepSeek-R1 model achieving performance comparable to OpenAlI’s ol
model.

This thesis takes the GRPO algorithm out of the LLM domain and investigates its performance in
more traditional RL environments. By doing so, this thesis will analyze whether GRPO’s benefits,
such as computational efficiency, stability and overall reduced complexity, are transferable to
environments where reward structures, state-action separation and feedback timing are significantly
different from LLM tasks. Furthermore, this work will clarify how GRPQO’s performance varies with
different group sizes and how resource constraints impact the algorithm. As a result, the thesis
extends the existing research by providing insights into GRPO’s broader applicability.

One of the most relevant extensions to the original GRPO framework by DeepSeek is Hybrid Group
Relative Policy Optimization, proposed by Soham Sane earlier this year | ]. While GRPO
eliminates the need for a value function by utilizing a value estimation with empirical comparisons
between grouped traces, Hybrid GRPO combines the strengths of both PPO and GRPO by rein-
troducing a value network. The reasoning behind this is that although GRPO with its actor-only
architecture can reduce variance through its implementation of multiple roll-outs, it may be subject
to higher variance and less stable learning in high-variance environments. Furthermore, Hybrid
GRPO incorporates a critic network that estimates value baselines via bootstrapping, leading to
greater sample efficiency alongside reducing variance and improving learning stability. The relevance
of this work to the current thesis lies in its demonstration of how effective GRPO-based approaches
are in RL environments. While GRPO has shown promising results in LLM tasks, Hybrid GRPO
illustrates how the core principles of GRPO can translate into standard RL environments as well.
The Hybrid GRPO paper presents promising results by combining GRPO with a value function
baseline, leading to less variance in policy gradients and faster convergence speed. However, this
implementation undermines the original simplicity and computational efficiency of GRPO. Moreover,
the paper fails to specify in what way Hybrid GRPO converges faster and does not provide data sup-
porting its findings. It is important to note that it also does not discuss any form of computational
trade-offs involved, as one would suppose that the reintroduction of a value network would suggest
a higher computational cost. This thesis explicitly addresses and compares the performances of



PPO and GRPO, aiming to offer a more complete evaluation of GRPO’s cost-benefit trade-offs.

3 Preliminaries

This section will lay the theoretical foundation of the two RL algorithms compared in this thesis,
namely PPO and GRPO. These policy gradient methods are designed to optimize their policies,
given an environment.

Both agents interact with MDP environments, which, as briefly discussed before, serves as the basis
for defining the learning task. In this setting, the agent observes a state s € S and selects action
a € a according to a stochastic policy my(als), receives reward r; and transitions to a new state.
The goal is to find an optimal policy 7* such that it yields the highest expected cumulative reward.
Both PPO and GRPO rely on policy gradients, but they differ in how they calculate the loss and
estimate advantages. Therefore, the following subsections will delve deeper into the mathematical
formulations and intuitions behind PPO and GRPO, highlighting both their similarities, but more
importantly their critical differences. Understanding these foundations is crucial for interpreting
the results and comparing both algorithms.

3.1 Theoretical Framework

3.1.1 PPO
OpenAl’s innovation in 2017, namely PPO | ], improved upon previous policy gradient
methods, such as TRPO | |, by introducing a clipped objective function to prevent unrea-

sonably large updates, as can be seen in 1.
LEHP(9) = By [max (p(6)(—A0), clip(pn(8), 1 = e, 1+ e)(=A) )| (1)
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As can be seen in 2, p,(6) is the probability ratio between the new and old policies. € is a hy-
perparameter that defines the clipping range (set to 0.2 in the OpenAl paper) | ]. This
clipping mechanism ensures that policy updates remain within the region of 1 — € and 1 + ¢, thus
maintaining stability.

The intuition behind the clipped surrogate loss function is that it encourages improvements in
action selection when A, > 0, but due to clipping of the probability ratio it is upward bounded,
preventing overfitting. Similarly, when A, < 0, the loss function decreases the probability of this
action being selected while being bounded from below. This subtle form of regularization is what
makes PPO particularly attractive for practical reinforcement learning applications.

To compute how good an action is given a state, PPO uses the advantage function A(s,a) =
Q(s,a) — V(s). While Q(s, a) represents the state-action value after taking a in s, subtracting V' (s)
serves as a baseline, centering the advantage around zero. In effect, V(s) tells us what return is
typically expected from a state, and the advantage measures how much better or worse a specific
action was compared to this baseline.



The Temporal Difference (TD) error §; 3 used in advantage estimation can be seen as an approxi-
mation of this advantage function at time step t:

6r = 1e + 9V (St41) — V(st) (3)

This expression mirrors A(s;) = Q(sy, a;) — V(s;), where Q(s, ay) = ry + vV (s441). To incorporate
information from future time steps while balancing bias and variance, PPO uses the Generalized
Advantage Estimate (GAE) for its advantage calculation | E

A =0+ (YA) 01 + -+ -+ (PN Hory (4)

GAE is essentially a reweighted average of n-step TD-based advantages, where the parameter
A € [0,1] adjusts the balance: lower A leads to lower variance but higher bias, while higher A
increases variance but reduces bias. Here, v is the discount factor, which determines how much
future rewards are relevant relative to immediate rewards [ ].

Finally, the total Loss function can be calculated, so that the Neural Networks can adequately
learn. Essentially, the total loss is made up of three parts, which are the policy loss 1, the value
loss 6 and an entropy bonus:

LPPO = Et [LtCLIP(Q) —C1 S[Wa](st) +co- LE/F(Q)} (5)
with
Ly (0) = (Va(se) — V™52 (6)
In this formula both ¢; and ¢, are constants and S|y is the entropy bonus to promote sufficient
exploration. Lastly, LYY (6) can be described as the squared error loss of the value function.
3.1.2 GRPO

In GRPO, the total loss function contains two main parts, as it refrains from using both a value
network, and therefore does not have a value loss, and an entropy bonus.

LERYO(9) = Els ~ P(S), {a'}Zy ~ m,(als)] (7)
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being the probability ratio.

In 7, the maximization part highlighted in red is the policy loss of GRPO. The policy loss of GRPO
is exactly the same as the policy loss of PPO, which also makes use of a clipped surrogate function.
The second part of the loss function is the KL divergence part, which promotes stable learning.

Dy (|| meet) = % — log (%) 1 ()

5



In 8 my(a’|s) is the current policy’s probability of taking action a* given s and m,.f(a’|s) the reference
policy’s probability, often a previous or smoothed version of the policy. The KL Divergence term
ensures that the new policy does not deviate too much from the reference policy, meaning that the
more the new policy wanders off from the reference policy, the more the KL divergence term grows.
[ is a hyperparameter which weights the KL divergence term.

Unlike PPO, which uses an entropy bonus to promote exploration, GRPO omits this term and
instead uses KL divergence for regularization. While both serve to ensure stability in policy updates,
this difference means that GRPO may implicitly discourage exploration in a different way. As a
result, this makes the comparison between PPO and GRPO a bit more nuanced, as the entropy
term in PPO controls exploration versus exploitation, while the KL term in GRPO penalizes large
policy updates.

Most notably, the advantage calculation in GRPO differs from PPO, as it does not have a value
network. In addition, the advantage for each roll-out of the group A’ is computed by using the sum
of rewards of the entire trace R of a roll-out.

R! —mean({R', R?,...  R%})

Al = 10

std({R', R?,...,RCY}) (10)
with .
NZ

R'=> r (11)
t=0

and N denoting the total number of steps taken for roll-out i.

Intuitively, the advantage for roll-out i describes how good the reward of this roll-out was compared
to the rewards of the entire group. As a result, GRPO circumvents the need of a value estimate
by introducing a sample-based estimate, more specifically the mean cumulative reward across all
roll-outs. This enables a simplification of the standard advantage formula as previously mentioned
A(s) = Q(s,a) — V(s). Here, Q(s, a) corresponds to the cumulative reward of a roll-out, while V' (s)
is the mean of all roll-outs across the group. This ensures stable training and allows GRPO to
estimate advantages without learning a value function.

4 Methodology

This section outlines the implementation and evaluation of GRPO and PPO. Both algorithms are
benchmarked on two classic control environments and are all written in Python. Special attention
is given to the architecture and concepts of GRPO, particularly in how it estimates advantages.

4.1 PPO and GRPO Implementation

The central methodological contribution of this thesis is implementing and adapting GRPO, designed
for LLMs under the Zero-Reward Assumptions, where the agent receives sparse, binary rewards at
the end of a trajectory | |, to standard RL environments where rewards are immediate
and dense. This change introduces new challenges for the advantage calculation and, overall, for
the internal workings of the algorithm, as it now must account for intermediate rewards during an
iteration.



4.1.1 PPO

The RL environment is initialized before the agent interacts with the environment in discrete time
steps, collecting state-action-reward tuples to update its policy. The PPO implementation is based
on the CleanRL library and consists of a parallelized environment setup (10 parallel environments),
a policy and value network architecture, and an optimization loop| ].

The policy network is a feedforward neural network that takes a state as an input and outputs logits
over discrete actions. During each iteration, the agent collects trajectories over several environments
in parallel for a fixed number of steps. It records observations, actions, rewards, value estimates, and
log probabilities. The value network is also a feedforward neural network that outputs an estimated
value given a state. Once all roll-outs have reached the set number of steps, the Generalized
Advantage Estimation (GAE) method is used to calculate the advantages for each time step ¢.
The next part of the code optimizes the policy and value networks. The collected data is flattened
and split into minibatches. For each minibatch, the policy and value networks are updated using
the PPO clipped objective, which stabilizes training by preventing large policy updates. The value
loss is also optionally clipped to ensure stability. Entropy regularization is added to encourage
exploration. Gradient clipping is applied to avoid exploding gradients.

Lastly, a greedy actor is implemented to evaluate the learned policy.

This setup ensures both stable training via PPO and a consistent evaluation protocol for comparison
with the GRPO variant. A list of PPO’s most important hyperparameters and their respective
values can be found here 3.

4.1.2 GRPO

The GRPO implementation has some similarities to PPO, whilst having some major key differences.
The most noticeable difference is that GRPO only has a policy network. It is important to note that
the GRPO implementation was adapted from the existing PPO implementation by CleanRL| ],
and the full implementation can be found in the following GitHub repository .

GRPO begins by synchronizing the starting states across all roll-outs within a group after the
environment initialization. Each roll-out completes a whole trajectory during which the observations,
actions, log probabilities, logits, rewards and total number of steps per roll-out are stored. After all
roll-outs have finished their trajectories, the cumulative rewards of each roll-out is used to calculate
the advantage for the entire trajectory for each roll-out. respectively. Unlike PPO, which computes
advantages at each timestep, GRPO treats each roll-out’s trajectory as one unit.

During policy optimization, GRPO uses the standard PPO clipping function to constrain the policy
update, but adds a KL divergence penalty to ensure that the new policies do not deviate too much
from the old policy. This term reduces overfitting to high reward trajectories. Finally, the policy
loss is averaged across all roll-outs of a group to compute the total GRPO loss.

GRPO maintains PPO’s general structure, including parallel environment roll-out, learning rate
annealing and data storing. However, it shifts the focus from fine-grained timestep-level optimization
to more general, group-level adaptation, enabling more stable updates when episodic rewards are
sparse or highly variable. A list of GRPO’s most important hyperparameters and their respective
values can be found here 3.

https://github.com/AlexanderCremer/GRPO-vs—PPO-in-RL-env
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Algorithm 1 Group Proximal Policy Optimization (GRPO)

1: Initialize G environments and actor network
2: for 1,2,....num_iterations do
3: Reset environments to identical initial states

4: Initialize logging

5: for 1,2,....num steps do

6: Get actions a;

7 Take step

8: Store observations

9: Update cumulative rewards and done masks
10: if all groups done then

11: break

12: end if

13: end for

14: Compute advantages

15: for num_epochs do

16: for group G do

17: Compute clipped policy loss
18: Compute KL divergence penalty
19: end for

20: Compute total loss:

21: Perform gradient descent

22: end for

23: Evaluate greedy policy

24: end for

4.1.3 Understanding GRPO

The following example aims to illustrate how GRPO computes its advantages and what the training
targets are, given a CartPole-like environment, where the agent gets a reward of +1 for every step.



R=11

Figure 1: Illustration of GRPO Advantage calculation using full roll-out rewards on a CartPole-like
environment. Here, states are represented as nodes and actions as edges with rewards assigned to
states after taking an action.

Each branch in Figure 1 represents a roll-out, that is, a sequence of states and actions until the
environment terminates. A group size of 5 was chosen with different roll-out lengths to highlight
the process of GRPO. For each roll-out their respective cumulative reward R is given below its
trace in the Figure.

Importantly, all roll-outs are initialized from the same starting state (represented by the root node
with r=0 in Figure 1) to ensure that they are all directly comparable. This is a key requirement in
GRPO, as it allows the cumulative rewards to be meaningfully standardized to their advantages
respectively. Without a consistent starting state, differences in rewards could stem from environ-
mental variance rather than policy performance, making advantage estimation unreliable.

Unlike PPO, which estimates advantages for each time step, GRPO computes a single advantage
value per roll-out based on its total return relative to the other roll-outs in the group. This is done
by normalizing the return R; of each roll-out using the mean and standard deviation of returns
across all roll-outs in the group, as can be seen in equation 10.

For the above example from Figure 1, the cumulative rewards for each roll-out are 3, 9, 6, 11, 8
respectively. The mean reward is 7.4 and the standard deviation is 2.73, resulting in the following
advantages:

e Roll-out 1 (R! =3) —» A = &4 ~ 161

e Roll-out 2 (R? =9) — A% = 252 ~ (.59



e Roll-out 3 (R* =6) — A% = &% ~ —0.51

e Roll-out 4 (R* =11) — A* = =14 ~ 1.32

e Roll-out 5 (R°* =8) — A® = &24 ~ (.22

2.73 T

These normalized advantages are used to calculate the GRPO policy loss, analogous to PPO.
Importantly, this loss is propagated to all time steps within the respective roll-out. This means
that all state-actions contribute to the gradient update.

Once an iteration is finished, all parallel environments are reset, with their root nodes (node at
the top with r=0 in Figure 1) being set to the same starting state. In this implementation, I make
use of so-called exploring starts [ |, where each episode begins in a random state sampled
from a broad distribution. This increases state-space coverage and encourages exploration, which
is especially beneficial for evaluating policy performance more robustly and reducing the risk of
overfitting to a narrow subset of initial conditions.

The innovation of replacing a value function with a sample-based baseline, reduces the potential bias
introduced by a value network, since it only approximates expected values of a state. Simultaneously,
standardizing the advantages helps reduce variance which leads to stabilized training, particularly
when the group size G is large.

Another important distinction between PPO and GRPO lies in the amount of training data
generated. In PPO, advantages and values are calculated for each time step, meaning that each step
becomes a separate training target. For example, with 10 parallel environments each generating
200 steps per iteration, PPO yields 2000 training samples per update cycle. These are then divided
into four minibatches, which are each iterated over for four epochs.

In contrast, GRPO computes one advantage value per entire roll-out, meaning that the number
of training targets is equal to the group size. This results in significantly fewer data points, just
10 per iteration in the same example as above. Consequently, GRPO uses a different batching
and optimization strategy to compensate for this reduced data volume. Instead of using multi-
ple minibatches, all data points are kept in a single batch, and the model is updated over four
epochs as well. To partially offset this difference, GRPO is trained with a slightly higher learning
rate and retains the same number of update epochs per iteration as PPO, as can be seen in the
hyperparameter table 3.

4.2 RL Environments

The first environment that the two algorithms are benchmarked on, is the CartPole environment,
included in the gymnasium library by the Farama Foundation | |. The task consists of bal-
ancing a pole on a cart by applying forces to the left or right. The state space is continuous and
consists of four variables: the cart position and velocity, and the pole angle and angular velocity.
The action space is discrete with two possible actions (left or right). The episode ends when either
the agent fails, meaning the pole falls beyond a certain angle or the cart moves outside a predefined
boundary, or when the cart has reached the maximum number of steps in the environment, which is
200. A reward of +1 is given for every time step the pole remains balanced, with the goal being to
maximize the cumulative reward and no reward when it fails. Despite its simplicity, CartPole serves
a useful test for validating learning stability and convergence behavior in reinforcement learning
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algorithms.

The second environment used for benchmarking is the Acrobot environment, which is also part
of the gymnasium library | ]. The Acrobot is a two-link, underactuated robotic arm, where
only the second joint is actuated. The objective is to swing the end of the lower link (the tip of the
“arm”) up to a target height above a certain threshold. The environment’s state space consists of
six continuous variables: the cosine and sine of the two joint angles, and the angular velocities of
both joints. The action space is discrete, consisting of three actions that apply a fixed torque in
one of two directions or no torque at all.

An episode ends either when the tip of the lower link reaches a target vertical height or after a fixed
number of time steps (default is 500). A reward of —1 is assigned at each time step until the goal is
reached, encouraging the agent to solve the task in as few steps as possible. The environment is
considered solved, when the trained model consistently reaches the goal in < 100 steps.

Figure 2: CartPole environment from Gymna-  Figure 3: Acrobot environment from Gymna-

sium. The agent must balance a pole on a cart  sium. The agent controls a two-link pendulum

by moving left or right | ]. to swing up and reach a target height (indicated
by a line in the figure) | ].

4.3 Evaluation Metrics

The first evaluation metric implemented to evaluate performance is the mean cumulative reward,
plotted against the number of global steps and computation time. Here, global steps refer to the
total sum of steps an agent has taken up to a given point. These metrics are commonly used in
Reinforcement Learning to assess both the consistency and peak capability of an agent’s policy
during training.

The implementation of these metrics is directly integrated into the training loop. After each
iteration, with an iteration being one complete run of all roll-outs, cumulative episode rewards are
collected across all episodes of a group (for GRPO) and parallel environments (for PPO). From
this, the mean reward is computed. This value is then logged using Weights and Biases | ],
which provides real-time visualization and performance tracking.

Secondly, a greedy actor evaluation is used to effectively assess the quality of the policy that is
being trained. It is important to note that the number of learning iterations is fixed at 1,000 for all
experiments, regardless of the model or group size. This was done to unify the number of network
update rounds across both algorithms and for both environments. However, there are other metrics

11



to consider for fair comparison, such as computation time or total environment steps. Therefore,
when plotting these metrics on the x-axis, the graphs may differ in length across models and group
sizes, as they process different amounts of data per learning iteration. The greedy actor selects
the action with the highest probability given a state, as opposed to sampling from the probability
distribution. This greedy actor runs in evaluation environments, which do not interfere with the
training process, to ensure stable and unbiased measurement. The evaluation is performed at the
end of each iteration, therefore after all roll-outs have completed and backpropagation has been
applied. The mean cumulative reward over 10 independent evaluation runs is computed and logged,
providing a more robust comparison of PPO and GRPO in terms of exploitation performance under
deterministic conditions. Although the policy and environment dynamics are deterministic under a
greedy actor, the initial state is sampled stochastically, which may introduce variability. Hence,
repeated runs are necessary to account for differences resulting from starting states and to ensure a
fair comparison.

5 Results

The environments used for evaluation are CartPole and Acrobot, both of which serve as valuable
benchmarks for comparing the learning dynamics of GRPO and PPO. It is important to note that
each configuration, meaning for all GRPO group sizes and all PPO parallel environments, was run
multiple times with random seeds (10 times for CartPole and 5 times for Acrobot) to minimize
statistical bias.

Furthermore, PPO was configured with 10 parallel environments, which aligns with the group size
of 10 in GRPO to which it will be compared to. This ensures a more balanced and meaningful
comparison in terms of environment roll-outs per learning iteration.

For CartPole, the agent is rewarded +1 for every time step the pole remains balanced, making it
a useful test for evaluating stability and learning speed. In contrast, Acrobot penalizes the agent
at every time step with a reward of -1, incentivizing it to solve the task as quickly as possible
by minimizing the number of steps. To guarantee an unbiased and proper depiction of the mean
cumulative rewards, the mean graphs were truncated at the point where the earliest seeded run
completed.

5.1 Effect of Group Size in GRPO (on-policy)

Figure 4 presents a comparison of GRPO’s on-policy performance with varying group sizes G =
{2, 4, 10} for both the CartPole as well as the Acrobot environment. Each curve represents the
smoothed episodic return over the course of training. These group sizes were chosen as they yielded
the most promising results, given convergence speed and value. The on-policy training on the
CartPole environment was capped at a maximum of 200 steps per roll-out, as this was found to be
sufficient to reach stable and competitive performance, details of which will be discussed later.
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Figure 4: Performance comparison of GRPO across two environments. Each plot shows the cumula-
tive on-policy reward averaged across multiple runs (10 for CartPole and 5 for Acrobot). The top
row corresponds to the CartPole environment, and the bottom row to Acrobot. Left: performance
measured by total environment steps. Right: performance measured by computation time.

As can be seen in the left plots of Figure 4 the group size has a big effect on the total amount
of steps taken in the environment. This is expected, as greater group sizes correspond to more
environments running in parallel, which accelerate data collection and lead to faster progression
in terms of total steps. Essentially, the algorithm experiences more steps per learning iteration,
resulting in a less steeper learning curve when measured against total environment steps.

Figure 4a shows an interesting trend: smaller group sizes outperform larger ones when measuring
cumulative reward against total steps. Here, G=2 achieves higher sample efficiency than G=4
and G=10. This reversal suggests that the optimal group size depends heavily on whether one is
prioritizing sample efficiency (reward per step) or training speed (reward per wall-clock time).
However, when plotting cumulative reward against wall-clock time, a different picture emerges, as
can be seen in Figures 4b and 4d. Despite GRPO with group size G=10 taking substantially more
steps than G=2, it completes training only slightly later and achieves the highest performance
at every point in time. This illustrates a key trade-off: a moderate increase in computation time
enables faster learning and more stable convergence. The results also suggest that, although larger
group sizes generate higher throughput, the computational cost scales efficiently due to effective
parallelization. It is important to note, that this only works as long as the hardware can efficiently
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parallelize it, which will be further discussed in Section 6.

As seen in Figure 4c, the expected pattern, where smaller group sizes perform better per step, is
not as pronounced in the Acrobot environment. This is largely due to badly seeded runs that fail
to learn, particularly for G=2 and G=4, skewing the average results. To isolate this effect, Figure
5 shows only the best runs for each group size. In these plots, the expected efficiency reappears:
smaller group sizes outperform larger ones when comparing steps taken. And over time, all group
sizes converge to nearly the same reward, showcasing similar results to those of CartPole.

on-policy rewards on-policy rewards
— best GRPO group size 10 — best GRPO group size 2 = — best GRPO group size 10 — best GRPO group size 2
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(a) Acrobot: best on-policy cumulative reward over  (b) Acrobot: best on-policy cumulative reward over
total steps taken time

Figure 5: The best performing runs of G = {2, 4, 10} in the Acrobot environment.

In terms of converged value, for G = 10 GRPO yields marginally better results. This can be
attributed to gradient estimates resulting from higher sample diversity and reduced variance in
policy updates. However, the difference between G = 10 and G = 4 is not substantial, indicating
diminishing returns beyond a certain group size. This happens especially in simple environments,
where the task complexity is low. Yet, the consistency with G = 10 across both environments
suggests that increasing G may lead to more stable and reliable results across different seeds. This
supports the key observation that larger group sizes trade off additional computation time/steps
for more stable learning, highlighting an important design choice when implementing GRPO.

5.2 Effect of Group Size in GRPO (greedy)

To evaluate the learned policy’s improvements throughout training, the performance using a greedy
actor is also tracked. After each learning iteration, the current policy is executed deterministi-
cally, without exploration noise, across a full episode. This is why for the plots 6a and 6¢ the
mean cumulative reward is plotted against the 1000 learning iterations. The resulting rewards
from this evaluation provides a reliable measure of how well the agent performs when exploit-
ing its learned policy up to that point. It is important to note that the maximum achievable
mean cumulative reward was set to 500 for CartPole, to effectively demonstrate that despite the
on-policy training being capped at 200, it generalizes well and achieves good results under evaluation.
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Figure 6: Evaluation of GRPO with group sizes G = {2,4, 10} under greedy (exploitation-only)
conditions. Plots show the mean cumulative reward achieved by the greedy policy over the course
of training, measured in terms of learning iterations and wall-clock time for both CartPole and
Acrobot.

For CartPole, the results are particularly striking. In Figure 6a the group size G = 10 yields the
most promising results, as it converges the quickest and seems to be the most stable across runs.
This can be explained with the fact that every learning iteration is trained on data from 10 entire
roll-outs as opposed to 4 or 2. The increased diversity and sheer volume of experiences per update
lead to more accurate gradient estimates and faster learning. However, all three group sizes converge
to identical values after all 1000 learning iterations, due to the simplicity of the environment.
When plotting cumulative rewards over time, as in Figure 6b, G = 10 and G = 4 reach comparable
performance in terms of converged cumulative reward, while G = 2 lags slightly behind. Nevertheless,
GRPO with G = 10 achieves the fastest learning, despite taking more environment steps per learning
iteration. This indicates that the benefit of increased training data per learning update outweighs
the additional computational cost, making the larger group sizes that were chosen more favourable.
Again, this trade-off is only beneficial as long as the hardware can efficiently parallelize the roll-outs.
Overall, the relative performance of the group sizes in the evaluation setting is similar to that of
the on-policy performance, with the differences being slightly more highlighted when using a purely
exploitative actor.

For Acrobot, the trends are consistent with the CartPole results but more extreme. In both Figures
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6¢ and 6d, GRPO with G = 10 GRPO yields good results with the greedy actor also managing to
solve the environment (consistently reaching a cumulative reward of > —100). In contrast, group
sizes G = {2, 4} show significantly lower performance, which can again be explained by the presence
of poorly performing seeds. These lead to longer training and significantly worsens the average
performance curve, as was observed in the on-policy performance. In addition, and as was noticeable
in the CartPole environment, the greedy actor seems to emphasize already existing differences in
the on-policy performance, which is why the group sizes G = {2, 4} perform considerably worse.
In terms of converged value, G = 10 shows a slightly worse converged value with the greedy actor
than with the on-policy actor, with values ~ —88 and ~ —64 respectively. Although the greedy
actor strategy leads to stable and good performance under pure exploitation, it may also miss
out on beneficial stochastic exploration and reveals a critical limitation. A purely deterministic
policy can suffer greatly from isolated but crucial mistakes in its learned policy, which it may never
correct.

5.3 PPO vs GRPO

To assess the performance of GRPO against PPO, the configuration for GRPO with G = 10 is
chosen, as it yielded the best overall results across all group sizes. For a fair comparison, it is
important to note that the PPO baseline was run with 10 parallel environments.
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Figure 7: Comparison of PPO and the best performing GRPO configuration on CartPole and
Acrobot. The plots show cumulative on-policy rewards across different metrics: total environment
steps and computation time.

In the CartPole environment, GRPO performs on par with PPO, with a phase in the middle where
GRPO exhibits faster learning, when performance is measured against total steps, as can be seen
in Figure 7a. This indicates, that in terms of sample efficiency, i.e. the amount of data needed to
achieve a certain performance, GRPO is at least on par with PPO. The comparison showcases
how sample efficient the algorithms are. Despite their structural differences, with PPO consistently
taking 2000 steps per learning iteration, whereas GRPO may take fewer, the key insight here is that
GRPO matches PPO’s performance with fewer environment interactions, highlighting its potential
in scenarios where sample efficiency is critical.

In contrast, when plotting performance against computation time, as shown in Figure 7b, PPO
achieves slightly faster learning and is marginally better in terms of computational efficiency.
Despite, PPO’s lower sample efficiency, it benefits from effective parallelization and high data
throughput per learning iteration, allowing it to collect large batches of data quickly.

Across both Figures 7a and 7b, GRPO and PPO converge to nearly identical cumulative rewards.
Nevertheless, these Figures highlight a trade-off between sample efficiency (favouring GRPO) and
compute efficiency (favouring PPO).

In the Acrobot environment one can deduce from Figure 7c, that PPO takes significantly more steps
than GRPO due to its fixed number of steps per iteration, while GRPO dynamically reduces its
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steps as performance improves. Due to the very nature of the environment and GRPO’s design, this
can result in a gradual slowing of its learning speed over time due to decrease in data throughput.
Nevertheless, GRPO catches up to PPO’s performance after an initial phase where PPO has the
advantage.

When plotting their performances over time, as in Figure 7d, PPO consistently outperforms GRPO
at every point in time. It achieves higher rewards more quickly, indicating faster learning from
a computational standpoint. This can be attributed to PPQO’s fixed parallel roll-out structure,
collecting 5000 steps per iteration across its parallel environments, ensuring a higher and steadier
data throughput at the cost of slightly more computation. This effective implementation causes
an imbalance in the data-to-compute trade-off, where the increased data throughput more than
compensates for the additional computational time, resulting in a higher computational efficiency.
However, this advantage only holds as long as the hardware can efficiently parallelize the environ-
ments. Otherwise, additional parallel environments may decrease its computational efficiency.
Overall, PPO appears computationally more efficient, as it effectively leverages its use of parallel
roll-outs to accelerate learning at a moderate increase in computational time. Nonetheless, GRPO
remains competitive when it comes to sample efficiency, achieving respectable performance.

The greedy evaluation plots in Figure 8 compare the performance of PPO and GRPO in terms of
cumulative reward over both learning iterations and computation time.
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Figure 8: Comparison of PPO and the best-performing GRPO configuration using greedy evalua-
tion on CartPole and Acrobot. The plots show cumulative rewards over learning iterations and
computation time.

Across all plots in Figure 8, PPO outperforms GRPO. Nevertheless, PPO showcases only marginally
better results with GRPO eventually converging to similar values in all plots. Therefore, despite
PPO having a significantly higher data throughput per learning iteration, especially in the Acrobot
environment, it performs only slightly better and only initially, as can be seen in Figures 8a and Sc.
This potentially indicates that GRPO has a higher sample efficiency, extracting more information
per environment interaction. This is particularly evident in the Acrobot setting, where PPO collects
more data per iteration due to its fixed 500 steps per environment. Yet, GRPO manages to close the
performance gap over time and ”solves” the environment only shortly after PPO, despite collecting
fewer and shorter roll-outs per iteration. GRPO’s use of a more aggressive learning rate likely
plays a role here, helping to amplify the updates made from less data and a smaller number of
minibatches.

Moreover, when evaluating performance over computation time in Figures 8b and 8d, the gap
between PPO and GRPO is even smaller, making GRPO even more competitive. This suggests
that although PPO’s design favours high throughput and rapid updates, GRPO’s lightweight
and adaptive sampling strategy can offer advantages in environments where sample budgets are
constrained.

In summary, while PPO exhibits slightly faster learning, GRPO proves to be a robust alternative,
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delivering identical final results at a potentially lower sample cost, highlighting its potential in
sample-efficiency-critical applications.

Finally, it is also important to analyze the stability alongside the converged value of the two
different models. This can be shown by calculating the mean cumulative reward of the last 5%
across all seeded runs, as well as the average standard deviation across the final 5% of training, as
can be seen in Table 1.

Algorithm CartPole Acrobot
Mean Std | Mean Std

GRPO 159.07 18.43 | -61.91 11.60

PPO 160.67 16.91 | -44.82 9.39

Table 1: Comparison of PPO and GRPO on CartPole and Acrobot using on-policy evaluation.
Values reflect the mean and standard deviation of the average reward over the final 5% of training
episodes.

For CartPole, both algorithms converge to similar mean cumulative rewards and only slightly
differ in standard deviation, with PPO being marginally better. The minor difference in standard
deviation indicates that, despite PPO being slightly more stable, GRPO remains competitive. This
suggests that for this environment, both algorithms yield consistent and stable policies.

In contrast, in the Acrobot environment, PPO yields a significantly higher mean cumulative reward,
demonstrating its superior final performance. However, the difference in standard deviation across
both methods is relatively small, highlighting that while GRPO lags in final performance, it still
offers competitive stability across runs. The reason for this pronounced difference lies in the nature
of this environment, with GRPO taking fewer steps as its policy improves, reducing data throughput
over time, while PPO’s data throughput stays consistent and high throughout its training process.
These results indicate that in environments where GRPO and PPO have comparable data throughput
during their learning process, such as CartPole, GRPO can match PPQO’s performance. Moreover,
the Acrobot results highlight GRPO’s strength in stability, showcasing that even when its converged
performance is significantly worse, the variability of its results remains relatively low.

6 Discussion

6.1 Diminishing Returns of larger Group Sizes

The results from the experiments conducted in the CartPole and Acrobot environments, provide
valuable insights into the strengths and weaknesses of GRPO in RL. One notable trend that occurs
is the diminishing returns with increased group sizes, as can be seen in Table 2.
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Greedy On-policy

Group Size 2 Group Size 4 Group Size 10 | Group Size 2 Group Size 4 Group Size 10

CartPole 473 494 492 137 154 160
Acrobot -267 -182 -88 -180 -139 -63

Table 2: Greedy and on-policy performance measures for different group sizes in CartPole and
Acrobot environments (from Figures 6b, 6d, 4a, and 4c). Values represent converged cumulative
performance (final smoothed-out values).

In CartPole we see a clear performance gain as the group size increases from 2 to 4. However,
the subsequent change from group size 4 to 10 in final cumulative performance is minimal. This
plateau indicates that after a certain group size, the additional gain from implementing further
parallel roll-outs is little to none, due to redundancy of experiences accumulated. Additionally,
it is important to note that the environment’s upper bound on achievable reward also leads to
diminishing returns, as, for example in the greedy evaluation, both G=4 and G=10 are already
reaching close to the maximum limit of 500.

Despite the diminishing returns with increased group sizes not being as prevalent for Acrobot,
particularly for the greedy actor, it is still present. While the jump in performance for the greedy
evaluation from group size 2 to 4 is substantial (difference of 85), and even more so from 4 to 10
(difference of 94), the rate of improvement per added roll-out is significantly lower (from ~ 45 to
~ 17). This suggests that although larger group sizes ensure a more consistent and reliable perfor-
mance, the benefit from adding more roll-outs decreases. This diminishing return is to be expected
for two reasons. Firstly, the environment poses upper limits on achievable performance, capping
the improvements even with better policies. Secondly, the statistical benefit of additional samples
decreases over time, as known from the ’law of large numbers’ in statistics | |. In addition,
while larger group sizes may improve performance, one must take the increase of computation time
into consideration, making it critical to identify an optimal trade-off point for real-world applications.

6.2 Choosing the Group Size G

Building upon the analysis from above, certain recommendations emerge in regards of the group
size for GRPO.

The optimal group size for GRPO is highly dependent on the complexity of the environment, the
software and the hardware. For simpler environments, such as CartPole and Acrobot, larger group
sizes are not necessary, as they yield little to no improvements in exchange for significantly longer
computation times. However, for more complex environments with higher observation and action
spaces, larger group sizes would be needed. This is because larger group sizes are able to collect
more data from diverse trajectories, leading to a broader coverage of states and actions. In these
settings, GRPO would benefit from more roll-outs to counteract the risk of overfitting to narrows
regions, which is especially important when dealing with complex dynamics or sparse rewards.
When choosing the appropriate group size one must consider the software in combination with
the hardware given as well. In environments such as Gymnasium by the Farama Foundation, the
parallel running roll-outs run on the CPU. Therefore, the amount of roll-outs that can be efficiently
run in parallel depends on how many CPU cores are integrated in the system. Essentially, the

21



efficiency of GRPO with parallel running roll-outs does not only depend on the algorithm, but also
on the software and hardware configurations.

Importantly, in environments where taking steps are very costly, such as in the real world or heavy
physics based domains, the choice of the group size plays an important role as well. In such scenarios,
maximizing sample efficiency is the priority. Therefore, selecting a moderate group size that does
not take too many steps, yet yields good results is advisable.

Ultimately, the best group size is the one that balances both computation time and efficiency the
best while taking hardware limitations into account.

6.3 Reflections on Experimental Design

One of the potential weaknesses of my implementation was setting the learning iterations to the
fixed metric that is standardized between PPO and GRPO. While this decision ensures consistency
and a somewhat fair comparison across models, learning iterations are ultimately an arbitrary
metric that do not account for the differences in how each algorithm processes data in training. For
instance, PPO consistently collects a set amount of environment steps per iteration and divides this
into four minibatches, which are used to perform gradient updates. In contrast, GRPO calculates
a single advantage per entire roll-out, applying it to all steps in that roll-out and dividing this
into only one minibatch. Therefore, selecting a different termination criteria could have made
the comparison more intuitive. For example, the training could have used a performance-based
stopping criteria, such as when the agent reaches a certain cumulative reward. Fixing the number
of iterations may have also downplayed the time efficiency of GRPO and how it exchanges a critic
network for more simulation.

7 Conclusions and Further Research

This thesis provides a systematic comparison of GRPO and PPO in reinforcement learning environ-
ments. GRPO displays competitive results compared to PPO, despite being a more recent and less
studied algorithm with a simpler architecture.

Given the results from Section 5 one can conclude that GRPO yields promising results as its
performances are nearly akin to those of PPO. GRPO’s implementation trades off a value network
for more simulation in the environment, causing it to eliminate bias from the value network at the
cost of retaining some variance. However, GRPO can reduce this variance by increasing the group
size G, at the cost of more compute time due to additional simulation.

Overall, PPO exhibits faster learning across all experiments, likely due to its more consistent data
collection per learning iteration. However, GRPO performs on par with PPO in terms of converged
performance when the appropriate group size is chosen, demonstrating its effectiveness despite
its slower learning. In addition, there are slight environment-dependent differences. In Cartpole,
GRPO demonstrates almost identical performance to PPO. In Acrobot, however, GRPO lags
slightly behind PPO, possibly because the hyperparameters used are better suited for the CartPole
environment. Additionally, the goal of Acrobot, unlike CartPole, is to complete the task in as few
steps as possible. As a result, PPO benefits from having more training data per iteration as opposed
to GRPO, giving it an advantage in these kinds of environments. Lastly, the group size G has a
clear influence on GRPQO’s performance, with larger values of G leading to better performances
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and more stable training. However, this comes at the cost of greater computation times, creating
a trade-off between learning quality and computation resources. The results indicate diminishing
returns beyond a certain point, especially in simpler environments.

It is also important to note that the PPO implementation from CleanRL has all its hyperpa-
rameters configured to the ideal values, making it operate at its highest potential. In contrast, the
hyperparameters used for GRPO were the result from manually tweaking them based on their
observed performance. As such, GRPO’s true potential is underrepresented in this thesis. Therefore,
applying hyperparameter optimization (HPO) to GRPO could result in significant performance
increase, with potential of outperforming PPO. This highlights an interesting direction for future
research, where an optimized GRPO implementation could yield deeper understanding and stronger
results.

Given the relatively simple environments of this study, GRPO’s lower computational cost, due
to only having an actor network, was not evident. This is the result of the neural networks and
environments being lightweight, limiting the benefits GRPO offers. Future research should extend
the comparison to more complex environments, such as procedurally generated ones, where both
the generality as well as the computational gains of GRPO would be tested.

Another promising direction for future work is to adapt GRPO to utilize step-based learning
instead of resetting the environment after each learning update. In the current implementation, all
roll-outs restart from the same initial state sampled from a broad distribution after every learning
iteration, which can limit exploration and reduce diversity of state transitions observed in other
environments especially. Allowing GRPO to continue roll-outs from the current environment states
would enable smoother learning, better capture long-term dependencies, while improving sample
efficiency by not oversampling the starting states. This change would be particularly beneficial in
more complex and sparse environments, where reaching meaningful states repeatedly is rare or costly.

In conclusion, GRPO deems itself a worthy alternative to the current widely used algorithm
PPO, as it combines competitive performance with improved stability. It is surprising how a sample-
based solution remains so competitive, even in general RL tasks. With this paper, I introduce the
first adaptation of GRPO in general RL settings, demonstrating its promising results, despite its
simplified architecture. With future refinement and optimization, GRPO has potential to become
even more competitive with the current state of the art.
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Appendix

PPO GRPO

learning rate 2.5e-4  2e-4

gamma 099 N/A

gae lambda 0.95 N/A
number of minibatches 4 1
number of update epochs 4 4

clipping coefficient 0.2 0.2

entropy coefficient 0.01 N/A

value function coefficient 0.5 N/A

kl coefficient N/A 0.2

Table 3: A list of the most important hyperparameters used in the experiments for both GRPO
and PPO. Their Hyperparameters are the same for both environments.
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