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Abstract

Large language models (LLMs) have recently achieved strong performance on com-
plex reasoning tasks, but their internal reasoning processes remain opaque and
lack interpretability. To improve both reasoning performance and interpretabil-
ity, researchers have proposed the Chain-of-Thought (CoT) prompting method,
which guides models to generate intermediate reasoning steps, thereby improv-
ing performance on multi-step reasoning tasks. However, there is ongoing debate
about whether these intermediate chains produced by CoT prompts truly reflect
the model’s internal decision-making process—that is, whether they are faithful.
Based on this, our study poses a central question: does CoT prompting increase
the faithfulness of the internal reasoning process in LLMs?

To investigate this, we adopt a mechanistic interpretability approach, combin-
ing sparse autoencoders (SAEs) with activation patching techniques. We design
comparative experiments on the GSM8K math question-answering dataset to an-
alyze model behavior under both CoT and NoCoT prompting conditions. Our
experiments cover models of different sizes, including the large Pythia-2.8B and
the small Pythia-70M, and assess the impact of CoT prompts from three per-
spectives: semantic feature consistency, causal influence on output, and activation
sparsity.

Results show that for large models, CoT prompts significantly enhance internal
consistency, increase causal influence on outputs, and produce more structured,
sparse activations. These effects are weaker and less stable in smaller models.
This indicates that CoT can induce more interpretable internal structures in high-
capacity LLMs, validating its role as a structured prompting method—though its
ability to improve reasoning faithfulness is constrained by model capacity.
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Chapter 1

Introduction

1.1 Topic

While Large Language Models (LLMs) have shown exceptional performance in
reasoning tasks [Plaat et al., 2024], their internal decision-making often remains
a black box, making it hard for people to understand how the models reach their
conclusions. This challenge is similar to what biologists face when studying com-
plex systems: we may know the basic training or evolutionary principles, but the
internal processes are hard to observe directly.

In parallel, the Chain-of-Thought (CoT) prompting technique has received
growing attention for its ability to improve LLM performance on complex, multi-
step reasoning tasks [Wei et al., 2022]. CoT encourages models to explicitly gen-
erate intermediate steps, effectively guiding them to break down problems into
subgoals. Follow-up work showed that even minimal cues like "Let’s think step
by step" can trigger emergent reasoning behaviors in zero-shot settings [Kojima
et al., 2022].

Although CoT improves performance, an open question remains: Do these
intermediate reasoning steps reflect the model’s true internal decision-making pro-
cess? Or are they simply a plausible surface-level explanation that helps organize
output better? In other words, does CoT increase the faithfulness of reason-
ing—that is, the degree to which the reasoning chain aligns with the internal
mechanism used to reach the answer? While a few recent studies have begun
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CHAPTER 1. INTRODUCTION 2

exploring this question from a representational similarity perspective [Lin et al.,
2025], it has received little attention from a mechanistic, causality-based viewpoint.

Motivated by this gap, our research adopts a mechanistic interpretability per-
spective to address the question of whether CoT truly enhances the internal faith-
fulness of LLM reasoning processes. Rather than relying on external proxies or
symbolic translations, we directly probe the internal semantic representations to
explore how and to what extent CoT prompts shape the actual reasoning mech-
anisms within LLMs. Through this mechanistic lens, our study aims to clarify
whether the improvement in reasoning performance associated with CoT is accom-
panied by a genuine increase in interpretability and internal consistency, thereby
deepening our understanding of the internal logic behind LLM reasoning.

1.2 Problem Statement

To comprehensively explore the faithfulness of reasoning in LLMs, our central ques-
tion is: can mechanistic interpretability reveal whether CoT enhances reasoning
faithfulness? The following research questions will be addressed:

RQ1. Does CoT encourage the model to learn internal features that are more
semantically consistent and easier to interpret?

RQ2. Does CoT enhance the causal relevance of internal features, as measured via
activation patching?

RQ3. Can CoT promote sparser feature activations, a property commonly associ-
ated with enhanced interpretability?

1.3 Method

To address the unresolved question of whether CoT genuinely enhances the internal
faithfulness of LLM reasoning as outlined in the problem statement above, this
study combines sparse autoencoder (SAE) and activation patching to analyze the
semantic features underlying LLM reasoning under CoT and NoCoT settings. We
conduct experiments on the Grade School Math 8K (GSM8K) dataset [Cobbe
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et al., 2021], a benchmark of math word problems, by (1) training separate SAEs
on CoT and NoCoT activations to extract dictionary features, and (2) performing
activation patching to swap these features between reasoning conditions. This
causal intervention allows us to test whether features elicited by CoT prompts have
a genuine influence on model output. To further investigate the semantic alignment
of these internal features, we also perform a lightweight interpretation procedure
that maps selected features to natural language descriptions. In doing so, we aim
to go beyond attributional and symbolic methods and gain deeper insight into
whether CoT actually enhances the internal consistency and transparency of LLM
reasoning.

1.4 Overview

This thesis is organized as follows.
In the next chapter, we provide conceptual background and review related work

on CoT prompting, reasoning faithfulness, and mechanistic interpretability, with
a focus on sparse feature extraction using SAEs.

Then, Chapter 3 introduces the methodology of our study, including the model
setup, the SAE training process, and the activation patching procedure.

Chapter 4 presents the experimental results, analyzing the semantic structure,
causal influence, and sparsity of internal features under CoT and NoCoT prompts.

Finally, Chapter 5 addresses the research questions, discusses the limitations
of our approach and outlines potential directions for future work.



Chapter 2

Related Work

Building on the motivation outlined above, this chapter reviews prior work relevant
to the components of our approach. We begin with a conceptual background that
motivates the use of mechanistic interpretability over more traditional methods.
This is followed by an overview of CoT prompting and its role in improving reason-
ing performance in LLMs, a discussion on faithfulness and causal interpretability,
and finally, recent advances in sparse feature extraction using SAEs.

2.1 Background

In recent years, many studies have tried to explain how LLMs reason. One line
of work focuses on attributional methods, which analyze the importance of input
tokens or features for the model’s output. For example, Chuang et al. proposed
FaithLM [Chuang et al., 2024], which aims to produce more faithful explanations
through attribution techniques. However, such methods often fail to guarantee
a causal relationship between highlighted input features and the model’s actual
decision-making, making them limited to rough correlational insights.

Another group of methods leverages knowledge-augmented reasoning, incor-
porating external structured knowledge—such as knowledge graphs—to increase
reasoning faithfulness. Notable examples include Reasoning on Graphs (RoG)
[Luo et al., 2023] and Decoding on Graphs (DoG) [Li, Zhang, Wu, Luo, Glass and
Meng, 2024]. These methods provide external evidence to support the reasoning
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process, yet still treat the LLM as a black box without directly probing its internal
computational path.

A third direction emphasizes logic-based and symbol-based reasoning, combin-
ing LLMs with external symbolic solvers to ensure reliable reasoning. One research
proposed SymbCoT [Xu et al., 2024], while another introduced LINA [Li, Li, Liu,
Zeng, Cheng, Huang and Liu, 2024]. These approaches translate natural language
into logical symbols and apply symbolic inference, improving precision in logical
tasks. Nonetheless, challenges remain in bridging the semantic gap between sym-
bolic representations and the subtleties of natural language, which can lead to
information loss or mismatch.

In contrast to these methods, Faithful CoT [Lyu et al., 2023] introduces a
distinct output-level strategy. It proposes a two-stage framework where a language
model generates a hybrid natural-language and symbolic reasoning chain, and a
deterministic solver executes this chain to derive the final answer. This guarantees
that the reasoning chain is a faithful explanation in terms of execution. However,
the generation of this chain remains fully handled by the model, without access to
or control over its internal computations, rendering the approach fundamentally
black box.

Despite their progress, these methods share a common limitation: they do not
directly analyze the internal mechanisms of LLMs. Instead, they rely on exter-
nal attribution, augmentation, or symbolic conversion to approximate or enhance
model faithfulness. In other words, they still treat the model as a black box and
fall short of uncovering the model’s internal feature activations and computational
processes at a fine-grained level.

In contrast to the above approaches, mechanistic interpretability seeks to ana-
lyze LLMs from the inside out. Instead of relying on external proxies, it investigates
how specific features, neurons, or internal circuits contribute to reasoning. One
research study introduced the idea of circuit-level analysis, emphasizing the role of
individual components and their connections in model computation [Olah et al.,
2020].

A key obstacle to understanding LLMs from a mechanistic perspective is poly-
semanticity—the tendency for individual neurons to respond to multiple, unrelated
features [Bricken et al., 2023]. This phenomenon is believed to result from super-
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position, where the model must encode far more internal features than it has avail-
able neurons. As a result, multiple features are "stacked" onto the same activation
directions, especially within components like the residual stream in Transformer
models. This makes it inherently difficult to interpret neurons as atomic units
of meaning. Traditional mechanistic approaches often struggle to untangle such
entangled representations.

A promising advance in this area is the use of SAEs [Cunningham et al., 2023].
SAEs learn a set of sparse activation directions from model internals—so-called
dictionary features—which provide a finer-grained and more interpretable decom-
position than raw neurons. Each feature is designed to activate strongly in only a
small number of specific contexts, significantly reducing superposition and making
the learned representations more monosemantic. Studies show that these features
offer improved interpretability over neuron-based analysis, and crucially, they al-
low for causal interventions without altering the model’s weights or architecture.
For example, Cunningham et al. demonstrated that certain SAE-derived features
can precisely identify the internal causes of model behavior in tasks like indirect
object resolution, outperforming earlier attribution-based methods.

Overall, while many approaches attempt to explain the reasoning process of
LLMs, most remain external to the model and fail to uncover its internal mech-
anisms. This work therefore adopts the emerging direction of mechanistic inter-
pretability as the foundation for subsequent methods.

2.2 Reasoning and CoT

Recent work has extensively focused on improving and analyzing reasoning ca-
pabilities in LLMs. Among these, the CoT prompting approach has repeatedly
proven effective. It was first shown that inserting intermediate reasoning steps
into prompts allows large pretrained models to significantly outperform previous
baselines on complex tasks such as arithmetic and symbolic reasoning [Wei et al.,
2022]. For example, on the GSM8K math dataset, the accuracy of PaLM 540B
increased from 17% to over 80% with CoT prompting, even surpassing some fine-
tuned models.

Subsequent work introduced Zero-shot CoT, demonstrating that simply ap-
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pending a phrase like "Let’s think step by step." without few-shot examples is
sufficient to elicit coherent intermediate reasoning, substantially boosting zero-
shot performance for models such as GPT-3 [Kojima et al., 2022]. Earlier work
also showed that allowing models to write out intermediate computations on a
"scratchpad" can significantly enhance their performance on long arithmetic or
multi-step logical reasoning tasks [Nye et al., 2021].

These findings establish CoT as a critical paradigm for reasoning in LLMs.
By explicitly breaking down tasks, CoT reduces the burden of one-shot complex
reasoning.

However, concerns have been raised regarding the reliability of CoT. It was
found that models sometimes arrive at the correct answer despite producing incor-
rect intermediate steps during CoT reasoning [Yee et al., 2024]. This phenomenon
of unfaithful reasoning suggests that not all CoT steps contribute causally to the
final prediction. Some may be irrelevant or even incorrect, and yet the model still
derives the correct answer through other latent mechanisms. For instance, a CoT
response to a math problem may contain a mistaken calculation step that is later
corrected, leading to a valid final answer.

This highlights the fact that CoT reasoning chains do not always reflect the
model’s actual decision process and may contain elements that are merely hallu-
cinated or superficially plausible. As a result, it has sparked discussion around
hallucination and faithfulness in CoT: how can we ensure that the model’s out-
putted reasoning path aligns with its internal computation? The present study
addresses this question by applying mechanistic interpretability methods to eval-
uate the credibility of CoT reasoning.

2.3 Faithfulness and Causal Interpretability

Faithfulness is typically defined as the extent to which an explanation accurately
reflects the model’s true decision-making process [Agarwal et al., 2024]. Unlike
accuracy, which measures the correctness of the final output, faithfulness demands
that the intermediate reasoning steps actually drive the model’s decisions, rather
than being post hoc justifications intended for human consumption.

In the case of LLMs, CoT reasoning represents a form of self-explanation.
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Thus, its faithfulness is crucial. A fully faithful CoT chain should correspond to
the actual internal computation path the model follows. If CoT is unfaithful, we
cannot trust the model’s reasoning process even when its answers are correct.

To evaluate faithfulness, researchers have introduced various causal analysis
tools to investigate the relationship between internal activations and outputs. A
key approach involves counterfactual intervention, where parts of the model’s in-
termediate representations or parameters are selectively modified to observe their
effect on the output. If intervening on a component alters the result, that com-
ponent is considered causally relevant. This includes techniques like activation
patching and feature ablation.

One method introduced layer-wise activation replacement to identify locations
responsible for factual associations in models like GPT [Meng et al., 2022]. It was
shown that mid-layer feedforward networks carry structured stages of computa-
tion, where activations during subject token processing are crucial for generating
factual outputs. By identifying and editing these activations (e.g., via Rank-One
Model Editing), the model’s internal memory of facts was successfully altered with-
out harming unrelated behaviors. These results support the use of counterfactual
intervention to localize internal components responsible for specific reasoning func-
tions.

Another related method is interchange intervention, in which activations from
one input at a given layer are swapped with activations from another input, to
measure how this substitution affects the final output. This technique has been
proposed as a more robust measure of causal influence [Geiger et al., 2021]. Specifi-
cally, when swapping activations from a control input into a target input at a given
node changes the output, it indicates that the node encodes contrastive informa-
tion relevant to the difference between inputs. Compared to setting activations to
zero or injecting noise, interchange interventions maintain the realism of activa-
tion distributions and reduce unintended statistical disruptions in the model. This
method has been used in circuit discovery to identify substructures responsible for
specific tasks.

In addition, studies on small-scale models have demonstrated the integration of
mechanistic interpretability and causal validation. For example, in one experiment,
researchers fully reverse-engineered a transformer layer solving modular arithmetic
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and confirmed the causal function of its identified circuits by performing activation
patching and ablation [Nanda et al., 2023].

Altogether, these findings show that testing for faithfulness requires a shift from
correlation to causation. An explanation—whether in terms of neurons, hidden
states, or CoT steps—can only be deemed faithful if intervening on it leads to
predictable and interpretable changes in the model’s behavior [Meng et al., 2022].
This study adopts this perspective by using activation patching to test whether
internal representations corresponding to CoT steps have causal effects on model
outputs, thereby assessing the faithfulness of CoT reasoning.

2.4 SAE and Interpretation

SAE offer a promising new approach for extracting dictionary features from LLMs.
Cunningham et al. [2023] proposed training sparsity-regularized autoencoders on
large-scale model activation data to learn more semantically meaningful bases
than raw neurons. These features are essentially directions in the model’s activa-
tion space, where each direction corresponds to a semantically coherent internal
pattern. When the model processes text, a high projection onto one of these di-
rections indicates that the corresponding semantic feature has been "triggered."
Thanks to the sparsity constraint, each feature remains mostly inactive and only
fires in specific contexts, substantially reducing interference due to superposition.

Although SAE-extracted features show significantly better semantic interpretabil-
ity than traditional methods such as Principal Component Analysis (PCA) or In-
dependent Component Analysis (ICA), assigning human-understandable labels to
these features remains a major challenge. Several interpretation strategies have
been proposed:

• Max activation set analysis: This method collects input samples that strongly
activate a specific feature. Humans read these samples to find shared pat-
terns. For example, if a feature activates for text containing math formulas,
it may relate to "mathematical reasoning." Bills et al. [2023] used this ap-
proach in early neuron studies. It is simple and intuitive but relies heavily
on human judgment. This makes it hard to scale to thousands of features.



CHAPTER 2. RELATED WORK 10

• Probing classifiers: These train simple classifiers or regressors to predict
predefined human-interpretable labels (e.g., negation, part-of-speech tags)
based on feature activations. Probes are objective and quantifiable but lim-
ited by the availability and scope of human-defined labels. They may miss
or mischaracterize emergent internal features of the model [Belinkov, 2022].

• Activation maximization: This technique optimizes the input to maximize
a feature’s activation, theoretically revealing the "preferred" pattern of that
feature. While widely used in vision models [Erhan et al., 2009], it is less
effective in language models, where direct optimization may produce mean-
ingless token sequences.

To overcome the limitations of these methods, Cunningham et al. [2023] adopted
an automatic language model-based explanation approach, originally introduced
by OpenAI in ’Language Models Can Explain Neurons in Language Models’ [Bills
et al., 2023]. This method uses a powerful language model (e.g., GPT-4) to gen-
erate natural language descriptions of each feature based on its top-activating
examples. In addition, the same or another GPT model is used to evaluate the
quality of each description. This technique allows for high-throughput, scalable
interpretation of thousands of features, greatly improving efficiency.

Our study follows this approach. We adopt the same GPT-based automated ex-
planation pipeline to assign preliminary semantic labels to SAE-derived dictionary
features. This choice is not novel, but rather a continuation of prior work, aimed at
maximizing interpretability and scalability in support of subsequent causal analy-
sis. At the same time, we acknowledge the risk of hallucination—that is, the pos-
sibility that generated descriptions may sound plausible while deviating from the
true meaning of the features. To mitigate this, our experiments include additional
quantitative metrics and counterfactual validation steps to assess the faithfulness
of these automatically generated labels.

2.5 Chapter Summary

This chapter reviewed the background and related literature relevant to this study.
We first outlined the limitations of traditional approaches in improving inter-
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pretability, such as attribution, knowledge augmentation, and symbolic reasoning,
and highlighted the potential of mechanistic interpretability for uncovering inter-
nal model mechanisms. We then discussed the role of CoT prompting in enhancing
reasoning performance, along with concerns about inconsistencies in its internal
reasoning paths. Additionally, we reviewed the concept of faithfulness and tools for
causal analysis, and introduced SAEs as a promising method for feature extraction
and semantic interpretation.

Together, these areas of research form the methodological foundation of this
work. The following chapters describe how we integrate these techniques to sys-
tematically examine whether CoT prompts enhance the internal consistency and
interpretability of LLM reasoning.



Chapter 3

Methodology

To investigate the internal behavior of the language model, we adopt a structured,
multi-step methodology. Our approach consists of four key components:

1. Sparse autoencoding, used to extract salient latent features from the model’s
hidden representations by learning a sparse dictionary of activation direc-
tions;

2. Activation patching, a technique for causal intervention, where selected ac-
tivations are swapped or modified between CoT and NoCoT runs to test the
influence of individual features on the model’s output;

3. Activation sparsity analysis, which compares the sparsity of internal repre-
sentations under CoT and NoCoT conditions to assess whether CoT induces
more selective or focused feature use;

4. Feature interpretation, where we use an automated explanation module to
generate natural language descriptions of extracted features and assess their
relevance to reasoning steps.

Together, these components form a unified framework for examining and ex-
plaining the model’s internal reasoning. This allows us to identify key features,
measure their activation patterns, test their causal roles, and interpret their func-
tion in a human-readable way.

12



CHAPTER 3. METHODOLOGY 13

3.1 Sparse Autoencoding

To understand the design of a SAE, we first introduce the basic concept of an
Autoencoder (AE). An AE is an unsupervised learning method that uses a neural
network to map input data to a low-dimensional latent representation, and then
reconstructs the original input from this representation. Its core idea is to let
the network automatically learn the most important features in the data. An AE
typically consists of two parts: an encoder and a decoder.

The encoder maps an input vector x ∈ Rdinput to a lower-dimensional latent
representation h ∈ Rdhidden :

h = fencoder(x) = σ(Wencx+ benc)

The decoder reconstructs the latent representation h back to the input space
x̂ ∈ Rdinput :

x̂ = gdecoder(h) = σ(Wdech+ bdec)

Where σ(·) is the activation function, typically ReLU or Sigmoid and Wenc,
benc, Wdec, bdec are the trainable weight matrices and biases.

The training objective of the AE is to minimize the reconstruction error be-
tween the input and the reconstructed output (commonly measured by mean
squared error, MSE):

LAE =
1

N

N∑
i=1

∥xi − x̂i∥22

While AE is effective at extracting features, its latent representations are often
dense and difficult to interpret. To improve the interpretability of features, we
introduce a sparsity constraint, forming the SAE. SAE encourages most units
in the latent space to remain inactive, preserving only a few highly informative
activations. This enables the model to learn clearer and more distinct features.

The training objective of the SAE extends the standard autoencoder loss by
incorporating an L1 sparsity penalty on the hidden representations, resulting in a
combined loss of reconstruction error and sparsity regularization:
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Lrecon =
1

N

N∑
i=1

∥xi − x̂i∥22

Where the reconstructed output is defined as:

x̂i = Wdec(hi) = Wdec (ReLU(Wencxi + benc))

Here, we explicitly tie the weights of the encoder and decoder, such that
Wdec = Wenc

T . This weight tying improves training efficiency and enhances in-
terpretability.

To enforce sparse activations in the hidden layer, we apply L1 regularization:

Lsparse =
1

N

N∑
i=1

∥hi∥1

Where the hidden representation is defined as:

hi = ReLU(Wencxi + benc)

The overall SAE objective combines the two losses:

Ltotal = Lrecon + λLsparse

Here, λ is the sparsity coefficient controlling the degree of sparsity. A higher λ
leads to more units in the hidden layer being suppressed. An overview of the SAE
structure is illustrated in Figure 3.1.

In this study, we specifically apply the SAE method described above to residual
stream activations extracted from a Transformer model. Concretely, activations
from the l-th layer residual stream are treated as input vectors x(l). Our SAE
framework leverages these activations to obtain two primary outcomes:

• Dictionary matrix (D): derived directly from the decoder weights, each col-
umn of D represents a sparse feature. These features serve as semantically
meaningful components of the model’s internal representation.

• Sparse latent code (h): For each input activation, the SAE provides a sparse
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Figure 3.1: An overview of SAE. The SAE operates on the residual stream of a
specific transformer layer. It receives residual activations as input and encodes
them into a sparse feature representation. The decoder reconstructs the original
input from this sparse code. The middle layer ("Features") captures interpretable
latent dimensions, which are later analyzed or used for interventions.

encoding, indicating the presence and magnitude of key internal features.

These learned sparse features serve as essential units for subsequent analysis,
interpretation, and intervention methods employed in this work.

3.2 Activation Patching

In interpretability research for modern neural networks, a central question is
whether a particular internal feature genuinely contributes to the model’s final
output. Activation patching is a simple yet powerful causal intervention technique
designed to probe such internal causal relationships.

Intuitively, activation patching can be likened to a form of machine diagnostics:
if you suspect that a specific component influences a machine’s behavior, you
can remove it from one machine and install it in another to observe whether the
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behavior changes. If the behavior of the second machine changes significantly, this
suggests that the component plays a critical role.

In neural networks, activation patching is typically performed as follows: As-
sume we have two different input samples, denoted as A and B, passed through
the same model. At layer l, the respective activations are x

(l)
A and x

(l)
B . We con-

struct a patched activation x
(l)
patch by replacing a subset of features from x

(l)
A with

corresponding values from x
(l)
B . This can be expressed as:

x
(l)
patch = Patch(x

(l)
A , x

(l)
B , S)

where S is the subset of neurons or feature dimensions to be replaced. To the
downstream layers, x(l)

patch behaves as a new hybrid state, combining features from
both A and B.

We then forward-propagate the patched activation through the rest of the
model to obtain the modified output ŷpatch. By comparing ŷpatch with the original
output yA, we can assess the causal contribution of the replaced subset S. A sig-
nificant change in the output indicates that the patched features had a meaningful
impact on the model’s behavior.

Formally, the procedure can be described as follows:

1. Let x
(l)
A be the activation of input A at layer l, with original output yA =

f(x
(l)
A );

2. Let x
(l)
B be the activation of input B, with output yB = f(x

(l)
B );

3. Construct the patched activation by replacing a subset S of x
(l)
A with the

corresponding values from x
(l)
B :

x
(l)
patch = x

(l)
A with x

(l)
patch[S] = x

(l)
B [S]

4. Forward-propagate x
(l)
patch to obtain the patched output ŷpatch;

5. Compare yA and ŷpatch. If the difference is substantial, we infer that the
subset S has a significant causal effect on the model’s output.



CHAPTER 3. METHODOLOGY 17

In this study, we do not perform patching directly in the original neuron ac-
tivation space. Instead, we first encode the activations x(l) into sparse feature
representations h(l) using a SAE. The details of SAE encoding are described ear-
lier. Here, we focus on how patching is carried out in the sparse feature space.

For two input samples A and B, let their SAE-encoded representations be h
(l)
A

and h
(l)
B , respectively. We select a subset of sparse feature indices S and construct a

patched feature vector h(l)
patch by replacing the values of h(l)

A [S] with those of h(l)
B [S]:

h
(l)
patch[S] = h

(l)
B [S], h

(l)
patch[S̄] = h

(l)
A [S̄]

We then decode this modified feature vector back into the activation space:

x
(l)
patch = Wdec h

(l)
patch

The patched activation x
(l)
patch is then fed forward through the remaining layers

of the model to produce the final patched output ŷpatch.
Compared to patching in the original activation space, performing interven-

tion in the sparse feature space offers several advantages. By encoding high-
dimensional, entangled activations into a lower-dimensional, sparse representation,
we can execute interventions in a more compact and interpretable space. Since
each sparse vector contains only a small number of active dimensions, it becomes
easier to isolate and observe the contribution of individual features. This structure
is especially beneficial for causal analysis, as it provides a more controlled setting
to test the functional impact of specific internal components. Moreover, these
sparse features may align with interpretable semantics in downstream analyses,
allowing for finer-grained interpretability in future work.

While our patching is consistently performed in the sparse feature space, the
nature of our task requires a different evaluation strategy for measuring patching
effects.

In traditional activation patching studies, such as token-level patching in NLP,
researchers can typically specify a particular token position in the input sequence
and evaluate the effect of patching by tracking changes in the model’s prediction
accuracy for that token. However, in our mathematical reasoning task, the model’s
output is not a single token (e.g., "fish") but a complete numerical answer or a
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structured reasoning path. Furthermore, the inputs are primarily mathematical
expressions or problem statements, which lack well-defined token-level alignment.

Therefore, we adopt a global output difference as the evaluation metric follow-
ing patching. Specifically, let the model’s output for input sample A be yA, and
the output for the patched version be ŷpatch. Given the ground truth label for
sample B, denoted yB, we define the patching score as:

Score = |ŷpatch − yB| − |yA − yB|

This score quantifies whether the intervention brings the output closer to or
further from the target. A negative score indicates that the model performs better
after patching (i.e., the output is closer to the ground truth), while a positive score
suggests a degradation in performance under the feature intervention.

To further quantify the influence of each sparse feature on the model’s output,
we design a progressive intervention experiment called patch curve analysis. This
method builds upon feature-level activation patching by constructing a series of
incremental interventions, enabling us to trace the model’s sensitivity to specific
internal features.

Given a pair of input samples A and B, we first encode their residual acti-
vations at layer l, denoted x

(l)
A and x

(l)
B , into their corresponding sparse feature

representations h
(l)
A and h

(l)
B . We then compute the absolute difference for each

feature dimension:

di =
∣∣∣h(l)

A [i]− h
(l)
B [i]

∣∣∣
These values reflect the degree of divergence between samples A and B across

different feature dimensions. We sort the indices of di in descending order and
define the top k dimensions with the largest differences as the feature subset Sk,
which will be used in the k-th stage of patching.

At each step k, we construct a patched sparse vector h(l,k)
patch, in which the top k

differing dimensions are taken from sample B, and the remaining dimensions from
sample A:

h
(l,k)
patch[Sk] = h

(l)
B [Sk], h

(l,k)
patch[S̄k] = h

(l)
A [S̄k]



CHAPTER 3. METHODOLOGY 19

This sparse vector is then decoded back into the original activation space:

x
(l,k)
patch = Wdec h

(l,k)
patch

The resulting activation x
(l,k)
patch is passed through the remaining layers of the

model to produce the patched output ŷ
(k)
patch. To evaluate the effect of this inter-

vention, we define a score that measures whether the output becomes closer to the
target label yB compared to the original output yA:

Score(k) =
∣∣∣ŷ(k)patch − yB

∣∣∣− |yA − yB|

A negative score indicates that adding the k-th feature improves the output
(i.e., brings it closer to the target), whereas a positive score suggests a negative or
counterproductive effect.

While the global output-difference score offers a coarse measure of how far the
patched answer drifts from the ground truth, it is still ill-suited to mathematical-
reasoning tasks. A value that is numerically “closer” to the correct answer does
not guarantee that the underlying chain of reasoning is any better, and a small
numerical mismatch can arise from an almost-correct derivation. In other words,
surface-level distance fails to capture changes in the model’s internal confidence
and reasoning faithfulness.

To address this, we instead adopt a global evaluation metric based on the
change in log-probability assigned to the ground-truth answer. Specifically, at
each step k of the patch curve, we compute:

∆ logP (k) = logP
(k)
patched(answer)− logPbaseline(answer)

Here, logPbaseline is the log-probability the model assigns to the ground-truth
answer before patching, and logPpatched is the value after patching the selected
features. This metric directly tracks how much each incremental intervention
boosts—or diminishes—the model’s belief in the correct solution, providing a task-
appropriate, scale-invariant signal of causal influence.

We plot the log-probability gain at each step k, using the number of features
patched as the x-axis and the corresponding ∆ logP (k) as the y-axis. The resulting
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patch curve traces the model’s response to incremental interventions, revealing the
cumulative causal impact of high-importance features on the final output. A steep
drop in the curve in early steps suggests the presence of highly influential semantic
features, whereas a flat curve may indicate feature redundancy or superposition
within the model’s internal representations.

These findings lay the groundwork for using sparse feature interventions to
uncover interpretable internal mechanisms.

3.3 Activation Sparsity

Activation sparsity is a key indicator in understanding the internal representations
of neural networks. It reflects how many units are actually "engaged" in processing
a given input. When a model relies on a small subset of activations to complete
a task, its internal representation can be considered more compact, focused, and
potentially more interpretable and robust.

In this study, we compare the sparsity of model activations under two input
conditions: inputs that include a CoT reasoning path versus standard inputs with-
out such guidance. Our central question is whether CoT prompts lead the model
to form more sparse and focused internal feature representations during reasoning.

To investigate this, we introduce two complementary sparsity analysis strate-
gies:

First, we perform a global sparsity analysis over the residual activations of
the entire input sequence. Let the residual activation at layer l be x(l) ∈ RT×d,
where T is the number of input tokens and d is the hidden dimension. We define
an activation unit as "active" if its magnitude exceeds a fixed threshold ϵ, and
compute the overall sparsity as:

Sparsity(x(l)) = 1− 1

T · d

T∑
t=1

d∑
j=1

I
[
|x(l)

t,j| > ϵ
]

Here, I[·] is the indicator function, and ϵ is a small positive threshold to fil-
ter out numerical noise (e.g., 1 × 10−5). Higher sparsity values indicate that the
model activates fewer units, implying more compact and selective internal repre-



CHAPTER 3. METHODOLOGY 21

sentations.
Using this metric, we analyze the distribution of sparsity scores across all sam-

ples under both CoT and NoCoT conditions, and compare their overall trends.
Second, for computational efficiency—especially with large models—we per-

form a chunk-based sparsity calculation. We divide each input into non-overlapping
chunks of length n, where each chunk chunki consists of n consecutive tokens. For
the residual activations in chunk i, denoted x

(l)
i ∈ Rn×d, we compute the sparsity

as:

ChunkSparsityi = 1− 1

n · d
∑

t∈chunki

d∑
j=1

I
[
|x(l)

t,j| > ϵ
]

After calculating sparsity for all chunks, we aggregate these results to obtain
the global sparsity distribution across the entire dataset. This chunk-based com-
putation is purely technical, enabling efficient processing without changing the
underlying global sparsity definition.

This setup enables a direct comparison of how reasoning style affects activation
sparsity.

3.4 Feature Interpretation

After extracting dictionary features under both CoT and NoCoT conditions, we
aim to assign each feature an intuitive, human-understandable interpretation. In
other words, we want to understand what these sparse features, learned by the
SAE, actually represent. This motivation stems from the intuition that if a feature
is monosemantic, there should exist a concise explanation that allows us to predict
when the feature will be activated.

Feature Interpretation methods are designed to discover such natural-language
explanations and evaluate how well they capture the true activation behavior of
each feature.

In this study, we adopt an approach inspired by OpenAI’s work in Language
models can explain neurons in language models [Bills et al., 2023]. The core idea is
to use a pretrained language model as a simulator to test the quality of proposed
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feature explanations. Specifically, for each feature, we first generate a hypothesis
in natural language describing what the feature might represent. Then, using a
few-shot prompting setup, we ask the language model to simulate how the feature
would behave under that explanation, and we estimate the predicted activation
strengths for each token in a given text.

Intuitively, if the explanation is accurate, the simulated activations should align
closely with the feature’s true activations from the model.

Originally, this simulation relied on access to token-level log-probabilities to
estimate activation confidence. However, due to interface restrictions (e.g., GPT-
3.5-turbo not exposing prompt logprobs), we adopt a logprob-free variant intro-
duced in subsequent work. Instead of calculating all token activations at once,
we construct few-shot prompts for each token position individually and ask the
language model to judge whether the feature would activate at that position.

Despite being less efficient, this approach allows feature interpretation to run
on modern language models like GPT-3.5-turbo or GPT-4 and greatly increases
the flexibility of the pipeline.

The full interpretation pipeline proceeds as follows.
First, we begin by collecting a set of text snippets that strongly activate a

given feature, along with contrastive examples that weakly activate it. We feed
these examples into a powerful LLM and prompt it to summarize what is common
among the highly activating examples. The resulting natural-language descrip-
tion becomes a candidate explanation—e.g., "Feature X appears in math-related
operations" or "Feature X activates in dialogue references."

Then using a few-shot template, we guide the language model to simulate fea-
ture activation based on the explanation. The prompt includes examples showing
how to judge activation (e.g., labeling tokens as "active" or "inactive"). Given a
new text input, the model produces a predicted sequence of activations according
to the candidate explanation.

Formally, the simulation process can be written as:

SequenceSimulation(E,X) = [â1, â2, ..., âr]

where E is the explanation and X = [x1, x2, ..., xT ] is a token sequence. Each
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âi ∈ [0, 1] represents the predicted activation probability at token xi. This can be
viewed as the model’s belief that feature F would activate at that position under
explanation E.

After that, to evaluate how well the explanation matches the true behavior
of the feature, we compare the predicted activation sequence âi with the actual
activation values ai obtained from the model (e.g., from the SAE decoder output).
We compute the Pearson correlation coefficient between the two sequences:

InterpretationScore = Corr({ai} , {âi}

This score reflects how closely the simulated activations match the real ones.
A high score near 1 indicates strong alignment between explanation and feature
behavior; a score near 0 suggests that the explanation does not capture the true
semantics of the feature.

We apply this evaluation to a set of test texts, using both top-ranked (high
activation) and randomly selected examples to ensure robust assessment.

Finally, we compare the interpretation scores of features under the CoT and
NoCoT conditions. Specifically, we compute the distribution of interpretation
scores for features extracted from models using CoT prompting and those without
it. We then conduct a comparative analysis using both statistical testing and
visualization.

On the one hand, we apply an independent two-sample t-test to assess whether
there is a statistically significant difference in the mean interpretation scores be-
tween the two groups. This allows us to test whether features under CoT prompt-
ing are, on average, more interpretable than those under NoCoT conditions.

On the other hand, we visualize the distribution of interpretation scores using
box plots, which display key statistics such as medians, interquartile ranges, and
outliers. These plots offer an intuitive view of how the interpretability of features
differs between the CoT and NoCoT groups.

If CoT prompting indeed enhances the monosemanticity of internal represen-
tations, we expect the distribution of CoT interpretation scores to shift toward
higher values. In the box plots, this would manifest as a higher median line and
a tighter concentration of scores. Moreover, the t-test would support a significant
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difference between the two conditions.
In summary, the Feature Interpretation method enables us to transform the

qualitative notion of "how meaningful an explanation is" into a quantitative score,
making it possible to rigorously assess the impact of CoT on the semantic inter-
pretability of model-internal features.

3.5 Experiment Setup

In this study, we selected two pretrained language models released by EleutherAI,
Pythia-70M and Pythia-2.8B, as our primary subjects of analysis. Pythia-70M is
a small model with 6 Transformer layers, 512 hidden dimensions, and 8 attention
heads, with a feedforward hidden size of approximately 2048. In contrast, Pythia-
2.8B is a large-scale model with 32 layers, a model width of 2560, 32 attention
heads, and a feedforward size of roughly 10240. Both models share the same
vocabulary and tokenizer, and are trained on the Pile dataset. We used the publicly
available weights from the Pythia v0 release, and all experiments were conducted
on these frozen models, purely for post-hoc analysis and intervention.

We employed the GSM8K dataset as the benchmark for evaluating the reason-
ing capabilities of the language models. GSM8K contains grade-school level math
word problems, each comprising a natural language question (typically one to two
sentences) and a final numerical answer [Cobbe et al., 2021]. All our analyses
and activation collection experiments were conducted on the training split, as it
includes ground-truth answers, while the test split remains hidden.

To investigate the effects of CoT prompting on model behavior, we created
two distinct input formats for each problem: one following the CoT format, and
the other following a NoCoT format. The CoT input consists of a fixed few-shot
prompt followed by the current problem. The prompt contains three representa-
tive examples, each with a detailed step-by-step solution, followed by the current
question prefixed with Q: ... \nA:. These examples are fixed across the dataset,
functioning as a hardcoded prompt template rather than a dynamic in-context
learning setup. In contrast, the NoCoT input includes only the current problem
with no examples or step-by-step guidance.

Importantly, we only used the question portion of each example as model input,
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without providing the ground truth answer. During inference, the model must
generate a solution based solely on the given problem (and prompt, if applicable).
Ground truth labels were used only for downstream evaluation. Additionally,
we avoided input truncation by tokenizing the full problem statement, subject
only to a maximum input length (e.g., 256 tokens). For activation recording,
we ensured that both CoT and NoCoT samples were handled using the same
formatting pipeline to avoid introducing bias.

For training the SAE and conducting activation-based comparisons, we ap-
plied the two input formats to the full GSM8K training set. That is, the amount
of training data used in both CoT and NoCoT settings was identical, with the
only difference being the input formatting. This controlled setup enables a fair
comparison across reasoning modes, particularly in terms of residual activation
sparsity, causal response to interventions, and structure of learned features.

All model loading, tokenization, inference, and intermediate activation extrac-
tion were implemented using the HuggingFace Transformers library and the Trans-
formerLens interpretability toolkit. We extracted activations from the residual
stream of layer 2 in both models. For each forward pass, we recorded the activa-
tion at the final token position, which served as the input for feature extraction
and patching experiments.

To control for dictionary sparsity and feature capacity, we trained SAE mod-
els with different dictionary ratios, specifically 4 and 8, representing lower and
higher sparsity settings, respectively. For each model and layer, multiple SAE
variants were trained, and a representative subset was selected for downstream
interpretation and intervention experiments.

During patching and evaluation, we considered two feature-selection schemes:

1. Top-K: the Ksparse features with the largest absolute activation difference
|h(l)

A − h
(l)
B |.

2. Random-K: a control variant that patches K features uniformly sampled
from the full dictionary.

For distributional analyses, we fix K = 20. For patch-curve experiments,
we vary K ∈ 2, 4, 8, 16, 32, 64, 128, capping the number of patched features per
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sample at 128 to balance signal strength and computational cost. We evaluate up
to 1000 problem pairs per condition to ensure statistical power while maintaining
feasibility.

This experimental design allows us to systematically analyze the behavior of
internal features under explicit reasoning conditions, and to uncover how semantic
representations are structured and recombined within the sparse activation space
of pretrained language models.

In summary, this chapter outlined our methodological framework for evaluating
the internal faithfulness of CoT reasoning in LLMs. By training separate SAEs
on activations from CoT and NoCoT inputs, we construct sparse, interpretable
feature dictionaries that capture the semantic structure of the model’s internal
representations. We then apply activation patching to causally test whether these
features influence the model’s outputs and interpret selected features using auto-
mated, language-based descriptions. This approach enables us to assess the se-
mantic coherence, causal impact, and sparsity of internal features across different
reasoning conditions. In the next chapter, we apply this framework to empirical
data from GSM8K, examining how internal feature structure, causal effects, and
interpretability vary under CoT and NoCoT prompts.



Chapter 4

Results

This chapter applies our analysis framework to the GSM8K dataset to examine how
LLMs internally represent reasoning under CoT and NoCoT prompts. We focus on
three core dimensions of interpretability: the semantic coherence of sparse dictio-
nary features, their causal influence on model outputs through activation patching,
and the sparsity of internal activations. To explore how reasoning strategies inter-
act with model capacity, we compare results across two model scales—Pythia-70M
and Pythia-2.8B.

4.1 Effect of CoT on Feature Interpretability

We first compared the explanation scores of features learned under CoT versus
NoCoT prompting conditions. Figures 4.1 show the score distributions for the
Pythia-70M and Pythia-2.8B models, respectively, under a dictionary sparsity ratio
of 4. Table 4.1 summarizes the corresponding statistical results.

For Pythia-70M, the average explanation score under the CoT condition was
0.018, compared to 0.016 under NoCoT, indicating a slight improvement. The
box plot in Figure 4.1(a) further illustrates that features under the NoCoT setting
performed slightly better in terms of interpretability: the median score is higher
and outliers skew more positively. A t-test confirmed this observation, yielding a
t-value of 0.082 and a high p-value of 0.935, suggesting that CoT may even slightly
hinder interpretability in smaller models.

27
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(a) Pythia70m (b) Pythia2.8b

Figure 4.1: Comparison of feature explanation scores under CoT and NoCoT
prompts. The 2.8B model shows higher explanation scores under CoT, indicating
stronger causal features are learned in the larger model when CoT prompting is
applied. Each plot is based on 50 features per condition.

This result implies that for smaller models, CoT does not substantially improve
the learning of semantically consistent internal features. One possible explanation
is that while CoT prompts introduce more structured reasoning patterns, the lim-
ited capacity of smaller models may not be sufficient to effectively capture and
utilize this added complexity. Consequently, any gains in interpretability remain
minimal.

CoT mean CoT std NoCoT mean NoCoT std T-test t T-test p
70M 0.018 0.125 0.016 0.116 0.082 0.935
2.8B 0.056 0.147 -0.013 0.071 2.96 0.004

Table 4.1: Statistical comparison of feature explanation scores under CoT and
NoCoT prompts. Results are shown for Pythia-70M and Pythia-2.8B, including
mean, standard deviation, and T-test statistics.

In contrast, the results for Pythia-2.8B present a different picture. Under the
CoT condition, the average explanation score was 0.056, notably higher than -0.013
for NoCoT. As shown in Figure 4.1(b), features activated by CoT prompts display
a broader distribution, with some reaching values around 0.6. This suggests that
CoT effectively elicits semantically coherent internal features in larger models.
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A t-test confirmed the statistical significance of this difference (t = 2.96, p =

0.004), supporting the hypothesis that CoT encourages the emergence of more
interpretable representations in high-capacity models. This result underscores the
potential of CoT prompting to induce structurally meaningful activations that
align more closely with human-interpretable reasoning patterns.

In summary, we argue that while CoT is not a sufficient condition for induc-
ing logically faithful reasoning chains in LLMs, it serves as an effective structural
prompt—nudging models toward the activation of more semantically coherent in-
ternal features. This effect is particularly evident in larger models such as Pythia-
2.8B, where CoT prompts significantly improve feature interpretability. In smaller
models, however, the effect remains minimal, likely constrained by limited repre-
sentational capacity. These findings are consistent with our activation patching
experiments, where CoT-elicited features in larger models demonstrated causal
influence on output behavior.

4.2 Causal Effects of CoT Features via Activation

Patching

After establishing the semantic plausibility of SAE-derived features through in-
terpretation, we now examine the causal role of learned sparse features through a
controlled activation patching experiment. Specifically, we keep the model param-
eters fixed and inject the top-K most salient sparse features from a CoT forward
pass into a NoCoT pass, and vice versa, in order to assess their impact on the
log-probability assigned to the correct answer.

In the Pythia-2.8B model, we observe a clear directional asymmetry: CoT-to-
NoCoT patching tends to improve performance, while NoCoT-to-CoT patching
has minimal effect. As shown in Figures 4.2(b) and 4.3(b), this trend holds across
both dictionary sparsity ratios of 4 and 8. In each case, the log-probability deltas
after patching are predominantly positive, and the distribution is skewed to the
right. This indicates that features activated under CoT conditions retain signifi-
cant causal efficacy even when transferred to NoCoT inputs, effectively "nudging"
the model toward more accurate answers.
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(a) Pythia70m (b) Pythia2.8b

Figure 4.2: Distribution of log-probability changes after patching the top 20 CoT
features into NoCoT runs under dictionary ratio 4. Left: Pythia-70M; Right:
Pythia-2.8B. While 2.8B shows a strong positive shift indicating consistent benefit
from CoT features, 70M shows highly variable effects, including large performance
drops, suggesting unstable or less effective feature transfer.

In contrast, the same patching operation in the smaller Pythia-70M model (Fig-
ures 4.2(a)) and 4.5(a) produces highly unstable results. The effect distribution is
nearly symmetric around zero, with positive and negative examples occurring at
roughly equal frequencies, and with extreme values (e.g., ∆ log-prob reaching ±30)
prominently observed. This suggests that CoT features do not reliably transfer
within the smaller model and may even interfere with the original inference tra-
jectory in some cases.

When comparing across dictionary sparsity levels, the pattern remains consis-
tent: both sparsity ratios yield reliable positive transfer effects in Pythia-2.8B,
while Pythia-70M consistently shows no stable trend. This supports the view that
the observed differences are not artifacts of a particular setup, but instead reflect
a broader, capacity-dependent phenomenon—namely, that the causal utility of
CoT-derived features is scale-sensitive and more robust in larger models.

To more precisely characterize the relationship between patching performance
and the number of patched features K, we plot patching curves as shown in Figures
4.4 and 4.5.

We begin with the Pythia-70M model, focusing on the difference between the
two patching directions: CoT → NoCoT and NoCoT → CoT.
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Under the dictionary sparsity ratio of 4 (Figure 4.4(a)), injecting CoT features
into NoCoT trajectories (orange curve) yields no performance gain. In fact, the
curve declines steadily after K > 4, eventually dropping to around –8 log-prob.
This suggests that CoT-activated features may exhibit distributional mismatch
or representational conflict in the small model, effectively disrupting the origi-
nal information processing flow. Conversely, the NoCoT → CoT patching (blue
curve) also leads to a decline in performance, though the drop is slightly less
steep—indicating that the CoT mode may offer some robustness against pertur-
bations.

(a) Pythia70m (b) Pythia2.8b

Figure 4.3: Distribution of log-probability changes after patching the top 20 CoT
features into NoCoT runs under dictionary ratio 8. Left: Pythia-70M; Right:
Pythia-2.8B. Compared to ratio 4, the distributions are similar: 2.8B continues
to show consistent improvements, while 70M remains less robust, exhibiting high
variance and frequent negative effects.

Under the higher sparsity setting (dictionary ratio = 8), the patching behav-
ior of Pythia-70M continues the trend observed earlier, though the curves appear
smoother (see Figure 4.5(a)). In the CoT → NoCoT direction, the patching curve
remains consistently below zero, indicating that features extracted from CoT in-
puts fail to provide performance gains when injected into NoCoT contexts. In fact,
they introduce a degree of disruption to the model’s reasoning process. Although
the negative impact is numerically less severe compared to the ratio 4 condition
(with a minimum drop of about –3, as opposed to –6 to –8), the direction of the
effect remains unchanged. This suggests that even under a more relaxed spar-



CHAPTER 4. RESULTS 32

(a) Pythia70m (b) Pythia2.8b

Figure 4.4: Top-K patching performance under dictionary ratio 4. The orange
line shows the effect of patching CoT features into NoCoT runs (CoT→NoCoT),
while the blue line shows the reverse (NoCoT→CoT). In Pythia-2.8B, patching
CoT features yields consistent performance gains, highlighting their causal impor-
tance. In contrast, for Pythia-70M, patching CoT features leads to a substantial
and monotonic performance decline, suggesting that CoT-induced features are in-
effective or even harmful in the smaller model.

sity configuration, the small model is still unable to consistently benefit from the
transfer of CoT features.

In contrast, the NoCoT → CoT direction reveals a fragile advantage of the CoT
setting. At K = 2, the patching yields a performance boost of approximately +3,
suggesting that the first few injected features play a meaningful role in supporting
CoT-style reasoning. However, this advantage diminishes rapidly as more NoCoT
features are injected, eventually stabilizing around +1 near K = 128. This trend
implies that in small models, CoT-related performance gains may not be driven by
a small set of dominant features, but rather distributed across a broader range of
components—or that the individual utility of each feature is diluted. As a result,
once these features are partially replaced or perturbed, their original advantage
becomes difficult to preserve.

Moreover, more random patching experiments also show negative or unstable
results. This further supports the idea that CoT-activated features in small models
do not transfer well and may cause problems when added to NoCoT trajectories.

Taken together, these observations indicate that Pythia-70M does not success-
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fully encode CoT features with consistent or robust causal influence. Its activation
space is more dispersed, and post-patching performance shows high variability,
weak directional signal, and susceptibility to disruption.

(a) Pythia70m (b) Pythia2.8b

Figure 4.5: Top-K patching performance under dictionary ratio 8. For the 2.8B
model, CoT→NoCoT patching (orange) consistently improves performance, with
diminishing returns as K increases. NoCoT→CoT patching (blue) gradually de-
grades the CoT run, suggesting CoT features are causally significant and sparse. In
contrast, for the 70M model, patching CoT features into NoCoT runs still causes
a net performance drop, though less sharply than under ratio 4. Interestingly,
NoCoT→CoT patching shows mild improvement.

In contrast, the 2.8B model exhibits a markedly different behavior.
Under dictionary ratio 4 (Figure 4.4(b)), the orange curve (CoT → NoCoT)

jumps immediately at K = 2, reaching a gain of over +2.5 log-prob, then slowly
declines to around +1.8—indicating that the top few CoT features carry strong
causal weight. In the reverse direction, the blue curve (NoCoT → CoT) remains
largely flat, showing that replacing features from the CoT pathway has little to no
benefit and may even introduce slight interference.

At a higher sparsity level (ratio 8, Figure 4.5(b)), this pattern becomes even
more pronounced. The orange curve surpasses +3.2 at K = 2. As K increases,
performance slightly declines and then stabilizes at approximately +2.4, revealing
a classic "saturation" effect. Meanwhile, the blue curve gradually rises, indicating
that NoCoT → CoT patching progressively erodes CoT-mode performance. The
2.8B model shows clear performance improvement when transferring from CoT
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to NoCoT, and significant effects can be observed even with a small number of
injected features.

However, after adding Random-K controlled experiments, we find that the
performance gains are not due to a specific set of "Top-K strong features." Instead,
in the CoT → NoCoT direction, randomly selecting K CoT-activated features often
leads to better performance than using the Top-K features. This suggests that the
useful information activated by CoT prompts is not concentrated in a few highly
activated features, but is more widely spread across many moderately activated
ones. The Top-K strategy, which only focuses on activation strength, may overfit
to local peaks and miss other supportive features that actually play a causal role.
In contrast, random sampling is more likely to include these overlooked features,
leading to more stable and comprehensive positive effects. We will further explain
this phenomenon through an analysis of feature sparsity structure in Section 4.3.

Overall, the activation patching experiments confirm that CoT-triggered fea-
tures exhibit clear causal efficacy in large models: injecting even a small number
of CoT-activated sparse features significantly improves model output quality. In-
terestingly, we find that randomly selected features often outperform top-ranked
ones, suggesting that the causal signal is not concentrated in a few dominant di-
rections but rather distributed across a broader feature space. In contrast, the
CoT-activated features in small models are more scattered and fragile, lacking
stable transferability and in some cases even introducing interference. All patch-
ing effects achieved statistical significance (p < 0.001), confirming these patterns
reflect systematic differences rather than random variation.

Moreover, we observe that the sparsity ratio affects how information is dis-
tributed across features. Under higher sparsity (ratio 4), performance gains tend
to occur in more abrupt "jumps" but are also more susceptible to outliers. In con-
trast, with lower sparsity (ratio 8), performance changes are smoother, suggesting
more stable and cumulatively effective information transmission.

Together, these results support our central hypothesis: CoT prompting induces
a distributed and causally meaningful internal structure, particularly in LLMs
where such features are more pronounced and reliably transferable.
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4.3 Activation Sparsity under CoT and NoCoT

Following the causal intervention experiments, we now turn to the structural prop-
erties of internal activations. In particular, we focus on sparsity—how CoT and
NoCoT prompts affect the distribution and density of activated neurons and SAE
features. Sparsity is widely associated with interpretability and generalization,
and may offer additional insights into the mechanistic impact of CoT.

(a) Pythia70m (b) Pythia2.8b

Figure 4.6: Sparsity comparison of residual activations under CoT and NoCoT
prompts. In both models, CoT leads to significantly sparser residual activations,
with most neurons remaining near zero and only a small subset strongly activated.
This sparsity effect is markedly more pronounced in the 2.8B model, indicating
enhanced activation selectivity and structured feature usage at larger scale.

As shown in Figures 4.6, we compare the global distribution of residual ac-
tivations under CoT and NoCoT prompting conditions for the 70M and 2.8B
models. The results reveal that CoT prompts lead to significantly sparser residual
activations compared to NoCoT prompts. Specifically, in the NoCoT condition,
activation values are distributed more broadly, indicating that more neurons ex-
hibit moderate to high activation. In contrast, under CoT prompting, most neuron
activations are concentrated in a very low range, with only a few neurons showing
strong activation. This sparsity trend appears in both the smaller 70M model and
the larger 2.8B model, but is more pronounced in the latter. Notably, in the 2.8B
model, the activation distribution under NoCoT has a heavier tail—more neurons
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exhibit high activation—whereas under CoT, activations are almost entirely low,
with only a small subset strongly activated, highlighting a sharper sparsity effect.

To further analyze this difference, we apply SAE to extract feature representa-
tions from the residual activations, as described in the Methods section, and count
the number of significantly activated neurons per SAE feature. Figures 4.7(a) and
4.8(a) show the neuron activation distributions per SAE feature under NoCoT and
CoT conditions for the 70M model. A comparison of the two reveals that under
CoT, each SAE feature tends to activate only a small number of neurons, whereas
under NoCoT, the same features often activate a broader set of neurons. In other
words, NoCoT features are associated with more widespread neuron activations,
while CoT features are more concentrated and rely on a smaller subset of neurons.
This suggests that CoT leads to sparser internal representations in the 70M model,
with each feature being encoded by a more compact neuronal subspace.

(a) Pythia70m (b) Pythia2.8b

Figure 4.7: Activated neuron counts per SAE feature under NoCoT prompting,
across thresholds from 0.0 to 1.0. The large model (2.8B) activates significantly
more neurons per feature at each threshold, indicating denser feature composition
compared to the small model.

A similar pattern is observed in the larger 2.8B model, but to a greater extent.
Figures 4.7(b) and 4.8(b) show the SAE feature activation patterns under NoCoT
and CoT conditions, respectively. Under NoCoT, each feature still activates a
relatively large number of neurons, while under CoT, only a very small subset is
strongly activated per feature. Compared to the 70M model, the 2.8B model shows
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more extreme sparsity: many features are supported by only a handful of neurons,
emphasizing that larger models exhibit a more pronounced sparsity trend under
CoT and may encode CoT-related features more efficiently.

This phenomenon may seem paradoxical: the CoT activations in 2.8B are
globally the sparsest (Figure 4.6(b)), yet the variance in the number of activated
neurons per feature is higher (Figure 4.8(b)). We interpret this as evidence of a
more refined form of structured sparsity in larger models. Rather than uniformly
suppressing all features, the large model under CoT appears to allocate represen-
tational resources more strategically: some features are highly focused, requiring
only a few neurons, while others are more complex and involve broader neuronal
collaboration. This increasing divergence in feature-level activation may underlie
the superior performance of 2.8B on multi-step reasoning tasks.

(a) Pythia70m (b) Pythia2.8b

Figure 4.8: Activated neuron counts per SAE feature under CoT prompting. Com-
pared to NoCoT, CoT prompts yield substantially sparser activations in both mod-
els, with 2.8B showing stronger sparsity and higher inter-feature variance.

Together, these experiments show that CoT prompting not only improves rea-
soning performance but also reshapes the internal activation patterns of the model.
In both 70M and 2.8B, CoT results in fewer neurons being activated overall, indi-
cating greater global sparsity—especially in the 2.8B model. However, this change
is not limited to fewer activations: at the SAE feature level, we observe signifi-
cantly greater variation in how many neurons are engaged by each feature. This
suggests that CoT encourages semantic resource allocation, where some features
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are represented by highly selective neurons and others mobilize a larger popula-
tion for more complex reasoning. The trend is especially prominent in the 2.8B
model, indicating that larger models are not only more sensitive to sparsification,
but also more capable of implementing structured sparsity. We argue that this
may serve as an indirect mitigation of the superposition problem: by compressing
activations and increasing feature separation, CoT prompts induce a form of latent
disentanglement. Although this "unsupervised disentanglement" is not explicitly
optimized during training, it emerges as a byproduct of semantic prompting and
plays a critical role in making internal representations more interpretable and
causally effective.

Interestingly, this structured sparsity in CoT-induced representations also helps
explain the surprising result from our patching experiments: in the 2.8B model,
randomly sampled CoT features consistently outperform top-ranked ones when
patched into NoCoT trajectories. At first glance, this seems counterintuitive—why
would unranked features yield better performance than those with highest activa-
tion?

As shown earlier, CoT prompting not only makes the overall activation in both
models more sparse, but also leads to stronger sparsity and higher feature-level
variability in the larger model. Specifically, in the Pythia-2.8B model, under CoT
conditions, most neurons have their activation values suppressed close to zero,
with only a small number being strongly activated. At the same time, the number
of neurons involved in different features varies much more. This means that CoT
prompts in the large model lead to a form of "structured sparsity": the model does
not suppress all features equally, but allocates its limited representational resources
more strategically. Some features are highly concentrated and can be represented
with only a few neurons, while others, which are more complex, recruit a wider
set of neurons to represent them.

In other words, CoT-related information in the 2.8B model is not carried by
just a few strongly activated features, but is spread across combinations of many
features. Therefore, simply selecting the Top-K features based on the highest
activation values may only cover local peaks in the CoT-related semantics, while
missing many moderately activated but still important supporting features. These
overlooked features also play a key role in final reasoning, but are not included in
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the Top-K set. In contrast, when K features are selected randomly, without relying
on a fixed ranking by activation strength, there is a higher chance of including these
useful but less prominent features. This helps provide a more complete injection
of causal information overall. This explains why, in the 2.8B model, the Random-
K strategy achieves better CoT → NoCoT transfer performance than the Top-K
strategy: random sampling covers a richer subset of features and avoids focusing
too narrowly on local activation peaks, allowing it to capture more useful signals.

In contrast, this phenomenon does not appear in the 70M model. One possi-
ble reason is that the difference in feature distributions between CoT and NoCoT
conditions is much smaller compared to the larger model. In the small model,
CoT prompting does increase activation sparsity to some extent, but the overall
feature activation patterns remain similar to those under NoCoT. For example, in
Pythia-70M, each sparse feature under CoT typically activates only a small num-
ber of neurons, while the same feature under NoCoT might activate a wider set
of neurons. However, this feature-level sparsification is much weaker than what is
observed in the 2.8B model. More importantly, the limited capacity of the 70M
model makes it difficult to develop new internal structures or feature organization
patterns in response to CoT prompts. As discussed earlier, CoT does not signif-
icantly improve the interpretability or consistency of features in the 70M model.
As a result, there are not many additional useful features emerging under CoT
that the model can take advantage of. Both Top-K and Random-K strategies end
up inserting features that are similarly noisy or irrelevant to the model, which
naturally leads to no clear difference in performance or consistent gains. This also
aligns with our earlier conclusion: smaller models, due to their limited represen-
tational power, are less capable of capturing and using the structured reasoning
signals introduced by CoT prompting, and show very limited improvements in the
causal relevance of their internal activations.

These results connect the earlier patching experiments with the structural anal-
ysis in this section. They show that CoT prompts create sparse, disentangled,
and compositional representations in larger models, making it easier to replace
features and maintain reasoning quality. In contrast, small models lack this struc-
ture, which limits their ability to benefit from CoT-style prompting. This supports
the main idea that model size is critical for making CoT-induced features causally



CHAPTER 4. RESULTS 40

effective and well-organized.
In summary, this chapter presented a comprehensive analysis of internal rep-

resentations under CoT and NoCoT reasoning. First, we showed that dictionary
features derived from CoT activations tend to be more interpretable and seman-
tically coherent. Second, causal patching experiments revealed that CoT features
in large models carry significant causal influence, exhibiting strong transferability
and minimal interference. Third, we found that CoT promotes greater sparsity in
both residual activations and feature composition—particularly in high-capacity
models—potentially facilitating feature disentanglement. Notably, the superiority
of random over top-k patching in large models further highlights the distributed
and collaborative nature of CoT-induced features. Together, these findings sug-
gest that CoT enhances the internal faithfulness of LLM reasoning by activating
compact, meaningful, and causally relevant features.
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Conclusion

This chapter reviews the main contributions of the study and revisits the research
questions introduced at the beginning. We evaluate each question based on the
experimental results, then discuss the study’s limitations and outline directions
for future work.

5.1 Research Questions

This study investigates, from the perspective of mechanistic interpretability, whether
CoT prompting improves the faithfulness of the reasoning processes within LLMs.
Our experiments and analysis address the following three research questions:

RQ1: does CoT encourage the model to learn internal features that are more
semantically consistent and easier to interpret?

Our results show that in the larger model, Pythia-2.8B, CoT significantly im-
proves the semantic coherence of learned features. Several SAE features trained
under CoT conditions achieve substantially higher explanation scores, indicating
stronger monosemanticity and clearer interpretability. In contrast, for the smaller
model Pythia-70M, CoT yields only marginal differences, with no substantial im-
provement over NoCoT. These findings suggest that model scale plays a critical role
in enabling semantic disentanglement and the emergence of interpretable internal
structure under CoT prompting.

RQ2: does CoT enhance the causal relevance of internal features, as measured

41
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via activation patching?
Activation patching experiments show a clear effect that depends on model

size. In the large model, injecting even a small number of randomly selected
CoT features into NoCoT forward passes leads to a noticeable increase in output
log-probabilities. This suggests that CoT features have a strong and distributed
causal effect. The effect is consistent across different feature selection methods,
which indicates that CoT-induced representations are not only sparse, but also
semantically redundant and complementary. In contrast, similar interventions in
the small model have little or even negative effect, showing that its internal features
are fragile and have limited causal impact. These results suggest that CoT prompts
activate meaningful mechanisms in large models, while small models do not have
enough capacity to encode or make use of such structured information.

RQ3: can CoT promote sparser feature activations, a property commonly
associated with enhanced interpretability?

Across both global activation distributions and the number of neurons acti-
vated per SAE feature, CoT consistently leads to greater sparsity in both mod-
els—especially in Pythia-2.8B. More importantly, the larger model exhibits struc-
tured sparsity under CoT prompting: some features are encoded by a very small
number of neurons, while others engage broader neuronal collaboration. This
structured allocation of representational resources likely underpins the model’s
success in complex reasoning tasks.

5.2 Limitations

While this study provides encouraging evidence regarding CoT’s influence on in-
ternal model structure, it has several limitations.

First, our activation patching experiments only target the residual activation
of the final token. They do not trace how causal effects unfold across the full
reasoning process. In CoT prompting, each token—each step—may influence the
final output through complex interactions. However, our analysis is limited to the
last token, which makes it difficult to capture the step-by-step causal structure
of reasoning. Although activation patching is a widely used tool in mechanistic
interpretability [Zhang and Nanda, 2023], our current method remains coarse-
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grained. We did not apply more advanced approaches like path patching, which
allow interventions along multiple layers and positions, and can better reveal how
information flows through the model. As a result, while we can confirm that
CoT has a causal effect on the final output, we cannot explain how this effect is
transmitted within the model. Our findings give a high-level view, but they do
not fully capture the internal causal dynamics of CoT-based reasoning.

Second, our interpretation module relies on OpenAI’s automated scoring sys-
tem, which uses a LLM to evaluate explanation texts. This provides an indirect
perspective on model behavior, but does not directly reflect the internal reason-
ing of the target model [Agarwal et al., 2024]. In effect, we are using one model
to explain another, and treating the evaluator’s score as a proxy for explanation
faithfulness. However, this proxy may not align with the model’s actual internal
computations. Prior work has highlighted the difference between faithfulness and
plausibility: an explanation can sound reasonable while still failing to represent
how the model truly makes decisions. In our case, a high explanation score simply
means that another LLM finds the explanation convincing. It does not guarantee
that it reflects the real source of the activation. This "black box explains black
box" setup also risks circular reasoning, since both models may share stylistic or
linguistic biases. Because our explanations are not grounded in specific neurons
or attention heads, and we do not test them with causal interventions, these inter-
pretations are better seen as plausible narratives than as faithful representations
of the model’s internal processes. While this method offers useful insight, it lacks
mechanistic precision and should be interpreted with care.

Third, due to computational limitations, our experiments were restricted to
relatively small-scale models and a limited set of architectures. All analyses were
performed on Pythia-2.8B and smaller variants; we did not include larger models
such as LLaMA-7B or beyond. Nonetheless, our findings already show strong
scale sensitivity: CoT prompts yield clear positive causal effects in Pythia-2.8B,
but behave inconsistently in smaller models like Pythia-70M. Prior work has shown
that reasoning traces produced by CoT-style prompting can degrade or collapse
entirely as problem complexity increases, even in models explicitly designed for
reasoning [Shojaee*† et al., 2025]. This suggests that interpretability at the feature
level does not necessarily guarantee robust or scalable reasoning behavior and
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our current conclusions may not generalize to more capable models. Moreover,
the tools used in this study (e.g., TransformerLens) limit our analyses to specific
architectures, mainly GPT-Neo and Pythia. We did not examine models like
LLaMA or GPT-3, which differ in key design aspects [Demircan et al., 2024].
Our interventions focused solely on the residual stream at layer 2, both during
SAE training and activation patching. While this provides a tractable window
into sparse feature behavior, it does not capture how CoT affects representations
across other layers. A broader, layer-wise analysis would thus be necessary to fully
characterize CoT’s structural influence within the model.

Finally, our analysis of internal features relies on SAEs to extract latent com-
ponents from activation space. While this method offers a more interpretable
view of model internals, it also introduces biases and uncertainties. SAEs are
increasingly used in LLM interpretability to decompose activations into sparse,
human-aligned features [Dooms and Wilhelm, 2025], but the quality of these fea-
tures depends heavily on training assumptions and hyperparameters. In our study,
we identified several features strongly associated with CoT prompts and observed
increased sparsity under CoT conditions. However, this does not imply that these
features are causally involved in the model’s reasoning. Prior work has shown
that semantically meaningful features extracted by SAEs do not always influence
model outputs. For example, Menon et al. [Menon et al., 2024] found that many
interpretable SAE features lack causal effect. In our experiments, only a subset
of features were tested via final-token activation patching, limiting the general-
izability of our causal claims. Additionally, SAEs enforce a sparse, overcomplete
basis, which may fragment entangled representations or miss distributed patterns
[Karvonen et al., 2024]. Given the superposition phenomenon in LLMs—where
single neurons can encode multiple overlapping concepts—metrics like "number of
activated neurons per feature" may not reflect true representational complexity
[Bereska and Gavves, 2024]. In short, while SAE-based analysis provides a use-
ful lens into internal structure, our conclusions about CoT-induced sparsity and
interpretability are conditioned on the assumptions of this method.

Taken together, these limitations—ranging from the coarse granularity of inter-
ventions, to the indirect nature of language-based explanations, the limited gener-
alizability across model scales, and the assumptions underlying our interpretability
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tools—define important boundaries on the scope of our findings. Within current
resource and tooling constraints, we have applied reasonable methods to support
our core claims. Future work should trace CoT reasoning more precisely, test ex-
planations against causal activations, expand to larger models, and cross-validate
results with other methods to build a more reliable understanding of CoT’s internal
effects.

5.3 Future Work

Despite these limitations, our findings suggest a central insight: CoT is not just
a strategy for better performance—it actively reshapes internal representations to
be sparser, more structured, and more causally meaningful. This points to new
directions for mechanistic interpretability. Below, we highlight several promising
paths for future research.

5.3.1 Token-level Causal Path Analysis

One important extension of this work is to move beyond the final token and analyze
the model’s behavior across the entire reasoning trajectory at a finer granularity.
Future research can explore token-level interventions within each step of a CoT
sequence to map how information flows through the model and contributes to the
final output.

For example, a stepwise activation replacement approach could be used to
gradually insert intermediate activations from a CoT run into a NoCoT run (or
vice versa), in order to pinpoint where the CoT advantage first emerges. This
would help clarify the causal contribution of each token or reasoning step.

More advanced techniques such as path patching—an extension of activation
patching—should also be explored [Goldowsky-Dill et al., 2023]. This method
allows interventions over entire paths or subcircuits across tokens and layers, en-
abling analysis of joint causal effects. It may reveal whether correct reasoning
depends on coordinated activations across both early and late layers, rather than
isolated effects.

Constructing a token-level causal graph of the reasoning process could move
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us beyond asking whether CoT works, to understanding where and how it works
within the model. This would significantly deepen our understanding of CoT’s
internal mechanisms.

5.3.2 Activation-grounded Explanation Methods

To address the second limitation, relying on black box scoring from external lan-
guage models, future work should aim to better connect natural language expla-
nations with the model’s internal behavior.

One direction is to go beyond surface-level description and incorporate mech-
anistic validation into the explanation pipeline. Rather than relying solely on
top-activating examples, future systems could evaluate whether the activations
corresponding to a given explanation causally influence the model’s output. For
example, after generating a candidate explanation, one could perform activation
patching or ablation to test whether manipulating the aligned features changes
the model’s prediction. If so, the explanation is more likely to be faithful; if not,
it may be plausible but misleading [Geiger et al., 2023].

Another promising approach is to use the model’s own activations to guide
explanation generation. Techniques such as probing or clustering can identify
interpretable activation patterns, which are then described using a language model
[Tighidet et al., 2024]. This grounds explanations more directly in actual model
behavior.

Recent work also shows that language models themselves can explain neurons.
For example, GPT-4 has been used to generate and evaluate neuron-level expla-
nations. Based on datasets like those from Bills et al., future research could build
explanation sets that focus on CoT vs. NoCoT differences, and link them to model
success or failure [Bills et al., 2023].

In the long run, combining transparency (by observing model activations) with
interpretability (by translating them into human language) can produce explana-
tions that are both understandable and reliable. This would make interpretability
research more robust and useful in practice.
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5.3.3 Scaling to Larger Models and Diverse Architectures

Regarding the third limitation, an important future direction is to apply this
framework to larger models and a wider range of architectures. We expect that
some patterns seen in this study—such as CoT prompting leading to sparser and
more focused feature activations—may become even stronger in larger models.

Large models are better at building specialized subcircuits. They may show
more "attention separation," where certain neurons or attention heads handle spe-
cific parts of the reasoning process. For example, recent work on LLaMA-2 7B
shows that when using CoT prompts, the model activates several reasoning paths
in parallel and shifts from processing context to step-by-step reasoning in the mid-
dle layers [Dutta et al., 2024]. Smaller models often do not show this kind of
structure.

Other studies also suggest that only very large models develop complex internal
behaviors. Elhage et al. found that LLaMA-70B can compute temporal-difference
reward signals in RL tasks, while the 8B model cannot [Demircan et al., 2024].
This shows that models at large scales may use more advanced internal strategies,
such as scratchpad reasoning or in-context learning modules.

To better understand CoT’s internal impact, future work should include models
of 20B parameters or more. It is also important to test different types of models.
Architectures with memory or recurrence (e.g., RETRO), or models trained with
instruction tuning or RLHF, may respond to CoT in different ways.

Current tools are still limited in what they support. But community progress
is helping add support for architectures like LLaMA and is improving tools for
sampling and patching. Solving these engineering issues will be key for scaling
this interpretability framework to more advanced models.

5.3.4 Subspace Patching and Circuit Discovery

The fourth limitation concerns the use of SAEs, which depend on training choices,
may fragment overlapping features, and lack clear alignment with causal mecha-
nisms. Future work should explore more focused and reliable methods to study
how internal features influence model behavior.

One useful direction is to move from full vector changes to subspace-level in-
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terventions [Makelov et al., 2023]. Instead of replacing entire activation vectors,
subspace activation patching changes only specific latent directions linked to in-
terpretable concepts. These directions can come from SAEs or other tools. This
method allows researchers to test whether certain semantic subspaces—not just
raw activations—actually cause behaviors like CoT reasoning.

At the same time, automated methods for finding circuits offer a scalable way
to avoid manual feature selection. Tools like attribution patching [Syed et al., 2023]
and causal scrubbing [Conmy et al., 2023] can find small groups of components (like
attention heads or neuron clusters) that carry the CoT effect. These approaches
do not rely on handpicked layers and help trace how CoT-related information flows
inside the model.

Together, these methods can lead to a more modular view of how LLMs rea-
son—by identifying working parts like scratchpads, control flows, or feature com-
position mechanisms that are active during CoT. This can help answer whether
SAE features reflect real computational units, by testing their causal role in a
clearer and more scalable way.

In conclusion, this study finds that CoT prompting not only improves out-
puts but also changes how the model works internally. It leads to sparser, more
interpretable, and more causally meaningful representations—especially in larger
models. Using tools from mechanistic interpretability, we begin to understand how
CoT shapes these internal changes and what that tells us about how LLMs reason.
While there are still limitations, our results suggest that structured prompts like
CoT affect the model’s inner workings, not just its answers. We hope this work en-
courages further research into the mechanisms behind CoT and helps move toward
models that are both powerful and easier to understand.
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