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Abstract

In Multi-Agent Reinforcement Learning (MARL), fostering cooperation without ex-
plicit rewards remains a significant challenge. Many conventional approaches rely on
carefully designed reward structures to incentivize collaborative behavior. However, real-
world scenarios often lack predefined cooperative incentives, necessitating alternative
mechanisms for emergent cooperation. To explore this problem, we propose a novel
Tower Environment, inspired by the movie The Platform, where agents must make
strategic decisions regarding resource consumption in a hierarchical setting with scarce
resources. Unlike traditional MARL settings, our environment does not provide explicit
cooperation rewards, making it an ideal testbed for studying emergent altruism and
self-regulation. To tackle this challenge, we introduce the Imitation Evolutionary Game
Strategy (IE-GS), which integrates trust-based decision-making, memory mechanisms,
and adaptive exploration strategies to promote cooperation in multi-agent systems. Ex-
perimental results demonstrate that IE-GS significantly improves cooperation rates and
fairness indices, outperforming baseline reinforcement learning algorithms. To further
evaluate the adaptability and robustness of IE-GS, we extended our experiments to
the Iterated Prisoner’s Dilemma (IPD), a well-established game-theoretic framework for
studying cooperation and defection dynamics. Our findings indicate that IE-GS not only
maintains cooperative tendencies but also exhibits resilience against exploitative strate-
gies in repeated interactions. This suggests that trust and adaptive learning mechanisms
can serve as fundamental drivers of cooperation across diverse multi-agent settings.
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1 Introduction

The emergence of cooperation in multi-agent systems (MAS) is a fundamental and long-
standing challenge in reinforcement learning (RL). Many existing approaches facilitate coop-
eration through explicit reward design, providing direct incentives for collaborative behaviors
such as resource sharing, task completion, or achieving global objectives. However, in many
real-world applications, predefined cooperative rewards may not always be feasible. Scenar-
ios such as distributed resource management, emergency response coordination, and traffic
control require agents to develop cooperative behaviors autonomously, without externally im-
posed incentives. Instead, cooperation must emerge as a result of individual decision-making,
environmental feedback, and agent interactions[1].
To investigate cooperation in settings where explicit cooperative rewards are absent, we in-
troduce a novel environment and algorithm inspired by the movie The Platform [2]. The film
depicts an extreme resource allocation scenario in which individuals in a vertical structure
receive food sequentially from top to bottom. Since individuals can freely decide how much
to consume, excessive consumption by those on upper levels frequently leads to starvation
for those below. This setting encapsulates key challenges in cooperative decision-making, in-
cluding resource scarcity, competition, and high interdependence of agent choices. Based on
this premise, we design the Tower Environment, a controlled multi-agent system where agents
must regulate their food consumption as a platform moves downward through different lev-
els. Crucially, the environment lacks any explicit cooperative rewards: agents receive rewards
only for eating and penalties for starvation, with no direct incentives for preserving resources
for others. Moreover, agents are periodically repositioned across different floors, introducing
dynamic role reversals that require them to continuously adapt their strategies.
To explore whether cooperation can emerge in multi-agent systems without explicit coopera-
tive rewards, we introduce algorithm, Imitation Evolutionary Game Strategy (IE-GS). Unlike
traditional reinforcement learning approaches such as Q-Learning and Monte Carlo methods,
which primarily optimize individual rewards, IE-GS incorporates trust-based interactions and
environmental feedback to encourage cooperative behaviors. Instead of relying on predefined
reward shaping, IE-GS allows agents to adjust their strategies dynamically based on observed
interactions, enabling them to transition from self-interested behavior to long-term coopera-
tion.
At the core of IE-GS is the idea that trust can serve as an implicit mechanism for coop-
eration. Agents evaluate the behaviors of others over time, adjusting their trust values ac-
cordingly—restrained consumption fosters trust, while selfish actions erode it. This dynamic
trust mechanism influences decision-making, encouraging cooperative strategies without di-
rect incentives. Moreover, by incorporating memory mechanisms and adaptive exploration-
exploitation strategies, agents can refine their behaviors based on both immediate interactions
and long-term trends in the environment.
However, several fundamental questions remain: Can cooperation truly emerge in the absence
of explicit cooperative rewards? How does trust influence the stability and effectiveness of co-
operation? Under what conditions does a trust-based mechanism succeed or fail? Furthermore,
while trust can promote cooperation, it may also be vulnerable to exploitation. To examine
the robustness of IE-GS, we extend our investigation beyond resource allocation in the Tower
Environment and apply it to a broader strategic setting—the Iterated Prisoner’s Dilemma
(IPD). This classic framework introduces additional challenges, such as strategic deception
and delayed cooperation, providing a more rigorous testbed for evaluating trust-based learning
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in dynamic and adversarial environments.
To systematically investigate these challenges, we define the following key research questions:

• RQ1: Can cooperation emerge in a multi-agent system where individual incen-
tives actively conflict with collective welfare?Many reinforcement learning methods
rely on reward shaping to encourage cooperation. However, in our Tower Environment,
individual rewards are directly tied to personal resource consumption, creating an inher-
ent conflict between self-interest and collective welfare. This study examines whether
cooperation can still emerge under such conditions, where consuming more food yields
higher rewards but simultaneously reduces resources available for others, increasing the
risk of systemic starvation.

• RQ2: Can a trust-based decision-making mechanism like IE-GS mitigate selfish
behavior and promote stable cooperation in a competitive multi-agent envi-
ronment? Trust is a crucial factor in human cooperation but remains underexplored in
MAS. In the Tower Environment, agents face strong incentives to prioritize their own
survival, leading to overconsumption and resource depletion. IE-GS introduces a trust
mechanism where agents adjust their behavior based on observed interactions, increas-
ing trust in cooperative peers and decreasing trust in selfish ones. This study examines
whether such a mechanism can effectively shift agents from purely self-serving behaviors
to sustainable cooperative strategies, even in the absence of explicit cooperative rewards.

• RQ3: How do different initial conditions, such as initial trust values and early-
stage greedy behavior, impact the long-term emergence of cooperation? The
initial setup of an MAS significantly influences its learning dynamics. This study eval-
uates how factors such as low initial trust or early selfish behaviors affect the eventual
development of cooperative interactions.

• RQ4: How do hyperparameters such as exploration rate, trust update rate,
and trust adjustment parameter affect the performance of agents in terms of
cooperation, fairness, and stability? Hyperparameter choices in RL affect exploration,
learning, and adaptation. We analyze how these factors influence long-term cooperative
behaviors.

• RQ5: Can a trust-based cooperation mechanism remain effective when agents
face dynamic and deceptive opponent strategies? Real-world cooperation is rarely
static; adversaries may adjust their behaviors to exploit or deceive cooperative agents.
By evaluating IE-GS in IPD against adaptive defectors and delayed-response strategies,
we explore its resilience to long-term strategic manipulation.

This paper is structured as follows: Section 3 details the design of the Tower Environment and
the IE-GS algorithm. Section 4 presents the setup for our comparative experiments. Section 5
provides empirical evaluations of agent cooperation dynamics in both the Tower Environment
and the Iterated Prisoner’s Dilemma. Section 6 interprets key findings, analyzes algorithmic
limitations, and discusses broader implications for cooperative multi-agent learning. Section 7
explores potential extensions of our work, including scaling to larger systems, handling hetero-
geneous agent strategies, and developing hierarchical and decentralized trust models. Finally,
Section 8 summarizes our contributions and highlights the impact of our findings on future
research directions.
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2 Related Work

This section reviews key research areas relevant to our study, including multi-agent systems
(MAS), cooperation mechanisms, centralized training with decentralized execution (CTDE),
communication strategies, and trust mechanisms in MARL.

2.1 Multi-Agent Systems

Multi-agent systems (MAS) have become a fundamental paradigm for modeling complex, de-
centralized environments where multiple autonomous entities, referred to as agents, interact
within a shared system. Unlike traditional single-agent frameworks, MAS involves independent
decision-makers that operate within an environment characterized by uncertainty, partial ob-
servability, and dynamic interactions. These agents may exhibit cooperative, competitive, or
mixed-motive behaviors depending on the nature of their objectives and interactions. The study
of MAS spans various domains, including robotics, economics, distributed computing, and ar-
tificial intelligence, where the ability to design and control autonomous agents has far-reaching
implications[3].
At the core of multi-agent systems lies the challenge of decentralized decision-making. Each
agent must process local observations, infer relevant information about the environment and
other agents, and make strategic choices to optimize its own objectives. In cooperative settings,
agents must align their individual goals with those of the collective, requiring mechanisms for
coordination and communication. Conversely, in competitive scenarios, agents must anticipate
the strategies of others while maximizing their own utility, often resulting in adversarial dynam-
ics. The complexity of MAS further increases when agents operate under partial observability,
where access to global state information is limited, making efficient coordination and long-term
planning difficult[4].
The applications of MAS are diverse, ranging from autonomous vehicle fleets and robotic
swarms to financial markets and distributed sensor networks. In robotic systems, multiple au-
tonomous agents can collaborate to perform tasks such as search-and-rescue operations or
warehouse logistics, requiring real-time adaptation and communication[5]. Similarly, in traffic
management[6], MAS is used to optimize traffic flow through decentralized decision-making
among autonomous vehicles. Financial markets also exhibit multi-agent characteristics, where
algorithmic trading agents interact in highly dynamic environments, responding to market
conditions and competing for optimal trade execution. In each of these cases, the under-
lying mechanisms of decision-making, learning, and coordination define the system’s overall
efficiency and performance.
While multi-agent systems provide a powerful framework for solving complex real-world prob-
lems, the primary challenge remains how to design and train agents that can effectively learn
optimal behaviors in dynamic, multi-agent settings. Reinforcement learning has emerged as a
key approach to addressing this challenge, where agents learn policies through trial-and-error
interactions with the environment. However, standard reinforcement learning approaches, de-
signed for single-agent settings, often fail to scale effectively to multi-agent domains due
to non-stationarity, credit assignment difficulties, and the need for strategic reasoning about
the actions of others[7]. These challenges underscore the necessity of developing specialized
learning algorithms tailored to multi-agent settings, particularly those that facilitate emergent
cooperation.
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2.2 Cooperation in Multi-Agent Systems

Cooperation in multi-agent systems (MAS) refers to scenarios where multiple agents must
coordinate their actions to achieve shared objectives, optimize collective performance, or ensure
equitable resource distribution. Unlike single-agent settings, where an agent independently
learns an optimal policy, multi-agent cooperation requires agents to account for the actions
and strategies of others[8]. This introduces challenges such as coordination, credit assignment,
and long-term stability. While cooperative behavior can emerge naturally in some environments,
in many cases, specialized mechanisms are necessary to facilitate and sustain cooperation.
A key theoretical foundation for studying cooperation in MAS is game theory[9], which pro-
vides formal models for analyzing interactions among rational agents. In cooperative game
theory, agents form coalitions to maximize joint rewards, employing mechanisms such as the
Shapley value and core stability to ensure fair distribution of collective gains. In contrast, non-
cooperative game theory assumes that agents act independently to maximize their own utility,
with Nash equilibria representing stable outcomes where no agent has an incentive to unilat-
erally deviate. Many real-world MAS scenarios involve social dilemmas such as the Prisoner’s
Dilemma, Public Goods Game, and Tragedy of the Commons, where individual rationality
often leads to collectively suboptimal outcomes unless explicit cooperation mechanisms are
introduced[10].
In multi-agent reinforcement learning (MARL), fostering cooperation becomes even more com-
plex due to the issue of non-stationarity—agents continuously adapt their strategies, altering
the environment dynamically. Traditional reinforcement learning (RL) algorithms struggle in
such settings because they typically assume a static environment, whereas in MARL, each
agent’s learning process directly influences the behavior of others. Additionally, credit assign-
ment remains a significant challenge, as rewards are often distributed among multiple agents,
making it difficult to attribute success to specific individuals. These challenges underscore
the need for advanced learning strategies that promote stable and effective cooperation in
multi-agent environments.
To address these challenges, various cooperation mechanisms have been proposed in the MARL
literature. These mechanisms generally fall into three categories: centralized training with de-
centralized execution (CTDE)[11], explicit communication, and implicit cooperation via infor-
mation mechanisms. Each approach offers unique advantages but also faces inherent limita-
tions, particularly when applied to real-world, large-scale MAS. The following sections provide
a detailed discussion of these mechanisms and highlight their differences from the approach
used in this study.

2.3 Centralized Training with Decentralized Execution (CTDE)

One of the predominant paradigms for facilitating cooperation in multi-agent reinforcement
learning (MARL) is Centralized Training with Decentralized Execution (CTDE), a framework
designed to leverage centralized learning during the training phase while allowing agents to
operate independently during execution. This approach is particularly effective in addressing the
challenges associated with decentralized decision-making, as it enables agents to exploit global
state information during training without requiring direct coordination or communication at
inference time. The underlying motivation for CTDE is to optimize cooperative behaviors by
utilizing a centralized training architecture that provides each agent with access to privileged
information that would otherwise be unavailable in a fully decentralized setting. By learning
from this global perspective, agents can develop strategies that are more aligned with collective
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objectives while still maintaining autonomy when deployed in real-world environments where
centralized control is often impractical[12].
Within the CTDE framework, several algorithmic approaches have been proposed to decom-
pose the complexities of multi-agent interactions while preserving cooperation. One of the most
influential methods is Multi-Agent Deep Deterministic Policy Gradient (MADDPG), which ex-
tends the Deep Deterministic Policy Gradient (DDPG) algorithm to multi-agent settings by
employing a centralized critic for each agent during training[13]. The centralized critic has
access to the joint state-action space of all agents, allowing it to compute more informed
value estimates that incorporate the dependencies between agents’ actions. However, during
execution, each agent acts independently using only its local observations, ensuring scalability
and decentralized decision-making. This formulation enables agents to learn cooperative be-
haviors that would be challenging to discover in a fully decentralized reinforcement learning
setting, where the non-stationarity introduced by multiple learning agents often destabilizes
training.
Another notable class of CTDE-based methods is value decomposition techniques, which aim
to decompose the joint value function into individual agent-specific components to facilitate
decentralized decision-making. One such approach is Value Decomposition Networks (VDN),
which assumes that the joint Q-function can be expressed as a simple summation of individual
Q-values, thereby enabling independent agents to optimize their policies while still contribut-
ing to a shared objective[14]. While effective in structured cooperative environments, VDN’s
simplistic value decomposition limits its ability to capture complex inter-agent dependencies.
QMIX extends this idea by introducing a mixing network that learns a more flexible function for
aggregating individual Q-values into a joint Q-function, enforcing a monotonicity constraint
that ensures optimality under decentralized execution. These approaches have demonstrated
strong performance in cooperative multi-agent tasks, particularly in domains such as robotic
swarm control, autonomous driving, and real-time strategy games.
Despite the empirical successes of CTDE, several limitations remain. First, CTDE relies heav-
ily on explicit reward shaping, which assumes that cooperative incentives can be predefined
and embedded into the learning process. This assumption does not always hold in real-world
scenarios where cooperative behavior must emerge from intrinsic interactions rather than be-
ing externally prescribed. The need for a well-designed global reward structure introduces a
dependence on domain-specific knowledge and limits the generalizability of these methods to
environments where cooperative incentives are not explicitly defined. Additionally, the scalabil-
ity of CTDE-based approaches is a fundamental challenge, as the requirement for centralized
training becomes computationally expensive when the number of agents increases. The cen-
tralized critic or value decomposition models must process exponentially growing state-action
spaces, leading to bottlenecks in training efficiency and memory consumption[15]. Finally,
CTDE does not necessarily generalize well to dynamic environments, particularly in open multi-
agent systems where new agents may enter or exit over time. Many existing CTDE methods
assume a fixed agent population with stable interaction patterns, making them less suited for
dynamic settings where cooperation mechanisms must continuously adapt to evolving agent
compositions and objectives.

2.4 Communication in Multi-Agent Systems

Communication plays a crucial role in facilitating cooperation within multi-agent systems
(MAS), particularly in environments where agents must coordinate their actions to achieve
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shared objectives[16]. The ability to exchange information allows agents to reduce uncertainty
about others’ intentions, synchronize strategies, and mitigate suboptimal behaviors caused
by partial observability. In multi-agent reinforcement learning (MARL), communication mech-
anisms are often introduced to enhance cooperative behaviors by enabling agents to share
relevant state or policy information, thereby improving joint decision-making[17]. However,
designing effective communication protocols remains a challenging problem due to constraints
such as communication bandwidth limitations, delayed or noisy transmissions, and the risk of
strategic deception when agents have competing incentives.
Several approaches have been developed to integrate communication into MARL frameworks,
ranging from explicit message passing to learned communication protocols. One of the most
common paradigms involves differentiable communication, where agents learn to exchange
continuous-valued messages through neural network-based architectures. This approach is ex-
emplified by CommNet[18], which employs a shared recurrent neural network to aggregate
messages from multiple agents and process them alongside individual agent states, enabling
implicit coordination through distributed learning. Another widely studied method is DIAL (Dif-
ferentiable Inter-Agent Learning)[19], which incorporates discrete communication signals into
deep Q-learning, allowing agents to learn when and what to communicate by treating messages
as additional network inputs. These methods enable agents to develop context-aware commu-
nication strategies, adjusting their message content based on situational demands rather than
relying on fixed communication protocols.
Beyond explicit message exchange, some MARL frameworks adopt attention-based commu-
nication mechanisms to enhance the efficiency of inter-agent information sharing[20]. Tar-
MAC (Targeted Multi-Agent Communication) introduces an attention-based message selection
mechanism that enables agents to dynamically decide whom to communicate with, preventing
unnecessary message exchanges and improving scalability[21]. Similarly, IC3Net (Iterated Com-
munication for Cooperative Agents) leverages recurrent attention networks to facilitate itera-
tive message refinement, allowing agents to converge on more effective coordination strategies
over multiple communication rounds[22]. These approaches address a fundamental challenge
in multi-agent communication: selective and efficient information sharing, ensuring that com-
munication is both meaningful and computationally feasible in large-scale systems.
Despite the successes of communication-based MARL, several inherent limitations restrict its
applicability to real-world multi-agent cooperation[23]. First, communication introduces addi-
tional learning complexity, as agents must simultaneously learn both task-specific policies and
effective message-passing strategies. This can lead to convergence instability, particularly in
environments where optimal communication protocols are nontrivial to discover. Additionally,
the assumption of reliable communication may not hold in real-world settings, where factors
such as bandwidth constraints, packet loss, or adversarial agents may disrupt information
exchange. In fully decentralized environments, where agents operate asynchronously and in-
dependently, reliance on explicit communication can introduce vulnerabilities, making systems
more susceptible to failures when communication is compromised.
Furthermore, many existing communication-based MARL methods assume that agents are
inherently cooperative, which may not be a valid assumption in open multi-agent systems
where individual incentives are misaligned. In mixed-motive environments, agents may strate-
gically manipulate messages to mislead others, requiring the integration of trust mechanisms or
mechanism design principles to ensure truthful communication. Some studies have attempted
to address this issue through adversarial training, where agents are trained against potential
deceptive communicators to enhance robustness. However, these methods remain largely ex-
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perimental, and designing communication strategies that are both scalable and resilient to
manipulation remains an open problem in the field.

2.5 Trust Mechanisms in Muiti-Agent System

In multi-agent reinforcement learning (MARL), trust mechanisms are pivotal for fostering
cooperation, particularly in environments where agents may exhibit unreliable or adversarial
behaviors. Traditional trust models[24] often rely on direct experiences, where agents assess
the trustworthiness of their peers based on past interactions. For instance, decentralized trust
mechanisms enable agents to independently decide which neighbors to communicate with,
thereby mitigating the influence of unreliable agents and improving consensus success rates.
Another approac[25] involves the development of trust evaluation models that assess the
trustworthiness of target agents within the MARL framework. These models aim to provide
a quantitative measure of trust, which agents can use to make informed decisions about
cooperation and coordination.
While these existing trust mechanisms have contributed to enhancing cooperation in MARL,
they often depend on explicit trust evaluations and predefined communication protocols. In
contrast, our proposed approach distinguishes itself by not relying on explicit trust assess-
ments or direct communication. Instead, it leverages implicit trust signals derived from agents’
observed behaviors and historical interactions. This method allows for the emergence of co-
operative strategies through evolutionary game dynamics, enabling agents to adapt their be-
haviors based on the inferred trustworthiness of their peers. By focusing on implicit trust cues
and adaptive learning, our approach offers a more flexible and scalable solution for fostering
cooperation in complex, dynamic multi-agent environments.
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3 Methodology

This section describes the methodology used to investigate emergent cooperation in a multi-
agent environment. We first introduce the environment design, where agents interact under
resource constraints within a hierarchical structure, making decisions that directly impact
others’ survival. Then, we introduce the algorithm design, detailing the Imitation Evolutionary
Game Strategy (IE-GS), which enables agents to learn adaptive behaviors through memory
mechanism, evolving trust mechanism, and exploration balancing.

3.1 Environment Design

This study draws inspiration from the movie ”The Platform”. To avoid the violent screen Fig1
of the movie, a simplified visual representation of the tower environment was implemented in
Pygame, using hand-drawn cartoon to simulate the resource allocation dynamics. A virtual

Figure 1: Movie Screen

environment was designed, consisting of a four-story tower with one agent assigned to each
floor, resulting in a total of four agents. The sole resource in the tower is food, which is
carried by a movable platform starting at the top floor and descending one level at a time. The
platform begins with an initial amount of 4 food units, just sufficient to meet the minimum
survival requirement of all agents (i.e., each agent needs to consume 1 food unit to survive).
Agents can choose to consume 0, 1, or 2 food units when the platform reaches their floor.
Unconsumed food continues to the next floor, creating a direct interdependence between the
decisions of agents on higher floors and the survival of those below. An agent’s hunger level
increases linearly over time, and if it reaches the predefined maximum hunger threshold Hmax,
the agent is considered ”dead.” The dynamic hunger update for each agent is governed by the
following equation:

Hi(t+ 1) = min (Hmax, Hi(t) + ∆H − κAi)

where Hi(t) is the hunger level of agent i at time t, ∆H is the natural increase in hunger per
round, κ is the reduction in hunger per unit of food consumed, and Ai is the agent’s food
consumption.
At the end of each round, the positions of all agents are randomly reassigned to different
floors, introducing further uncertainty into the environment. This dynamic allocation requires
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Figure 2: The tower environment in the movie

agents to develop adaptive strategies to cope with changing conditions and to explore diverse
behaviors within the environment.

3.1.1 Reward and Penalty Mechanism

The reward structure in this environment is intentionally simple yet challenging, consisting of
two components: consumption rewards and survival penalties.
Agents earn rewards based on the amount of food consumed when the platform reaches their
floor. The reward increases with the consumption amount and is defined as:

Ri = Ai, Ai ∈ {0, 1, 2}

where Ri is the reward for agent i, and Ai is the agent’s food consumption.
If an agent’s hunger level reaches Hmax, the agent is considered dead and incurs a penalty of
-1. The overall reward for an agent is therefore expressed as:

Ri =

{
Ai, if Hi(t) < Hmax

−1, if Hi(t) ≥ Hmax

This reward structure is entirely short-term oriented, with rewards closely tied to immediate
consumption actions. This design introduces several challenges. First, agents are incentivized
to consume as much food as possible to maximize their immediate rewards, potentially at
the expense of agents on lower floors. Second, the absence of explicit cooperation rewards
makes it difficult for agents to develop collaborative strategies. Instead, the design indirectly
discourages cooperation by aligning rewards with selfish behavior. Third, the dynamic and
random reassignment of agent positions at the end of each round further complicates strategy
development, as agents must continuously adapt to new environmental conditions. To better
illustrate the dynamics of the environment, Fig 3 shows the initial state of the environment,
where the food platform starts at the top of the tower, and agents are randomly assigned to
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Figure 3: environment Figure 4: bad situation

floors. Fig 4 and 5 demonstrate two typical scenarios. Fig 4 shows the situation that agents
on lower floors are left without resources and eventually die When agents on higher floors
overconsume food. Fig 5shows the situation that all agents survive when agents learn to
moderate their consumption, with each consuming exactly 1 food unit.

Figure 5: good situation
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3.2 Algorithm Design

This section provides a detailed explanation of the various components of the proposed algo-
rithm.

3.2.1 Algorithm Overview

The Imitation Evolutionary Game Strategy (IE-GS) is designed to address the challenges of
decentralized decision-making in a multi-agent system with limited resources. This algorithm
enables agents to develop emergent cooperative behaviors without explicit cooperation rewards,
relying instead on adaptive decision-making driven by memory retention, evolving trust, and
exploration-exploitation balancing.
Each agent in the system must decide how much food to consume while taking into account
both immediate survival needs and long-term cooperation incentives. Unlike traditional rein-
forcement learning approaches that rely on predefined cooperative rewards, IE-GS leverages
an evolving trust mechanism that emerges from agents’ interactions. Trust acts as an implicit
signal reflecting past behaviors and is used to modulate the agent’s decision-making strat-
egy. Exploration is dynamically adjusted based on trust stability and historical performance,
ensuring that agents maintain adaptability while converging towards sustainable policies.

Figure 6: Algorithm Structure

The algorithm operates within an environment where agents occupy discrete hierarchical po-
sitions. The availability of resources at each level is influenced by the consumption behaviors
of those above. Over time, agents learn patterns of resource distribution, adapt their strate-
gies, and refine their decision-making based on trust dynamics and memory-driven learning.
The following subsections provide a detailed description of the three fundamental mechanisms
underlying IE-GS.

3.2.2 Memory Mechanism

Memory serves as the foundation of the IE-GS algorithm, allowing agents to retain and utilize
past interactions to optimize their decision-making processes. It captures both short-term
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Algorithm 1 Imitation Evolutionary Game Strategy (IE-GS)

Require: Environment E , Trust update parameters α, β, γ, Exploration decay parame-
ters ϵmax, ϵmin, λ

Ensure: Emergent cooperative behavior among agents
1: Initialize trust values Tij ← 0 for all agents i, j
2: Initialize short-term memoryMs and long-term memoryMl

3: Set exploration probability ϵ← ϵmax

4: while not converged do
5: Reset environment E and assign agents to random floors
6: for each episode e do
7: Observe initial state s0
8: for each time step t do
9: for each agent i do
10: Retrieve state sit = (H t

i , F
t, Tij)

11: Select action ati based on trust, hunger, and exploration:
12: if Tij > 0.5 and H t

i < 0.8Hmax then
13: ati ← 1 ▷ Moderate consumption
14: else if Tij < −0.3 or H t

i > 0.8Hmax then
15: ati ← 2 ▷ Max consumption
16: else
17: ati ← exploration-based decision
18: end if
19: Execute action ati and observe reward Rt

i

20: Store (sit, a
t
i, R

t
i) inMs andMl

21: end for
22: Update environment state st+1

23: end for
24: for each agent i do
25: for each preceding agent j do
26: Compute trust update ∆Tij:

∆Tij = α · F t

Fmax

− β ·max(0, H t − θh) + γ · (T̄ t
ij − T t

ij)

27: Apply trust update:

T t+1
ij = clip(T t

ij +∆Tij,−1, 1)

28: Store updated T t+1
ij in memory

29: end for
30: end for
31: Update exploration probability ϵ:

ϵe+1 =

{
min(ϵmax, ϵe × 1.1), if trust variance is high,

max(ϵmin, ϵe × λ), otherwise.

32: Randomly reassign agent positions
33: end for
34: end while
35: return Emergent cooperative behavior
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Figure 7: Memory Mechanism: Quick behavior adjustment through short-term memory
while building stable strategies with long-term memory

fluctuations in behavior and long-term patterns of resource distribution, enabling agents to
refine their strategies over time.
Each agent maintains two distinct memory buffers: a short-term memory (STM) and a long-
term memory (LTM). STM is designed to store recent experiences within a limited temporal
window, allowing agents to quickly adapt to environmental fluctuations. Formally, the STM
buffer is defined as:

Ms = {(st, at, rt)}Tt=T−Ns
(1)

where (st, at, rt) represents the observed state, executed action, and received reward at time
step t, and Ns is the fixed size of the short-term memory buffer.
In contrast, LTM accumulates information across a significantly longer time horizon, capturing
historical trends in trust evolution, cooperative behaviors, and survival strategies. The LTM
buffer is defined as:

Ml = {(st, at, rt)}Tt=0 (2)

where T is the total number of episodes experienced by the agent.
Memory directly influences decision-making by reinforcing successful past actions and miti-
gating suboptimal behaviors. If an agent’s STM indicates that a particular action consistently
leads to starvation, it will adjust its short-term strategy accordingly. However, if its LTM sug-
gests that temporary resource conservation benefits long-term survival, the agent may tolerate
short-term sacrifices in favor of sustainable cooperation.

3.2.3 Trust Mechanism

Trust plays a critical role in regulating cooperation within the IE-GS framework. Each agent
maintains a dynamic trust value towards its neighboring agents, which reflects past obser-
vations of resource-sharing behaviors. Trust is continuously updated based on the proportion
of food received from agents on higher floors, the agent’s own hunger level, and long-term
behavioral trends. For an agent i at time step t, the trust value towards its neighboring agent
on the preceding floor, denoted as T t

ij, is computed as follows:

T t+1
ij = clip

(
T t
ij +∆Tij,−1, 1

)
(3)
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Figure 8: Trust Mechanism: Dynamically adjusts trust based on food distribution behavior
to guide cooperation decisions

where ∆Tij represents the trust adjustment factor.
The change in trust ∆Tij is influenced by three primary factors. The first is the observed
resource consumption pattern. If an agent on the preceding floor leaves a significant portion
of food, trust increases proportionally to the food ratio:

∆Tij = α · F t

Fmax

(4)

where F t is the remaining food observed by agent i and Fmax represents the total initial food
supply.
The second factor is the agent’s own hunger level. If an agent experiences prolonged high
hunger levels due to insufficient food supply, trust in the preceding agent is penalized:

∆Tij = −β ·max(0, H t − θh) (5)

where H t is the current hunger level and θh is a predefined threshold.
The third factor accounts for historical trust trends, ensuring that trust updates are not overly
reactive to single interactions. The long-term trust trajectory T̄ t

ij is used to modulate updates:

∆Tij = γ ·
(
T̄ t
ij − T t

ij

)
(6)

where γ determines the weight of historical trust.
By integrating these factors, the trust mechanism allows agents to adapt their behaviors
based on past interactions, fostering emergent cooperation without requiring explicit rewards
for altruistic actions.

3.2.4 Exploration Mechanism

Exploration in IE-GS is dynamically adjusted to balance adaptation and stability. Unlike tra-
ditional reinforcement learning approaches where exploration follows a fixed decay schedule,
IE-GS conditions exploration probability on both trust stability and recent agent performance.
At each time step, the exploration probability ϵt is updated as follows:
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Figure 9: Exploration Mechanism: Balances between survival and exploration by adjusting
exploration rate based on hunger and trust

ϵt+1 =

{
min(0.9, ϵt × 1.1) if σT > θT ,

max(ϵmin, ϵt × 0.995) otherwise.
(7)

where σT represents the variance in trust values over recent episodes and θT is a stability
threshold. When trust variance is high, indicating unstable cooperation, exploration is increased
to encourage alternative strategies. When trust variance is low, exploration is reduced, allowing
the agent to exploit learned strategies.
Exploration is further modulated by trust-influenced action selection. The probability of se-
lecting a specific action ati is determined by both the current exploration rate and the trust
value:

P (ati|st) =

{
1− ϵt if Tij > 0.5 and H t

i < 0.7Hmax,

ϵt otherwise.
(8)

This formulation ensures that highly trusted agents are more likely to exploit cooperative
strategies, while agents with uncertain trust values engage in exploratory actions.
Over time, exploration naturally declines as long-term memory stabilizes trust values and
cooperative behaviors emerge. However, stochastic exploration is retained at a minimal level
to prevent agents from becoming trapped in locally optimal but globally suboptimal strategies.
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4 Experiment

To evaluate the effectiveness of the Imitation Evolutionary Game Strategy (IE-GS) in fostering
cooperation, we conducted experiments in two distinct environments: the Tower Environment
and the Iterated Prisoner’s Dilemma (IPD). The first environment models cooperative behavior
under competitive resource constraints, while the second explores strategic decision-making in
a repeated game setting. These two experiments together provide a comprehensive evaluation
of how trust-based learning can drive cooperation in different multi-agent scenarios.

4.1 Experiments in the Tower Environment

The experimental environment is inspired by the movie The Platform, where resources (food)
are distributed sequentially across different hierarchical levels. This environment is designed
to test whether cooperation can emerge in a multi-agent system (MAS) without explicit
cooperative rewards. The Tower Environment consists of:

• Four agents, each occupying one of four floors.

• A food platform that starts at the top floor and moves downward.

• Limited food resources, initially set to four units per round.

• Dynamic floor reassignment after each round to prevent fixed positional advantages.

• A hunger mechanism, where agents receive a penalty if they died due to hunger reaching
the upper limit.

Each agent must decide how much food to consume when the platform reaches its floor.
The challenge is that overconsumption by higher-floor agents leaves lower-floor agents with
insufficient resources, which can lead to starvation.
Agents operate under partially observable conditions, with access only to their local state,
which includes hunger level, available food, and estimated trust values for adjacent layers.
Since trust is not explicitly rewarded, its formation and stability depend on how agents interpret
and respond to past interactions.
The environment is implemented in Python using Pygame for visualization, and it tracks
various performance metrics, including cooperation rate, success rate, and fairness index.
The primary objective of this experiment is to evaluate the effectiveness of the proposed
Imitation Evolutionary Game Strategy (IE-GS) and examine its ability to foster cooperation in
a competitive multi-agent environment without explicit cooperative rewards. To achieve this,
we systematically design a series of experiments that investigate (i) how IE-GS compares to
traditional MARL algorithms, (ii) how different initial conditions influence learning, and (iii)
the sensitivity of IE-GS to hyperparameter choices.

4.1.1 Algorithm Comparison

Q-Learning is a classical value-based reinforcement learning algorithm. Agents learn action-
value functions by updating a Q-table. Prioritizes maximizing individual long-term rewards,
often leading to selfish behaviors.
Monte Carlo (MC) Method uses episodic sampling to update value estimates. Agents adjust
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Feature Q-Learning Monte Carlo IE-GS

Decision Basis Value-based Return-based Trust-driven

Adaptation Speed Fast but short-term Slow but long-term Dynamic

Memory Mechanism None Episodic Short- and Long-term

Exploration ϵ-greedy Episodic updates Adaptive

Table 1: Comparison of Q-Learning, Monte Carlo, and IE-GS in the Tower Environment.

their strategies based on returns observed at the end of episodes. Learning is less sensitive to
short-term fluctuations but may still favor self-interested actions.
These baselines provide a contrast to IE-GS, which incorporates trust-based learning, memory
mechanisms, and adaptive decision-making.

4.1.2 Impact of Initial Conditions on Learning

The initial conditions of an agent-based learning system can significantly influence the emergent
behavior and the long-term evolution of cooperative strategies.
To investigate the impact of initial conditions on learning, we conduct a forced greedy initializa-
tion experiment. In this experiment, all agents are constrained to follow a greedy consumption
strategy for a predetermined number of episodes, where they consume the maximum available
resources up to a limit of 2 units per round. This setup simulates an extreme competition
scenario where agents prioritize immediate self-interest, preventing them from developing co-
operative behaviors in the early stages.
The primary objective of this experiment is to determine whether agents can recover coop-
eration after being exposed to enforced greedy behavior. Additionally, we analyze how the
duration of this greedy phase influences learning outcomes by varying the enforced greediness
period to 200, 800, and 2000 episodes. These settings allow us to examine whether prolonged
exposure to non-cooperative behaviors makes it increasingly difficult for agents to transition
toward sustainable resource-sharing strategies.

4.1.3 Sensitivity to Hyperparameters

To systematically assess the effects of different learning dynamics, several key hyperparameters
are varied across experiments. One of the most critical parameters is the trust update learn-
ing rate (α), which dictates how quickly agents adjust their trust values based on observed
interactions.
Another essential hyperparameter is the trust weighting factor (β), which determines the
sensitivity of trust updates to an agent’s hunger state
Exploration strategies are also tested, as they significantly influence how agents balance novel
strategy discovery and exploitation of learned behaviors. Three exploration schedules are ex-
amined. The extreme high exploration strategy maintains a persistently high exploration rate,
ensuring that agents continuously experiment with different strategies. The moderate explo-
ration strategy gradually shifts from exploration to exploitation following a decay schedule,
while the minimal exploration strategy minimizes randomness from the start, allowing agents
to refine their behaviors early on.
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All experiments run for 5000 training episodes, with performance metrics averaged over multi-
ple independent runs to ensure statistical reliability. Training is conducted using a parallelized
simulation framework to efficiently explore different hyperparameter configurations.

4.1.4 Evaluation Metrics

To evaluate the performance and emergent behaviors of our multi-agent system, we employ
four key metrics:
The success rate quantifies the proportion of agents exhibiting moderate or minimal consump-
tion behavior:

Success Rate =
Number of Agents with Action ≤ 1

Total Number of Agents

This metric serves as a primary indicator of collective self-regulation, measuring the agents’
ability to avoid overconsumption. A high success rate suggests that agents have learned to
regulate their resource consumption, either through complete abstention (Action = 0) or
moderate consumption (Action = 1), which is crucial for sustainable resource management in
multi-agent systems.
The cooperation level specifically measures the proportion of agents choosing optimal moderate
consumption:

Cooperation Level =
Number of Agents with Action = 1

Total Number of Agents

Unlike the success rate, this metric focuses exclusively on agents that select the socially optimal
action of moderate consumption (Action = 1). This distinction is important as it differentiates
between passive non-consumption and active cooperation. A high cooperation level indicates
that agents have learned to balance individual needs with collective sustainability.
The fairness index evaluates the equality of resource distribution using a modified Gini coeffi-
cient:

Fairness Index = 1−G

where G is the Gini coefficient calculated over the episode’s cumulative consumption:

G =

∑n
i=1

∑n
j=1 |xi − xj|

2n
∑n

i=1 xi

Here, xi represents the total resources consumed by agent i during an episode, and n is the
number of agents. This metric ranges from 0 to 1, where 1 indicates perfect equality in resource
distribution. The fairness index is particularly important in multi-agent systems as it reflects
the system’s ability to maintain equitable resource allocation.
These metrics collectively provide a comprehensive evaluation framework for analyzing both
individual agent behavior and emergent system-level properties in our multi-agent resource
management scenario. They capture different aspects of the system’s performance: individual
decision-making (Success Rate), cooperative behavior (Cooperation Level) and distributive
justice (Fairness Index).

4.2 Experiments in the Iterated Prisoner’s Dilemma

The Iterated Prisoner’s Dilemma (IPD) is a well-established game theory model that captures
the essence of decision-making in environments where agents must balance cooperation and
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competition. The key challenge in IPD is that short-term incentives often conflict with long-
term benefits—defecting may yield immediate rewards, but cooperation maximizes long-term
gains if mutual trust is established.
IE-GS is fundamentally designed as a trust-based decision-making algorithm, making IPD an
ideal environment to evaluate its effectiveness. Traditional strategies like Tit-for-Tat (TFT) rely
on direct reciprocity—cooperating initially and mirroring the opponent’s previous action—while
IE-GS instead dynamically adjusts trust levels based on long-term behavioral trends. This
difference raises key questions:
Can IE-GS outperform Tit-for-Tat by achieving higher cooperation rates and long-
term rewards?
Is IE-GS resilient against purely exploitative strategies like Always Defect?
How does IE-GS respond to deceptive opponents who change their behavior over
time?
To answer these questions, we conducted a two-stage evaluation. First, we compared IE-GS
against baseline IPD strategies to determine its strengths and weaknesses in standard settings.
Second, we introduced Delayed-Defect and Delayed-Cooperate strategies to examine whether
IE-GS’s trust mechanism can be exploited or recovered in non-stationary environments.
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5 Results

In this section, we present the experimental results evaluating the effectiveness of our pro-
posed Imitation Evolutionary Game Strategy (IE-GS) compared to traditional reinforcement
learning and game-theoretic strategies. The Baseline Algorithm Performance subsection ana-
lyzes how IE-GS performs in a resource-limited environment and compares it against standard
reinforcement learning approaches such as Q-Learning and Monte Carlo. The Effect of Greedy
Initialization subsection investigates how agents recover from an enforced phase of selfish
behavior, examining whether cooperative strategies can emerge despite unfavorable starting
conditions. We then extend this analysis in the Impact of Different Greedy Initialization Du-
rations on Learning, exploring whether prolonged exposure to greediness impairs the ability
to regain cooperation. Next, the Hyperparameter Sensitivity subsection delves into the effects
of key trust-related parameters, including the trust update learning rate and trust adjustment
parameter, assessing their impact on cooperation level and Fairness index. Furthermore, the
Effect of Exploration Strategies subsection examines different exploration settings to determine
the optimal balance between exploration and exploitation for achieving sustainable coopera-
tion. Finally, in the Iterated Prisoner’s Dilemma subsection, we assess IE-GS’s performance in
a classic game-theoretic environment, comparing it against well-established strategies such as
Tit-for-Tat, Always Defect, and Random, followed by an evaluation against Delayed-Defect
and Delayed-Cooperate strategies to test whether trust-based cooperation mechanisms can
withstand dynamic opponent behavior. Together, these experiments provide a comprehensive
analysis of IE-GS’s robustness, adaptability, and long-term strategic viability in multi-agent
cooperative settings.

5.1 Baseline Algorithm Performance

One of the fundamental challenges in reinforcement learning is the ability to learn cooperative
strategies in environments where there are no explicit rewards for cooperation. This issue
becomes particularly evident in our experimental setting, where agents must learn to moderate
their resource consumption without receiving a direct reward for doing so. Figure 10 illustrates
the success rate of three different learning strategies—Q-Learning, Monte Carlo, and our
proposed Imitation Evolutionary Game Strategy (IE-GS).
The success rate in this context is defined as the proportion of episodes in which agents
successfully moderate their consumption such that food is preserved for lower-level agents,
ensuring long-term sustainability. Unlike traditional reinforcement learning problems where an
explicit reward function directly guides optimal policy learning, our environment requires agents
to infer the benefits of cooperation from indirect signals and interactions.
As shown in Figure 10, Q-Learning and Monte Carlo both fail to achieve stable success rates
and exhibit persistent fluctuations. Q-Learning (blue line) oscillates between 30% and 70%
success, while Monte Carlo (green line) stabilizes at an even lower range. In contrast, the
IE-GS algorithm (red line) maintains a near-constant success rate close to 90% throughout
training.
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Figure 10: Comparison of success rates among Q-Learning, Monte Carlo

The failure of Q-Learning and Monte Carlo in this task can be attributed to their reliance on
direct reinforcement signals. In standard reinforcement learning, agents learn by associating
actions with rewards, updating their value functions accordingly. However, in our environment,
agents do not receive immediate rewards for moderation. Instead, the consequences of over-
consumption only manifest in later timesteps, making it difficult for traditional algorithms to
propagate meaningful learning signals.
Q-Learning, which relies on bootstrapped value updates, struggles because it continuously
updates its estimates based on immediate feedback, leading to a reinforcement loop where
no clear moderation strategy emerges. Instead, agents remain stuck in a state of persistent
exploration, oscillating between different consumption levels without converging to an optimal
policy.
Monte Carlo methods, which update policies based on episode-level returns, also fail in this
setting. Because successful moderation only produces indirect benefits rather than immediate
reinforcement, Monte Carlo updates do not consistently reinforce cooperative behaviors. As a
result, the learned policy remains unstable, and agents continue to explore inconsistently.
Unlike traditional reinforcement learning, IE-GS introduces a trust-based cooperation mecha-
nism, adaptive exploration-exploitation balancing, and memory-enhanced learning, which col-
lectively enable stable cooperation.
First, the trust mechanism ensures that agents do not need explicit rewards to learn coopera-
tion. Instead of relying solely on immediate reinforcement, each agent maintains a trust value
for neighboring agents. This value is updated based on observed behaviors, allowing agents
to establish implicit cooperation over time. Once a high-trust equilibrium is reached, agents
maintain stable moderation strategies, explaining the flat success rate in results.
Second, the adaptive exploration-exploitation strategy prevents agents from getting stuck in
endless exploration. Traditional RL methods continue exploring suboptimal behaviors because
they receive no direct feedback indicating which strategy is superior. In contrast, IE-GS dy-
namically reduces exploration as trust values stabilize, ensuring that once an agent learns a
successful moderation strategy, it retains it instead of reverting to random behaviors.
Lastly, memory-enhanced learning allows IE-GS agents to retain and reinforce successful strate-
gies. Unlike Q-Learning, which updates based only on recent experiences, or Monte Carlo,
which relies on episodic returns, IE-GS incorporates both short-term and long-term memory.
The short-term memory captures recent strategic shifts, while long-term memory ensures the
preservation of learned policies. This prevents the instability observed in other methods and
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results in the near-perfect success rate.
While the success rate of IE-GS remains consistently high, one intriguing observation is the
lack of visible learning dynamics in its performance curve. Unlike Q-Learning and Monte Carlo,
which exhibit fluctuations indicative of ongoing exploration and adaptation, the IE-GS success
rate remains nearly constant from the early episodes onward.
There are several possible explanations for this phenomenon. One hypothesis is that IE-GS
quickly discovers an effective cooperative strategy and maintains it due to its trust-based
reinforcement mechanism. Once agents establish a high-trust equilibrium, there is no incentive
to deviate from their learned behaviors, leading to a nearly flat performance curve. This would
suggest that IE-GS is capable of achieving rapid convergence to an optimal policy under
favorable conditions.
Another possible explanation is that the trust mechanism may suppress learning variability by
reinforcing early interactions. If initial trust values and early behaviors lead to cooperation,
the algorithm stabilizes before any significant exploration occurs. This raises an important
question: what happens if the agents do not start with favorable conditions? If early interactions
establish low trust values or uncooperative behaviors, would the system still be able to recover
and achieve cooperation?
To further investigate this, we conduct a bad initialization experiment in coming subsection.
This experiment explores scenarios where agents begin with distrust, suboptimal consumption
behaviors, or erratic decision-making. By examining the adaptability of IE-GS under these
conditions, we aim to determine whether the algorithm is robust enough to recover from poor
initial states and still achieve long-term cooperation.

5.2 Effect of Greedy Initialization

In this experiment, all agents were subjected to a forced greedy strategy for the first 200
episodes, where they consumed food whenever available, up to a maximum of 2 units per
round. This setup simulates an extreme resource competition scenario, preventing agents from
developing cooperative behaviors during the early stages. The key research question is: After
experiencing enforced greedy behavior, can agents recover cooperation, and can the system
return to a stable state?

Figure 11: Success Rate Recovery After Greedy Initialization

The success rate measures whether agents adopt a moderate consumption strategy, defined as
the proportion of agents choosing to consume less than 2 units of food per round. Due to the
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enforced greedy strategy in the first 200 episodes, the success rate shown in Fig11 remained
extremely low, as agents prioritized maximizing their immediate resource intake. However, once
learning commenced, the success rate increased rapidly, reaching approximately 90% around
3000 episodes and stabilizing thereafter. This result indicates that even after an initial phase
of extreme selfish behavior, agents can still learn to develop stable cooperative strategies.
Cooperation level is defined similarly to the success rate as the proportion of agents selecting
moderate food consumption (1 unit per round). As shown in Fig12a, cooperation levels sharply
declined and reached as low as 30% around episode 100 during the first 200 episodes, , re-
flecting the widespread adoption of a non-cooperative greedy strategy. However, once learning
was enabled, cooperation recovered relatively quickly, surpassing 80% by episode 2000 and
eventually stabilizing. This suggests that despite the initial state of extreme non-cooperation,
agents were able to adjust their strategies and gradually form effective cooperative behaviors
through learning.

(a) Cooperation Level Recovery from Forced
Greedy Behavior

(b) System Stability Improvement After Ini-
tial Greed

Figure 12: Comparison of cooperation level recovery and system stability improvement
after initial greed

System stability quantifies the variance in agent hunger levels, indicating whether resources
are distributed evenly among agents. Higher stability signifies a more balanced system where
hunger levels are relatively uniform. As shown in Fig12b, hunger level variance was extremely
high during the first 200 greedy episodes, resulting in very low stability. However, stability
increased rapidly after the learning phase began, reaching a steady state of approximately 0.86
around 3000 episodes. This trend suggests that even after an initial phase of intense resource
competition, agents can gradually learn to distribute resources more equitably, stabilizing the
system.
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Figure 13: The Evolution of Trust in Greedy-200 Experiment

An interesting observation from Fig13 illustrates the evolution of trust between different floors
and their immediate upper floors. Notably, higher floors tend to recover trust more quickly
and, in some cases, are barely affected by the enforced greedy phase. In contrast, lower floors
experience a more significant negative impact, with slower trust recovery and lower final trust
values at convergence. This suggests that position-based resource access asymmetry influences
trust dynamics, where agents with greater initial resource availability are more resilient to
disruptions in cooperation.
Overall, this experiment reveals that even after an enforced phase of extreme greed, agents
can progressively recover cooperation and develop stable resource-sharing mechanisms. Despite
being forced into a non-cooperative state for 200 episodes, they adapted their strategies during
learning, achieving high cooperation levels (above 80%) and improved fairness (lower Gini
coefficients). System stability also reached equilibrium around 3000 episodes, suggesting that
agents can establish sustainable resource distribution patterns despite early-stage competition.
However, it is important to note that the recovery process requires several thousand episodes to
reach stability, indicating that initial strategy biases can have long-lasting effects on learning.
A natural follow-up question is: if the forced greediness lasts longer, will the agent still be able
to recover? Does the speed of recovery decrease as the greediness time increases?
To further investigate this question, we will explore the impact of different forced greediness
durations on the agent’s learning ability in the next experiment to analyze whether extreme
priming may lead to permanent policy deviations or whether the agent still has the ability to
recover.

5.3 Impact of Different Greedy Initialization Durations on Learn-
ing

In the previous experiment, agents that underwent a short period of forced greediness (200
episodes) were still able to recover cooperation and gradually establish a fair resource alloca-
tion strategy. However, a key question remains: how does the duration of greedy initialization
affect agents’ ability to learn and ultimately restore cooperation? To explore this, we extend
the greedy initialization period to three different settings: 200, 800, and 2000 episodes, and ex-
amine the learning process under these conditions. The experimental results in Fig 14, Fig 15a,
and Fig 15b demonstrate that while all experimental groups ultimately achieved a high success
rate and converged to stable cooperation, the duration of the greedy phase affected the speed
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Figure 14: Impact of Different Greedy Initialization Durations-Success Rate

of recovery. In the early stages, agents with shorter greedy periods adapted faster and exhibited
cooperative behavior sooner. In contrast, agents exposed to longer greedy phases experienced
slower recovery but still managed to reach comparable levels of cooperation after approxi-
mately 4000 episodes. This suggests that although extended greediness temporarily reinforces
self-interested strategies, it does not permanently prevent agents from learning cooperative
behavior.
A similar trend is observed in the fairness index, which measures the balance of resource
distribution among agents. This index is derived from the Gini coefficient (G), where higher
values indicate greater inequality. The fairness index is defined as:

Fairness Index = 1−G (9)

where a lower fairness index implies highly unequal resource allocation.

(a) Impact of Different Greedy Initialization
Durations - Fairness Index

(b) Impact of Different Greedy Initialization
Durations - Cooperation Level

Figure 15: Comparison of fairness index and cooperation level under different greedy
initialization durations.

In this experiment, the Greedy-200 group quickly restored fairness, reaching a fairness index
above 0.9 within 1000 episodes and maintaining stability thereafter. The Greedy-800 group
experienced a deeper decline but still recovered fairness by around 2000 episodes. The Greedy-
2000 group exhibited a more prolonged drop in fairness and required approximately 3000
episodes to stabilize. However, after 4000 episodes, all groups reached a similar level of fairness,
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suggesting that extended greedy phases only delay, rather than prevent, the development of
equitable resource-sharing behaviors.
The recovery of cooperation level further supports these observations. Cooperation level is
defined as the proportion of agents selecting moderate consumption (i.e., choosing action 1)
in each episode, reflecting the extent to which agents coordinate their actions under resource
constraints. Across different greedy initialization conditions, cooperation level followed a con-
sistent pattern. The Greedy-200 group recovered rapidly, surpassing 0.8 within 1500 episodes
and maintaining high stability. The Greedy-800 group showed a slightly delayed recovery, reach-
ing similar levels around 2000 episodes. The Greedy-2000 group exhibited the slowest recovery,
with cooperation levels remaining low (between 0.2 and 0.3) for nearly 2000 episodes before
gradually improving. However, by 4000 episodes, cooperation levels across all groups became
comparable, reinforcing the conclusion that while prolonged greediness slows adaptation, it
does not fundamentally alter the system’s ability to learn cooperation.

5.4 Hyperparameter Sensitivity

This section presents the impact of key hyperparameters on agent performance.

5.4.1 Effect of Trust Update Learning Rate α

In this experiment, as shown in Fig16 and Fig17, we analyze the impact of the trust update
rate parameter α on the performance of the IE-GS algorithm in a multi-agent environment.
The parameter α controls the rate at which trust values are updated; a higher α allows agents
to adjust trust values more rapidly, while a lower α results in slower trust adaptation. An
appropriate choice of α is crucial for balancing stability and adaptability, thereby facilitating
the emergence of trust, cooperative behavior, and equitable resource distribution. To compre-
hensively evaluate the effect of α on agent decision-making and overall system performance,
we focus on four key metrics: Success Rate, Cooperation Level and Fairness Index.

Figure 16: Success Rate under Different α Values.

The success rate measures the agents’ ability to regulate resource consumption effectively,
preventing excessive depletion and enhancing system sustainability. The results indicate that
with a high trust update rate of α = 0.1, the success rate rises rapidly and stabilizes above
90% after approximately 2000 episodes. This suggests that a high α enables agents to quickly
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adjust their trust relationships and learn adaptive survival strategies earlier. In contrast, with a
medium trust update rate of α = 0.05, the success rate increases at a slower pace, eventually
stabilizing around 80%, indicating that agents require a longer period to develop stable resource
management strategies. For α = 0.01, the success rate remains around 75% and exhibits
significant fluctuations, suggesting that a low trust update rate hinders agents from quickly
adapting to dynamic environmental changes, leading to persistent overconsumption behavior
that negatively impacts overall survival rates.

(a) Fairness Index (b) Cooperation Level

Figure 17: Comparison of Fairness Index and Cooperation Level under Different α Values.

In terms of cooperation level, α directly affects the cooperative strategies learned by the
agents. When α = 0.1, the cooperation level stabilizes around 90%, indicating that agents not
only avoid excessive consumption but also adopt moderate consumption behaviors, striking a
balance between individual needs and collective sustainability. However, with α = 0.05, the
cooperation level decreases to approximately 80%, showing that while agents can still learn
cooperative strategies, the slower trust update rate delays the convergence of cooperative
behaviors. For α = 0.01, the cooperation level remains below 75% and exhibits greater oscilla-
tions throughout training. This suggests that when trust updates are too slow, agents struggle
to develop stable cooperative mechanisms within a limited number of training episodes, making
them more susceptible to short-term self-interest decisions that hinder long-term cooperation.
The fairness index results further corroborate these trends. When α = 0.1, the fairness index
reaches approximately 0.95, indicating a high degree of resource distribution equity among
agents. This demonstrates that a high trust update rate facilitates the rapid formation of
resource-sharing strategies, leading to more balanced resource allocation across the system.
In contrast, with α = 0.05, the fairness index stabilizes at around 0.85, suggesting that while
resource distribution remains relatively fair, it is slightly less balanced compared to the α = 0.1
case. This implies that some agents may still have an advantage in resource acquisition, causing
minor inequities. When α = 0.01, the fairness index remains low at approximately 0.82 and
exhibits considerable fluctuations. This suggests that a slow trust update rate hinders the
establishment of stable trust relationships, making it difficult for agents to fairly distribute
resources. Consequently, some agents may accumulate significantly more resources than others,
leading to a lower overall fairness index.
In summary, the choice of α has a direct impact on agent learning speed, cooperation level, and
resource distribution fairness. A higher α (e.g., 0.1) enables faster trust adjustments, allowing
agents to quickly adapt to environmental dynamics and learn stable cooperative strategies,
ultimately improving success rates, promoting fair resource allocation, and enhancing system
sustainability. In contrast, a lower α (e.g., 0.01) results in slower convergence, preventing
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agents from forming stable cooperation behaviors and leading to lower success rates, reduced
cooperation levels, and increased inequality in resource distribution. Additionally, in terms of
convergence speed, α = 0.1 allows the system to reach stability significantly faster, whereas
lower values of α require much longer to achieve equilibrium. Therefore, under the current
experimental conditions, α = 0.1 is the optimal setting, as it facilitates trust evolution, accel-
erates cooperative strategy learning, and improves overall system performance.

5.4.2 Effect of Trust Adjustment Parameter β

In this experiment, as shown in Fig18 and Fig19, we analyze the impact of the trust adjust-
ment parameter β on the performance of the IE-GS (Imitation Evolutionary Game Strategy)
algorithm in a multi-agent environment. The parameter β determines the sensitivity of trust
updates to an agent’s hunger state, where a higher β causes agents to adjust their trust more
aggressively in response to food shortages, while a lower β results in more gradual trust modi-
fications. The choice of β directly affects how agents react to immediate resource deprivation,
influencing the stability of cooperative behavior, fairness in resource distribution, and overall
system success.

Figure 18: Success Rate for Different β Values.

Regarding the success rate, β significantly affects how quickly agents develop effective resource
management strategies and their ultimate performance. When β = 0.5, the success rate
increases rapidly and stabilizes above 90% after approximately 2000 episodes. This indicates
that a stronger reaction to hunger penalties enables agents to adapt more quickly, discouraging
exploitative behavior and accelerating the formation of cooperative strategies. When β = 0.1,
the success rate also steadily improves, reaching 85%, suggesting that agents still learn effective
resource management strategies, though their adaptation is slightly slower as they rely more
on gradual trust adjustments. When β = 0.01, the success rate stabilizes at 80%, slightly
lower than the higher β values. This suggests that while agents can still develop viable survival
mechanisms, a lower hunger sensitivity results in more persistent reliance on past trust values,
slowing down the adaptation process.
For cooperation level, a higher β leads to faster cooperation emergence, as agents more aggres-
sively adjust trust values in response to food deprivation. When β = 0.5, the cooperation level
ultimately reaches 90%, indicating that agents successfully learn a sustainable resource-sharing
strategy and exhibit consistent moderate consumption behavior. When β = 0.1, the cooper-
ation level stabilizes around 85%, demonstrating a strong cooperative tendency, although the
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(a) Fairness Index for Different β Values (b) Cooperation Level for Different β Values

Figure 19: Comparison of Fairness Index and Cooperation Level under Different β Values.

reliance on more gradual trust updates results in slightly slower learning. When β = 0.01,
the cooperation level remains around 80%, which, while lower than the higher β values, still
shows that agents can develop cooperative strategies. However, since trust updates respond
less aggressively to hunger penalties, cooperative behavior tends to be slightly less stable over
time.
The fairness index further supports these findings by showing the impact of β on equitable
resource distribution. When β = 0.5, the fairness index stabilizes at approximately 0.95,
indicating that agents distribute resources more evenly, as the stronger response to hunger
penalties discourages excessive resource hoarding. When β = 0.1, the fairness index reaches
0.90, suggesting that agents still develop fair resource allocation strategies, albeit with slightly
lower fairness than in the β = 0.5 case, as adjustments are made more gradually. When
β = 0.01, the fairness index stabilizes around 0.85, indicating that while agents still develop
an equitable resource-sharing strategy, the weaker reaction to immediate hunger results in
slightly more persistent inequalities in resource distribution.
In summary, the choice of β significantly influences the stability of agent learning, cooperation
levels, and resource fairness. A higher β (e.g., 0.5) enables agents to adjust trust more rapidly
in response to food shortages, leading to faster adaptation, higher success rates, and fairer
resource distribution. Lower β values (e.g., 0.1 and 0.01) still enable cooperative strategies
to emerge, but with relatively slower adaptation and slightly reduced long-term stability. In
terms of convergence speed, β = 0.5 allows the system to reach stability more quickly, whereas
lower β values require more time to establish a stable cooperation model. Therefore, under the
current experimental settings, β = 0.5 emerges as the most effective choice, as it facilitates
fast adaptation, enhances cooperation, and optimizes fairness and sustainability in the system,
while β = 0.1 and β = 0.01 remain viable but exhibit relatively slower adaptation and slightly
reduced long-term stability.

5.4.3 Effect of Exploration Strategies

Exploration determined how an agent balances between trying new actions and exploiting
known rewarding behaviors. In this experiment, three different exploration strategies were
evaluated, each defined by its initial exploration rate (ϵ), decay rate, and minimum exploration
threshold.
The first strategy, Extreme High Exploration, maintains a consistently high exploration rate.
It starts with an initial ϵ of 1.0 (meaning the agent initially explores completely randomly),
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decays at an ultra-slow rate of 0.9999 per episode, and maintains a high minimum exploration
level of 0.5. This strategy ensures that the agent continually explores throughout training,
even in later stages.
The second strategy, Moderate Exploration, follows a balanced approach between exploration
and exploitation. It begins with an initial ϵ of 0.9, decays at a moderate rate of 0.995, and
stabilizes at a minimum exploration level of 0.1. This allows the agent to explore extensively
in early training phases while gradually shifting towards more exploitative behavior.
The third strategy, Minimal Exploration, prioritizes exploitation from the beginning. It starts
with a relatively low initial ϵ of 0.2, maintains a constant exploration rate (ϵ decay of 1.0),
and has a very low minimum exploration threshold of 0.01. This setting ensures that the agent
primarily exploits learned behaviors with minimal exploration over time.
The results, as illustrated in Figures 20 and 21, reveal key insights into the effects of these
strategies. In the early training phase, both the moderate and minimal exploration strategies

Figure 20: Exploration - Success Rate

show similar success rates. However, as training progresses, the moderate strategy temporarily
outperforms the minimal exploration setting, reaching a higher peak before eventually con-
verging to a performance level close to that of the minimal strategy. This suggests that a
moderate level of early exploration provides some advantage in the mid-training phase but
does not significantly alter final performance.
In contrast, the extreme high exploration strategy exhibits consistently lower performance
across all metrics. The success rate, fairness index, and cooperation level of this strategy
remain significantly below those of the other two strategies even after full convergence. This
indicates that excessive exploration inhibits the agent’s ability to solidify effective strategies,
preventing it from efficiently learning and leveraging stable cooperative behavior.
Overall, these findings suggest that while exploration is necessary for initial learning, main-
taining too high an exploration rate over time leads to suboptimal results. The moderate
exploration strategy appears to provide a good balance, while excessive exploration hampers
long-term performance.

5.5 Results in the Prisoner’s Dilemma

The primary objective of this experiment is to evaluate the effectiveness of the IE-GS algorithm
in the Iterated Prisoner’s Dilemma (IPD) environment, particularly when competing against
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(a) Exploration - Fairness Index (b) Exploration - Cooperation Level

Figure 21: Comparison of fairness index and cooperation level under different exploration
strategies.

various predefined opponent strategies. The experiment is divided into two parts: first, a com-
parison between IE-GS and baseline strategies, including Tit-for-Tat (TFT), Random, Always
Cooperate, and Always Defect, to assess the advantages and weaknesses of IE-GS in standard
game settings. Second, we introduce Delayed-Defect and Delayed-Cooperate strategies to ex-
amine whether IE-GS can maintain its performance in environments where opponents change
their behavior over time.

Player A Player B Payoff (A, B)
Cooperate (C) Cooperate (C) (3, 3)
Cooperate (C) Defect (D) (0, 5)
Defect (D) Cooperate (C) (5, 0)
Defect (D) Defect (D) (1, 1)

Table 2: Payoff Matrix of the Iterated Prisoner’s Dilemma. Each cell represents the rewards
received by Player A and Player B based on their actions.

5.5.1 Baseline Strategy Comparison: Strengths and Weaknesses of IE-GS

In the baseline experiments, as shown in Table3 and Table4, IE-GS achieved the highest overall
average score (2.44) and the highest win rate (66.44%), slightly outperforming Tit-for-Tat
(2.44, 60.00%). This indicates that IE-GS possesses strong adaptability in most environments.
However, further analysis reveals that IE-GS’s advantage lies in its ability to adapt to dynamic
environments, whereas it exhibits some weaknesses against fixed strategies. Table5 shows the
detailed scores against each opponent.
Tit-for-Tat is a classic cooperative strategy based on a simple rule: cooperate in the first round,
then mimic the opponent’s previous action. Its strength lies in its stability, as it never initiates
defection but immediately retaliates against defection. This makes it a strong contender in
a stable environment. However, IE-GS surpasses Tit-for-Tat in several ways, demonstrating
greater adaptability and strategic depth. One key advantage of IE-GS is its ability to establish
long-term cooperation by dynamically adjusting its trust. Unlike Tit-for-Tat, which rigidly
follows the opponent’s last move, IE-GS is capable of tolerating occasional defections and
making decisions based on broader behavioral trends. Against Tit-for-Tat, IE-GS maintained
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Strategy Win Rate (%) Avg. Score

IE-GS 66.44 2.44
Random 31.24 2.27
Tit-for-Tat 40.00 2.07
Always Coop. 60.00 2.09
Always Defect 40.00 2.25

Table 3: Overall Performance Comparison Across
Strategies

Table 4: Baseline Strategy Compari-
son - Win Rate

a cooperation rate of 97.58%, comparable to Tit-for-Tat’s 97.60%, indicating that IE-GS
successfully recognized TFT’s cooperative tendency while maximizing its own payoff. Another

Figure 22: Score Distribution

notable advantage of IE-GS is its resilience to noise. In noisy environments where accidental
defections occasionally occur, Tit-for-Tat may struggle, as it responds to every defection with
immediate retaliation, potentially leading to unnecessary cycles of conflict. In contrast, IE-GS
incorporates a trust mechanism that buffers against such fluctuations, allowing it to sustain
cooperation even when occasional errors occur. This trust mechanism also plays a crucial role
in preventing exploitation. Some opponents attempt to manipulate Tit-for-Tat by cooperating
initially to gain trust before defecting at a crucial moment to maximize their own gains. Since
Tit-for-Tat blindly mirrors its opponent, it is vulnerable to such deceptive strategies. IE-GS
mitigates this risk by adjusting its trust gradually rather than reacting instantly, making it
more robust against strategic exploitation.
While IE-GS demonstrates clear advantages in fostering cooperation and resisting manipula-
tion, it faces challenges when dealing with highly uncooperative opponents such as Always
Defect. Always Defect is the most aggressive strategy, never cooperating under any circum-
stances. Against this opponent, IE-GS achieved an average score of 0.96, which is slightly lower
than Tit-for-Tat’s 0.99. This performance gap can be attributed to IE-GS’s initial trust, which
leads to early losses. Since IE-GS starts with a trust value of 0.5, it attempts cooperation in
the first few rounds, but because Always Defect never reciprocates, these early cooperative
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attempts result in unnecessary losses. Additionally, IE-GS’s trust adjustment is slower com-
pared to Tit-for-Tat’s immediate response. While Tit-for-Tat ceases cooperation immediately
after encountering defection, IE-GS requires multiple rounds to lower its trust value, making
it slower to adapt to opponents that consistently defect.
These results suggest that while IE-GS excels in cooperative environments, its slower adapta-
tion to consistently uncooperative opponents remains a limitation. Future improvements could
involve accelerating trust reduction when facing prolonged defection, allowing IE-GS to re-
spond more efficiently to aggressive strategies while retaining its ability to foster cooperation
in mixed environments.

Opponent IE-GS Avg Score Cooperation Rate (%) Avg Trust Value

Against IE-GS
IE-GS 2.98 97.55% 1.00
Random 2.35 50.12% –
Tit-for-Tat 1.10 5.47% –
Cooperate 2.93 100.00% –
Defect 1.18 0.00% –

Against Random
IE-GS 2.27 48.23% 0.47
Random 2.26 50.30% –
Tit-for-Tat 2.24 50.10% –
Cooperate 1.50 100.00% –
Defect 3.01 0.00% –

Against Tit-for-Tat
IE-GS 2.97 97.32% 1.00
Random 2.26 49.78% –
Tit-for-Tat 3.00 100.00% –
Cooperate 3.00 100.00% –
Defect 1.04 0.00% –

Against Cooperate
IE-GS 3.05 97.57% 1.00
Random 4.00 50.22% –
Tit-for-Tat 3.00 100.00% –
Cooperate 3.00 100.00% –
Defect 5.00 0.00% –

Against Defect
IE-GS 0.96 4.47% 0.00
Random 0.50 49.91% –
Tit-for-Tat 0.99 1.00% –
Cooperate 0.00 100.00% –
Defect 1.00 0.00% –

Table 5: Detailed Performance Against Each Opponent-Baseline Strategy
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5.5.2 Challenges from Delayed Strategies: Can Trust Be Exploited?

While the baseline experiments demonstrate IE-GS’s adaptability against standard strategies,
real-world interactions often involve opponents whose behaviors change over time. To further
investigate the robustness of IE-GS, we introduce two delayed-response strategies: Delayed-
Defect and Delayed-Cooperate. Delayed-Defect starts by cooperating for several rounds, build-
ing trust with its opponent before suddenly switching to defection, making it an explicitly ex-
ploitative strategy designed to take advantage of trust-based algorithms. In contrast, Delayed-
Cooperate begins with defection, potentially discouraging cooperation in the early stages, but
later transitions into cooperative behavior, allowing us to examine whether IE-GS can recognize
and recover trust after an initial period of uncooperative interactions. By testing against these
delayed strategies, we aim to understand whether IE-GS can effectively detect and respond to
delayed betrayal, as well as assess its ability to rebuild trust when faced with late-emerging
cooperation.
In the Delayed Strategies experiments, as shown in Table6 and Fig7, IE-GS achieved the highest
overall average score (2.49) and the highest win rate (66.52%),

Strategy Win Rate (%) Avg. Score

IE-GS 66.52 2.49
Tit-for-Tat 60.00 2.44
Delayed-Coop. 59.72 2.14
Random 31.88 2.26
Delayed-Defect 36.76 2.24

Table 6: Win Rates and Scores of Strategies

Table 7: Delayed Strategy Compari-
son - Win Rate

Table8 shows the detailed scores against each opponent.
Against Delayed-Defect, IE-GS achieved a score of 1.47, the highest among all tested strategies.
This is a notable result because Delayed-Defect is explicitly designed to exploit trust-based
agents by initially cooperating to establish trust before switching to defection. Despite this
challenge, IE-GS still outperformed Tit-for-Tat (1.39) and other baselines, demonstrating its
ability to mitigate long-term exploitation.
The key reason for IE-GS’s superior performance against Delayed-Defect is its gradual trust
decay mechanism. Unlike Tit-for-Tat, which always reacts immediately to defection, IE-GS
reduces trust progressively over multiple rounds, allowing it to identify and respond to shifting
behaviors. While IE-GS initially suffers losses due to its trusting nature, it ultimately stabilizes
by reducing cooperation over time, preventing long-term exploitation.
That said, IE-GS’s score against Delayed-Defect remains relatively low, indicating that while it
limits damage, it does not fully eliminate the impact of delayed betrayal. A possible improve-
ment would be implementing a short-term trust adjustment mechanism, where IE-GS detects
sudden changes in opponent behavior and reacts faster.
Delayed-Cooperate presents a different challenge—it begins with defection, potentially dam-
aging trust early on, but later shifts to cooperation. Against this opponent, IE-GS achieved
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a high score of 2.75, outperforming Tit-for-Tat (2.61). This demonstrates IE-GS’s ability to
rebuild trust over time, an ability that Tit-for-Tat lacks.
When facing Delayed-Cooperate, IE-GS initially lowers trust due to early defections. This
prevents it from being continuously exploited. As cooperation increases in later rounds, IE-GS
raises its trust value, eventually stabilizing around an 80% cooperation rate.
This result highlights an important strength of IE-GS—it does not simply react to the previous
action but rather adapts to long-term behavioral trends. This flexibility allows it to recover
from early betrayals and re-establish cooperation, an advantage over more rigid strategies like
Tit-for-Tat.

Opponent Strategy Average Score Cooperation Rate (%)

IE-GS

IE-GS 2.98 97.54
Random 2.29 50.29

Tit-for-Tat 2.97 97.60
Delayed-Defect 1.64 20.00

Delayed-Cooperate 2.67 80.00

Random

IE-GS 2.25 50.44
Random 2.26 50.06

Tit-for-Tat 2.24 50.47
Delayed-Defect 2.71 20.00

Delayed-Cooperate 1.79 80.00

Tit-for-Tat

IE-GS 2.98 97.58
Random 2.27 50.17

Tit-for-Tat 3.00 100.00
Delayed-Defect 1.44 20.00

Delayed-Cooperate 2.61 80.00

Delayed-Defect

IE-GS 1.47 23.38
Random 1.20 49.85

Tit-for-Tat 1.39 21.00
Delayed-Defect 1.40 20.00

Delayed-Cooperate 1.00 80.00

Delayed-Cooperate

IE-GS 2.75 78.52
Random 3.30 50.03

Tit-for-Tat 2.61 80.00
Delayed-Defect 4.00 20.00

Delayed-Cooperate 2.60 80.00

Table 8: Detailed Performance of Each Strategy Against Delayed Strategy
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6 Discussion

The results of this study provide evidence that cooperation can emerge in multi-agent rein-
forcement learning (MARL) environments without explicit cooperative rewards, driven purely
by interaction-based trust mechanisms. Through extensive experimentation in the tower envi-
ronment, we demonstrated that our proposed Imitation Evolutionary Game Strategy (IE-GS)
facilitates cooperation through an evolving trust-based decision-making framework. Unlike con-
ventional MARL algorithms such as Q-Learning and Monte Carlo, which struggle to develop
stable cooperation, IE-GS enables agents to autonomously discover cooperative strategies
through learned trust dynamics, even in the presence of initially self-interested behaviors. The
implications of these findings extend beyond the specific environment studied here, highlight-
ing the potential for trust-based learning as an alternative paradigm for promoting cooperation
in decentralized, multi-agent systems.
A key observation from our experiments is that cooperation can emerge purely from local inter-
actions without the need for explicit global incentives. Traditional MARL approaches often rely
on carefully designed shared reward functions to align the interests of individual agents with
a collective objective. However, in many real-world scenarios, defining such reward functions
is impractical, as cooperation is often an emergent phenomenon rather than an explicitly pre-
scribed goal. The findings from this study suggest that by leveraging implicit trust mechanisms,
agents can develop cooperative behaviors naturally, even when their immediate incentives do
not directly reward such behaviors. The ability of agents to learn trust dynamically, based on
past observations and interactions, demonstrates a promising direction for future research in
decentralized learning systems where global coordination is infeasible.
One of the critical factors influencing the emergence of cooperation in this study is the role
of trust as an implicit coordination mechanism. Unlike reward-driven approaches, where coop-
eration is externally enforced through structured incentives, the trust model in IE-GS allows
agents to modulate their strategies dynamically based on observed behaviors. The results indi-
cate that trust serves as a stabilizing force in learning, reinforcing cooperative strategies while
deterring exploitative behaviors. Agents that demonstrate restraint in consuming resources
gain the trust of their peers, which in turn influences their own future decisions. This self-
reinforcing feedback loop enables the gradual development of cooperation without requiring
explicit communication or predefined cooperative objectives. The success of this mechanism
suggests that trust-based learning could be a viable alternative to explicit reward shaping in
environments where cooperative incentives cannot be predefined.
Another important aspect of our findings is the impact of initial conditions on long-term coop-
eration dynamics. The forced greedy initialization experiments demonstrate that the learning
trajectory of agents is highly sensitive to early-stage interactions. Agents that begin with ag-
gressive, self-serving behaviors take significantly longer to transition towards cooperation, as
their early experiences reinforce competitive tendencies. However, the fact that cooperation
was still able to emerge, even after extended periods of greedy behavior, underscores the ro-
bustness of the trust mechanism. This suggests that while initial conditions influence the rate
of learning, they do not necessarily dictate the final outcome. Nevertheless, the prolonged
adaptation period observed in the greedy initialization experiments raises important questions
about how to accelerate the transition to cooperative behavior. One possible avenue for future
research is the introduction of structured trust bootstrapping techniques that provide agents
with an initial trust baseline, reducing the reliance on purely trial-and-error learning in the early
stages.
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Our findings indicate that hyperparameter selection plays a crucial role in determining the
learning speed and final stability of cooperative strategies under the IE-GS framework. The
trust update rate (α) directly influences how quickly agents adjust their trust values. A higher α
enables agents to adapt rapidly to changes in trust, accelerating the convergence to cooperative
strategies, while a lower α results in slower adaptation, making cooperation more difficult
to establish and sustain. Similarly, the trust adjust factor (β) determines the sensitivity of
trust updates to an agent’s hunger state. A higher β causes agents to adjust their trust
more aggressively in response to food shortages, while a lower β results in more gradual
trust modifications. These observations highlight the importance of dynamic trust evolution
in ensuring the success of cooperative learning. Proper hyperparameter tuning can balance
learning efficiency and robustness in multi-agent systems.
Exploration strategies also significantly impact the effectiveness of the IE-GS mechanism.
Our results show that excessive exploration inhibits the stabilization of cooperative strategies,
as agents continually experiment with new behaviors instead of committing to established
cooperation. Conversely, minimal exploration may prevent agents from adequately discovering
the benefits of cooperation, trapping them in locally optimal but suboptimal selfish behaviors.
The optimal strategy involves an initial phase of high exploration followed by gradual reduction,
allowing agents to sufficiently explore the environment before settling into stable cooperative
behavior. This finding supports the notion that balancing exploration and exploitation is a key
factor in decentralized multi-agent learning. Future work could investigate adaptive exploration
mechanisms that dynamically adjust exploration rates based on environmental complexity and
interaction patterns to optimize learning efficiency.
Experiments in the Iterated Prisoner’s Dilemma (IPD) further demonstrate the adaptability
of IE-GS in complex game-theoretic settings. When facing cooperative strategies such as Tit-
for-Tat and Always Cooperate, IE-GS successfully identifies cooperative trends and reinforces
long-term trust relationships, resulting in a high cooperation rate. However, against decep-
tive strategies such as Delayed-Defect, where opponents initially cooperate before shifting
to defection, IE-GS incurs early losses due to its initial high trust values. Nevertheless, over
time, it learns to adjust trust downward, mitigating long-term exploitation. This suggests that
dynamic trust adjustment mechanisms can help agents maintain adaptability in multi-agent
systems with shifting opponent behaviors.
While IE-GS performs well in cooperative environments, its adaptation to persistently non-
cooperative opponents, such as Always Defect, remains relatively slow. This is primarily due
to the gradual trust decay mechanism, which initially encourages cooperation even when the
opponent is continuously defecting, leading to prolonged losses. This observation suggests that
in more adversarial environments, accelerating trust decay could improve response efficiency,
allowing agents to recognize and counter persistent defection more effectively.
Furthermore, IE-GS exhibits strong trust recovery capabilities when facing Delayed-Cooperate
strategies, where opponents initially defect before transitioning to cooperation. Unlike rigid
strategies such as Tit-for-Tat, which immediately retaliate against defection and may struggle
to rebuild cooperation, IE-GS adapts dynamically. It first lowers trust in response to early
defections but later re-establishes cooperation as the opponent’s behavior shifts. This flexibility
enables it to outperform Tit-for-Tat in environments where agents’ behaviors change over time.
Overall, our experimental results demonstrate that IE-GS enables stable cooperative learn-
ing in decentralized multi-agent environments without requiring explicit cooperative rewards.
This finding is particularly significant for distributed intelligent systems where global incentive
structures are impractical, and agents must rely on local interactions and trust mechanisms
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to achieve long-term cooperation. However, our results also highlight that in the presence of
persistent non-cooperation or highly deceptive strategies, IE-GS faces adaptation challenges.
This suggests that future research should explore further optimizations to the trust update
mechanism, enabling faster adaptation in adversarial settings. Additionally, future work could
examine the generalization of IE-GS in more complex game-theoretic scenarios, such as mixed-
strategy multi-agent games or heterogeneous agent systems, to assess its broader applicability.
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7 Future Work

While this study has demonstrated the effectiveness of the Imitation Evolutionary Game Strat-
egy (IE-GS) in facilitating cooperation in constrained multi-agent environments, several promis-
ing directions remain unexplored. Future research can expand upon our findings by addressing
scalability to larger systems, incorporating heterogeneous agent strategies, and developing hi-
erarchical and decentralized trust models to better reflect real-world multi-agent interactions.

7.1 Scaling to Larger Systems

One natural extension of our work is to explore the scalability of IE-GS in larger multi-agent
environments. Our current experiments were conducted in a constrained setting, such as the
four-level Tower Environment and small-scale Iterated Prisoner’s Dilemma (IPD) interactions.
However, real-world multi-agent systems often involve hundreds or even thousands of interact-
ing agents. In such large-scale environments, emergent cooperation may be influenced by in-
creased competition, communication constraints, and coordination complexity. Future research
should investigate how IE-GS performs when scaled to a significantly larger number of agents,
possibly incorporating grid-based spatial simulations, multi-tier hierarchical decision-making,
and distributed reinforcement learning approaches to manage computational complexity.
A key challenge in scaling up is the increased difficulty in maintaining trust and cooperative
behavior across a large population. As the number of agents grows, localized interactions and
partial observability may play a more dominant role, leading to fragmented cooperation dy-
namics. Potential solutions include clustering methods where agents primarily interact with a
subset of their peers, thereby reducing the cognitive load of tracking all other agents. This
approach would allow agents to learn localized cooperation patterns, which could then prop-
agate across the system through indirect interactions. Additionally, adaptive communication
protocols may be needed to enable efficient information sharing among agents in large-scale
environments without overwhelming computational resources.

7.2 Heterogeneous Agent Strategies

In our current study, all agents followed the same decision-making process governed by the
IE-GS framework. However, in more complex environments, agents may employ heterogeneous
strategies, including different learning mechanisms, varying levels of rationality, or distinct
goals. Investigating the interplay between trust-based agents and agents using alternative
strategies—such as self-interested reinforcement learning, adversarial learning, or probabilistic
cooperation models—could provide deeper insights into the robustness and adaptability of
IE-GS.
A particularly interesting avenue for future work is the inclusion of evolutionary dynamics in
heterogeneous agent populations. By allowing agents to evolve their strategies over time, it
would be possible to study whether trust-based cooperation remains a dominant behavior
in the presence of strategy mutation and adaptation. Moreover, adversarial agents could be
introduced to test whether trust-based agents can effectively identify and neutralize exploitative
behaviors through adaptive trust decay mechanisms. This line of inquiry is particularly relevant
for applications in cybersecurity, where malicious actors may attempt to manipulate trust
networks to gain an unfair advantage.
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Another consideration is the influence of cognitive biases and bounded rationality in hetero-
geneous agent systems. Unlike purely rational decision-makers, real-world agents (including
humans) often exhibit biases such as loss aversion, over-trusting behaviors, or misinterpre-
tation of intent. Future work could explore the impact of these cognitive limitations on the
emergence of cooperation, testing whether IE-GS can be adapted to mimic human-like trust
dynamics or counteract suboptimal decision-making caused by biases.

7.3 Hierarchical and Decentralized Trust Models

In our current implementation of IE-GS, trust is modeled as a single-layer, direct interac-
tion mechanism, where agents update their trust values based solely on observed behaviors
in one-to-one interactions. While effective in small-scale environments, this approach may not
be sufficient for complex systems where trust relationships operate at multiple levels of ab-
straction. Future research could explore multi-level trust frameworks, where agents maintain
different levels of trust toward individuals, subgroups, and the overall system.
A hierarchical trust model could introduce community-based trust structures, where agents
track trust at both local and global levels. For example, in a large-scale multi-agent economy,
agents may form cooperative clusters or alliances, maintaining high trust within their subgroup
while still engaging in broader interactions with the global population. This structure could be
inspired by federated learning or multi-agent reputation systems, where trust updates propagate
hierarchically based on both direct experiences and aggregate community feedback.
Additionally, decentralized trust models may provide a more scalable and resilient approach
to cooperation. Instead of relying on global trust scores, agents could engage in trust propa-
gation via networked structures, where trust relationships are dynamically reinforced based on
indirect interactions. This would enable agents to infer trustworthiness without direct interac-
tions, reducing the reliance on costly trial-and-error learning. Techniques such as graph neural
networks (GNNs) or blockchain-based trust mechanisms could be explored to maintain robust
decentralized trust models in large, distributed agent populations.
Furthermore, adaptive trust thresholds could be implemented in hierarchical systems, allow-
ing agents to contextually adjust their trust tolerance based on environmental conditions. For
instance, in high-risk situations (e.g., limited resources, adversarial settings), agents might
require stronger trust evidence before engaging in cooperative behavior, whereas in low-risk
scenarios, they may adopt a more lenient trust policy to encourage faster cooperation forma-
tion.
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8 Conclusion

This study explores the emergence of cooperation in multi-agent reinforcement learning (MARL)
environments where explicit cooperative rewards are absent. By designing a structured envi-
ronment inspired by resource allocation dilemmas and introducing the Imitation Evolutionary
Game Strategy (IE-GS), we demonstrate that trust-based decision-making enables agents to
develop cooperative behaviors solely through interaction-driven learning. Unlike traditional
MARL approaches that rely on predefined shared rewards, IE-GS allows cooperation to emerge
dynamically, driven by agents’ evolving trust relationships and adaptive decision-making pro-
cesses.
The findings of this study contribute to the broader understanding of multi-agent cooperation
by showing that explicit cooperative incentives are not always necessary for achieving collec-
tive coordination. The ability of agents to develop cooperative behaviors purely through local
trust interactions suggests that decentralized learning mechanisms can be effective in complex
environments where global coordination is impractical. The trust mechanism introduced in this
study provides a robust alternative to explicit reward shaping, enabling agents to autonomously
regulate their behaviors and form sustainable cooperation strategies. By reinforcing cooper-
ative behaviors and discouraging exploitative actions through dynamic trust updates, IE-GS
demonstrates that cooperation can emerge as a natural outcome of repeated interactions, even
in highly competitive settings.
Empirical results confirm that IE-GS significantly outperforms traditional MARL algorithms
such as Q-Learning and Monte Carlo in terms of fostering long-term cooperation, improving
resource fairness, and enhancing system stability. The success rate of cooperation in IE-GS
remains consistently high, and agents exhibit improved fairness in resource distribution com-
pared to purely self-interested baselines. Moreover, the ability of agents to recover cooperation
after an extended period of greedy behavior highlights the resilience of the trust-driven learning
framework. These results provide strong evidence that trust-based MARL can be an effective
paradigm for multi-agent coordination, particularly in environments where designing explicit
cooperative incentives is challenging or infeasible.
Despite these promising findings, challenges remain in extending this approach to more com-
plex, real-world scenarios. Future work should focus on scaling trust-based learning to envi-
ronments with dynamic agent populations, where new agents may enter or exit the system
over time. Additionally, exploring decentralized and hierarchical trust models could improve
scalability, enabling cooperation in large-scale, distributed systems. Further research is also
needed to investigate the application of IE-GS in heterogeneous agent environments, where
different agents may have varying trust-building mechanisms and learning capabilities.
Overall, this study offers initial insights into the potential of trust-driven MARL as an al-
ternative to explicit reward-based cooperation mechanisms. While the findings suggest that
cooperation can emerge naturally through implicit trust signals, further research is needed
to explore the broader applicability and limitations of this approach. By continuing to refine
and extend these ideas, we hope to contribute to the development of more adaptive and
self-organizing multi-agent systems in complex environments.
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