¥ Universiteit
k4] Leiden

Master Computer Science

Developing an Al Agent for Automated
Playtesting in Roguelike Games

Name: Alex Chang
Student ID: s3768783
Date: 08/08/2025

Specialisation: Data Science: Computer Science

1st supervisor: Mike Preuss
2nd supervisor: Matthias Muller-Brockhausen

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Developing an Al Agent for Automated Playtesting
in Roguelike Games

Alex Chang
LIACS, Leiden University
Leiden, The Netherlands

c.chang.6 @umail.leidenuniv

Abstract—Games with procedurally generated content can
pose playtesting challenges for developers due to randomness
and resource constraints. This paper presents an Al agent for
GONDVAAN, a dungeon crawler roguelike shooter. We discuss
the design decisions and technical challenges encountered during
development and the effectiveness of different AI architectures for
roguelike gameplay. Our implementation evolved from a Finite
State Machine to a Behavior Tree that can handle complex
decision-making in a dynamic environment. We conducted ex-
periments that evaluate how well the agents complete levels. We
found that the agents were successful in completing levels and
can have human-like strategies with parameter tuning. Our work
demonstrates the feasibility of using AI agents for automated
playtesting, reducing development time and providing valuable
gameplay analytics for developers.

Index Terms—Roguelike, Playtesting, Finite State Machine,
Behavior Tree

I. INTRODUCTION

With the rapid improvement of computer technologies, the
video gaming industry is growing extremely fast. Gaming is
now not only a thing for kids but a form of entertainment
for people of all ages. Besides providing entertainment, video
games also have value in scientific research. In fields like
Game Al, researchers use games alongside algorithms to
conduct experiments. [2]

Traditional video games are often linear, meaning that there
is a clear beginning, middle, and end [8], and the player goes
through levels carefully crafted by the developers to complete
the game. Another genre of video games is roguelike or rogue-
lite games. Inspired by the 1980 game Rogue, a roguelike
game features certain characteristics, such as a randomly
generated level and permanent death [9]. The player would
not be able to the keep progress from previous playthroughs
and must start from zero every time. While these restrictions
might cause frustrations from the player’s perspective, most
people enjoy roguelikes for the challenge and mastery of the
game’s mechanics.

The development of a roguelike game poses an interest-
ing challenge. Developers need a way of making new lev-
els, Procedural Content Generation, while making the game
challenging and fun. This can be a tough act to balance
without trial and error. There is time and resource costs in
finding people to playtest games. With levels being different
everytime, gathering data and finding bugs can be hard if the

playtesters do not have a lot of time and experience with the
game.

Fig. 1. Screengrab of the Al agent playing GONDVAAN

In this work, we will be creating an Al agent to play the
game GONDVAAN (Figure[I). GONDVAAN is a 2D dungeon
crawler shooter that is procedurally generated.

Our research goals are to:

1) Set up an AI agent to play the game of GONDVAAN

2) Discuss the challenges and decisions when setting up
the Al agent

3) Investigate the effects of different strategies for the Al
agent

We will now continue with an overview of related works in the
domain of game production, Al-based playtesting. Followed
by the game description for GONDVAAN, then there will be
the setup for the Al Agent with it’s results.

We will now have an overview of related works in the field
of artificial intelligence (AI) and playtesting (Section II). After
that there will be a game description of how GONDVAAN
works (Section III), followed by the implementation of the
Al agent through various methods (Section IV). There is also
an experiment with strategies in Al (Section V) along with
results (Section VI). In order to answer the research goals
there will be a discussion on the Al design process (Section
VII). Finally we will discuss potential future work (Section
VIII) and conclude this paper (IX).

II. RELATED WORK

In this section, we will provide an overview of Al and it’s
relationship with video games, we will also look at how Al is
being used for playtesting in game development.

A. Game Al

Artificial intelligence and gaming have a long history to-
gether. Games are interesting problems and Al is a method of
solving these complex problems. There are many achievements
where the Al can play a game better than humans, like Go [16].
With procedurally generated content, can make the problem
even harder, the Al has to be smart enough to adapt in new
situation. The follow are Al algorithms that were consider for
the GONDVAAN’s Al agent, but, due to implementation or
feasibility, were not used.

Machine learning algorithms like deep learning are popular
choices for Al research. Deep learning utilizes neural networks
to analyze data and learn complex patterns. In [6]], S. F.
Gudmundsson et al. is successful in playing the popular match-
3 game Candy Crush based on human training data. The
functions of the AI will also depend on the quality of the
training data. The Al would require a large amount of data,
which, if produced by humans, would take additional time and
resources. As a result, it makes more sense to choose an Al
method that can self-play and generate its own data.

Reinforcement learning is a machine learning approach that
uses an agent to interact with the game. The advantage of
this over machine learning is that it is not dependent on
training data. The agent interacts with the environment and
develops models; the model is then evaluated and updated
based on observations [11]]. Reinforcement learning is usually
used for 2D games like Pong; research has been able to
show that it can also be used for 3D games like Doom.
In [12], G. Lample and D. S. Chaplot developed a deep
reinforcement learning model that outperforms the built-in bot
and human players. Reinforcement learning methods are more
complicated to set up and often have the cold start problem,
meaning the agent will have difficulty making decisions in a
new environment with no prior data. Additionally, the models
from reinforcement learning are not transparent, meaning it
is difficult to understand why an agent is making a decision,
making it hard to observe strategies.

Monte Carlos Tree Search (MCTS) is an algorithm that
finds the best solution by simulating promising actions. MCTS
excels at deterministic games such as Go or chess, but it
can also be used for games with imperfect information. The
algorithm works by having two piece of information, the game
rule and the terminal state evaluation, either a win-loss check
or score [2]. MCTS is computationally expensive because it
runs simulations until a termination state is reached.

Goal-oriented action planning (GOAP) is a system that
separates actions and plans. It was originally developed by
Jeff Orkinn at Monolith Productions to run the Al in the game
FEA.R [14]. When an Al is presented with a goal, it will
try to achieve the problem by finding the best corresponding
action. Re-planning occurs when the Al fails to execute an

action. For example, if an Al cannot open a door because
the player is blocking it, the AI will try other actions such
as kicking the door or diving through a window. This system
enables dynamic problem-solving for the Al. While the goal
is to have the Al perform strategies in GONDVAAN, there
may not be that many different ways to solve the game’s
problems. If a player is stuck in Gondvaan, it usually means
they have to either explore more or clear obstacles. In this
case, implementing a GOAP system would be overkill.

B. Playtesting

Playtesting is an integral process in the game development
cycle. This step allows the developer to gather feedback and
see if elements of the game are working as intended. There is
now an emerging field that focuses on the topic called Games
User Research (GUR); this field intersects the disciplines of
Human-Computer Interaction (HCI) and Game Development.
Although there is no definitive list of playtesting techniques,
GUR has identified different methods such as interviews, A/B
testing, and game analytics. GUR aims to research different
methodologies in game design that help assess the player
experience (PX). The goal is to then share the best practices
for practitioners and developers [3].

There is no doubt that having more playtesting can help
make a game better; more iterations can lead to more im-
provements. However, video games are a software product,
and a common consideration in development is the amount
of time and resources allocated to them. A game made by a
large gaming publisher could have a department dedicated to
PX. An indie developer, on the other hand, does not have the
resources to conduct various trials and interviews. Therefore,
developers need to be more mindful about the purpose of the
playtest and gather useful results to prevent an inefficient use
of time and resources [4].

C. Al methods for playtesting

Al methods can be used to aid developers in the playtesting
process. Researchers have tried to use Al-based agents to play
the board game Ticket to Ride [5]. F. de Mesentier Silva,
S. Lee, J. Togelius, and A. Nealen had different heuristic-
based Al agents play against one another on different Ticket to
Ride maps to see if optimal strategies emerged. This approach
combined the researcher’s knowledge of the game to have a
foundation for the heuristics, and the principles of playtesting
to find unexpected strategies. At the end of the work, two
failure states that were not covered by the rulings were found,
and they found that each map had different optimal agent
configurations. In our work, we will attempt to inject strategies
to see if we can influence Al behavior.

MCTS has been used for playtesting in a procedurally
generated game called MiniDungeons 2 [[13]]; C. Holmgérd, M.
C. Green, A. Liapis, and J. Togelius used a procedural persona
to play a deterministic turn-based roguelike game. They found
that different personas were sensitive to different levels of
patterns. While this is promising, the movement and combat
for GONDVAAN are more complicated than MiniDungeons

2, meaning that simulating actions could be more expensive.
As a result, this method is not the top choice.

Deep learning also has be shown to have applications in the
playtesting field. In the works by [6]], S. F. Gudmundsson et al.
successfully created a human-like player for the Candy Crush.
They used deep learning to train on existing player data, and it
was then able to correct predict how well a player was going
to score. This is important because this method was shown
to be less computationally expensive than the Monte Carlo
tree search method. One thing to note is that match-3 games
are less complex than our procedurally generated 2D shooter,
meaning that it would be more difficult to train our model.
In a game where the map size and configuration are different
every session, it would be difficult for the neural network to
extract meaningful strategies from past levels without the risk
of overfitting to the specific level.

III. GAME DESCRIPTION

GONDVAAN is a roguelike, procedurally generated dun-
geon crawler shooter game developed by Vincent Prins. Unlike
a traditional roguelike, the player is offered a selection of
three generated dungeons and weapons at the start of each
level. The goal of each level is to survive the dungeon and
reach the exit, shown as a ladder in-game. In Figure [T} the
ladder can be seen top right of the player. Every dungeon is
populated with various enemies that will shoot at the player,
there are also objects like obstacles, gems, and health packs
[1]]. Following the rules of a roguelike, the player can continue
to advance through the generated dungeons as long as they do
not lose their only life. Another aspect of the game is the
dynamic difficulty settings. GONDVAAN has an Al model
that adjusts the action intensities of the procedural level as
the player advances through levels. These add complexities
that will make it challenging to set up an effective Al agent.
The following section will go through the different aspects of
GONDVAAN and discuss how each component relates to the
Al agent.

A. Dungeons & Weapons

Three dungeons are procedurally generated at the start of
each level. These dungeons consist of 30 x 30 tiles and have
three styles: empty, wall, and floor tiles [[1]. A dungeon can
be defined as the space between the walls of a level. The
dungeon is then populated with various objects and entities for
the player to interact with. We will go in-depth into each object
below. The player gets a choice between three dungeons,
where they can have a small preview of the layout of the
dungeon.

In addition to the dungeon selection, the player will also
have a choice between three weapon types. There are preview
screens for each weapon, showing how the bullets shoot, also
showing how the player will recoil when using the weapon.
For a human player, the preview screen helps determine which
weapon to choose. For example, a player can choose a weapon
with a larger bullet spread that makes hitting the enemy
easier. For an Al, on the other it can be hard to compare

these weapons, although there are parameters of the weapons
available, it would be complicated for an Al to determine the
effectiveness of a weapon over another, given the different
enemy types and random dungeon sizes. For the purposes of
this work, the weapon will have constant parameters to ensure
that the Al will have the same weapon in each experiment.

B. Characters

In each dungeon, there is the player and the enemies.
There are four different non-player character enemy types in
GONDVAAN, each with a unique style of gameplay to make
it challenging for the player to traverse the level. Each enemy
type has different behavior cycles. For example, the dodger
will attempt to dodge incoming bullets, and the shy inquisitor
will try to escape if damaged [1]. For this paper, we will not
attempt for our Al agent to understand the individual behaviors
of the enemies and form different strategies. We will use the
behavior framework of the enemies as inspiration for how our
Al can behave. In the previous work, Prins mentioned that
players seemed to spend more time in combat on more difficult
levels; we can use this insight to make our Al agent more
flexible.

C. Objects

There are different types of objects in Gondvaan, some
are crucial to progress the game, like the ladders, and other
objects, like chests, can powerup a player to make combat
easier.

1) Ladders: When a dungeon is generated, one ladder will
be placed in the level. When the player reaches and interacts
with the ladder, the level is completed, and the player is taken
to a scene to select the next dungeon and weapon. This can
be considered the most important goal of the game. The game
does not have an ending; the player can continue playing until
they lose all their health in a level. For the Al agent, then,
being able to detect and effectively reach the ladder will be
its priority in every level. We also need to think about how an
Al can detect and “interact” with the ladder. In Section IV-D,
we will go over the different methods we used to reach the
ladder.

2) Obstacles & Doors: Obstacles come in different sprites
and, like the name suggests are designed to block the player’s
path. Obstacles can be destroy with bullets from either the
player or the enemy. Since bullets are a scarce resource in
GONDVAAN, the player must manage their ammo whilst
shooting. This is crucial because sometimes the ladder is in a
space closed off by obstacles. The challenge for the Al agent is
similar to the player, however it would be hard for the agent to
evaluate whether an obstacle is needed to be destroyed given
an unexplored level. In our experiments, our default action is
for the AI agent to destroy all obstacles detected, to ensure
the agent can explore the entire level.

Doors have two states, unopened and opened. When un-
opened, the doors have a property similar to the wall, where
neither the characters or bullets are able to pass through. The
player can interact with the door when near it, similar to the

ladder, and by doing so the door will be opened and behave
like the floor. As a player they can choose when they would
like to open the door. From a strategic standpoint there is no
advantage to leaving a door closed, unless there are enemies
beyond the door and the player would like to rest. An open
door means the player has access to more areas in a level. For
the AI agent the simple logic would be to open all doors it
encounters, as opening doors lets the Al agent explore more of
the map. However, having more access to the map also means
potential for more danger.

3) Items: There are four types of items in GONDVAAN.
The first two are consumables that are used when the player
walks through them. A health pack will be used if the player
walks past it while having less than max health. This is a
valuable item because when a player’s health reaches zero,
the game is over. Collecting a health pack is the only way for
a player to regain lost health. Another consumable is the ammo
pack; this item adds more ammo to the player’s weapon. This
is useful because if a player’s weapon has no ammo, they can
no longer defeat enemies or clear obstacles. For the player,
there is no downside to picking up these items, except for the
health pack if they are at full health. The AI agent should
also share the same behavior, perhaps with an extra incentive
to find the health pack if they are below a certain threshold
of health. Having this would be crucial to ensure the Al can
complete more levels.

The last two items are gems and chests. Gems are dropped
when an enemy is defeated, and the players can collect these
gems and redeem them for power-ups by interacting with
chests throughout the dungeons. The power-ups can make the
player move, reload faster, or make them more resistant to
damage. Sometimes there are multiple chests in a dungeon; in
this case, the player can decide what type of power-up they
want based on how many gems they have collected. For an
Al agent, this is rather challenging; it is hard for the AI to
compare the effectiveness of two or more power-ups. In the
current implementation, the AI agent will collect the gems
if convenient and redeem power-ups from chests if it passes
through and has enough gems.

D. Tutorial Level

Besides the procedurally generated levels, there is also a
tutorial level created by the developer. Because each dungeon
is generated procedurally, no two game sessions are the same.
This is a challenge for the player, but this environment can
be especially difficult for an Al agent to get good results. The
tutorial level provides a stable testing environment to develop
and test the AI agent’s functions. It is a good starting point
for iterative development.

A good tutorial level should give the player an overview
of the mechanics of the game, with some examples of the
obstacles a player might encounter when playing. The first
level of Super Mario Bros shows different play patterns that a
player might encounter [17]]. An effective tutorial should help
players master the basics of the game and set them up for
success.

In GONDVAAN, the tutorial level features a long, hori-
zontally shaped dungeon with doors in between each section.
There are five sections in total, and each shows different
situations that can happen in a dungeon. Behind the first door
is a set of obstacles, in this section the player cannot proceed
to the next door unless they use their weapon to shoot and
destroy the obstacles. This is a low-stakes environment where
the player will not be attacked and can practice with shooting
the weapon. They will also see how objects can have health
and be destroyed.

Fig. 2. Section 2 of the tutorial level features one enemy reachable by the
user and an enemy nest that spawns enemies over time.

The second section features an enemy, an enemy nest, and
some walls, shown in Figure 2] In this area, the player is
comforted by an enemy that will shoot bullets on sight. The
player can use the walls as cover, navigate, and shoot at the
enemy to move on. Here, the player will engage in combat,
where they have to aim, shoot, and dodge incoming bullets.
The player can fail and die at this stage. There is also an
enemy nest that is enclosed in a nearby wall. An enemy nest
is an object that periodically spawns new enemies; the nest
itself cannot be destroyed. If the player lingers long enough,
they will see the progress bar above the nest complete and
spawn a new enemy. This nest serves only as information for
the player, as the newly spawned enemy has no way to interact
with the player. For an Al, this section will test its ability to
prioritize; the Al must be able to differentiate reachable and
unreachable enemies. Combat with cover will also test how
the Al interchanges between shooting and moving.

The third and fourth sections showcase the items mentioned
in the previous section. The player will first see the health and
ammo pack. If the player has sustained damage in the previous
section, they will be able to collect and restore some health. By
receiving the ammo pack, they can also visually see the ammo
count increase on the bottom right side of the screen. The next

section has a chest with a power-up that can be redeemed with
gems. While in normal game play, the player starts with zero
gems, in the tutorial, the player receives enough gems for the
chest even if they chose not to fight the enemy in the previous
section. These two sections provide an opportunity for the Al
to check its interactions with these items. The AI will have to
be able to ignore the health pack when full health, otherwise
it will be stuck trying to get an unobtainable item.

The final section has the ladder. By walking up to the ladder,
the player will be prompted to press E, the same button used
for the chest. By doing so, the player will have completed the
tutorial and will be brought back to the main menu. The Al
is not able to read and understand text, so it must have other
ways to interact with the ladder.

Because the tutorial outlines most of the scenarios that a
player will encounter, this will be where the testing for the Al
agent will take place. The tutorial will be a crucial tool in the
development process for the Al Agent.

IV. METHOD

The method goes over the implementation of the Al agents.
We will go through the different design decisions and it-
erations. When thinking about creating an Al agent for a
game, the first step is to identify the priorities of the Al. For
GONDVAAN, there are two main goals: the first is to find and
reach the ladder to proceed to the next level, and the second
is to survive the level. When a player begins a level, they
might not see where the ladder is located, which means they
have to spend time exploring the level. While exploring the
level, they will encounter hostile enemies and obstacles, and
they will then have to combat the enemies, defeating them
while retaining their health. With that goal in mind, we have
two important functions for the Al agent: ladder detection and
combat. The AI agent also has to context switch between the
two functions; the Al agent has to be able to execute both
functions effectively to complete a level.

A. Finite State Machine

When choosing an AI method, the finite state machine
(FSM) was the first method that came to mind. A finite
state machine is a mathematical model that describes how
different states transition between each other; there is a finite
number of states, meaning that for the state machine, there is a
defined beginning and end [2]]. FSM has been used as a game
Al method in video games, mostly as non-player characters.
Using FSM for the Al agent means that you can design and
control how a character behaves when it interacts with the
player or other characters. The advantages of the FSM are
that it is simple to design and start. The states and transitions
are easy to visualize and debug. The downside, however, is
that the system is not adaptable and dynamic. When you have
many states that have interconnected conditions, it can be hard
to maintain and add new states.

The first iteration of FSM for GONDVAAN’s Al agent
focused on tackling movement and detection. A script had
to be created in Unity that overrides the player controller. The

script was implemented as a toggle so it would be easier to
debug. The FSM had three main states: detection, movement,
and combat. The transitions between these states would be
based on what type of object the Al detects, a ladder or an
enemy. This state machine was tested in the tutorial level
mentioned in Section III-D. Combat was the focus for this
Al’s iteration; the Al would try to shoot at the enemy if it was
nearby. An error occurred when the Al agent tried to shoot
the enemy that spawned near the nest, as shown in Figure [2}
A human player might understand that an enemy behind the
wall is unreachable, but for the AI’s detection, the enemy was
in close enough range for combat. This was a simple fix, as
an additional check was performed to make sure the AI has
a line of sight before shooting. However, this meant the FSM
had to increase states and, therefore, complexity.

Besides combat, interacting with the ladder also proved to
be more complex for the Al For a human player, a text prompt
will appear when a player is near a ladder to press the E key.
By pressing E next to the ladder, the level will be completed.
To enable the Al to finish a level, a helper function was created
to interact with the ladder. There is also a check to make sure
the Al is close enough to the ladder. Between the combat
issues and the ladder solution, the FSM was becoming hard to
manage. Encapsulation was needed to group actions together

for easier management.
.
lamma
.._p
amma

EnemyMearby ||
ObstacleNearby

RandomMovement

ILadderNearby LadderNearby

InteractWith
Ladder

Fig. 3. Visualization of the Hierarchical Finite State Machine. The text bubble
represents a super-state, a finite state machine within a state.

A hierarchical finite state machine (HFSM) is a variation
of the FSM that includes super-states. A super-state can be
thought of as having a finite state machine within a state [[7].
Figure[3|shows a visualization of the Al agent in with a HFSM.
The main addition is the extension of Shoot’s state in the
right corner. As mentioned above, there can be conditional
checks before the Al shoots at the enemy. The super-states
make programming and organizing different functions easier.
As the features of the AI agent expand, almost all actions
are super-states, which means that there are more states and

transitions to keep track of. Another issue with the Al agent
at its current state is that it is too logical. From Figure [3| you
can see that the Al moves to another state if the conditions
of the transitions are met. If a ladder is nearby, the Al will
try to interact with it. This made the AI’s action robotic and
not human-like; it could not execute complex strategies for
playtesting. Although the HFSM is easier to manage than the
FSM, more features needed to be implemented, and the FSM
was no longer sufficient.

B. Behavior Tree

The behavior tree (BT) is the next AI method used after
the finite state machine proved to be difficult to maintain.
A BT is a hierarchical model that is connected by nodes.
The tree structure works top to bottom with branches and
leaves that signify the different actions an Al can take. Unlike
states and transitions, the behavior tree has nodes and branches
that can be interchanged easily; it also has fallback tactics
in case behaviors fail [?]. Similar to the states within states
in a hierarchical finite state machine, behavior trees can also
have sub-trees to group more complex actions together. The
interchangeability of the tree’s nodes means that it will be
easier to add new functions for the AI agent. As we will
discuss, the components of the behavior tree also make for
intuitive design. It is for that reason that behavior trees are a
popular option for modern Al in game development.

The structure of the BT consists of nodes, which are
arranged hierarchically from top to bottom, with a root node at
the top and child nodes on the bottom. The child node executes
an action, in our case, the behavior, then returns its status to the
parent node. A node can have three statuses: running, success,
and failure [2]. The status is how the nodes communicate with
each other; it is also used to determine how the remainder of
the tree is traversed. We can order and design the nodes in a
way that resembles a strategy for the AL. BTs have four types
of nodes that can be used to ease the design process: sequence,
selector, decorator, and leaf nodes.

Combat
A
N I < Until Health =0
Detected Strafe :-. .
. - ~— . Shoot
0.5 5
Strafe Left Strafe Right

Fig. 4. Example components of a behavior tree. The blue rectangle is the
sequence, the red rounded rectangle is the selector, the hexagon represents
the decorator, and the remaining rectangles are leaf nodes.

A sequence, like the name suggests, will visit its child
nodes in order and can only succeed if all children succeed.
If one child fails, then the sequence fails. This is similar to

the AND logic in mathematics [10]. This type of node is
useful for executing a series of commands. If the sequence for
any reason cannot succeed, then the Al will pivot to another
behavior. Represented by the blue rectangles in Figure f] the
CombatSequence has three nodes: Detected, Strafe, and Shoot.
Once in the combat sequence, the Al will first attempt to
detect any enemy. If no enemy is detected, then the Al does
not have to continue performing combat-related actions, which
allows the Al to quickly switch to another behavior. As stated
in the previous section, a simple interaction like finding the
ladder can require many conditions for an Al In a BT, you
can create a door sequence that includes detecting, moving
towards, and interacting with a door. Most of the actions used
by the AI agent for GONDVAAN were sequences. Having a
specific sequence for tasks meant we could debug what the
Al was trying to achieve very clearly. Sequences are a good
foundation for behavior trees because you can chain together
multiple logic conditions.

If the sequence is like the AND logic, then the selector is
like the OR. The selector node succeeds if one of its child
nodes succeeds; if not, then it will try the next one in order.
There are two variations of the selector node, the probability
selector and the priority selector. In Figure |4} the red rounded
rectangle shows a probability selector. The StrafeSelector will
have a 50% chance to strafe left or right. (This motion is
implemented to try and avoid enemy attacks.) Once one of the
options is executed and succeeds, the selector succeeds, the Al
can then continue traversing the tree. The probability selector
can allow the AI agent to make decisions. Using a probability
can also introduce some randomness in the AI’s behavior,
making it behave more “human-like”. In our behavior tree,
the probability selector is also used to simulate personas;
this can be thought of as Al agents with specific strategies.
Using probability, we try to replicate strategies for the Al
agent by adjusting the likelihood that the AI will choose
certain behaviors over others. Figure [5 shows a simplified
implementation of the AI’s behavior tree. We will discuss its
effects in Section V.

There is also the priority selector; when a child’s behavior
fails, the selector will try the next child until one returns a
success. When visualized, you can see the priority ordered
from left to right. In Figure [5 the Utility selector will try
the UnstuckSequence first, and if it fails, then the Obsta-
cleSequence will run. The priority selector can be used as
a way to ensure the Al has fallback behaviors in case the
first node fails [10]. In our use case, the Utility selector is
used to clear the way for the AI. When testing the probability
behavior tree, we noticed the Al could get stuck easily if all
of its behaviors were under the Persona selector. An example
would be the AI agent being surrounded by obstacles and
unable to move; the Al would have to cycle through behaviors
until the obstacle-clearing sequence was chosen. This approach
made traversing the map difficult for the Al so the Utility
selector was created to make traversing the environment more
consistent. The Utility selector was effective in preventing
the Al from getting stuck, letting the AI have space to try

strategies in the PersonaSelector.

The decorator is the third type of node for behavior trees.
These types of nodes can add complexity to a child node’s
behavior; they can be used to invert the results of a node or
have the child set to repeat a process a certain number of
times. [2] The decorator can be viewed as a while loop or
a conditional function in programming terms. The decorator,
like all the other types of nodes, can be customized to fit the
needs of the system. In Figure] the grey hexagon shows a
conditional decorator for the Shoot leaf node; once the Al tries
to shoot the enemies, it will not stop until the health of the
enemies reaches 0.

Weighted
BT

T~

‘ Utility ‘ ‘ Persona ‘

7 \ 10’. 8 ~,

Ladder

Unstuck Obstacle Combat Item

Detect ‘ Strafe ‘ Shoot

Fig. 5. Weighted behavior tree. The weights in the PersonaSelector lets us
change the likelihood of the AI’s behavior. This lets the Al have different
personas or strategies.

Finally, there are the leaf nodes, which are the actions of
the AI agent. A strength of the behavior tree compared to the
finite state machine is the reusability of its components. In the
following Object Detection section, we will go in-depth into
how development time was saved by designing efficient leaf
nodes. The previous node types act as the structure of the tree,
while the leaf nodes are the specifics of the Al agent.

When switching over the Al agent’s implementation from
the finite state machine to the behavior tree, the first step
was to transfer all the states into nodes. The hierarchical
states are similar to sequences, while the smaller states are
leaf nodes. The PersonaSelector in Figure [5] was added later
in development to facilitate different strategies once all the
sequences were transferred and tested. The probability selector
was modified to use weights instead, which allowed easier
parameterization for later testing.

C. Object Detection

While a human player can look at sprites and discern what
they do by interacting with them, an Al agent cannot easily
learn the nuances between different items and objects. But
with the help of Unity and its tags, we can establish some
parameters for the Al agent with object detection.

For Unity, there is the helper function GameOb-
ject.FindGameObjectsWithTag, this function returns an array
of all the GameObjects with the searched tag [15]. The
GameObjects must be declared before compilation, and an
empty array will be returned if no GameObjects with the tag

is found. While most GameObjects in the game already have
tags, some objects, like the door and healthpacks, did not have
tags and had to be assigned. For an Al, every object that it
needed to interact with needed to have a tag so its function
could be categorized in the behavior tree.

A function called CheckObjectDetected was then created to
handle all the different GameObjects in the game. There are a
total of seven GameObjects: enemy, ladder, gem, ammopack,
healthpack, obstacle, and door. This function would be called
within the behavior tree sequence of the given GameObject, for
example, within the ladder sequence, the Al would first search
for the ladder object, then if the ladder was close enough it
would try to interact with it, if not, it would try to move the
Al in the direction of the ladder. The CheckObjectDetected in
this example demonstrates that it is a crucial component for
each of the AI’s sequences. If the object is not detected, than
the sequence fails and the Al can try another sequence. This
ensures that the Al is always trying actions that bring it closer
to the goal.

D. Pathing

Navigation for the Al agent can be difficult with a lot of
trial and error. After identifying the different objects the Al
agent can encounter, we can use this information to help the Al
traverse the level and find the ladder. A* pathing was chosen
for the Al because of its effectiveness in finding the best path.

Before implementing the A* algorithm, we must set up the
environment for the algorithm to run on. We first need to create
a grid-like structure for the Al., The size of the grid generated
is 30x30 tiles, which is similar to the maximum size of a
generated dungeon [1]]. The tile sizes are also the same size
as the in-game character sprite, meaning that it depicts the
same range of motion as the Al or player. This is necessary
because there are walkways in the dungeon that are exactly
1x1 tiles; if the grid isn’t the same, then the AI will have
trouble moving through doors. We also limit the grid to a
size of 8 tiles surrounding the Al agent to start, then as the
Al traverses the level, the grid will be updated with walls
as red squares and white icons for objects, like in Figure [6]
This dynamic grid approach was used because the levels could
change; if an obstacle is destroyed, it could be updated. The
small radius in the beginning also helps with computation; this
method updates the environment as the Al explores.

A* is a genetic search algorithm that tries to find the
optimal path by continuously visiting neighbor nodes until the
goal is found. A* calculates a heuristic function to increase
computational efficiency [?]. In Figure [6] a yellow line is
drawn if the AI finds the ladder, and yellow circles leading
up to the ladder will be drawn in the debug screen if the Al
successfully finds a path with A*. The debug visuals were
incredibly helpful in checking if A* was working correctly.

At first, the intuition was that using A*, a well-documented
and efficient pathing algorithm, would make the AI agent
become too good at completing the first goal. However, as
we will see in Section V, the Al will also have to manage its
combat effectively to reach the ladder without dying.

Fig. 6. Debug screen for the Al. The red squares are walls labeled by the
A* pathing. The yellow line is the shortest path to the ladder, and the yellow
circles are the path to ladder calculated by A*. White icons are other objects
in the level.

V. EXPERIMENT

In this section, we will discuss our approach to measuring
how well the AI agent plays GONDVAAN. For the experi-
ment, we are using the Al agent with the weighted behavior
tree method. This version has adjustable weights as parameters
to allow for different player personas. Other Al methods
were not considered for the experiment as they could not
reliably complete a level. The experiment is to have the Al
agent complete levels with three different personas: Combat,
Speedrun, and Collector. We will then compare the results with
human player data gathered from Prins’ work [1]].

The constraints of the AI agent’s functions are as follows.
At the beginning of each level selection, the Al agent will
randomly choose from the available three dungeons, and for
the weapon, the Al agent will also have the same weapon. This
reduces some randomness for the experiments. Even though
the levels are selected randomly, they are still generated based
on the same difficulty settings. This means that the Al will play
on different variations of a level that has the same difficulty.
Since GONDVAAN is a game that uses procedural generation,
we want to make sure the Al agent can complete a variety of
levels. However, for the weapon, we decided to have the same
weapon across all iterations. The Al uses a single-shot type
weapon, which is designed to reduce the complexity of the
AI’s combat.

There are some constants for the experiment. To align with
the human player data, a total of 300 completed levels will
be played for each Al persona; a completed level is when the

TABLE I
PERSONA PARAMETERS FOR WEIGHTED BEHAVIOR TREE.

Parameter | Action | Speedrun | Collector
Ladder 3 9 5
Combat 10 4 4
Health 2 1 8
Ammo 1 0.5 8

Gem 1 0 8

Al successfully reaches the ladder. There is a time limit of
200 seconds per level, which is to prevent a stale state where
the Al cannot reach the ladder. The parameters for the Al are
the weights for the sequences in the PersonaSelector, as seen
in Figure 5] In implementation, the ItemSequence is broken
into three separate sequences: health, ammo, and gem. The
three personas used and their weights can be seen in Table
The distribution of the weights came from experience playing
GONDVAAN and test runs. An example is that the weights of
the LadderSequence for the speedrun personas were originally
set to 15, but it could not complete levels because its enemies
would kill the Al before it reached the ladder.

VI. RESULTS

As stated above, 200 complete levels were used for each
persona. The three personas had different levels of success
rates, with the Action persona having a 96.7%, Speedrun hav-
ing 79.9%, and the Collector having only a 48.5% success rate.
There is also the average time in level, where the Speedrun
persona was the fastest at a 48.7-second average, Action at
76.1-second average, and finally the Collector persona at 88.1-
second average. All personas had a shooting accuracy of
around 55%. These results show that the CombatSequence is
most crucial in determining the success rate of a given persona.

All three Al personas completed levels in the range of [1,4],
meaning that they did not reach higher levels in the game.
This could be because the AI’s combat is not sophisticated
enough to handle advanced shooting and dodging. Meaning
that while the Al can finish a level, it does not have the strategy
to maintain health and advance through harder levels.

TABLE 11
PEARSON CORRELATIONS BETWEEN ACTION INTENSITY AND GAME
METRICS.
Metric Human | Action | Speedrun | Collector
Interaction 0.53 0.86 0.81 0.9
Time in level 0.42 0.73 0.68 0.76
Time in combat 0.37 0.35 0.28 0.37
Enemies killed 0.63 0.3 0.35 0.24

From table [lIL we can see the results from the experiments
with different personas. The Pearson correlation measures the
relationship strength between two variables; it can range from
[-1,1], with 1 being positive correlation and -1 being negative.
Action intensity is a metric that is used by Prins to quantify the
actions when playing. The metrics: Interaction, Time in level,

Time in combat, and Enemies killed, help us understand how
the Al is performing in a level.

From table |II, we can see that the Personas have a greater
interaction than the human player; this could be because the
Al agent is making decisions at a much higher rate than
the human. We will see, however is that a high interaction
correlation does not mean the Al is better at completing the
levels. The time in level is higher than the human player
across the board. Interesting to note that for the speedrun
persona, even though the persona had a greater probability to
use the ladder sequence, it did not have a lower time in level
correlation compared to the human. This could be because
once the Al agent encounters an enemy, it still tries to reach
the ladder instead of combat, resulting in death.

From the experiments, it appears that the persona focused
on combat was the most successful.

VII. DISCUSSION

For the experiment, we can see that while the Al agent could
complete levels in GONDVAAN, it was still not performing
enough like a human player for it to be useful for playtesting.
However, I still believe there are benefits to this approach. The
advantage for having an Al agent for the game is that once the
agent is set up you start iterating. For example, by changing the
weights, you can have the Al agent perform different strategies
in each test. Since both the game and the AI controller exist
as scripts, you can also take advantage of the Unity built-
in timescale and increase the experiment times, you can have
the game run in faster time and complete experiments faster
than human players [15]. An argument can also be made that
the current actions are not sophisticated enough; the tree can
be updated with better sequences.

There are also disadvantages to this approach; the first
would be the time required to set up the agent itself. From
Section IV, you can see that there were many different iter-
ations of the AI were tried. In Section VI, you can also see
that the Al agent requires more tuning. Because of the iterative
nature, there will also be room for improvement for the Al

It was more difficult than anticipated to create an Al
agent for the GONDVAAN. Features turned out to be more
complicated because there were more things to consider. It’s
difficult to translate a human strategy into one usable by the Al
agent. An example would be implementing the A* pathfinding,
I thought that by using an optimized pathing system, it would
make the game too easy for the AI, but in reality, it still
performed worst than the human player. I suspect this is
because the Al also had to handle the combat effectively;
otherwise, it could not reach the ladder even if it had the
path.

Below are some insights I found while designing the Al
agent for GONDVAAN, and could be guidelines for someone
attempting to create an Al for another game.

1) What is the winning condition for the game?: The first
task is to think about the winning conditions for the game.
For GONDVAAN, because it is a Roguelike game, there is no
ending, the challenge is to complete each level by reaching the

ladder. The scope of winning is then defined by continuously
completing each level. There is no time limit in each level; the
only way a player could lose is if their health reaches zero.
The only way that could occur is if they get hit by an enemy’s
bullet. That means for an Al, the two main goals are to reach
the ladder and survive the enemies, meaning they could either
defeat the enemies or avoid the enemies’ attacks. With that
information, we could work on the most important functions
for the Al. From our experiment, we can also conclude that the
combat is more important than pathfinding. If Al can handle
enemies, then it can have the space to explore. While designing
the combat function for the Al came a different problem arose
that was solved by the second insight.

2) How do the gameplay mechanics interact with each
other?: The second insight for me was to think about how the
game mechanics interacted with each other. Unlike humans,
the Al needed an accompanying function for each action.
When designing the enemy combat, there were two main
components: detecting the enemy and deciding if the Al
should engage in combat. The first component resulted in the
ObjectDetection function, which was adapted to be used for
other GameObject detection for the AI. This function was
important in helping the Al identify all the elements in the
game. The second component became the HasLineOfSight
function, which determined if there were obstacles or walls
between the Al and the enemy. If there was then the Al would
save the ammo and not engage in combat. This was helpful
not only to preserve ammo but make sure the Al is focusing
on the correct objective, as seen in the tutorial level in Figure
By understanding the game mechanics, you can target the
most important functions and save a lot of time.

3) Choose the right method: For this work, a lot of time
was spent on deciding a suitable AI method. The finite state
machine was chosen in the beginning because the states and
transitions were easy to define. However, as the actions of the
Al increased, it was more and more difficult to manage. The
Al ended up being implemented on a modified version of the
behavior tree. It could be argued that the behavior tree should
have been used in the beginning, but I would say that designing
the Al proved to be more complicated than anticipated. Similar
to the points made in the previous insight, if I had known
more clearly how the game mechanics interacted, I would have
known that the structure of the finite state machine was not
flexible enough for the AI agent I wanted to create. One of the
problems that I encountered was the ever-growing complexity
required for the Al to reliably complete each level.

4) Design for iteration: Another important key is to design
for iteration. Relating to the right method, you should have a
certain degree of flexibility in the Al method. For the behavior
tree, it is possible to switch the leaf nodes into new sequences.
If this were implemented in the finite state machine it could
take more effort when considering how the new state would
transition from the previous states.

Designing for iteration also applies to the process of creating
the Al agent. After having the foundational actions like move-
ment and combat, the next step is to introduce new features and

test them. By having the tutorial level, I effectively had a test
environment for new actions. Because the game is procedurally
generated, having a stable tutorial level meant I can test and
tune the functions for the Al iteratively. This was helpful as
I could build the Al step by step. If I only had new levels
to test the Al it would have been difficult to focus on which
behaviors to prioritize.

5) Think like a human and like an Al: The final insight
would be to practice thinking like a human and an AI. One
of the hardest part of this work is coming to terms with how
difficult it is to recreate an Al to play a game. As someone
with some experience in playing video games, GONDVAAN
is not a game that was hard to get started on. For an Al on the
other hand is a different story, it was difficult to articulate the
objectives and strategies in a way for the Al to understand and
execute. When creating an Al for GONDVAAN, the first step
was to play the game and analyze the type of strategies that
would come to mind while playing. This gave me an insight
into how we can approach creating the Al. After playing the
games a few time, not only do you get some insights to how the
mechanics of the game work, but there are also some strategies
that can occur.

The second step is to think like an Al and see if the
same strategies can be implemented. By having the weighted
behavior tree, there is a certain degree of influence that can be
applied to the Al., By having more weights on certain actions
like combat, we can try to replicate strategies for the Al while
still having some degree of randomness. This flexibility gives
us some space for experimentation and testing to improve the
AL

VIII. FUTURE WORK

There are two considerations of where this work can go.
The original goal was to create an Al agent capable as stand-
in for playtesting as a human player. Naturally, the direction is
to continue improving the Al agent for GONDVAAN. Another
direction is to use the guidelines mentioned in Section VII and
try and apply them to another type of game.

A. GONDVAAN

The main discovery from the experiment results is that the
Al agent’s combat is not as good as expected. The Al needed
to have a strategy that was effective enough to finish multiple
levels. There is a lot of room for improvement to deepen the
CombatSequence. Perhaps more ways of dodging bullets and
preserving health, or specific strategies that only occur when
the health is low. New personas can also be added to try and
solve this problem, and more parameters can be introduced to
enrich the Al agent’s options.

The functionality of the weighted behavior tree can also be
expanded to have dynamic weights. Humans have the ability
to switch strategies when playing mid-game. This could also
be applied to the Al agent, having a well-rounded persona that
changes depending on the situation.

In this work, the Al agent did not have to make decisions for
the dungeon, weapon, and chest upgrades. With more data, the

Al agent can be trained to make decisions. Whether through
human training data or self-play, it could be worth observing
if the AI has preferences for certain combinations.

B. Generalization

The guidelines for creating an Al agent can be tested on
another game to see if the principles apply. This would be a
way of validating this experience report, or perhaps having
ways to improve it. The goal would be to find a general
Al agent that can be used for playtesting multiple genres of
games, which could potentially save developers a lot of time
and resources.

IX. CONCLUSION

In this paper, we presented an Al agent that can play
GONDVAAN. We documented the use of two different types
of AI methods, from the finite state machine to a modified
behavior tree. Through the experiments, we were able to
evaluate the effectiveness of the Al agent. Although the combat
persona has the highest success rate, it still cannot compare
to the human player in terms of effectiveness.

Furthermore, we found that a well-rounded Al agent re-
quired more complexity than originally thought. From the
results we gathered that the combat was the most important
factor to an Al agent’s success. This gives us a direction for
future improvements.

In conclusion, we found that it was possible to create an Al
agent to play a roguelike game. With an effective Al agent,
developers can use this as a tool to playtest their games. We
hope that further research can be done with this method to
help developers and aspiring programmers.

REFERENCES

[1] V. Prins, “Dungeons & Firearms: Al-Directing Action Intensity of
Procedural Levels,” Leiden University, 2023.

[2] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer Nature, 2025. Available: https://gameaibook.org

[3] P. Mirza-Babaei, V. Zammitto, J. Niesenhaus, M. Sangin, and L. Nacke,
“Games User Research: Practice, Methods, and Applications,” CHI
’13 Extended Abstracts on Human Factors in Computing Systems, pp.
3219-3222, Apr. 2013, doi: https://doi.org/10.1145/2468356.

[4] A. Denisova, S. Bromley, P. Mirza-Babaei, and E. D. Mekler, “Towards
Democratisation of Games User Research: Exploring Playtesting Chal-
lenges of Indie Video Game Developers,” Proceedings of the ACM on
Human-Computer Interaction, vol. 8, no. CHI PLAY, pp. 1-25, Oct.
2024, doi: https://doi.org/10.1145/3677108.

[5] F. de Mesentier Silva, S. Lee, J. Togelius, and A. Nealen, “Al-based
Playtesting of Contemporary Board Games,” Proceedings of the 12th
International Conference on the Foundations of Digital Games, Aug.
2017, doi: https://doi.org/10.1145/3102071.3102105.

[6] S. F. Gudmundsson et al., “Human-Like Playtesting with Deep Learn-
ing,” 2018 IEEE Conference on Computational Intelligence and Games
(CIG), Aug. 2018, doi: https://doi.org/10.1109/cig.2018.8490442.

[71 K-S. Chang and D. Zhu, “Hierarchical Finite State
Machine (HFSM) & Behavior Tree (BT).” Available:
https://web.stanford.edu/class/cs123/lectures/CS123_lec08_HFSM_BT.pdf

[8] M. Shepard, “Interactive Storytelling - Narrative Techniques and
Methods in Video Games: Linear and Non-Linear,” Interactive
Storytelling - Narrative Techniques and Methods in Video Games,
May 12, 2014. https://scalar.usc.edu/works/interactive-storytelling-
narrative-techniques-and-methods-in-video-games/linear-and-non-
linear?path=narrative-styles

[9]

[10]

(11]

(12]

[13]

[14]
[15]

[16]

[17]

[18]

E. Staff, “The Making Of: Rogue - Page 2 of 2 —
Features — Edge Online,” Edge Online, Jul. 03, 2009.
https://web.archive.org/web/20121018230001/http://www.edge-
online.com/features/making-rogue/2/.

C. Simpson, “Behavior Trees for Al: How
They ‘Work,” Game Developer, Jul. 18, 2014.
https://www.gamedeveloper.com/programming/behavior-trees-for-ai-
how-they-work

L. Kaiser et al., “Model-Based Reinforcement Learning for Atari,”
arXiv.org, 2019. https://arxiv.org/abs/1903.00374v1

G. Lample and D. S. Chaplot, “Playing FPS Games with
Deep Reinforcement Learning,” arXiv.org, Jan. 29, 2018.
https://arxiv.org/abs/1609.05521

C. Holmgard, M. C. Green, A. Liapis, and J. Togelius, “Automated
Playtesting with Procedural Personas through MCTS with Evolved
Heuristics,” arXiv.org, 2018. https://arxiv.org/abs/1802.06881

J. Orkin, “Three states and a plan: the Al of FEAR,” Game Developers
Conference, 2006.

U. Technologies, “Unity - Scripting API” docs.unity3d.com.
https://docs.unity3d.com/ScriptReference/index.html

D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484489, Jan. 2016,
doi: https://doi.org/10.1038/nature16961.

S. Dahlskog and J. Togelius, “Patterns and Procedural Content Genera-
tion,” Proceedings of the First Workshop on Design Patterns in Games,
May 2012, doi: https://doi.org/10.1145/2427116.2427117.

X. Cui and H. Shi, “A*-based Pathfinding in Modern Computer Games,”
IJCSNS International Journal of Computer Science and Network Secu-
rity, vol. 11, no. 1, Jan. 2011.

	Introduction
	Related Work
	Game AI
	Playtesting
	AI methods for playtesting

	Game Description
	Dungeons & Weapons
	Characters
	Objects
	Ladders
	Obstacles & Doors
	Items

	Tutorial Level

	Method
	Finite State Machine
	Behavior Tree
	Object Detection
	Pathing

	Experiment
	Results
	Discussion
	What is the winning condition for the game?
	How do the gameplay mechanics interact with each other?
	Choose the right method
	Design for iteration
	Think like a human and like an AI

	Future Work
	GONDVAAN
	Generalization

	Conclusion
	References

