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Abstract

Diffusion models are a powerful tool for a wide range of applications, including the generation
of novel data. To fully harness their potential, certain training settings must be carefully
configured. However, identifying these settings can be time-consuming and require substantial
expertise. To reduce these demands, one can employ the automated machine learning technique
known as hyperparameter optimization (HPO). The central question is whether applying this
optimization technique improves the quality of the output of a diffusion model. To investigate
this, we implemented a pipeline that trains a diffusion model from scratch and integrates it
with automated machine learning. Two hyperparameter optimization techniques were applied:
random search and Bayesian optimization, and their best-found hyperparameter configurations
were compared against a fixed baseline. In addition, this study will explore the application of
the multi-fidelity approach, successive halving, which will be employed alongside the random
search technique. The results indicate that hyperparameter optimization methods enhance
the quality of the output relative to the baseline, measured using FID, by 42.5% (Bayesian
optimization) and 37.0% (random search), thereby reducing the time and expertise needed to
identify optimal hyperparameter settings.

Contents

1 Introduction 1
1.1 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background 2
2.1 Diffusion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Training in diffusion models . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Output evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.4 U-Net architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Automated machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Core components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Methodology 7
3.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Automated machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Search strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



4 Experimental setup 13
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Baseline vs. hyperparameter optimization . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Multi-fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5.1 Two-dimensional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5.2 Image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Results 18
5.1 hyperparameter optimization vs baseline . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.1 Two-dimensional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2 Image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Multi-fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.1 Two-dimensional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusions and Further Research 24

References 25



1 Introduction

Generative models have, over the past few years, seen a groundbreaking emergence, particularly in
the context of diffusion models. Rooted in principles of non-equilibrium thermodynamics [SWMG15],
these models are deployable across a wide range of fields. Thanks to their substantial capabilities,
diffusion models have been successfully applied to tasks such as super-resolution, image synthesis,
image generation, and many additional areas [CHIS23]. In this study, we focus specifically on
pixel-based diffusion models and their use in computer vision, particularly for synthetic image
generation.

Despite their substantial strength, the performance of diffusion models is highly dependent on
a broad set of fixed settings, known as hyperparameters. These hyperparameters can be found
both in the model’s architecture and in its training process. This study focuses on the latter.
Training-related hyperparameters often have a significant influence on model performance and are
typically non-trivial to configure, requiring careful tuning to achieve optimal results [BWL+24].

Manually configuring hyperparameters is a time-consuming and labor-intensive process, often
involving extensive trial and error and requiring substantial domain expertise. The associated search
space is vast, and the interdependencies between hyperparameters are often complex and difficult
to interpret. These factors pose a significant barrier for researchers who aim to fully harness the
potential of such models.

1.1 Research question

Our goal in this study is to examine whether a diffusion model can generate synthetic data of higher
quality through the use of the automated machine learning techniques known as hyperparameter
optimization.

This leads to the following research question: To what extent can the quality of the output of a
diffusion model be enhanced through the use of the AutoML-driven optimization technique, hyperpa-
rameter optimization?

In addition to the primary research question, we also investigate a subquestion: To what extent
can the use of a multi-fidelity approach, such as successive halving, enhance the quality of the output?

To provide an answer to these research questions, we evaluate the output of a diffusion model trained
using the best-found hyperparameter configuration obtained via hyperparameter optimization. This
is compared to a baseline trained with a fixed set of hyperparameters retrieved from the original
implementation. The evaluation of the output is conducted using the Fréchet Inception Distance
(FID).

1.2 Thesis overview

This bachelor thesis, conducted at the Leiden Institute of Advanced Computer Science (LIACS)
under the supervision of Jan N. van Rijn and Inês Gomes, presents an approach that applies
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automated machine learning, specifically hyperparameter optimization, to diffusion models. The
remainder of this thesis is structured as follows. Section 2 introduces the relevant background on
diffusion models and automated machine learning, with a focus on hyperparameter optimization
techniques. Section 3 discusses the approach implemented in this study to address the research
question. In Section 4 the experimental setup is presented, followed by the results in Section 5.
Section 6 concludes this study with a conclusion and suggestions for further research.

2 Background

Before examining the technical aspects of this study, it is essential to first develop a clear under-
standing of its two foundational components: diffusion models and automated machine learning.

2.1 Diffusion models

A model capable of generating non-existent data can be classified as a generative model. Such
a model is trained to learn the underlying probability distribution of a training dataset. Once
trained, it can sample from this learned distribution to generate new data points that match those
in the original distribution. Diffusion models have proven to be a powerful class of generative
models, achieving state-of-the-art results across multiple benchmarks. Notably, Denoising Diffusion
Probabilistic Models (DDPMs), introduced by [HJA20], achieved strong results on the CIFAR-10
dataset. Besides DDPMs, there are other variants of diffusion models, such as Denoising Diffusion
Implicit Models (DDIMs) [SME21], Score-based Generative Models (SGMs) [SSK+21], and Latent
Diffusion Models (LDMs) [RBL+22]. These models differ in several aspects, as some are stochastic
while others are deterministic, some operate in the pixel space rather than the latent space, and
some rely on a denoiser network instead of a score function.

2.1.1 Fundamentals

The fundamentals of a diffusion model originate from non-equilibrium statistical physics and sequen-
tial Monte Carlo methods, first introduced by Sohl-Dickstein et al. (2015) [SWMG15]. Conceptually,
in diffusion models, we define a two-step process: a forward process and a reverse process. In the
forward process, the model gradually destroys the structure of the data distribution over a sequence
of time steps. This elimination of the structure is achieved by gradually adding Gaussian noise to
the data. By the final timestep, the data has lost all of its structure and resembles a Gaussian
distribution of pure noise.

The opposite process, referred to as the reverse process, aims to recover the structure of the
data distribution that was eliminated during the forward process. It operates in a sequence of
time steps, starting with the pure noise distribution and attempting to recover the original data.
Through this process, the model learns to recognize and reconstruct patterns and structures in the
data [SWMG15].

Note that the previous paragraphs describe the theoretical framework underlying diffusion models,
rather than the exact approach used during training. Models such as Denoising Diffusion Probabilistic
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Models [HJA20] do not simulate the entire forward and reverse process as a continuous sequence
during training.

Figure 1: Forward and reverse process in diffusion models. Taken from [CHIS23].

2.1.2 Training in diffusion models

As mentioned in Section 2.1.1, the theoretical framework does not align with the approach used
during the actual training of a diffusion model. Instead, an alternative training strategy is imple-
mented. During training, a random timestep t ∈ [1, T ] is selected from the full set of timesteps.
Gaussian noise is then added to a clean sample xo, with the intensity of this noise being influenced
by both the randomly selected timestep and a predefined noise schedule (e.g., linear or cosine). The
resulting noisy image xt is provided as input to the model, which is trained to predict a specific
target or objective.

The learning phase of diffusion models can be guided by several commonly used training objectives.
The original objective introduced by Ho et al. (2020) [HJA20] is known as the ϵ-prediction, where
the model is trained to predict the injected noise that was added to the original clean sample.

The loss between the predicted noise and the actual injected noise is measured using the mean
squared error (MSE). The aim over the course of training is to minimize this MSE; the lower the
MSE, the more accurately the model becomes at predicting the training objective.

2.1.3 Output evaluation

To evaluate the generated synthetic data from diffusion models, metrics can be employed to quantify
the quality of the images generated by the diffusion model. One such metric is the Fréchet Inception
Distance (FID) [HRU+17]. Using this metric, features are extracted from both the real images
(images from our evaluation set) and the generated samples using a pre-trained Inception V3
network. These extracted features are then modeled as Gaussian distributions. With these two
distributions, we can compute the distance between the Gaussian distributions. The lower the FID
score, the better the generated samples align with the evaluation set. [HRU+17]

2.1.4 U-Net architecture

The U-Net architecture is a type of convolutional neural network (CNN), and it consists of two
components: a downsampling path and an upsampling path. The downsampling path decreases
the spatial dimensions of an image and extracts features from the data over several steps. Each
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step results in a decrease in the spatial dimension, while the number of feature maps increases.
The upsampling path then, over several steps, reconstructs an image by increasing the spatial
dimensions using the extracted features, to produce an output that matches the model’s target
objective.
We have the possibility to make several architectural design choices. In U-Nets, downsampling and
upsampling operations are performed, with the number of times these operations occur depending on
the number of blocks used. Each block consists, among other components, of several convolutional
layers, which can likewise be configured. These layers contribute to feature detection. When
configuring the number of blocks, we can also specify the number of output channels for each
block. These output channels serve to store the feature maps. Naturally, the greater the number
of channels, the more feature information we can store. Finally, for each block, we can define the
specific type of block used for downsampling and upsampling. [RFB15]

2.2 Automated machine learning

Machine learning techniques are widely used for a wide range of applications. However, configuring
these models with well-designed architectures or effective hyperparameter configurations requires
sufficient expertise and involves a considerable amount of time spent on manual trial-and-error.
Baratchi et al. (2024) [BWL+24] highlight this issue, stating that “the successes achieved by machine
learning systems, however, highly rely on experienced machine learning experts who design specific
machine learning pipelines” (p. 1).

Automated machine learning (AutoML) is capable of eliminating this need of expertise and
manual trial and error by automating the time- and expertise-intensive process of configuring a
high-performing machine learning model.

2.2.1 Methods

Automated machine learning is an umbrella term encompassing a range of techniques aimed at
automating parts of the machine learning pipeline. These techniques include, among others, neural
architecture search (NAS), algorithm selection, and hyperparameter optimization (HPO).

Neural architecture search (NAS) Designing an optimal architecture for a deep neural
network involves selecting and tuning numerous architectural hyperparameters, such as the numbers
of layers, the types of layers, connections, etc. NAS aims to automate this complex design process
to identify high-performing architectures. [BWL+24, LZN+18]

Algorithm selection Selecting the most suitable algorithm for a specific task or dataset can be
equally difficult and time-consuming. Originally formalized by Jon Rice in 1976 [Ric76], the concept
of algorithm selection aims to identify the most effective algorithm for a given problem. [BWL+24]

Hyperparameter optimization (HPO) The primary focus of this study is hyperparameter
optimization. To facilitate a better understanding of this method, it is important to clarify what
hyperparameters are and distinguish them from model parameters.
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• Parameters: A neural network consists of a large number of parameters that are updated
during the training process to fit the data, however, these are not equivalent to hyperparame-
ters.

• Hyperparameters: Hyperparameters, in contrast, are fixed values that remain fixed through-
out training and influence how the model is trained [BWL+24].

Hyperparameter optimization involves sampling various hyperparameter configurations with the
goal of discovering the best configuration that optimizes the performance of a machine learning
model. From this point onward, all discussions will focus on hyperparameter optimization.

2.2.2 Core components

Three core components are central to the automated machine learning approach, and this section
examines how each of them impacts the process of hyperparameter optimization [BWL+24].

Figure 2: Core components of AutoML. Taken from [BWL+24].

Search space As previously noted, hyperparameters are predefined settings established prior
to the training process, and they significantly influence how the model learns. Identifying them
and their respective types (e.g., categorical, integer, continuous) is crucial. These hyperparameters,
alongside their range of candidate values, collectively reside within this search space. Some may be
conditional, meaning they are only relevant in the case that another hyperparameter has a specific
value. [BWL+24]

Search strategies Having established a search space comprising various hyperparameters and
their possible value ranges, a strategy is needed to select different hyperparameter configurations
that will be applied to train a model. A search algorithm defines a specific method for the selection
of these configurations. Commonly used search algorithms are: random search [BB12] and Bayesian
optimization [HHL11, SLA12]. In addition to these strategies, a multi-fidelity approach such as
successive halving [JT16] can be applied.

5



• Random search: Random search operates as an algorithm that, as the name suggests,
randomly selects values from the search space to construct a hyperparameter configuration.
It is one of the simplest search techniques for hyperparameter optimization and is frequently
used as a baseline. As is evident, each selected configuration requires the full process of model
training and evaluating, which can be time-consuming depending on various factors. Baratchi
et al. [BWL+24] note that a “large number of these model evaluations are required using
random search, especially with a large search space.”

• Bayesian optimization: To reduce these model evaluations, an alternative method known
as Bayesian optimization has been introduced [GH20, HHL11, SLA12, BWL+24]. Bayesian
optimization leverages knowledge of its previous evaluated configurations to make more
informed decisions about which configuration to explore next. Rather than randomly selecting
configurations, the aim is to navigate more intelligently through the search space [BWL+24].

There are two core components that form the backbone of Bayesian optimization. The first
is the surrogate model, a predictive model trained on the outcomes of previously evaluated
hyperparameter configurations. This model enables Bayesian optimization to estimate the
objective function, which represents the evaluation score a trained model receives with its
hyperparameter configuration. By doing so, it facilitates more informed decisions concerning
which configurations to explore next [SSW+16, BWL+24].

The second core component is the acquisition function, which leverages the information from
the surrogate model to formulate a decision on what hyperparameter configuration the model
should be trained and evaluated on next. This function strikes a balance between exploration
and exploitation, ensuring that we make decisions on previously identified promising results
(exploitation), as well as encouraging the exploration of relatively unexplored areas of the
search space (exploration). [SSW+16, BWL+24]

• Successive halving: Although not a strict search algorithm but rather a resource allocation
method, successive halving builds on the multi-fidelity concept. With multi-fidelity, we operate
across multiple budget levels for training. This algorithm allocates different budgets (fidelities)
during training in a manner that avoids wasting resources on underperforming configurations.
Unpromising candidates can be pruned early, thereby preventing inefficient use of compute
resources on models that perform worse relative to others. The core principle involves training
all configurations with an initial, limited budget, followed by evaluating and ranking each
candidate upon completion of this budget. Only the top fraction is selected to proceed, and this
fraction is subsequently allocated an increased budget to continue training [JT16, BWL+24].

Performance evaluation As discussed above, in automated machine learning, it is essential
to evaluate the various hyperparameter configurations. To achieve this, a performance evaluation
metric is required, such a performance metric tool is capable of quantifying the performance of a
model, trained under a specific configuration. The aim is to identify the configuration that yields
the highest performance [BWL+24].

6



3 Methodology

The study aims to assess the feasibility of improving the output quality of a diffusion model
by implementing hyperparameter optimization, an AutoML technique. The section is structured
around the following key aspects: the application of AutoML to diffusion models, the construction
and exploration of the search space, and the evaluation of the model’s performance.

3.1 Pipeline

To address the research question, we developed a pipeline capable of training multiple diffusion
models, each with a distinct configuration of hyperparameter values. This was achieved through
the application of an automated machine learning framework. Each trained model instance was
evaluated using a metric designed to assess the quality of the output produced by the diffusion
model. All the code is available in the GitHub repository.1

3.1.1 Diffusion model

It is essential in this implementation to be able to train neural network diffusion models from
scratch, given that each new set of hyperparameters requires complete retraining. The Hugging
Face Diffusers library [vPPL+22] has made this objective highly user-friendly, providing clear and
coherent instructions to facilitate its implementation. This library is accompanied by easy-to-follow
documentation describing various facets relevant to diffusion models and the functioning of their
library. Notably, it includes a step-by-step guide2 on the process of building a pipeline capable of
training a diffusion model from scratch. The model trained in this implementation adopts a U-Net
architecture, as described in Section 2.1.4.

A configuration class, primarily intended for hyperparameters, is applied as part of this implemen-
tation and thus provides the capability to configure these values with minimal effort. Originally,
this configuration class lacked many additional hyperparameters, which were scattered throughout
the code.

3.1.2 Automated machine learning

Having established a pipeline possessing the capability of training a diffusion model with predefined
hyperparameter settings, the next step involves automating the search process of identifying the best-
performing hyperparameter settings. A number of libraries are available that support integrating
automated machine learning strategies, such as hyperparameter optimization. One example of these
libraries is Optuna [ASY+19]. Following this reference and further analysis, Optuna was selected
given its ease of use and applicability for this study’s task. There are a few important notations
that Optuna uses in its implementation of the automated search.

Objective function As discussed earlier in the context of AutoML, the objective function plays
a pivotal role in hyperparameter optimization. Optuna similarly frames the optimization task as

1https://github.com/wnRuppert/AutoML-DiffusionModels
2https://huggingface.co/docs/diffusers/tutorials/basic_training
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the problem of optimizing an objective function, a function that maps a set of hyperparameter
values to a performance score.

1 def objective(trial):

2 hyperparameters = {

3 "hyperparameter1": trial.suggest_categorical("hyperparameter1", [10,

20, 30, 40, 50, 100, 999]),

4 "hyperparameter2": trial.suggest_categorical("hyperparameter2", ["

option1", "option2"]),

5 "..."

6 "hyperparameter8": trial.suggest_float("hyperparameter8", 1e-4, 3e-4,

log=True),

7 }

8

9 train(model , hyperparameters)

10

11 return evaluate(model)

Listing 1: Code snippet of the AutoML process that selects a configuration from a search space,
trains the model, and evaluates it using the performance evaluation procedure

Trial Within the scope of this function, we begin by specifying the hyperparameter values, which
are determined based on the chosen search strategy. Once these values have been set, the model
is trained with this configuration, and ultimately a metric is computed that reflects how well the
model performs. A complete instance of this process is referred to as a trial in Optuna.

Study The number of trials we wish to run in order to identify the best-performing hyperparameter
settings can be determined in advance. Naturally, the more trials we run, the more compute and
time are required. Once all trials have been completed, the study is considered complete. In the
context of Optuna, a study refers to the entire process of the experiment. To guide the search space,
we can utilize the previously discussed search strategies merely by defining them within our study
object.

1 study = optuna.create_study(

2 direction="minimize",

3 sampler="search_strategy"

4 )

5

6 study.optimize(objective , n_trials="number_of_trials")

Listing 2: Example of code that performs hyperparameter optimization with Optuna

3.1.3 Testing

To ensure that the full scope of the pipeline, including both the diffusion model training and the
automated machine learning component, operates as expected, it was necessary to evaluate each
part independently and eventually in combination. The initial aim of this study was to apply the
diffusion model pipeline to image data, and the pipeline was originally built with this purpose in
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mind. However, upon implementation, we concluded that training multiple models on image data
using our hardware would require several hours, which is far from ideal during the testing and
debugging phase. As a result, a solution had to be formulated to reduce testing time in a manner
such that testing and debugging is more efficient. To address this, we opted for low-dimensional
datasets, which are considerably faster to train on.

In contrast to high-dimensional image data, two-dimensional data operate within a much simpler
feature space, reducing both model complexity and training cost. This simplicity allows for the use
of a lightweight model architecture, such as a multilayer perceptron (MLP) [GBC16], rather than a
U-Net architecture.

To support this, we incorporated an MLP architectured model into our diffusion model pipeline,
using the toy-diffusion implementation by Álvaro Barbero Jiménez3, with the original code
adapted to meet the requirements of this study.

MLP The model architecture consists of one input layer, a series of hidden blocks, and one output
layer. This represents a simple fully connected feedforward neural network, commonly referred to
as a multilayer perceptron. When initializing the model, we can decide on several architecture
choices. The number of input features can be defined, these represent the number of distinct values
describing each data point in the dataset. For the two-dimensional data, this is set to 2, one value
for the x-coordinate and one for the y-coordinate of each data point. Subsequently, the number of
hidden layers (blocks) in the architecture can be determined, as well as the width of each of these
hidden layers by specifying the number of units [GBC16].

3.2 Baseline

The aim of establishing a baseline is to enable a comparison between the model’s performance
using hyperparameter values obtained through hyperparameter optimization strategies, with a
baseline that does not employ such strategies. In our experiments, we thus aim to identify the
best-performing hyperparameter configuration that yields an improved output quality compared to
the baseline.

3.3 Search space

The search space is a selection of all hyperparameters along with their respective ranges of candidate
values. Search algorithms sample within this hyperparameter space to try different configurations.
If a hyperparameter or its values are excluded, the algorithm is unable to sample and thus evaluate
that particular setting. It is therefore of great importance to identify the key hyperparameters in dif-
fusion models, along with their respective value ranges, while also considering an important trade-off:

As has become clear, each sampled hyperparameter configuration is used to train and evaluate
a diffusion model, a process that is time-consuming, especially given the hardware constraints
of this study. This creates the need for a search space that is sufficiently small to ensure our

3https://github.com/albarji/toy-diffusion
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experiments remain computationally feasible, while yet broad enough to include a meaningful range
of configurations.

There are numerous hyperparameters involved in the training process of a diffusion model. In this
section, we introduce several of the most important ones, discussing whether they are included or
excluded in our experiments, and explaining any potential conditional dependencies. We begin by
discussing the hyperparameters that were excluded from tuning in either or both of the experiments.

Epochs Epochs play a significant role in determining the workload of the training process. During
a single epoch, the model is trained once on the entire dataset. Therefore, increasing the number
of epochs results in the model seeing the data more frequently. In these experiments, we ensure
that each trial in our Optuna study undergoes an equivalent workload, meaning that each trial is
exposed to the same amount of data. This allows for a fairer comparison of how the hyperparameters
influence the training process while maintaining the same amount of data exposure. Thus, the
number of epochs is fixed throughout our experiments.

Inference timesteps Inference timesteps influence the sampling process. The number of inference
timesteps determines the number of denoising steps applied to progressively remove the noise and
generate data. When the number of training timesteps, which will be discussed in the following
paragraph, is substantial, using all of them during inference on image data can become time-intensive.
The Diffusers library provides the option to select a reduced number of timesteps that are evenly
spaced according to the training timesteps schedule. This hyperparameter is fixed for our image
data experiments to a small value, first, to ensure that each trial has an equal computational budget
for generating data, and second, to maintain feasibility given the current hardware constraints.
In the case of the two-dimensional data, the inference time is minimal. Therefore, we can simply use
the selected number of training timesteps during inference, meaning that the number of inference
timesteps equals the number of training timesteps.

Training timesteps In contrast to inference timesteps, training timesteps affect the training
process. As previously discussed, in a diffusion model, noise is progressively added over a number
of timesteps. The greater the number of timesteps, the smoother the transitions from clean data to
noise. At inference time, for the image data experiments, we use a fixed number of timesteps that
are evenly spaced out. To ensure that each trial during sampling observes the denoising process at
identical relative positions, we also fix the number of training timesteps for these experiments. For
the two-dimensional experiments, we include this hyperparameter.

Noise scheduler As explained in the background section, we know that noise is added or removed
with varying intensity depending on the timestep within the diffusion process, this is governed
by the noise scheduler. The type of noise scheduler determines the magnitude of noise associated
with each timestep. Guo et al. (2015) [GLH+25] argue that the performance of a diffusion model
can be affected by the type of noise schedule used, stating that “selecting an appropriate noise
schedule is essential for optimizing the performance and efficiency of diffusion model training.”
They further conclude that there is no global noise schedule applicable to all diffusion processes, as
different processes may perform better with different noise schedulers. This indicates that tuning
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this hyperparameter can yield substantial benefits, and is thus selected as a tunable hyperparameter
in the image data experiments. For the two-dimensional data implementation, we used the GitHub
repository4, which implemented a cosine noise schedule inspired by Nichol & Dhariwal’s improved
DDPM [ND21]. This implementation is adopted as a fixed noise scheduler.

The following hyperparameters are included in all experiments.

Batch size The batch size influences how frequently the model’s weights are updated, as it
defines the number of data points used in each training step. A larger batch size means that more
data points are considered simultaneously for weight updates, resulting in fewer updates per epoch,
but in return increases GPU memory usage. However, using a batch size that is too large may
reduce generalization performance. A good balance must therefore be found, which is why this
hyperparameter is included.

Optimizer (and weight decay) A neural-network model consists of numerous trainable param-
eters that are updated during training to better align with the target objective. The magnitude of
these updates depends, among other factors, on the learning rate settings and the loss function.
The optimizer is the algorithm responsible for performing these updates to the model’s weights
or parameters at each training step, with the aim of minimizing the loss. Different optimization
algorithms employ distinct implementation strategies. In these experiments, we sample exclusively
between Adam [KB15] and AdamW [LH19]. If the search algorithm samples AdamW, we include
the option to tune the weight decay as a conditional hyperparameter. Unlike Adam, where the
weight decay is tied to the gradient updates, AdamW separates the two.

Within these algorithms, each parameter in our network is updated based on an individually
calculated step using information from past updates. The key distinction is that in Adam the
weight decay is implemented within the gradient update for each parameter, whereas in AdamW,
it is decoupled and therefore applied separately. According to Loshchilov and Hutter [LH19], this
decoupling improves generalization performance.

Learning rate During the training process, the neural network’s weights are continuously updated
by the optimizer based on how the model performs, as measured by a loss function. The learning
rate controls how much these weights are updated at the end of each training step. A larger learning
rate results in larger updates, increasing the risk of overshooting optimal solutions or failing to
converge, while a smaller learning rate leads to smoother adjustments over time but may be too slow
to ever achieve convergence. Selecting an appropriate learning rate is difficult and thus included
in the experiments. Additionally, the manner in which this learning rate evolves during training,
referred to as the learning scheduler, can also influence the model’s performance.

Learning rate scheduler We have just seen that learning rates that are either too high or too
low can lead to issues during the training process. A learning scheduler automatically adjusts the
learning rate throughout the training process. It starts with the initial learning rate and gradually
modifies it, depending on the type of scheduler, until it is reduced to zero by the end of training.

4https://github.com/albarji/toy-diffusion
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For example, the constant scheduler maintains a fixed learning rate that remains constant over the
course of training.

Learning rate warm-up ratio Additionally, we may choose to configure a warm-up phase
within the learning rate scheduler, which gradually increases the learning rate during the initial
steps of training until it reaches the predefined initial learning rate. However, since the batch size
influences the number of updates applied to the model in each epoch, and consequently the total
number of scheduler steps, it is necessary to formulate a method by which the warm-up steps value
is influenced according to the batch size. For example, a large batch size results in a smaller total
number of scheduler steps. If the warm-up steps value is set too high, exceeding the total number of
training steps, the learning rate scheduler would never exit the warm-up phase. To address this, we
decided to define a tunable ratio for the warm-up steps, which is then applied to the total number
of training steps.

To summarize clearly which hyperparameters are tuned in our two-dimensional data and which in
our image data experiments, here is a brief overview:

Two-dimensional data: training timesteps (and therefore inference timesteps), learning rate,
learning rate scheduler, learning rate warm-up ratio, batch size, optimizer, and weight decay.
Image data: learning rate, learning rate scheduler, learning rate warm-up ratio, batch size,
optimizer, weight decay, and noise scheduler.

3.4 Search strategy

Within this study, we implement two search strategies to identify the optimal hyperparameter
configuration using Optuna’s library: random search and Bayesian optimization. In addition to the
random search strategy, this study will also implement the successive halving approach together
with this search strategy. We have already covered the basics of these algorithms, let us now examine
how Optuna integrates these strategies.

Random search Optuna employs the RandomSampler to implement the random search algorithm.
This approach randomly selects which configurations to try, without utilizing any past information
from previous trials, unlike Bayesian optimization, which learns and leverages from past results.

Bayesian optimization Optuna adopts a Bayesian optimization approach, specifically imple-
menting the tree-structured parzen estimator (TPE) [BBBK11]. While TPE is a type of Bayesian
optimization algorithm, it uses a different underlying method compared to Gaussian process based
approaches. The difference lies in what these techniques aim to model. Methods using Gaussian
process aim to model the probability of a score given a hyperparameter configuration. In contrast,
TPE reverses this and models the probability of a specific hyperparameter configuration given a
score. To utilize this strategy, Optuna provides the TPESampler, which implements this specific
Bayesian optimization approach.
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Successive halving In Optuna, a pruner is used that can decide to terminate a trial based on an
intermediate evaluation of the model. During training, the model is evaluated at specific checkpoints
that can be determined in advance. In a study, each trial has a minimum number of training
epochs, and a reduction factor is specified to determine how many trials may continue beyond each
checkpoint. For instance, with a minimum resource of 3 and a reduction factor of 2, the checkpoints
for each trial would be at epochs 3, 6, 12, 24, 48, etc. At each epoch checkpoint, the model is
evaluated and compared to a ranking of the trials that have already completed that checkpoint. If
the current model in the current trial ranks within the top 50%, it is allowed to continue, otherwise
it is terminated. At each checkpoint in the training loop, we call trial.report to provide the
current evaluation of the model’s performance and trial.prune to determine whether the trial is
promising enough to proceed.

3.5 Performance evaluation

A crucial aspect of this research is the ability to assign a score to each hyperparameter configuration,
as these scores indicate how well a configuration performs and directly guide the trajectory of the
Bayesian optimization strategy.

PRDC During the testing and debugging phase of the pipeline, it was also necessary to implement
a metric. At this stage, as previously mentioned, the pipeline was applied to two-dimensional
data. It was considered important to select a metric that produces a score reflecting the visual
quality of the result. The closer the generated data points resemble the original data, the better
the score should be. After evaluating several metrics, including the Maximum Mean Discrepancy
(MMD) [GBR+12], we concluded that PRDC [NOU+20] showed the best alignment with visual
quality.

PRDC, which stands for Precision, Recall, Density, and Coverage, provides four distinct scores, each
corresponding to one component of the acronym [NOU+20]. In our experiments, we compute the
mean of these four values to derive a single score assigned to each hyperparameter configuration.

FID For our main experiments, conducted on the image data, we implemented the Fréchet
Inception Distance (FID).

4 Experimental setup

As previously noted, this study employs a two-stage approach. The first stage involves testing and
debugging the pipeline on two-dimensional data to enable quick prototyping, thereby facilitating a
scale-up to multi-dimensional data using a fully validated pipeline. The optimization logic in both
stages remains identical, making this an effective strategy to evaluate the pipeline. Accordingly,
this study also includes experiments on two-dimensional data.
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4.1 Data

Two-dimensional data For the two-dimensional data experiments, we use three different
datasets; Swiss Roll, Moons, and Spirals. These datasets are generated with the use of three
functions (make swiss roll, make moons, and make circles) from the scikit-learn library, especially
the sklearn.datasets module [PVG+11].

(a) Swiss roll dataset (b) Moons dataset (c) Spirals dataset

Figure 3: Overview of the two-dimensional datasets.

Each dataset contains a total of 100 000 data points, of which 20 000 are used to evaluate the trained
model. To ensure that performance differences are not affected by variations in the evaluation
subset, each model is evaluated on the same subset.

Within these experiments, it is crucial that the data the models are exposed to is exactly the
same. This ensures that both during the baseline training runs and throughout the hyperparameter
optimization process, the data points remain consistent. Such consistency is essential because the
goal is to assess the impact of hyperparameter optimization without the results being influenced by
a model potentially being trained on more favorable synthetic data. To achieve this, all experiments
on two-dimensional data are conducted using the same data points.

Image data For the image data experiments, we use the same dataset featured in the HuggingFace
tutorial, namely the smithsonian butterflies subset.5 This dataset consists of 1 000 butterfly
images, of which 800 are used for training and the remaining 200 for evaluation. As the dataset
contains images of varying sizes, we chose to resize all images to 64x64 pixels. The images remain
sufficiently small to allow the use of the smaller U-Net architecture from our baseline in the
experiments, which is highly beneficial for managing the computational constraints of this research.

5https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset
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Figure 4: Overview of five images from the butterflies dataset.

4.2 Model architecture

Two-dimensional data For the experiments on the two-dimensional data, we adopt the model
architecture from the GitHub repository implementation used in our setup. As outlined in the
methodology, the model is a multilayer perceptron (MLP). We configure the model with 2 input
features, 4 blocks, and 64 units per block.

Image data In the case of the experiments on the image data, we adopt the U-Net architecture
from our baseline. The model consists of 4 blocks, each containing two layers, with output channels
of 64, 128, 128, and 256. The downsampling path is constructed of two DownBlock2D modules,
followed by two AttnDownBlock2D modules. The upsampling path construction consists of two
AttnUpBlock2D modules, followed by two UpBlock2D modules.

4.3 Hyperparameter optimization

For all our experiments, both on two-dimensional data and image data, we employ the two previ-
ously discussed search strategies: random search and Bayesian optimization. Both strategies are
implemented using Optuna version 4.3.0. Each search strategy is allocated a computational budget
of 50 trials, meaning that each strategy explores 50 different configurations within its study.

The methodology section outlined which hyperparameters were selected for tuning in our experiments.
We now examine the range of values assigned to each hyperparameter, from which the search
strategies can select.

Learning rate For the learning rate, we define a logarithmic search range with a minimum value
of 1e-5 for both the two-dimensional and image experiments. For the image data, the maximum
value is set to 1e-3, ensuring that the search space explores around the baseline value of 4e-4. For
the two-dimensional data, the maximum is extended to 1e-2, reflecting the higher baseline of 1e-3.
This design allows the search space to cover both lower and higher values relative to the baseline.
A logarithmic range is chosen because the learning rate is sensitive to differences across orders of
magnitude [ZLLS21]. The range is deliberately broad to allow exploration of both low and high
learning rates.

15



Learning rate scheduler We use the get scheduler function from the Diffusers library, which
allows selection from several scheduler strategies. In both experiments, the options are: constant,
constant with warmup, linear, and cosine.

Learning rate ratio (warmup steps) If the search strategy selects any scheduler other than
constant, it also selects a warm-up ratio to determine the number of steps allocated to the warm-up
phase. The ratio is selected from the range 0.0 to 0.2, with steps of 0.05, for both experiments.

Batch size For these values, we referred to our baseline and included one power of two below
and one above it. In the case of the two-dimensional experiments, the values are 1024, 2048, and
4096. For the image data experiments, the values are 32, 64, and 128.

Optimizer (and weight decay) In the baseline for the two-dimensional data, the Adam
optimizer [KB15] was used. Therefore, it is included as an option in the search space for both
experiments. Additionally, we incorporated the AdamW optimizer, an improved variant of Adam
introduced by Loshchilov and Hutter in [LH19], which essentially decouples the weight decay
from the gradient updates. When the search algorithm samples AdamW, weight decay is included
as a sampled hyperparameter. Similar to the learning rate, we define a logarithmic search range:
a minimum value of 1e-6 results in a minimum regularization, with a value close to 0, while a
maximum value of 1e-2 corresponds to strong regularization. This range allows us to cover a broad
spectrum of the search space, from the lower bound to the upper bound.

Training timesteps The number of training timesteps for the image data experiments is fixed,
as previously explained. For the other experiments it is treated as a tunable hyperparameter. The
baseline uses 40 training timesteps, and our search range is centered around this value, with a
minimum of 20 and a maximum of 100, with steps of 20.

Noise scheduler This hyperparameter is included only in the image data experiments. The
Diffusers library provides the option to select from four noise schedulers: linear, scaled linear,
squaredcos cap v2, and sigmoid. All of these are included in the search space for this hyperparameter.

Table 1: Hyperparameter search space for two-dimensional experiments.

Hyperparameter Search space
Learning rate Logarithmic scale from 1 · 10−5 to 1 · 10−2

Learning rate scheduler {constant, constant with warmup, linear, cosine}
Warm-up ratio {0.0, 0.5, 0.10, 0.15, 0.20} (only if scheduler ̸= constant)
Batch size {1024, 2048, 4096}
Optimizer Adam or AdamW
Weight decay (if AdamW) Logarithmic scale from 1 · 10−6 to 1 · 10−2

Training timesteps {20, 40, 60, 80, 100}
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Table 2: Hyperparameter search space for image data experiments.

Hyperparameter Search space
Learning rate Logarithmic scale from 1 · 10−5 to 1 · 10−3

Learning rate scheduler {constant, constant with warmup, linear, cosine}
Warm-up ratio {0.0, 0.5, 0.10, 0.15, 0.20} (only if scheduler ̸= constant)
Batch size {32, 64, 128}
Optimizer Adam or AdamW
Weight decay (if AdamW) Logarithmic scale from 1 · 10−6 to 1 · 10−2

Noise scheduler {linear, scaled linear, squaredcos cap v2, sigmoid}

4.4 Baseline vs. hyperparameter optimization

For all the experiments, we need to establish a baseline to enable comparison with the hyperparameter
optimization results.

Two-dimensional experiments The baseline for the two-dimensional experiments is derived
from the GitHub implementation6 of the diffusion model for two-dimensional toy data. Table 3a
presents this baseline.

Image experiments The baseline for the image experiments is based on the HuggingFace tutorial
Train a diffusion model.7 Notably, this tutorial differs from the one used to implement the diffusion
model pipeline. This tutorial employs a smaller image size and, consequently, a smaller U-Net,
making it computationally efficient on the available hardware. See Table 3b.

Table 3: Baseline hyperparameter values used in both experiments

(a) Two-dimensional experiments

Hyperparameter Value

Learning rate 0.001
Learning rate scheduler Linear
Learning rate ratio 0.0
Training timesteps 40
Batch size 2048
Optimizer Adam
Weight decay None

(b) Image data experiments

Hyperparameter Value

Learning rate 0.0004
Learning rate scheduler Constant
Learning rate ratio 0.0
Noise scheduler squaredcos cap v2
Batch size 64
Optimizer AdamW
Weight decay 0.01

For each experiment, the baseline model is trained 10 times, and the mean evaluation metric along
with the standard deviation is computed. This serves as the baseline score, which we aim to surpass
using our hyperparameter optimization techniques. Subsequently, the hyperparameter optimization
search techniques, each consisting of 50 trials, are applied to both the two-dimensional and image

6https://github.com/albarji/toy-diffusion
7https://huggingface.co/learn/diffusion-course/unit1/2
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datasets. Each search strategy finds a best-performing hyperparameter configuration, which is
then used to train a model 10 times. Again, we report the mean evaluation metric and standard
deviation.

4.5 Multi-fidelity

For our subquestion, we investigate whether the use of a multi-fidelity approach in hyperparameter
optimization can also enhance the quality of a diffusion model’s output. As described in the
methodology, Optuna implements a pruner that decides during training whether a trial should be
pruned based on its current performance and the performance of preceding trials. This approach
allows terminating unpromising trials early, conserving computational resources for more promising
trials.

In the Baseline vs hyperparameter optimization experiments, we also logged the total time it
required to complete each study. In this experiment, we conduct a study using the successive
halving pruner, comparing the identified best-performing hyperparameter configuration to both
the baseline and the other algorithms. We also assess the total time needed to discover these
configurations relative to the other algorithms. For both the two-dimensional data and image data,
we apply the pruner in combination with the random search algorithm.

4.5.1 Two-dimensional data

In the experiments on two-dimensional data, we set the minimal resource to 8 epochs per trial and
set a reduction factor of 2. Optuna now evaluates each trial and decides whether to prune it at the
following checkpoints: epoch 8, 16, 32, 64. After the last checkpoint the trial will continue for the
remaining 36 epochs.

4.5.2 Image data

In the experiments on image data, we set a minimal resource of 6 epochs per trial and a reduction
factor of 2. This results in the following checkpoints where Optuna evaluates each trial and decides
whether to prune: epochs 6, 12, and 24. After the final checkpoint, the trial will continue for 6
epochs to complete the total of 30 epochs for each trial.

4.6 Hardware

CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
GPU: NVIDIA GeForce RTX 5060 Ti

5 Results

In this section, we first present the results of the experiments conducted to address our main
research question: whether hyperparameter optimization can improve the quality of the output
of a diffusion model. We conclude by examining the results of the experiments addressing the
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subquestion on successive halving, evaluating both the FID scores and the total time required for a
study to complete compared to the other search strategies.

5.1 hyperparameter optimization vs baseline

In these experiments, we investigate whether the two search strategies, Bayesian optimization and
random search, can give us a better hyperparameter configuration compared to the baseline. We
conduct these experiments on both our two-dimensional toy dataset and the butterflies image
dataset.

5.1.1 Two-dimensional data

Table 4 presents the PRDC scores (mean ± standard deviation) computed over 10 independent
runs for three approaches: a baseline and two optimization strategies, random search and Bayesian
optimization.

Table 4: PRDC scores (mean ± standard deviation) over 10 runs for different optimization strategies
on synthetic datasets. Lower is better.

Optimization Strategy Swiss Roll PRDC ↓ Moons PRDC ↓ Spirals PRDC ↓

Baseline 0.0524± 0.012 0.0437± 0.003 0.1727± 0.032
Bayesian Optimization 0.0166± 0.001 0.0131± 0.001 0.0186± 0.006
Random Search 0.0161± 0.001 0.0142± 0.001 0.0167± 0.002

These experiments were conducted using diffusion models trained on three 2D datasets: Swiss Roll,
Moons, and Spiral. The baseline model was trained using a fixed set of hyperparameters obtained
from the associated GitHub repository. For both optimization strategies, the best hyperparameter
configuration identified by each method was used to train and evaluate the model across 10 separate
runs. Lower PRDC scores indicate that the generated samples more closely align with the true
data distribution.

As shown in Table 4, both hyperparameter search strategies outperform the baseline configuration,
demonstrating that automated hyperparameter optimization can effectively improve the quality of
generated outputs. Specifically:

In all visualizations shown below, the orange dots represent the data generated by the diffusion
model, while the blue dots represent the original data used to train the model.
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• Swiss roll dataset: Bayesian optimization and random search achieve a substantial reduction
in PRDC score (0.0166 ± 0.001) and (0.0161 ± 0.001) compared to the baseline (0.0524 ±
0.012), indicating a closer match to the target distribution.

(a) Baseline (b) Random Search (c) Bayesian Optimization

Figure 5: Comparison of three optimization strategies

• Moons dataset: Bayesian optimization and random search again achieve significantly lower
scores then the baseline, with the first performing slightly better (0.0131 ± 0.001).

(a) Baseline (b) Random Search (c) Bayesian Optimization

Figure 6: Comparison of three optimization strategies

• Spiral Dataset: On this more complex dataset, random search obtains the lowest PRDC
score (0.0167 ± 0.002), and significantly outperforms the baseline configuration.

(a) Baseline (b) Random Search (c) Bayesian Optimization

Figure 7: Comparison of three optimization strategies
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These results validate the effectiveness of automated machine learning techniques, such as hyperpa-
rameter optimization with different search strategies. They highlight its value as a viable approach
for fine-tuning diffusion model hyperparameters, specifically in the context of low-dimensional data.

5.1.2 Image data

Table 5 presents the FID score for each approach on the Butterflies image dataset. A lower FID score
indicates a better performance of the model. The scores are again computed over 10 independent
runs for each of the three approaches: the baseline, Bayesian optimization, and random search. The
results are reported as the mean ± standard deviation computed over these 10 independent runs.

Table 5: FID scores (mean ± standard deviation) over 10 runs for different optimization strategies
on the Butterflies image dataset. Lower is better.

Optimization Strategy Butterflies FID ↓

Baseline 236.79± 27.95
Bayesian optimization 136.17± 8.56
Random search 149.27± 5.85

The baseline model was trained using the hyperparameters provided by the hugging face tutorial.
This process was repeated 10 times, and the model was evaluated in each run. For both optimization
strategies, the best hyperparameter configuration identified by each method was used to train and
evaluate the model across 10 separate runs.

Both search strategies achieve a lower overall FID score, indicating that they obtain more effective
hyperparameter configurations compared to the baseline. We now present a selection of images
generated by the models, offering visual evidence of the improvements observed, in addition to the
evaluation scores.

• Baseline

Figure 8: Five images generated with baseline configuration
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• Random search

Figure 9: Five images generated with optimal configuration found with random search

• Bayesian optimization

Figure 10: Five images generated with optimal configuration found with Bayesian optimization

5.2 Multi-fidelity

While conducting the previous experiments, we recorded the total time required to complete each
study. We have now conducted an additional study using Optuna’s pruner to demonstrate the effect
of successive halving on image data, particularly to examine whether the total time decreases while
still identifying configurations that enhance the quality of the output.

5.2.1 Two-dimensional data

In the following tables, we present the PRDC scores (mean ± standard deviation) over 10 runs,
together with the total study time, on the swiss roll, moons, and spirals dataset.

Swiss roll

Table 6: PRDC scores (mean ± standard deviation) over 10 runs for different optimization strategies,
along with the total study time.

Optimization strategy Swiss Roll PRDC ↓ Total time (minutes)

Baseline 0.0524± 0.012 –
Bayesian optimization 0.0166± 0.001 15.49
Random search 0.0161± 0.001 15.23
Successive halving 0.0161± 0.001 3.73
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Random search with and without successive halving both identified the same best-performing
hyperparameter configuration, resulting in identical PRDC scores. However, the total study time
required decreased from 15.23 minutes to 3.73.

Moons

Table 7: PRDC scores (mean ± standard deviation) over 10 runs for different optimization strategies,
along with the total study time.

Optimization strategy Moons PRDC ↓ Total time (minutes)

Baseline 0.0524± 0.012 –
Bayesian optimization 0.0131± 0.001 18.99
Random search 0.0142± 0.001 15.46
Successive halving 0.0169± 0.002 3.58

For the moons dataset, the random search with successive halving approach identified a different
best-performing hyperparameter configuration, which was approximately 19.01% worse. However,
the total study time again decreased significantly, from 15.46 minutes to 3.58 minutes.

Spirals

Table 8: PRDC scores (mean ± standard deviation) over 10 runs for different optimization strategies,
along with the total study time.

Optimization strategy Spiral PRDC ↓ Total time (minutes)

Baseline 0.0524± 0.012 –
Bayesian optimization 0.0186± 0.006 15.32
Random search 0.0167± 0.002 15.52
Successive halving 0.0167± 0.002 3.22

Similar to the swiss roll dataset, successive halving here also identified the same best-performing
hyperparameter configuration as random search without successive halving, resulting in identical
PRDC scores. The total study time decreased from 15.52 minutes to 3.22 minutes.

5.2.2 Image data

Table 9 presents the total time required to complete each study and reports the FID scores for each
approach. Although the FID scores were already shown in Table 5, the successive halving results
are now also included.

Because we ran all experiments using the same seed for the search algorithms, the random search
with and without successive halving sampled the same hyperparameter configuration for each trial.
The best-performing trial for the random search algorithm was trial 41, which was also identified
by the random search with successive halving. This indicates that the successive halving approach
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efficiently pruned trials that were less promising, thereby reducing the total compute time from
120.07 to 92.23 minutes (approx 23.2%), while still retrieving the best-performing hyperparameter
configuration. In Table 9, the FID scores for random search and successive halving are identical, as
both found the same configuration.

Table 9: FID scores (mean ± standard deviation) over 10 runs for different optimization strategies,
along with the total study time.

Optimization strategy FID ↓ Total time (minutes)

Baseline 236.79± 27.95 –
Bayesian optimization 136.17± 8.56 122.97
Random search 149.27± 5.85 120.07
Successive halving 149.27± 5.85 92.23

6 Conclusions and Further Research

The quality of a diffusion model’s output depends heavily on its hyperparameter configuration.
Establishing an effective configuration for a specific task is time-consuming and requires substantial
expertise. In this study, we aimed to investigate whether the automated machine learning technique
of hyperparameter optimization could assist in identifying a best-performing configuration that
enhances the output quality. To explore this, we developed a pipeline capable of training a diffusion
model from scratch, using the Optuna framework to explore different configurations.

As demonstrated in the results, hyperparameter optimization improved the quality of the generated
outputs across all benchmarks, indicating that the model’s performance can indeed be enhanced
through the application of hyperparameter optimization.

On image data, random search lowered the FID from 236.79 to 149.27 (37.0%), while Bayesian
optimization reduced it further to 136.17 (42.5%). Additionally, we observed that the standard
deviation decreased by up to 79.1%, suggesting that the hyperparameter optimization techniques
identify configurations that lead to more stable training. Across the three two-dimensional datasets
(Swiss Roll, Moons, Spirals), both hyperparameter optimization search strategies, random search
and Bayesian optimization, reduced the PRDC compared to the baseline. Random search achieved
an average PRDC of 0.0157, reducing it by 82.5% compared to the average baseline, and Bayesian
optimization achieved an average PRDC of 0.0161, reducing it by 82.0% compared to the aver-
age baseline. Furthermore, we observed that the standard deviation decreased by an average of
87.2%, suggesting that the hyperparameter optimization techniques, also for two-dimensional data,
identify configurations that not only improve the output quality but also lead to more stable training.

Considering both sets of experiments, these findings suggest that the benefit of the Bayesian
optimization method increases with the dimensionality of the data. This indicates that when tuning
diffusion models on multi-dimensional data, such as images, applying Bayesian optimization is
beneficial. For lower-dimensional data, a random search may be sufficient.
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For our subquestion, we can likewise conclude that successive halving can indeed enhance the
quality of the output of a diffusion model for image data, as it identifies the same hyperparameter
configuration as random search without successive halving. However, in this case, it achieved
this approximately 23.2% faster, reducing the time from 120.07 minutes to 92.23 minutes. This
corresponds to a 1.3x speedup. For two-dimensional data, successive halving identifies the same
hyperparameter configuration as without successive halving for swiss roll and spirals data. For
the moons dataset, it identifies a different configuration, which still outperforms the baseline. By
applying successive halving enabled, the total time required was reduced by approximately 77.0%,
resulting in a 4.4x speedup across all datasets.

Despite these promising results, there was a hardware constraint that required us to conduct the
image experiments on a small dataset of only 1 000 images at a resolution of 64x64, which allowed
the use of a lightweight U-Net. It remains uncertain whether similar performance gains would
be observed on a more diverse or multi-class dataset. Additionally, these constraints limited the
number of trials, which in this study was capped at 50.

Future work For future research, the butterfly dataset used in this study, which contained only
1 000 images, could be replaced with a larger, more diverse, or multi-class dataset. Additionally,
while this study focused solely on the metric score of the experiments, future work could also capture
training time and GPU usage, allowing for a discussion between the trade-off of efficiency and quality.

This study demonstrates that the already powerful pixel-based diffusion model can be further
enhanced through the use of AutoML techniques, substantially reducing the time and expertise
required to identify a best-performing hyperparameter configuration.
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