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Abstract

The increasing prescription opioid usage requires new approaches that will be able to find
meaningful, interpretable patterns in medical data. This study aims to apply Truly Unordered
Rule Sets (TURS), an advanced machine learning model, and compare it with two baseline
association rule mining approaches, Apriori and FP-Growth. The purpose of this study
is to better understand the associations between social and psychological aspects in opioid
prescriptions. To achieve that, Dutch GP medical records are analyzed using the ELAN dataset.
TURS results are evaluated using metrics such as ROC AUC, coverage, average rule length,
and generalization gap. Apriori and FP-Growth have been evaluated with support, confidence,
lift, and conviction. The results show that TURS creates compact, non-overlapping rules that
generalize well, but the probabilities for individual rules are low because of the multiclass
nature of the data. While Apriori and FP-Growth retrieve many frequent patterns, MDL-based
TURS offers a probabilistic approach that focuses on compressing the data. In alignment
comparison, it uncovered 9 new associations within the data. Those rules show associations
between the prescription of Tramadol and problems with partner’s illness and transient stress
response, as well as a corelation between the prescription of Morphine, Buprenorphine, and
Codeine with sleep disorders. Both studies showed a correlation between memory disorders
and the prescription of Tramadol. Although promising, TURS proves to not perform best
with large datasets with unbalanced class distributions. Therefore, it may not yet be ready for
application in large healthcare settings.
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Abbreviations

ARM Association Rule Mining

ATC Anatomical Therapeutic Chemical classification system

CRISP-DM Cross Industry Standard Process for Data Mining

ELAN Extramural Leiden Academic Network Population Database

GP General Practitioner

ICPC International Classification of Primary Care

MDL Minimum Description Length

ML Machine Learning

OUD Opioid Use Disorder

TURS Truly Unordered Probabilistic Rule Sets
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1 Introduction

1.1 Research motivation

The rapid increase in opioid use can be classified as one of the important public health challenges of
the 21st century. The increase in opioid usage is particularly visible in the United States. However,
such worrying tendencies are also present in Europe. In the Netherlands alone, the number of
prescription opioid users nearly doubled from 4109 per 100,000 inhabitants to 7489 per 100,000
inhabitants between 2008 and 2017 (Kalkman, Kramers, van Dongen, van den Brink, & Schellekens,
2019). This rapid increase in just 9 years has been mainly caused by the increase in oxycodone
prescriptions, which quadrupled from 574 to 2568 per 100000 inhabitants. Due to this, the number
of opioid-related hospital admissions has tripled, and treatment for non-heroin opioid disorders
nearly doubled between 2008 and 2015. Between 2008 and 2014 opioid-related mortality rates
remained at the same level. However, by 2017 that amount has tripled.
A similar situation is visible across Europe. United Kingdom observed a quadruple increase in opioid
prescriptions between 2000 and 2010, with morphine being the most frequent prescription (Zin,
Chen, & Knaggs, 2014). Opioid use in Germany increased by 15 percent in that same time
period (Schubert, Ihle, & Sabatowski, 2013). Between 2004 and 2017, the use of strong opioids
more than doubled in France (Chenaf et al., 2019).
The United States of America has been touched the most by this crisis. The rapid increase in
prescription opioid use resulted in higher mortality rates. Between 1999 and 2007 this number
has tripled (Dhalla, Persaud, & Juurlink, 2011). During that time, studies have shown a five-time
increase in drug treatment admissions (Set, n.d.), while overdose deaths increased from 3000 to
12000 (Network, 2012). Currently, death by overdose is the second leading cause of unintentional
death in the United States (for Disease Control, Prevention, et al., 2013). The marked increase in
opioid prescriptions over recent decades can have its roots in several factors. Firstly, the expansion of
opioid use into chronic non-cancer pain treatment increased the total number of prescriptions (Dowell,
Haegerich, & Chou, 2016). Pharmaceutical marketing, particularly in the United States, also played
a crucial role, with various campaigns promoting opioids for common use (Van Zee, 2009).
Although the issue of opioid-related mortality rates in the Netherlands remains lower than in the
United States, it represents a worrying trend that should not be overlooked. Opioid use, especially
prolonged or misused, is associated with a range of negative outcomes, including an increased
risk of dependence, overdose, and death (Pergolizzi Jr, Raffa, & Rosenblatt, 2020). Beyond the
well-documented risks of overdose and dependence, prescription opioid use is associated with a
range of social and psychological consequences. They include depression (Scherrer et al., 2016),
sleep disturbances (Webster, Choi, Desai, Webster, & Grant, 2008), or cognitive decline such as
dementia (Sun, Chen, Wu, & Zhang, 2023). Identifying and understanding these associations is
crucial in order to gain awareness of the possible social and psychological risks associated with
opioid use.

1.2 Research Question

This paper will build on previous work by Ramya Tumkur Rameshchandra (Tumkur Rameshchan-
dra, 2024), which established baseline associations between opioid prescriptions and social or
psychological outcomes in Dutch general practice data. This time, it will focus on an application
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of an alternative machine learning (ML) principle called Minimum Description Length (MDL).
MDL-based method aims to extract high-quality patterns in the data (Galbrun, 2022), which is
crucial for this study. It is a principle used for model selection and is commonly applied in data
mining and machine learning applications. MDL-based approach has proven to be a promising
tool in the recent study conducted by Lincen Yang, where it was able to successfully balance the
complexity and fit of the model (L. Yang & van Leeuwen, 2024). This advantage is particularly
valuable in dealing with noisy and complex data, which is the case in medical datasets like ELAN,
where numerous factors and entries occur.

The main research question of this thesis is as follows:
RQ: To what extent does an MDL-based rule-mining approach improve over baseline
association rule mining in the analysis of social and psychological aspects of opioid
prescription data?

To thoroughly investigate this topic, the following sub-questions can be answered during the study:

• SQ1: How do the results from MDL method compare to those obtained during ARM in terms
of understanding the social and psychological effects of prescription opioids?

• SQ2: What are the advantages and limitations of MDL-based rule mining in identifying
patterns within the ELAN dataset?

1.3 CRISP-DM Framework

This research will largely follow the CRISP-DM framework. The Cross Industry Standard Process for
Data Mining (CRISP-DM) is a widely recognized methodology for data mining projects. Originally
developed in the late 1990s (Wirth & Hipp, 2000), CRISP-DM provides a repeatable framework
that supports various research analyses. Its iterative nature allows researchers to make adjustments
when needed and as new insights arise.
The CRISP-DM framework is based on six interconnected phases: Business Understanding, Data
Understanding, Data Preparation, Modeling, Evaluation, and Deployment. They can be seen in
Figure 1. In the context of this study, which examines associations between social and psychological
factors in opioid prescription patterns using advanced rule mining, these phases are adapted as
follows.

1. Business Understanding - Here, the focus has been put on the literature review on the
current state-of-the-art research in the medical field regarding the topic of opioids. Moreover,
a previous study on the Dutch GP dataset has been studied to understand its results and
limitations. MDL-based rule mining methods, particularly the Truly Unordered Probabilistic
Rule Sets (TURS), were examined to see the additional value they can provide for analysis of
medical datasets. The purpose of this step is to understand the current state of research and
notice its gaps.

3



Figure 1: CRISP-DM Framework in a Population Health contexts based on (Spruit, 2022).

2. Data Understanding - Dataset has been collected and studied. In this project, the dataset
consists of three linked components: patient records, clinical episodes, and medication pre-
scriptions. The files were analysed to gain an understanding of the contents of the dataset.
Data was assessed in terms of null values, and relevant variables were identified.

3. Data Preparation - Crucial step that is the foundation for further reliable modelling. For
this step, data was merged, filtered, and prepared for analysis. Special attention was paid to
extracting needed features and transforming them into a proper format for the TURS model.

4. Modelling - TURS algorithm has been applied with the MDL principle to identify proba-
bilistic rule sets.

5. Evaluation - The results were evaluated against the research objectives, and the research
questions were discussed in depth.

6. Deployment - Traditional CRISP-DM involves implementing the results in a real world
environment. While this thesis does not do this exactly, the step is instead addressed through
reflection on the work and discussion about the highlights and drawbacks of the results.

1.4 Outline

This thesis is organized into different sections. The abbreviation section lists concepts that show up
frequently in this paper and are important for the research. Chapter 1 introduces the Research
Question, its motivation, and describes the methodology framework. Chapter 2 reviews the relevant
literature, covering opioid-related research in medical and public health contexts, traditional
association rule mining approaches, and recent developments in MDL-based pattern discovery.
Chapter 3 describes the dataset and its preprocessing steps. Chapter 4 describes the methodology
for the analysis. Chapter 5 presents the results obtained during the study. Chapter 6 discusses the
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findings obtained in the MDL-based approach and compares them with those from the baseline
association rule mining. Chapter 7 summarizes the main conclusions and reflects on the strengths
and limitations of the study. Chapter 8 discusses potential directions for further research.

2 Background and Related Work

The literature review was performed using the Snowball method (Wohlin, 2014). It is an approach
in which relevant sources are tracked down by examining the reference lists and bibliographies of
other papers.

2.1 Opioids and Opioid Use Disorder

Opioids are substances commonly used for pain treatment. They consist of compounds that are
able to act on the opioid receptors of the body. There exist three known and documented receptors
- mu (µ), delta (δ), and kappa (κ) receptors (Al-Hasani & Bruchas, 2011). The term ’opioid’ refers
to natural, semi-synthetic, and synthetic substances, while the term ’opiate’ is used to describe
only natural substances. Opiates such as morphine and codeine are derived directly from the opium
poppy. Semi-synthetic variants include substances such as oxycodone and hydrocodone. Synthetic
opioids, such as fentanyl, are created in laboratories.
Although opioids can be highly effective in alleviating pain, their use carries a substantial risk of
dependence and addiction. This, in turn, can result in various health and social challenges. When
opioid use progresses to a pattern of compulsive consumption, it is classified as Opioid Use Disorder.
Opioid Use Disorder (OUD) refers to the chronic condition characterized by persistent use of opioids
despite its negative consequences, the development of tolerance, and withdrawal symptoms after
cutting the use of opioid substances (Taylor & Samet, 2022). Risk factors for OUD include current
or past opioid abuse, young age of the person, or social environment that encourages the misuse
of such substances (Webster, 2017). By 2020, the United States estimated around 3 million OUD
occurrences among its citizens (Dydyk, Jain, & Gupta, 2024).

2.2 Machine Learning in Healthcare and Opioid Research

Machine learning, in its various forms, contributed to the field of healthcare in a lot of ways. For
example, the Support Vector Machine (SVM) has been used for the diagnosis of heart failure,
scoring an accuracy of 74,44% (G. Yang et al., 2010). The decision tree classifier scored an accuracy
of 86,5% (Aljaaf et al., 2015). ML has also been used in decision support in infectious diseases,
the detection of diabetic retinopathy, or the health emergency management (G. Yang et al.,
2010) (Gulshan et al., 2016) (Lu, Christie, Nguyen, Freeman, & Hsu, 2022). ML methods are also
used in opioid research. One study evaluated the risk of opioid overdose among opioid prescription
patients (Lo-Ciganic et al., 2019). It utilized least absolute shrinkage and selection operator-type
regression (LASSO), gradient boost machine (GBM), deep neural networks (DNN) and random
forest (RF) which aimed to predict chances of overdose risk after initial prescription. GBM ad DNN
models outperformed the rest, achieving high prediction scores and grouping patients into three
different risk groups. Another study used electronic health records (EHR) to study the tendencies of
opioid-dependent patients to predict risks of overdose and opioid dependence (Ellis, Wang, Genes,
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& Ma’ayan, 2019). Through the Random Forest method, it was concluded that opioid-dependent
patients showed higher amounts of white blood cell (WBC) counts, respiratory issues, higher rates
of psychiatric conditions, as well as showed signs of malnutrition. A study in the United States
focused on the application of ML in order to better predict opioid misuse among adolescents (Han,
Lee, & Seo, 2020). Data, concerning youth between 12 and 17 years from 2015 to 2017, was analysed
with artificial neural networks (ANN), distribution random forest, and gradient boosting. The
results of all methods were similar and showed that 3,7% (1521) of the studied adolescents have
misused opioids before. Another study focused on finding an algorithm for reliable early OUD
detection (Segal et al., 2020). It used data from 550000 patient records and applied Word2Vec
alongside Gradient Boosting trees algorithm. The new model allowed for a 14.4 month earlier
diagnosis of OUD.
As can be seen, there exists numerous research on the topic of opioid misuse and OUD. However,
there is a gap in understanding the psychological and social effects of opioid prescription. In
her master thesis, Ramya (Tumkur Rameshchandra, 2024) studied these correlations in Dutch
medical data, implementing baseline machine learning methods such as Apriori and FP Growth.
Through her study, she was able to identify interesting patterns that will be discussed in more
detail in Section 5.1. This paper will continue her work through the implementation of an advanced
MDL-based ML technique, as it has not yet been used in the opioid domain.

2.3 Minimum Description Length Principle

The Minimum Description Length (MDL) is a principle that is the core foundation of the TURS
algorithm. MDL is a method of model selection grounded in information theory and statistical
inference. Over the decades, MDL has evolved into a powerful tool and has been applied in various
domains, such as malware detection or text summarization (Asadi & Varadharajan, 2019) (Vanetik
& Litvak, 2018). It was originally introduced by Rissanen (Rissanen, 1978) as a formalization of
Occam’s razor, which is a principle that states:

All else being equal, simpler explanations are preferable to more complex ones (Baker,
2022)

This means that when two potential explanations fit the data equally well, we prefer the simpler
one. MDL applies this idea through the number of bits required to describe the model and the
data when using that model. It aims to balance between oversimplifying and overcomplicating
the model. The reason for this is that very simple models (short L(M)) cannot capture enough
of the structure in the data, which in turn can lead to missing important patterns. On the other
hand, overly complex models result in large L(M) as the model description is long. MDL principle
searches for the model that will minimize the total number of bits. Mathematically, it is described
as follows:

MDL(M) = L(M) + L(D | M)

where
L(M) - description length, in bits
L(D | M) - length of the encoded data D
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Here, L(M) is responsible for capturing the complexity of the model, while L(D | M) describes the
fit of the model to the data. The role of the MDL principle is to strike a balance between these
two components (Galbrun, 2022). This means that patterns are selected when they contribute
to explaining the data more concisely, not just because they occur frequently. For example, the
KRIMP algorithm (Dutch for ’to shrink’) uses MDL by maintaining a code table that contains
both individual items and larger patterns, assigning shorter codes to those patterns that contribute
most to compression (van Leeuwen, Vreeken, & Siebes, 2006). During model building, KRIMP
iteratively replaces less useful patterns with ones that lead to better compression. In this thesis,
MDL is applied in the Truly Unordered Probabilistic Rule Sets (TURS) approach, which is another
example of the MDL-based algorithm that will be introduced in the following section.

2.4 Truly Unordered Probabilistic Rule Sets

Rule-based models are characterized by their interpretability. Due to that, they have been gaining
more attention in areas were research is related to sensitive real-world scenarios, such as healthcare
or justice systems (Rudin, 2019). However, they have their limitations. Firstly, rule set learning
imposes an order - rules are applied sequentially, and the first matching rule dictates the outcome.
Secondly, rules often overlap, and this problem is not being well handled, which leads to lower
interpretability and overall performance. To address these issues, Truly Unordered Probabilistic Rule
Sets approach was introduced by Lincen Yang and Matthijs van Leeuwen (L. Yang & van Leeuwen,
2024). TURS addresses both of those problems by removing rule ordering and incorporating
probabilistic reasoning. Probabilistic rules have a form of :

If X meets certain conditions, then P (Y ) = P̂ (Y ),

where X is the feature variables, Y is the target variable, and P̂ is the associated class probability
estimator. (L. Yang & van Leeuwen, 2024)

While one rule describes only a small subset of the whole dataset, rule-based models aim to gather
a certain number of such rules and form one global predictive model, which then can be easily read
by both data scientists, as well as people who are not related to this field. This is due to the fact
that outcome rules come in an easily understandable form.
To adress the issue of implicit rule orders, TURS allows rules to overlap only if they have similar
probability. Therefore, it does not matter which one is chosen, and thus each of them becomes
’independent’. TURS minimizes the total description length of the dataset by incrementally adding
rules that contribute most to compression. Unlike other baseline machine learning models, TURS
does not aim to find all frequent rules. Instead, it identifies a compact rule set that explains the
data efficiently. The crucial differences between the TURS and baseline ARM methods are described
in Table 1.

2.4.1 How TURS works

This section describes how the algorithm works, based on its pseudocode and the explanation
in (L. Yang & van Leeuwen, 2024).
At the start, data is encoded with a use of OneHotEncoder. The algorithm begins with an empty
rule set M and an initial ’Empty Rule’. At each iteration, two search beams of width W are kept.
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Table 1: Comparison between TURS, Apriori, and FP-Growth algorithms.

TURS Apriori FP-Growth

Task Multi-class classifica-
tion using probabilistic
unordered rule sets.

Frequent itemset min-
ing for association rule
generation.

Frequent itemset min-
ing using FP-tree com-
pression.

Principle Minimum Description
Length (MDL) for
model selection, beam
search for candidate
exploration.

Breadth-first search
over item combina-
tions

Depth-first pattern
growth

Rule ordering Truly unordered Ordered Ordered

Output Compact probabilistic
rule sets

Deterministic associa-
tion rules (antecedent
→ consequent)

Same as Apriori

Interpretability High — rules are short,
probabilistic, and over-
lap problem is re-
solved.

Moderate — rules can
be numerous and over-
lapping

Moderate — rules can
be numerous and over-
lapping
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The primary beam tracks the top-W candidate rule expansions based on a learning speed score
r(·). The second auxiliary beam keeps the top-W rule expansions ranked by a complementary score
R(·), which ignores any coverage overlap with the existing rule set. Candidate rules are created by
adding one new literal to each base rule. The numerical and categorical variables are being split.
Candidates are grouped by coverage for the primary beam and by residual coverage (excluding
instances already covered by M) for the auxiliary beam. An MDL-based test is applied to each
group, and the best rule in each group is kept.
The process repeats until a stopping condition is met. This happens when, for Kstop iterations,
neither beam finds better scoring rules than in the previous iteration. If this condition is not met,
both beams are reduced to width W by clustering on coverage and keeping the top-W rules per
cluster. The resulting rule sets are the base for the next iteration. Once the stopping condition is
satisfied, the algorithm selects and returns the candidate rule from all candidates with the highest
score r(·) and then considers whether to include it in the rule set M .

3 Dataset

3.1 Data Access

The dataset used in this study comes from the Extramural Leiden Academic Network (ELAN). It
contains records from over 100 general practitioners (GP) in Leiden and The Hague. To gain access
to the ELAN dataset, a formal request has been sent to LUMC faculty, and work was possible
through the LUMC network that enabled access to the PHEG departmental drive.

3.2 Dataset Description

3.2.1 Medical Coding Systems

The dataset uses medical coding systems that represent information about the patient in a consistent
way in medical records. In this paper, two coding systems are present. The International Classification
of Primary Care (ICPC) is a classification system for primary care analyses. Established in 1984 by
the World Organization of Family Doctors (WONCA), it is now widely used to register diagnoses
and health problems in standardized categories (Bentsen, 1986). Anatomical Therapeutic Chemical
Classification System (ATC), supported by the World Health Organization (WHO), classifies
medications according to the organ or system they act on.

3.2.2 Dataset Overview

Data used in the analysis included five separate files:

1. Two Patients files: Contain demographic and registration information about the patients,
such as gender, birth year, marital status, education, and registration dates.

2. Episodes file: Contain clinical episodes, their ICPC codes, start and end dates, and episode
types.
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3. Two Medications files: Contains prescribed medications, including ATC codes, dosage
information, and prescription dates.

Patient files and Medication files were joined respectively, as they related to the same information.
A more detailed overview of the data per file can be seen in Table 2, 3, and 4.

3.3 Data Filtering

The analysis focuses on exploring the relationship between psychological and social health aspects
of opioid prescription data. Inclusion criteria included:

• Psychological and social health aspects described by ICPC codes starting with ’P’ and ’Z’,
respectively.

• Above ICPC codes had to be diagnosed between 01/01/2010 and 31/12/2019.

• Prescription of opioid medications were marked by ATC codes starting with ’N01AH’ or
’N02A’.

Therefore, initial data filtering is based on these three indicators.
Firstly, episodes with ICPC codes beginning with ”P” or ”Z” between the years 2010 and 2019
were extracted. Patients and medications files were then filtered to include only those linked to the
selected episodes. All files were merged on Patient ID field (PATNR) which is the only field that
connected all files. EpisodeID proved to have no correlation between Episode and Medication files.
Only parent ICPC codes were considered, which means that only the first three characters were
considered (for example, all occurrences of Z16.03 were reduced to Z16)
As can be seen in Table 2, 3, and 4, many columns have large amount of missing values, which
severely affects further research. Variables such as country, martial status or age could not be
included in the research, as imputation in those cases would result in unreliable results. Therefore,
gender has been assessed as a promising feature.
Each file was checked for duplicate entries, which were removed. The ICPC and ATC codes were
then aggregated by patient.

3.4 Data Analysis

Data analysis was performed using the matplotlib, numpy, and seaborn libraries in Python. This
exploratory stage provided key insights into the dataset and patient characteristics, as illustrated
in the figures below. Between 2010 and 2019, a total of 153,919 patients were prescribed opioids.
Majority - 62.32% - were women while the remaining 37.68% were men.
Figure 2 represents a bar plot showing the distribution of ATC codes among patients. It can be
seen that a small subset of opioid prescriptions dominates the dataset, while the rest is rarely
prescribed. By far, the most frequent medication was Tramadol (N02AX02), which was prescribed
54454 times. Next in line were Fentanyl (N02AA05) and Oxycodone (N02AJ06).
Figure 3 shows the same distribution, however here it is also divided by gender. It should be
noted that in all visible cases women are the majority of the patients with prescribed opioids. It
is especially visible in the case of N02AX02, where only around 20000 men were prescribed the
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Variable Translation Non-null Count

PATNR Patient Number 313776
PRAKNR Practice Number 313776
Woonverband Residential number 292757
dWoonverbandsoort Type of residence 17324
dWoonverbandpositie Position in patient’s living environment 19650
dPostcodecijfers Postcode 312105
iGeboortejaar Year of birth 313776
iOverlijdensjaar Year of death 757
dGeslacht Gender 313776
Thuisland Country 8173
dBurgerlijkeStaat Marital status 15430
Beroep Profession 1557
dOpleiding Education 59
dInschrijfdatum Date of registration with healthcare provide 309696
dUitschrijfdatum Date of deregistration with healthcare provider 59273
dRedenVertrek Reason for deregistration 55196

Table 2: Non-null count of variables in Patient Data.

Variable Translation Non-null Count

PATNR Patient Number 1003117
PRAKNR Practice Number 1003117
EpisodeID Episode Number 1003117
dBegindatum Start date of episode 1003117
dEinddatum End date of episode 166780
dMutatiedatum Date of last change in episode registration 900466
dICPC ICPC code registered during episode 1003117
dEpisodetype Indicator for the type of episode 992696
dActief Episode activity 900466
dAttentie Indicator for the attention value of the episode 55257

Table 3: Non-null count of variables in Episode Data.
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Variable Translation Non-null
Count

PATNR Patient Number 1177433
PRAKNR Practice Number 1177433
EpisodeID Episode Number 1119492
dVoorschrijfdatum Prescription date 1177433
dEinddatum Date until which medicine was prescribed 1076319
dStopdatum Date on which medication was stopped 8718
Etiketnaam Name of medicine 1135055
dPRK KNMP-Prescription code 1067096
dGPK KNMP-Generic product code 1067325
dATC ATC Code 1177433
dChronisch Chronic medication indicator 51096
dDuur Prescription length in days 51466
dIteraties Number of permitted repeat prescriptions 2251
dHoeveelheid Quantity 1177075
Dosiscode Dosage code 1158590
dSterkte Strength of drug 1007153
dToedieningomschrijvingRoute of medication administration 802138
dVoorschriftICPC ICPC code of diagnosis for which medication

was prescribed
295500

dEpisodeICPC ICPC code of episode 437826
dSpecialisme Medical speciality of the prescriber 1044430

Table 4: Non-null count of variables in Medication Data.
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substance, in contrast to around 34000 women.
Figure 4 shows a respective representation for ICPC codes. The most frequent diagnosis concerns
insomnia and other sleep disorders (P06), occurring more than 20000 times. Tobacco abuse (P17)
and feeling of anxiety (P01) take second and third place, respectively.
Figure 5 represents the gender division of ICPC diagnoses. Here, women are also a majority in
every ICPC occurrence.
Frequency of prescriptions over time can be seen in Figure 6. It is clear that over the years there was
an increasing trend in opioid prescription, with a value around 90000 in 2010, and more than 130000
in 2018. However, the number slightly decreased in 2019 to around 120000 opioid prescriptions.
Figure 7 represents the age distribution of the patients at the time of the prescription of the
medicine. Age has been determined by subtracting the birth year from the prescription date. It is
clear that the highest prescription rate occurs between 50 and 60 years, slowly dropping over time.
Moreover, it is worth noting that while it may not seem significant, the young age group between
20 and 30 years old has been prescribed opioids around 45000 during the given period of time. It
seems to confirm the fact that opioid usage concerns almost all age groups.

Figure 2: Distribution of ATC codes among patients.

Figure 3: Top 20 ATC codes among patients with gender distribution.
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Figure 4: Distribution of ICPC codes among patients.

Figure 5: Top 15 ICPC codes among patients with gender distribution.

Figure 6: Number of prescribed opioids per year between 2010 and 2019.
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Figure 7: Age distribution of the patients at the time of the prescription of the medicine.

3.5 Feature and target construction

Multiple data transformation strategies were explored to effectively prepare the dataset for analysis
using the MDL-based TURS algorithm. Each strategy attempted to maintain data granularity,
minimize sparsity, and align with the input requirements of TURS. Therefore, it was crucial to
pass properly formatted dataset to derive meaningful rules. The main approaches considered in
this research were as follows:

1. Wide Format with One-Hot Encoding: Each ICPC and ATC code was converted into its
own binary feature column (1 = present, NaN = absent). However, this resulted in a highly
sparse matrix that resulted in no rules found.

2. Compact Patient-wise Format: An attempt was made to structure the data set so that
each row corresponded to a single patient, with a column for gender, a list of ICPC codes,
and a list of ATC codes. Although semantically intuitive, this format caused an important
issue. The first concern was losing granularity, as TURS was not able to encode a list of codes
in one column as separate features. Instead, it encoded each list as a whole entity and thus
was excluded from further analysis.

3. Row-wise Long Format: The most promising method transformed the dataset into a long
format, where each row represented a single feature-target pair. For example, a patient with
three ICPC codes and one ATC code would be represented by three rows. This preserved
granularity and eliminated false negatives from NaN or 0 values. This method means that
there will be more than one row per patient. This method was chosen as the most promising
option and was considered further.

An additional challenge was that TURS requires the data to consist of a target column that
corresponds to the part of the rule ”THEN”. The target column needs to be placed as the last
column in the dataset, therefore a proper preprocessing was done. Two different target columns
were chosen to align with the research question, and thus the dataset was prepared in two different
ways. The first target column was based on ICPC codes and the second column was based on ATC
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codes. In this way, it was possible to obtain a more complete understanding of the patterns and
correlations between opioid use and social and psychological diagnoses.
Dimensionality reduction was applied across all approaches in order to ensure the effectiveness of
the model. It was done by setting a threshold and excluding all ICPC and ATC codes that fell
below that value from the TURS analysis. This reduced the rule space, improved runtime, and
did not harm the output of the model since the results prior to this reduction did not consider
those codes in any way. The most frequent ACT codes that were included in further research are
ordered by frequency and can be seen in Table 5 and 6. The most frequent P/Z ICPC codes that
were diagnosed in further research are ordered by frequency and listed below.

ATC code Medication

N02AX02 Tramadol
N02AB03 Fentanyl
N02AA05 Oxycodone
N02AA01 Morphine
N02AJ06 Codeine and Paracetamol
N02AJ13 Tramadol and Paracetamol
N02AA59 Codeine, combinations excluding psycholeptics
N02AX52 Tramadol combinations
N02AE01 Buprenorphine

Table 5: Most frequent ACT codes, exceeding the set threshold.
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ICPC code Diagnosis

P06 Insomnia/other sleep disorder
P17 Tobacco abuse
P01 Feeling anxious/nervous/tense
P03 Feeling down/depressed
P78 Overvoltage
P20 Memory/concentration/orientation disorders
Z12 Relationship problem with partner
Z15 Loss/death of partner
P70 Dementia
P29 Other psychological symp- toms/complaints
Z05 Problem with work situation
P15 Chronic alcohol abuse
Z18 Problem with child’s illness
P71 Other organic psychosis(s)
P21 Attention-deficit/hyperactivity dis- order
Z16 Relationship problem with child
P76 Depression
P02 Crisis/transient stress response
P74 Anxiety disorder/anxiety state
P99 Other mental disorders
Z25 Problem due to violence
P22 Other child behavior concerns
P18 Drug abuse
P04 Irritable/angry feeling/behavior
Z03 Housing/neighborhood problem
P19 Substance abuse
P12 Enuresis [ex. U04]
P24 Specific learning difficulty
Z22 Problem with illness of par- ents/family
Z20 Relationship problem with par- ents/family
Z23 Loss/death of parents/family
Z14 Problem with partner’s illness
Z29 Other social problem

Table 6: Most frequent ICPC codes, exceeding the set threshold.
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4 Methodology

4.1 Baseline ML with Apriori and FP-Growth

A prior study conducted by Ramya Tumkur Rameshchandra (Tumkur Rameshchandra, 2024)
examined the same social and psychological correlates of prescription opioid use on ELAN data
from 2010 to 2019. The dataset consisted of a total of 313,776 patients, where opioid prescriptions
was identified using ATC codes in the N01AH* and N02A* categories. Diagnoses were identified by
ICPC P (psychological) and Z (social) codes, and data preparation was made on the same basis as
the one in this paper, excluding final data transformation step for feeding the model. Here, tuples
with gender, ICPC codes and ATC codes per patient were used as an input for the models.
The analysis applied baseline association rule mining (ARM) techniques, using the Apriori and
FP-growth algorithms to find patterns between patients’ gender, diagnoses, and prescribed opioids.
Rules were checked through the following measures:

• Support — How frequently an itemset appears in the dataset:

support(A → B) =
number of transactions containing (A ∪B)

number of total transactions

Used in Apriori and FP Growth to filter itemsets that occur often enough to be statistically
relevant.

• Confidence — Reliability of the rule:

conf(A → B) ==
supp(A ∩B)

supp(A)

High confidence means B frequently follows A.

• Lift — Measures how much more likely B is given A compared to B occurring independently:

lift(A → B) =
supp(A ∪B)

supp(A) supp(B)

Lift > 1 indicates a positive association; Lift < 1 indicates a negative association.

• Conviction — Measures the degree of dependence, considering the frequency of A without
B:

conviction(A → B) =
1− support(B)

1− confidence(A → B)

Higher conviction indicates stronger dependence.

• Leverage — Measures the difference between the observed co-occurrence of A and B and
what would be expected if they were independent:

leverage(A → B) = support(A ∪B)− support(A)× support(B)

Values close to zero indicate independence; positive values mean positive correlation.
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4.2 TURS set up

TURS iteratively searches for rules that compress and describe the dataset best. The implementation
had the following parameters:

max num rules: 500 Maximum number of rules allowed in the model. It is a safe high threshold
to ensure all important rules will be included.

max grow iter: 500 Maximum iterations allowed during rule search.

beam width: 10 Width of the search beam for rule candidates. It encourages diversity in candidate
rules without overwhelming the memory usage.

candidate cut points: 20 for numeric features

The analysis is performed through five-fold stratified cross-validation. Datasets that were provided
to the model have been described in section 3.5. TURS requires the last column of the data to be a
target label. Thus, one of the dataset had ATC codes as the target column, while the second had
ICPC codes as the target.
Several metrics were used to show the performance of the model. Probability metric assesses
how confident the rule is in predicting a class. Coverage outputs the amount of instances when a
certain rule was seen in data. Train and test probability difference shows how stable the
probability is between the train and test data. Lower score implies more stable rules. ROCAUC
score for test and train data measures model’s ability for generalization - high scores for
both components mean that TURS generalizes well. If Generalization gap, measured by the
difference of those two scores, will be high, it will imply overfitting of the model. Average rule

length puts shorter rules in favor, as TURS aims to achieve compactness through the MDL
principle. Another important metric is Overlap. It will look at those instances that were covered
by more than one rule. For good TURS performance, this score should be minimal.

4.3 Comparative rule analysis

Evaluation metrics for baseline ML approaches and TURS are not directly comparable. TURS
provides probability and coverage for each rule, while the Apriori and FP-Growth rules are described
by support, confidence, lift, leverage, and conviction. For this reason, the alignment was based
primarily on the content of the rules, that is the overlap between the antecedent conditions and
the target outcomes. The overlap was measured using the Jaccard similarity of the rules. For two
sets A and B representing the items of a TURS rule and a baseline rule, the Jaccard similarity is
defined as:

J(A,B) =
|A ∩B|
|A ∪B|

, 0 ≤ J(A,B) ≤ 1.

Based on this calculation, each rule combination, if it existed, was assigned to one of the three
categories according to the relevant Jaccard score threshold. The thresholds were chosen to balance
strictness and inclusion, as well as take into account the relatively low average amount of features
in each rule. Exact match describes a perfect overlap, that is all parts of the rule of one method are
present in the other. Close alignment makes sure that rules are considered similar when two-thirds
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of their conditions overlap. A lower bound of 0.4 defines the Partial alignment, while values below
0.4 are classified as Novel:

Alignment(A,B) =


Exact if J(A,B) = 1

Close if 0.65 ≤ J(A,B) < 1

Partial if 0.40 ≤ J(A,B) < 0.65

Novel if J(A,B) < 0.40

To evaluate to what extent an MDL-based TURS improves over the baseline association rule
mining, the rules retrieved by TURS were aligned with the 133 rules previously obtained using
Apriori and FP-Growth. The complete overview of the baseline rules can be seen in Table 9 in
(Tumkur Rameshchandra, 2024).
Each TURS rule is translated to English, and matching IDs from previous research are provided. In
case no relevant matching rules were found, a No matching baseline rule message is displayed.

5 Results

5.1 Baseline study

The application of Apriori and FP-growth resulted in over 130 rules. In the end, the ones that were
considered important are listed below:

• Higher opioid perscriptions among women

• Fentanyl and morphine associated with dementia

• Fentanyl, tramadol, and morphine correlated with memory, concentration, and orientation
disorder

• Correlation between many opioids and sleep disorders

• Tramadol and oxycodone associated with depression

• Tramadol and oxycodone prescribed to patients who reported the loss or death of a partner

• Fentanyl, morphine, and codeine negatively associated with tobacco abuse

• Chronic alcohol and substance abuse occurred mainly among men

• Women associated with having problems with child’s illness

• Attention deficit and hyperactivity disorder associated more with men

The issue with this approach was the noisy and overlapping output. Apriori and FP-growth select
rules independently from each other. Thus, they do not optimize them globally, which causes
redundancy. In an attempt to overcome this problem, TURS is implemented on the same dataset.
Additional exploratory analyses were performed, including multiple correspondence analysis (MCA),
autoencoders, and temporal long short-term memory (T-LSTM) models with an aim to create
patient clusters and subtyping. However, these methods provided clusters that were too large and
not suitable for clinical interpretation, thus they were not considered further.
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5.2 Truly Unordered Probabilistic Rule Sets

Analysis of the first dataset (ICPC as a target) resulted in 12 rules. The second dataset (ACT as a
target) resulted in 20 rules. The results can be seen in Table 7, where each rule is assigned its own
ID number. Immediately, it is noticeable that the predicted probabilities for all rules are relatively
low. This is expected as TURS is designed for multiclass classification. This means that the overall
probability (that sums up to 1) must be distributed across multiple possible classes. Consequently,
even the most confident rule will rarely reach a high probability score.
Table 8 provides model performance metrics. There are several correlations that can be derived
from the rulesets:

• Prescription opioids (i.e Buprenorphine, Tramadol) are often correlated with insomnia or
other sleep disorders (1.3, 1.7)

• Strong correlation between being a man, being prescribed Oxycodone, and struggling with
insomnia (1.6)

• Corelation between being a man, dementia, and being prescribed Tramadol (2.2)

• Corelation between Tramadol prescription and relationship problems with a partner or loss of
a partner (2.7, 2.8, 2.12)

• Strong corelation between feeling depressed and Tramadol prescription (2.19)

• Corelation between being a man, tobacco abuse and Tramadol prescription (2.13)

• Corelation between memory disorders and Tramadol prescription (2.1, 2.2, 2.3, 2.5)

Several rules are complementary in terms of gender, and when put together, they create a more infor-
mative correlation. Rules 2.3 and 2.5 show a corelation between memory/concentration/orientation
disorders and Tramadol for both men and women. Thus, together they create a rule that is true for
both genders. Rules 2.7 and 2.12 together create a correlation between relationship problem with
partner and prescription of Tramadol. Rule 2.4 and 2.16 associate the problem with the partner’s
illness with the Tramadol prescription. Rules 2.10 and 2.15 show that both genders have a corelation
between insomnia and Tramadol. Rules 2.1 and 2.2 create an association between dementia and
the prescription of Tramadol, regardless of gender.
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Table 7: Results from the TURS algorithm, including rules ’If ... Then’, Probability scores and
Coverage. First digit in Rule ID cells describe the dataset it comes from. Dataset 1 (ID 1.*)
describes the dataset with ICPC code as the target label. Dataset 2 (ID 2.*) describes the dataset
with ATC code as the target label.

Rule ID Features (if) Target
(then)

Probability Coverage

1.1 M=0; N02AB03=1 P06 0.1866 8736
1.2 V=0; N02AB03=1 P06 0.2101 3998
1.3 N02AE01=1 P06 0.1928 3750
1.4 M=0; N02AA01=1 P06 0.1682 7080
1.5 V=0; N02AA01=1 P06 0.1970 4117
1.6 M=1; N02AA05=1 P06 0.2026 12368
1.7 V=0; N02AX02=1 P06 0.1843 21885
1.8 M=1; N02AA05=0; N02AA59=0;

N02AJ06=0; N02AJ13=0;
N02AX02=0;

P06 0.1900 5583

1.9 M=1; N02AA05=0; N02AA59=0;
N02AJ06=0; N02AX02=0;
N02AX52=1

P06 0.1859 4636

1.10 V=0; N02AJ06=1 P06 0.1776 9869
1.11 V=0; N02AA59=1; N02AJ06=0;

N02AX02=0
P06 0.1864 3546

1.12 N02AX02=1 P06 0.1664 65904
2.1 M=0; P70=1 N02AX02 0.2013 5247
2.2 M=1; P70=1 N02AX02 0.2279 2238
2.3 V= 1; P20=1 N02AX02 0.2453 8101
2.4 M=1; Z14=1 N02AX02 0.3026 2095
2.5 M=1;P20=1 N02AX02 0.2667 4589
2.6 M=0;Z15=1 N02AX02 0.2574 8026
2.7 M=1;Z12=1 N02AX02 0.3809 3211
2.8 M=1;Z15=1 N02AX02 0.2795 2683
2.9 M=1 ;P78=1 N02AX02 0.3713 2852
2.10 M=1;P06=1 N02AX02 0.3165 12911
2.11 M=0; P78=1 N02AX02 0.3486 7552
2.12 M=0;Z12=1 N02AX02 0.3455 6817
2.13 M=1;P17=1 N02AX02 0.3559 8701
2.14 M=0; P02=1 N02AX02 0.3252 10079
2.15 V=1;P06=1 N02AX02 0.2892 23879
2.16 M=0; Z14=1 N02AX02 0.2846 4501
2.17 P29=1 N02AX02 0.3061 6834
2.18 M=1; P01=1 N02AX02 0.3499 4881
2.19 P03=1 N02AX02 0.3129 11877
2.20 P02=0; P17=0; P76=1 N02AX02 0.3200 17785
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Table 8: TURS Model metrics. Dataset 1 (ID 1) describes the dataset with ICPC code as the target
label. Dataset 2 (ID 2) describes the dataset with ATC code as the target label.

ID ROCAUC
Test

ROCAUC
Train

Gen
Gap

LogLoss
Test

LogLoss
Train

Avg rule
length

train test
prob diff

overlap
perc

1 0.535660 0.537767 0.002107 2.67237 2.67167 2.818 0.00198 0
2 0.544074 0.547459 0.003385 1.93261 1.93113 1.85 0.00456 0.000019

5.3 Comparison

Table 9 summarizes the results of the comparison. Out of 32 TURS rules, none of them were
classified as an Exact match with the baseline rules. 7 rules (2.1, 2.2, 2.3, 2.5, 2.7, 2.12, 2.19) were
identified as a Close match, which counts for approximately 21,9 % of the ruleset. 11 rules (1.7,
1.10, 2.6, 2.8, 2.9, 2.10, 2.13, 2.15, 2.18) were aligned on a Partial level, and 5 on a Novel level
(1.1, 1.2, 1.6, 1.8, 1.9). 9 TURS rules were not covered by any rule of the Apriori and FP-growth
set, which represents approximately 28,1 % of the instances.
Rules which are are unique to this method are as follows:

1.3 If Buprenorphine, then Insomnia/other sleep disorder (probability: 0.1928, coverage: 3750)

1.4 If not a man and Morphine, then Insomnia/other sleep disorder (probability: 0.1682, coverage:
7080)

1.5 If not a woman and Morphine, then Insomnia/other sleep disorder (probability: 0.1970,
coverage: 4117)

1.11 If not a woman and Codeine, combinations excluding psycholeptics, then Insomnia/other
sleep disorder (probability: 0.1864, coverage: 3546)

2.4 If man and Problem with partner’s illness, then Tramadol (probability: 0.3026, coverage:
2095)

2.14 If not a man and Crisis/transient stress response, then Tramadol (probability: 0.3253, coverage:
10079)

2.16 If not a man and Problem with partner’s illness, then Tramadol (probability: 0.2846, coverage:
4501)

2.17 If Other psychological symptoms/complaints, then Tramadol (probability: 0.3061, coverage:
6834)

2.20 If not Crisis/transient stress response; not Tobacco abuse; Depression, then Tramadol (proba-
bility: 0.3200, coverage: 17785)

The TURS rules that are closely aligned with the baseline rule(s) are as follows:

2.1 If not a man and Dementia, then Tramadol (probability: 0.2013, coverage: 5247)
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2.2 If man and Dementia, then Tramadol (probability: 0.2279, coverage: 2238)

2.3 If woman and Memory/concentration/orientation disorders, then Tramadol (probability:
0.2453, coverage: 8101)

2.5 If man and Memory/concentration/orientation disorders, then Tramadol (probability: 0.2667,
coverage: 4589)

2.7 If man and Relationship problem with partner, then Tramadol (probability: 0.3809, coverage:
3211)

2.12 If not a man and Relationship problem with partner, then Tramadol (probability: 0.3455,
coverage: 6817)

2.19 If Feeling down/depressed, then Tramadol (probability: 0.3129, coverage: 11877)

Rules 2.3 and 2.4 together create an association between the Memory/concentration/orientation
disorders and the Tramadol prescription for both genders, which then creates an Exact match with
the baseline rule I103.

Table 9: Comparison of TURS rules with Apriori & FP-Growth rules. Rules that are the most
aligned across the methods are marked with green color in the last column. TURS rules that did
not match any rules from the baseline approach are marked with the No matching baseline rule

message.

Begin of Table
TURS rule ID English description of rule Matched base-

line rule ID(s)
Align level

1.1 If man=0 and Fentanyl=1, then Insom-
nia/other sleep disorder.

I12 Novel

1.2 If woman=0 and Fentanyl=1, then Insom-
nia/other sleep disorder.

I12 Novel

1.3 If Buprenorphine=1, then Insom-
nia/other sleep disorder.

No matching
baseline rule

-

1.4 If man=0 and Morphine=1, then Insom-
nia/other sleep disorder.

No matching
baseline rule

-

1.5 If woman=0 and Morphine=1, then In-
somnia/other sleep disorder.

No matching
baseline rule

-

1.6 If man=1 and Oxycodone=1, then Insom-
nia/other sleep disorder.

I12 Novel

1.7 If woman=0 and Tramadol=1, then In-
somnia/other sleep disorder.

I22, I12 Partial
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Continuation of Table
TURS rule ID English description of rule Matched base-

line rule ID(s)
Align level

1.8 If man=1 and Oxycodone=0; Codeine,
combinations excluding psycholep-
tics=0; Codeine and Paracetamol=0;
Tramadol and Paracetamol=0; Tra-
madol=0;, then Insomnia/other sleep
disorder.

I12 Novel

1.9 If man=1 and Oxycodone=0; Codeine,
combinations excluding psycholep-
tics=0; Codeine and Paracetamol=0;
Tramadol=0; Tramadol combina-
tions=1, then Insomnia/other sleep
disorder.

I13 Novel

1.10 If woman=0 and Codeine and Paraceta-
mol=1, then Insomnia/other sleep disor-
der.

I22 Partial

1.11 If woman=0 and Codeine, combinations
excluding psycholeptics=1, then Insom-
nia/other sleep disorder.

No matching
baseline rule

-

1.12 If Tramadol=1, then Insomnia/other
sleep disorder.

I12, I22 Partial

2.1 If man=0 and Dementia=1, then Tra-
madol.

I121 Close

2.2 If man=1 and Dementia=1, then Tra-
madol.

I121 Close

2.3 If woman=1 and Mem-
ory/concentration/orientation dis-
orders=1, then Tramadol.

I40, I103 Close

2.4 If man=1 and Problem with partner’s
illness=1, then Tramadol.

No matching
baseline rule

-

2.5 If man=1 and Mem-
ory/concentration/orientation dis-
orders=1, then Tramadol.

I40, I103 Close

2.6 If man=0 and Loss/death of partner=1,
then Tramadol.

I44 Partial

2.7 If man=1 and Relationship problem
with partner=1, then Tramadol.

I42, I75 Close

2.8 If man=1 and Loss/death of partner=1,
then Tramadol.

I44 Partial

2.9 If man=1 and Overvoltage=1, then Tra-
madol.

I49, I107 Partial
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Continuation of Table
TURS rule ID English description of rule Matched base-

line rule ID(s)
Align level

2.10 If man=1 and Insomnia/other sleep dis-
order=1, then Tramadol.

I33, I49 Partial

2.11 If man=0 and Overvoltage=1, then Tra-
madol.

I49, I107 Partial

2.12 If man=0 and Relationship problem
with partner=1, then Tramadol.

I42, I75 Close

2.13 If man=1 and Tobacco abuse=1, then
Tramadol.

I32, I33, I41 Partial

2.14 If man=0 and Crisis/transient stress re-
sponse=1, then Tramadol.

No matching
baseline rule

-

2.15 If woman=1 and Insomnia/other sleep
disorder=1, then Tramadol.

I42, I49 Partial

2.16 If man=0 and Problem with partner’s
illness=1, then Tramadol.

No matching
baseline rule

-

2.17 If Other psychological symp-
toms/complaints=1, then Tramadol.

No matching
baseline rule

-

2.18 If man=1 and Feeling anx-
ious/nervous/tense=1, then Tramadol.

I41 Partial

2.19 If Feeling down/depressed=1, then Tra-
madol.

I68 Close

2.20 If Crisis/transient stress response=0;
Tobacco abuse=0; Depression=1, then
Tramadol.

No matching
baseline rule

-

End of Table

6 Discussion

Dataset 1 contained a larger number of distinct target labels, as number of ICPC codes was higher.
This resulted in the lower probabilities assigned to each individual class, compared to those observed
in Dataset 2, where the number of ATC labels was smaller. ROCAUC scores for both datasets imply
that the model generalizes better than a random guessing. However, they are not much better than
that. This is likely due to the fact that there exist many possible target labels. While rules cover
objectively large portions of the dataset, they are not strongly predictive. Generalization Gap

scores in both cases are very low, which suggests that the model does not have the problem with
overfitting, as performance is almost identical in the train and test data. Average rule length

is better for the second dataset, however both models perform very well. Rules are short and
thus easy to interpret. On the other hand, they might be too general, which correlates to low
ROCAUC values. Train - test probability difference scores are close to zero, which means
that predictions remained stable between the two stages. Overlap percentage scores are zero and
almost zero, respectively. This makes the rules mutually exclusive and implies that each instance in
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the dataset was covered by at most one rule. In conclusion, it can be understood that TURS ruleset
contains short rules that do not overlap and do not overfit. However, ROCAUC score suggests that
they do not capture strong predictive patterns.
Most rules assign the most frequent code in the dataset as their predicted label. This shows the
influence of class imbalance on the TURS model, which aims to maximize coverage. In this case,
it reduced the algorithm’s ability to detect meaningful patterns for less frequent labels, which
highlights the drawback of the TURS method. Another reason for the worse performance can be
the size of the dataset. The initial research with TURS tested the algorithm on considerably smaller
datasets (L. Yang & van Leeuwen, 2024). There exists a study on a larger dataset, yet it proved
TURS to not be reliable. The main reason for this was the large size of the data and the skewed
distribution of the target features (Peeters, 2025). It correlates to the characteristics of this study.
TURS output had significantly fewer rules in comparison to Apriori and FP Growth. This is due to
the Minimum Description Length principle, which prioritizes compression. Unlike Apriori, which
finds all frequent co-occurrences above a threshold, TURS selectively identifies only those rules
that contribute to compressing the dataset. While Apriori and FP-growth returned over 130 rules,
many of these were variations of the same underlying patterns, which did not happen with TURS
implementation. An important feature of the TURS results is the presence of rules that include
absence conditions, such as “if P06 = 0”. Such patterns could not be generated by Apriori or
FP-Growth, since those methods operate only on the item presence and do not encode the absence
of attributes. This nuance contributed to the presence of new rules.
Data preprocessing played an important role in this study. While several methods were considered,
the required input format of the TURS model made it a challenging. Several associations were
found during the research. Prescription opioids such as Buprenorphie and Tramadol are often
correlated with insomnia and other sleep disorders. This is an insightful association, as it has
been identified in the previous baseline research on the same data. Moreover, there exist studies
regarding this phenomenon (Cheatle & Webster, 2015) (Serdarevic, Osborne, Striley, & Cottler,
2017). A correlation was found between being a male, being prescribed Oxycodone, and struggling
with insomnia. This rule scored coverage of 12368 and 0.2026 probability, which is a high score in
the given dataset. Many associations have been found between the prescription of Tramadol and
various psychological and social diagnosis. They include relationship problems with a partner, loss
of a partner, depression, and memory disorders. There exist studies that connect the prescription
of Tramadol to various problems with memory (Bassiony et al., 2017). This corelation was also
found during the baseline ARM study. Moreover, there exist medical cases in which Tramadol has
been used in treating depression caused by social loss (Rougemont-Bücking, Gamma, & Panksepp,
2017). Another association that was found connected being a man, tobacco abuse and Tramadol
prescription. It scored a relatively high probability of 0.3559.
During the alignment comparison of the TURS, Apriori, and FP-Growth results, it became clear that
while some rules were overlapping, TURS produced 9 new rules. Firstly, it identified a correlation
between the problem with partner’s illness and the Tramadol prescription. Secondly, there was
an association between codeine and buprenorphine with sleep disorders. Thirdly, an association
between the stress response and other psychological complaints with the Tramadol prescription
was found.
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7 Conclusion

This study investigated the application of a MDL-based approach TURS to the analysis of social
and psychological aspects of opioid prescription data, and contrasted it with baseline association
rule mining.
RQ: To what extent does an MDL-based rule-mining approach improve over baseline
association rule mining in the analysis of social and psychological aspects of opioid
prescription data?
MDL-based approach improves over the baseline association rule mining by producing a compact
set of probabilistic rules that generalized above the random guessing threshold in the training and
testing data. TURS enhanced interpretability and reduced redundancy which was present in Apriori
and FP-growth. Direct comparison of performance was not possible between those methods, as
TURS does not operate on the same performance metrics. However, an alternative comparison was
performed by the rule alignment check, which concluded that 9 new rules were discovered by the
TURS algorithm. The remaining 23 rules overlapped with the results from the baseline approach.
SQ1: How do the results from MDL method compare to those obtained during ARM
in terms of understanding the social and psychological effects of prescription opioids?
ARM approach obtained over 130 results. Only a subset of those rules was deemed interesting
and interpreted. MDL method provided a smaller set of rules, which lacked some of the insights
gained through the ARM approach. TURS found correlations between Tramadol and various social
and psychological conditions, as well as connected numerous opioids to the diagnosis of insomnia.
ARM methods found some additional patterns, such as association of morphine or fentanyl with
dementia, or assigning the problem of chronic alcohol abuse to men. On the other hand, TURS
found new correlations between Tramadol and problems with partner’s illness and stress response,
or association between codeine and buprenorphine with sleep disorders.
SQ2: What are the advantages and limitations of MDL-based rule mining in identifying
patterns within the ELAN dataset?
The primary advantage of the MDL approach is the generation of small, non-overlapping set of
interpretable rules, which can make it easier for healthcare domain experts to validate them in the
clinical context. Additionally, the performance metrics show that TURS performed very well in
terms of average rule length, Generalization Gap or Test-Train probability difference. This means
that it is a reliable model for probabilistic rule mining. Limitations of the MDL-based approach
include sensitivity to the class imbalance, which in turn can cause the model to omit important, but
rare occurrences in the data. TURS does not handle large datasets well, which also could be the
reason for lower performance on the ROCAUC metric. Moreover, the required data input format
for the TURS model did not suit the ELAN framework well. Therefore, while promising, TURS
cannot be applied yet to large scale healthcare settings.

8 Further Research

There exist several ways in which this research can be extended. Future work should evaluate
TURS on alternative healthcare datasets with a lower count of null values and more balanced class
distributions. It would also be beneficial if there exist more variables between files that connected
all information. This could enable the model to find a richer set of patterns while still keeping it
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compact.
Opioid related research would be more insightful if it included richer patient details, such as country
of origin, martial status, education level or profession. Currently, this inclusion was not possible
due to the large amount of null values. Including them in the next research would be beneficial for
a deeper understanding of this topic.
Furthermore, the study revealed that TURS is sensitive to its input. Due to the csv-only input
format and the nature of ELAN dataset, it has been difficult to optimally prepare the data.
Developing other input methods could potentially improve model’s performance in finding the best
rulesets.
Future work could also include a clinical evaluation performed by a GP. Their interpretation would
be a valuable addition to the current work.
Lastly, this thesis focused only on the TURS implementation. It might be a good idea to compare
this model’s performance on medical datasets against other advanced ML algorithms, such as the
MDL-based KRIMP. Such a comparison could provide valuable insights on MDL-based models and
the role of advanced machine learning in the healthcare field.
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