
Data Science & Artificial Intelligence

Extraction of metadata from debt letters:
Comparison of local NLP models

Beyza Celep

First supervisor: Joost Visser
Second supervisor: Natalia Amat Lefort

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 15/07/2025

www.liacs.leidenuniv.nl

Abstract

Background: Debt collection letters are often difficult to understand, especially for individuals in fi-
nancial distress. These letters contain critical metadata such as the amount owed, due date, and creditor
identity. However, they are often unstructured, written in complex legal language, and received as noisy
OCR scanned documents. Automatically extracting this metadata is necessary to enable downstream
services and reduce manual workloads, particularly in privacy-sensitive domains where cloud-based so-
lutions are unsuitable.

Aim: This thesis investigates whether local Natural Language Processing (NLP) models can effectively
extract structured metadata from noisy Dutch debt collection letters. Specifically, the study compares
three approaches: a feature-engineered Conditional Random Field (CRF), a fine-tuned SpaCy Named
Entity Recognizer (NER), and instruction-following local Large Language Models (LLM).

Method: A realistic synthetic dataset of 1,000 debt letters was generated, augmented with OCR noise,
and annotated programmatically. Each model was either explicitly trained (CRF, SpaCy) or instructed
via the same prompt (LLMs) to extract the metadata fields and evaluated using precision, recall, F1-
score, and execution time.

Results: CRFs provided reliable extraction of predictable fields. SpaCy performed well on common
entities but failed on others. The local LLM achieved the highest field coverage but incurred higher
computational costs.

Conclusion: In privacy-constrained legal-financial settings, instruction-tuned local LLMs offer promis-
ing performance, but lightweight models remain competitive for only structured tasks.

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Joost Visser, for his continuous support
and guidance throughout this thesis. Even in the moments that I struggled, showing a clear direction
his thoughtful feedback and encouragement helped me stay on course. I greatly appreciated the balance
he maintained and giving me the freedom to explore independently, yet always offering the right insights
when I needed them most.

I also want to thank my parents for always loving, being patient, and supporting me. They are the
reason I have been able to do everything I have accomplished. Their unwavering support and faith in
me have helped me get through the most difficult and rewarding parts of this journey.

Thank you!

Contents

Abstract . 1
Acknowledgments . 1

1 Introduction 3
1.1 Problem Statement . 3
1.2 Research Aim . 4
1.3 Research Questions . 4
1.4 Thesis Structure . 4

2 Background and related work 6
2.1 Metadata Extraction . 6
2.2 Techniques for Metadata Extraction . 7

2.2.1 Rule-Based and Lexical Heuristics . 7
2.2.2 Conditional Random Fields (CRFs) . 7
2.2.3 Statistical NER with Local Models (SpaCy) . 8
2.2.4 Transformer-Based Models . 9
2.2.5 Large Language Models (LLMs) . 9

3 Method 11
3.1 Challenges in Debt Letter Metadata Information Extraction 11
3.2 Realistic Synthetic Dataset Construction and Augmentation 12
3.3 OCR Preprocessing and Text Cleaning . 13
3.4 SpaCy NER Pipeline for Metadata Extraction . 13
3.5 CRF-Based Metadata Extraction Model . 15
3.6 Local LLM-Based Extraction . 17
3.7 Evaluation Procedure . 18

4 Results 20
4.1 SpaCy NER Performance . 20
4.2 Conditional Random Field (CRF) Performance . 21
4.3 Large Language Models . 21

4.3.1 1.1 Billion Parameters . 21
4.3.2 4 Billion Parameters . 22
4.3.3 14 Billion paramaters . 23
4.3.4 Model Comparison and Runtime Summary . 24

5 Discussion 27
5.1 Interpretation of Results and Model Suitability . 27

5.1.1 Conditional Random Field (CRF) . 27
5.1.2 SpaCy NER . 27
5.1.3 Large Language Models (LLMs) . 28

5.2 Field Insights on Debt Letter Processing and Interpretation 29
5.3 General Commentary . 29
5.4 Study limitations . 30

6 Conclusions 31
6.1 Answers to the Research Questions . 31

1

6.2 Contributions . 31
6.3 Future work . 32

2

Chapter 1

Introduction

Debt collection letters are important financial documents delivered to individuals and organizations to
inform them of their outstanding financial obligations. This is a crucial aspect of public service in
the Netherlands. The National Tax Service (Belastingdienst) issues around 1.8 million tax assessments
for businesses and a comparable number of income tax determinations for individual citizens annually.
In addition, the Central Judicial Collection Agency (Centraal Justitieel Incassobureau, (CJIB)) issues
about 8 million fine notifications. The high volume of such communications underscores how common
and impactful debt letters are in the daily lives of Dutch residents. However, many of these letters
are difficult to process, not just for recipients, but also for the institutions that handle them. Their
unstructured nature, legal jargon, and inconsistent formatting create significant barriers to both human
and automated understanding.

A debt collection letter generally contains various details such as; the debtor’s identity, the creditor
or managing agency, the total amount owed, essential dates, and multiple reference identifiers. Upon
receiving this information, the recipient has to determine the outstanding amount, the deadline for
payment, and the action that needs to be taken. Frequently necessitating further communication with
the issuer to dispute charges or to negotiate a repayment plan.

Many individuals who receive these letters find them difficult to comprehend or even intimidating, par-
ticularly as they contain formal legal terminology or several figures and regulations. Misinterpretation
generally leads to postponing repayment, intensifying financial struggles, or resulting in unwarranted
penalties. For those seeking to restore financial stability, the initial stage typically involves interpreting
these letters, collecting essential metadata, organizing it, and formulating a planned response.

AI-supported automated systems for data extraction and financial recommendation can be transformative
in addressing these challenges. These technologies are capable of accurately identifying and extracting
critical information from scanned or digital documents, including creditor names, payment deadlines,
amounts due, and legal references. By transforming unstructured debt letters into structured data,
they facilitate the faster processing, more accurate interpretation, and more informed decision-making
of both individuals and support organizations. To further assist recipients, financial recommendation
components can suggest customized repayment strategies or emphasize imperative actions. Not only
do these intelligent systems ease the administrative burden on caseworkers and municipal services, but
they also provide individuals with a more comprehensive understanding of their financial obligations.
They can assist in bridging the distance between complex bureaucracy and citizen comprehension when
implemented ethically and transparently, thereby transforming the debt recovery process into one that
is more accessible, timely, and humane.

1.1 Problem Statement
Despite the importance, debt letters typically come in a wide range of forms, languages, and layouts. This
is especially the case in the Netherlands, where each creditor may use a distinct template. Automatic
information extraction is needed but challenging since there is no standardization, the legal language is
hard to understand, and scanned documents often have OCR problems.

3

Finding debtor names, reference numbers, and due dates in these letters automatically is a first step in
making workflows easier for municipalities, financial service providers, and legal advisers. But it is still
an open technical problem to come up with a solution that is both accurate and resource-efficient, and
that does not depend on cloud services (due to privacy issues).

These issues are compounded by the document variability and technical limitations in OCR processing,
which make metadata extraction a particularly difficult task.

1.2 Research Aim
The goal of this thesis is to find out if lightweight, privacy-preserving natural language processing models
can consistently pull out important metadata fields from debt collection letters that are noisy and only
partially organized. In particular, it investigates the pros and cons of using traditional machine learning
approaches (such as Conditional Random Fields), newer neural architectures (like SpaCy NER), and
new instruction-following large language models (LLMs) that are deployed locally.

We evaluate each model on both technical metrics (accuracy, F1-score, recall) and practical concerns
(runtime on local hardware, memory usage, explainability). This dual perspective ensures the solutions
are not only performant but also deployable.

This thesis addresses a notable gap in the field of privacy-preserving natural language processing by
focusing on metadata extraction from debt collection letters, an understudied yet socially impactful do-
main. Specifically, it compares three approaches: Conditional Random Fields (CRF), SpaCy’s statistical
NER pipeline, and instruction following local large language models (LLMs), all executed in a fully local
environment. While prior research has explored named entity recognition in legal or financial texts, most
rely on cloud-based LLMs or general-purpose models without considering the privacy risks or deployment
limitations inherent to sensitive personal data. By assembling a dedicated corpus of debt letters and
evaluating these three techniques under the same conditions, this work contributes a novel empirical
benchmark for real-world, privacy-respecting document processing in the legal-financial domain.

1.3 Research Questions
The main question guiding this thesis is:

RQ: Which local Natural Language Processing model is most suitable for extracting struc-
tured metadata from Dutch debt collection letters, considering accuracy, robustness to noise,
computational efficiency, and deployment feasibility?

To follow up the main research question the following sub-questions are addressed:

• RQ1: How well does a rule-enhanced statistical model such as Conditional Random Field model
work when it comes to structured field extraction from OCR-processed debt letters?

• RQ2: Can SpaCy’s fine-tuned NER pipeline work with synthetic Dutch debt letters, and which
fields does it do well or poorly?

• RQ3: How well does a locally deployed instruction-tuned LLM work for extracting metadata?

• RQ4: What are the costs, inference times, and resource needs of each method when using
consumer-grade hardware?

• RQ5: How do the models stack up against each other when it comes to being scalable, and easy
to add to local document processing workflows?

1.4 Thesis Structure
This thesis is structured as follows. Chapter 2 reviews the evolution of metadata extraction techniques,
the challenges specific to debt letters, and recent trends in NLP and document understanding. Chapter
3 discusses how a synthetic dataset was generated, how it was annotated, and how each of the three
extraction pipelines was set up. Chapter 4 demonstrates a quantitative comparison of the models based
on their accuracy, recall, F1-score, and runtime. Chapter 5 discusses the results in light of real-world

4

factors including privacy, deployment costs, and how many mistakes they can handle. Finally Chapter
6 sums up the results, addresses the study questions, and suggests future work.

5

Chapter 2

Background and related work

This chapter provides the theoretical foundation for the metadata extraction task explored in this the-
sis. It begins by defining metadata and discussing the evolution of metadata extraction techniques,
particularly in the context of OCR-processed documents such as PDFs. It then introduces a range of
methods used in prior work, including rule-based systems, CRFs, statistical named entity recognition
using SpaCy, and transformer-based and instruction-following language models. These techniques are
examined in relation to their applicability for extracting information from unstructured financial corre-
spondence, setting the stage for the comparative analysis of their performance in the following chapters.

2.1 Metadata Extraction
Metadata is defined as “ data that provides information about other data ” serving as a contextual layer
that outlines the characteristics, structure, and management of a data resource, excluding its actual
content, such as the text of a document or the pixels of an image [4]. It allows the classification, recog-
nition, and effective administration of digital assets across several domains. Metadata can be in many
different formats based on its intended use. Descriptive metadata facilitates information retrieval and
identification, including titles, authorship, and keywords. Structural metadata defines the arrangement
of a resource’s components, such as chapters in a book or the layout of a PDF. Administrative metadata
facilitates resource management by supplying information about file type, creation date, access permis-
sions, and preservation. Collectively, these categories constitute the basis of digital resource organization
and automation.

Metadata extraction involves finding and obtaining structured information from unstructured or semi-
structured materials. These assets generally include several forms of digital content, including webpages,
photos, audio files, and PDF documents. Metadata extraction facilitates automated document process-
ing, retrieval, indexing, and management by transforming implicit knowledge into explicit structured
formats [3]. Early metadata extraction methods to retrieve textual materials depended on conventional
rule-based and lexical heuristic techniques. These methodologies utilized patterns, keywords, and for-
matting structures to identify and extract essential information. Nevertheless, they relied significantly
on manual configuration and specialized knowledge, which constrained their scalability and adaptability
across various document types [6].

Improvements in machine learning, especially statistical models such as CRF, significantly improved the
precision and flexibility of metadata extraction from text. CRF’s enhanced the capacity to recognize
context and model sequential dependencies, enabling systems to flexibly adjust to structural changes
in documents without requiring explicit rules [7]. Recently, deep learning methodologies particularly
transformer-based models such as BERT, LayoutLM, and Longformer have significantly progressed the
field [15]. These models, trained on extensive and varied datasets, adeptly capture contextual, semantic,
and structural connections within documents, leading to significant enhancements in generalization and
extraction accuracy.

A particularly challenging document format is the PDF, extensively used in fields such as law, finance,
and administration. Despite being widely used, PDFs are challenging to process due to their intricate

6

and frequently inconsistent formatting [11]. Metadata extraction from PDFs generally begins with Opti-
cal Character Recognition (OCR), which transforms scanned images or non-machine-readable text into
machine-readable digital formats. Still, OCR presents difficulties, including incorrect recognition and
segmentation, particularly when confronted with low-quality scans or visually complex patterns.

Post OCR, metadata extraction often utilizes hybrid models that integrate heuristic preprocessing tech-
niques, including regex matching and keyword identification, with statistical or deep learning-based
extraction methods [10]. These hybrid methods are especially effective for papers that have somewhat
predictable yet inconsistent formats, including bills, receipts, and legal notices.

Debt collection letters are a perfect illustration of the intricacy of metadata extraction. These docu-
ments include critical legal and financial metadata, including debtor and creditor identities, outstanding
amounts, due dates, and case identifiers, which have to be precisely retrieved for subsequent automated
processing. In contrast to standardized forms, debt letters frequently exhibit significant variation in struc-
ture, language, and layout. Given this unpredictability and OCR failures, it is necessary to have strong
extraction techniques that can handle a variety of text formats and noise. The successful extraction of
metadata from these letters is essential for optimizing financial procedures, facilitating automation, and
maintaining regulatory compliance.

2.2 Techniques for Metadata Extraction
A wide range of NLP approaches have been explored for document metadata extraction, evolving over
time from rule-based systems to deep learning. Here we summarize the major categories and situate our
chosen methods:

2.2.1 Rule-Based and Lexical Heuristics
Early or low tech solutions rely on manually crafted rules or regular expressions to find patterns. For ex-
ample, a sequence of digits that matches an invoice number format or detecting the word “Dear” followed
by a capitalized name as the debtor’s name. While straightforward and highly precise for simple cases,
rule-based methods struggle with the diversity of languages and require significant maintenance for each
format variation [17]. Given the complexity of debt letters, pure rule-based extraction would be weak.
However, some rule heuristics can be incorporated into more robust models as features or post processing.

2.2.2 Conditional Random Fields (CRFs)
CRFs are a class of statistical sequence models that have been very successful in named entity recognition
(NER) and similar tasks in NLP. A CRF models the conditional probability of a label sequence given
an input sequence of tokens. Essentially, it assigns labels such as “DEBTOR NAME” or “O” for non
entity to each token in a sequence by considering not only the token’s features but also the context
of neighboring labels [7]. Compared to generative sequence models, CRFs are discriminative and can
incorporate arbitrary, overlapping features of the input without making independence assumptions. For
example, one can define features like “token contains digits”, “token is capitalized”, or “previous token
is "Invoice", and the CRF will learn how these features correlate with particular entity labels. In
documents, CRFs have been used to extract fields like addresses and dates by exploiting consistent local
patterns for example an address might be detected by a pattern “Number + Capitalized Word” meaning
street number and name.

In contrast, Hidden Markov Models (HMMs) are generative models that define joint probabilities over
both the observed data (e.g., words in a sentence) and the hidden label sequences (e.g., entity tags).
They rely on the assumption that each token’s label depends only on the previous label, and that the
observed word depends only on the current label. This independence assumption limits flexibility in
incorporating overlapping or arbitrary features, which CRFs overcome.

Figure 2.1 offers a visual comparison of CRFs and related probabilistic models. It shows how CRFs
generalize logistic regression and sequence models like HMMs by modeling the conditional dependencies
among output labels, making them well-suited for structured prediction in text.

7

Figure 2.1: Evolution of probabilistic models for sequence and structured prediction. Conditional
Random Fields (bottom row) extend logistic regression to structured outputs by modeling dependencies
between output labels. Linear-chain CRFs (center) are particularly effective for tasks like Named Entity
Recognition (NER). Image taken from Sutton and McCallum [12].

CRF’s are relatively lightweight in terms of computation and can be made very precise with good feature
engineering. A big advantage is explainability, since features are human defined, one can often trace why
the model made a decision for example it labeled “Amsterdam” as a city because the feature word is city
was true. CRFs require a labeled training set for supervision, and performance can degrade if the test
data distribution differs significantly from training for example a new letter layout might confuse it if
features were very layout specific [17]. Despite the rise of deep learning, CRFs remain in use for domains
where data is limited but expert knowledge can be encoded as features.

Figure 2.2 illustrates how CRFs assign a label to each token based on handcrafted features and context.

Input: Mr. John Smith paid €500

Tokens: Mr. John Smith paid €500
Features: [Title] [Cap] [Cap] [Verb] [Currency]

↓
CRF Sequence Model

↓
Labels: O B-PER I-PER O B-AMOUNT

Figure 2.2: Simplified view of CRF-based sequence labeling. Each token is represented by a set of
handcrafted features, and the CRF predicts a label sequence.

2.2.3 Statistical NER with Local Models (SpaCy)
Modern NLP libraries like SpaCy provide ready to use NER components that are typically powered by
neural networks. SpaCy’s NER, for instance, uses a convolutional neural network (CNN) architecture
with word embeddings and context-sensitive representations to identify entity spans in text. Instead of
labeling each token independently, these models learn to recognize multi token spans by training on an-
notated examples such as an organization name that is multiple words [2]. They do not rely on manually
defined regex or token level flags, but rather learn internal features (embeddings) that encode semantic
and shape information. For example, SpaCy’s model will learn the character patterns and contexts that
suggest a token is a name or an address, guided by training data.

A key benefit is that once the model architecture is set, adding a new entity type like “DEBT AMOUNT”
just requires providing examples of that entity in context. The model will adjust its weights to capture
the new concept. This reduces the need for manual feature engineering which highlights SpaCy’s well

8

performance on messy input as it generalizes phrases rather than just individual token tags. However,
purely statistical models can make mistakes that are hard to interpret, and they may require a relatively
large number of training examples to learn patterns that a human could specify via rules. Fine-tuning
SpaCy on a new domain in this paper’s case Dutch debt letters involves creating a labeled dataset and
possibly incorporating some domain knowledge. SpaCy does allow adding custom pipeline components
or matchers for specific patterns.

Figure 2.3 illustrates SpaCy’s model pipeline, which learns to extract multi-token spans through training
rather than relying on predefined token-level features.

Input: Mr. John Smith paid €500

Text → Word Embeddings → Convolutional Layers → Entity Span Prediction
↓

Output: [PERSON: John Smith], [MONEY: €500]

Figure 2.3: Simplified SpaCy-style pipeline for NER. Unlike CRFs, the model learns embeddings and
span representations automatically from training data.

In related work, domain-specific NER has been achieved by training SpaCy or similar models on syn-
thetic data or augmenting real data for example, SpaCy has been successfully adapted for medical NER
and other specialized tasks by providing it with the right training corpus. In this paper, we can lever-
age SpaCy’s pretrained Dutch language model as a starting point, so that general language structure is
known, and then fine-tune it with our letter data to learn the custom entity categories.

2.2.4 Transformer-Based Models
The last decade has seen transformers and pre-trained language models revolutionize NLP, as explained
by Xu et al. [16]. Models like BERT and RoBERTa introduced contextual embeddings that significantly
improved NER performance by capturing long-range dependencies in text. A BERT fine-tuned for NER
can classify each token into an entity category with high accuracy, often outperforming CRF-based
models in general domains. However, vanilla transformer models treat the text as a sequence of tokens
without any notion of document layout. In tasks like form or letter understanding, layout matters e.g.,
the position of an address block or the fact that an item is in a header vs body can be an important clue.
To address this, layout-aware transformers have been developed. LayoutLM is one notable model that
incorporates the 2D position of text in the document image along with the text content into a unified
transformer representation. This allows it to learn, for example, that text at the top of a letter in bold
might be a header or that an address usually appears as a block in the top-left, etc. LayoutLM and its
successors (LayoutLMv2, etc.) have achieved state-of-the-art results on tasks like form understanding
and receipt extraction by jointly modeling text and layout.

Other approaches like Donut (Document Understanding Transformer) take this further by being OCR-
free, handling the image of the document in an end-to-end. Donut essentially combines vision and
language understanding: it can directly parse an image of a document without an intermediate OCR
step, which avoids OCR errors and can be more flexible with different scripts or noisy scans. These
transformer approaches, while powerful, usually require considerable computational resources (especially
if fine-tuning them on custom data) and large amounts of training data to realize their full potential [5].
In a corporate setting, one might not have the liberty to deploy a 300 million parameter model on every
user’s machine or edge device.

2.2.5 Large Language Models (LLMs)
The latest LLMs (GPT-4, Claude, etc.) are extremely general and can perform extraction via prompting.
For instance, feeding the text of a letter to GPT-4 with a prompt such as: “Extract the debtor’s name,
debtor’s address, creditor’s name, amount, and date from the letter below and output as JSON.” and the
model will usually comply, since it has learned to follow instructions and format outputs. Studies have

9

shown LLMs can achieve high accuracy on information extraction in zero-shot or few-shot settings, even
for specialized domains [1]. However, using such models in practice raises issues: privacy (as discussed,
data must not leave the local environment unless one hosts the model), cost, and consistency. LLMs
can sometimes hallucinate e.g. if the letter is ambiguous or an OCR error garbles a field, a generative
model might make up a plausible value or misinterpret the request [13]. This unpredictability is risky in
a product context where wrong outputs could have legal implications.

There is a growing interest in local deployment of LLMs to mitigate privacy and control issues. Open-
source models (like LLaMA 2, GPT-J, etc.) can be run on local servers or even high-end laptops, though
typically the largest models (70B+ parameters) need specialized hardware Wiest et al. [14]. demon-
strated that a locally deployed LLM (LLaMA 2 70B) achieved very high accuracy in extracting clinical
information, rivaling cloud-based solutions, all while maintaining privacy. This suggests that choosing
an appropriately sized model, a local LLM might indeed serve as a strong baseline or competitor to our
traditional NLP models, without compromising data privacy. The question remains whether a small
model (such as 1B parameters) can achieve acceptable accuracy on debt letters. LLMs also generally
require more memory and are slower than task-specific models.

In summary, related work spans from CRFs and rule-based extractors that were common in the 2000s-
2010s, to neural NER systems (like SpaCy’s) in the late 2010s, to transformers and LLMs in the 2020s
that currently lead many benchmarks. This thesis is inspired by the need to balance state-of-the-art
techniques with real-world constraints. In this research the approaches that ensure data never leaves the
organization and that can run on modest computing infrastructure are prioritized. This is in line with
a privacy-first, product-driven research philosophy: prefer solutions that are explainable, cost-efficient,
and integrate easily into existing workflows.

10

Chapter 3

Method

The research methodology consists of (1) constructing a synthetic yet realistic dataset of debt letters
with ground truth annotations, (2) implementing three extraction pipelines (CRF-based, SpaCy NER,
and local LLM) using that data, and (3) defining evaluation procedures focusing on accuracy, speed,
resource use, and integration effort.

3.1 Challenges in Debt Letter Metadata Information Extraction
Debt collection letters pose unique challenges for information extraction due to their format and language.
Unlike structured forms or invoices, these letters are often written in free form prose with varying layouts.
There is no universal template; each creditor or agency may use a different document structure, and even
within one organization the letters can vary over time. Key details like the debtor’s name, the creditor’s
account number, or the total amount due might appear in different positions or contexts in each letter.
Some letters prominently list a table of details at the top, while others bury these details in paragraphs
of explanation. The text itself tends to be long and complex, mixing formal legal language with financial
calculations and instructions. Recipients often find these letters “intimidating and confusing to read.

Despite this variability, most debt letters do contain a common set of metadata fields that are crucial to
extract [9]. These typically include:

• Subject: A brief line indicating the subject of the letter (e.g. "Subject: Second Reminder").

• Debtor Identity: Name of the person or organization that owes the debt (often appearing in the
letter header or salutation).

• Debtor Contact Details: Especially the postal address of the debtor, and sometimes other
contact information.

• Creditor Identity: Name of the entity to whom the debt is owed (which may be a different
current owner if the debt was sold.

• Creditor Contact/Account: Details for the creditor such as their address or an account number
(e.g. bank IBAN) where payments should be sent.

• Debt Amount: The principal amount of debt owed, sometimes including interest or fees.

• Dates: Relevant dates, for example the date of the letter, the invoice date, or a payment due date.

• Reference Numbers: Identifiers like a case file number, client number, invoice number, or letter
ID used to reference this debt in records.

These fields allow any automated system to understand who the letter is about, who is demanding
payment, how much is owed, and key reference info. Prior work in document analysis and compliance
has highlighted including such elements clearly in debt notices. Any solution for extracting information
from debt letters must reliably identify these fields, despite variations in wording (e.g. “outstanding
amount” vs “remaining balance”) and formatting.

11

Another challenge is that many debt letters are processed as scanned documents. Agencies often send
letters via postal mail, so the digital pipeline may involve scanning a printed letter to PDF and running
OCR (Optical Character Recognition) to get machine-readable text. OCR can introduce errors such as
misreading digits or letters, especially under noise or low-resolution conditions. Thus, extraction models
may have to cope with noisy input text containing typos or odd spacing from OCR [8]. Advanced
techniques like layout-aware models (discussed below) can use the positional layout of text to improve
accuracy, but in a fully local setting they may be too resource intensive. Our approach takes OCR text
as input and focuses on making the NLP robust to noise through preprocessing and domain specific
tuning.

To address these challenges in a controlled and privacy-preserving way, a synthetic dataset designed to
reflect the variability and noise found in actual debt letters is constructed.

3.2 Realistic Synthetic Dataset Construction and Augmentation
Due to the sensitivity and limited availability of authentic real debt collection letters, a synthetic dataset
was constructed to closely replicate the content, structure, and visual appearance of real Dutch debt let-
ters. The data generation process is automated using a custom Python script, debt_letter_generator.py,
which facilitates the creation of a large volume of diverse and realistic instances.

1. Base Template and Content Insertion A set of letter templates was created to reflect the
standard layout and tone commonly used by Dutch collection agencies. Each template includes a header
(containing agency address and logo placeholder), salutation, main body, and footer. Realistic values are
inserted into these templates using the Faker library, configured for the Dutch locale (nl_NL), enabling:

• Generation of debtor names and addresses

• Selection of creditor names from a predefined list

• Randomized assignment of plausible dates and monetary amounts

• Insertion of legal boilerplate text sourced from a curated library

This ensures that each letter maintains the formal tone and verbosity typically found in official corre-
spondence. For example, debtor details are generated as follows:

debtor_name = fake_nl.name()
debtor_address = fake_nl.address()

2. PDF Formatting and Rendering The ReportLab library is used to render the populated tem-
plates into styled PDF documents. Layout features such as fonts (e.g., Helvetica, Courier), text align-
ment, spacing, and address block positioning are varied to simulate different letterhead styles. Elements
such as reference numbers or QR codes are included, with QR codes generated using:

img_buffer = create_qr_code(letter_data["letter_id"])

This stage results in a clean, high-resolution PDF representing a digital version of the debt letter.

3. Data Augmentation via Simulated Scanning and OCR Noise To emulate real-world condi-
tions where debt letters are frequently received as scanned copies data augmentation is applied through
visual distortions. These transformations preserve the semantics while introducing visual variability by:

• Downsampling to lower resolutions

• Application of Gaussian noise and blur

• Slight page rotation or skew

• Simulation of font degradation effects

Distorted images are subsequently processed using the Tesseract OCR engine to extract text content:

ocr_text = pytesseract.image_to_string(distorted_image)

12

The OCR output contains typical recognition errors, such as misreading ‘2’ as ‘Z’ or interpreting
‘€104.02’ as ‘€104.0Z’. These imperfections create realistic test conditions for assessing the robustness
of NLP extraction methods.

4. Annotation Generation Since all inserted content is programmatically generated, ground truth
labels for each field are retained. A structured JSON annotation is saved for every letter, mapping each
field name to its corresponding value. An example annotation is shown below:

{
"debtor_name": "Jente Rousselet-Verhoeven",
"debtor_address": "Luukbaan 748, 4837 YU Schoonloo",
"creditor_name": "Deurwaarders Collectief",
"creditor_account": "NL28KZGR8946401286",
"debt_amount": "€104.02",
"letter_date": "26-09-2024",
"letter_id": "1e002886-31c4-420f-b63c-3ea5abc7bb58",
"subject": "Tweede Aanmaning"
...

}

These annotations facilitate supervised training and allow precise evaluation by comparing model pre-
dictions to ground truth values. Field names are standardized across examples.

5. Final Dataset Structure Each synthetic data point comprises a visually distorted PDF image
and a corresponding JSON annotation. Approximately 1,000 letters were generated, with 800 used for
training and 200 held out for testing. Templates are shared across splits to assess generalization. The
randomized content ensures the models are required to generalize to unseen values.

6. Annotation Quality and Validation Although annotations were generated automatically from
inserted values, a manual inspection was performed on 50 randomly selected letters. Each annotated
field was compared against the visual and textual content, with a correction rate below 2%. These checks
confirmed the annotation process was sufficiently reliable for supervised training and evaluation.

3.3 OCR Preprocessing and Text Cleaning
Before applying NLP models, all scanned debt letters are passed through an OCR pipeline using Tesser-
act. The output is then cleaned to reduce noise by normalizing common OCR typos (e.g. ’0’ vs ’O’),
removing extra whitespace, fixing broken tokens using heuristics, and splitting paragraphs into sentences
to help downstream token-level models perform better. This preprocessing ensures the input to SpaCy,
CRF, and LLM models is as consistent and readable as possible.

3.4 SpaCy NER Pipeline for Metadata Extraction
To extract structured metadata from OCR-processed Dutch debt collection letters, a Named Entity
Recognition (NER) pipeline was developed using SpaCy. This pipeline is implemented in debt_ner.py
and is designed to identify key information fields such as names, amounts, dates, and account numbers
directly from noisy letter text. The goal of this pipeline is to produce structured outputs that match the
fields in the original annotation JSON, enabling automated parsing of scanned financial correspondence.

1. Label Definitions and Mapping The first step involves defining a fixed set of entity labels that
the model should learn to detect. These labels correspond to the metadata fields annotated in the JSON
files, such as "debtor_name", "debt_amount", and "letter_date". These field names are mapped to
SpaCy-compatible uppercase entity labels, such as DEBT_AMOUNT or CREDITOR_ACCOUNT:

LABELS = [
"DEBT_AMOUNT", "ONDERWERP", "ORIGINAL_AMOUNT", "LETTER_DATE",
"DEBTOR_NAME", "DEBTOR_ADDRESS", "CLIENT_NUMBER", "FACTUUR_NUMMER",
"FACTUUR_DATUM", "VERVAL_DATUM", "CREDITOR_NAME", "CREDITOR_ADDRESS",

13

"CREDITOR_ACCOUNT", "CREDITOR_EMAIL", "LETTER_ID"
]
KEY2LABEL = {

"debt_amount": "DEBT_AMOUNT",
"Onderwerp": "ONDERWERP",
...

}

This is a crucial step as SpaCy requires entity labels to be explicitly declared and used consistently
throughout the training data. By mapping human-readable field names to standardized NER labels,
the pipeline ensures compatibility with SpaCy’s internal training and evaluation mechanisms. This also
supports clear alignment between the annotations and model outputs.

2. PDF Text Extraction To retrieve raw text for model input, the function pdf_to_text() uses
the pdfplumber library to extract text from each page of a PDF. It avoids OCR at this stage, relying
on previously embedded text from synthetic generation:

with pdfplumber.open(str(path)) as pdf:
for page in pdf.pages:

text = page.extract_text() or ""

This is important for accurate text extraction as it is essential due to any mismatch between the letter
content and the annotated fields will compromise the ability to train the model correctly. This function
ensures reliable, page-wise extraction of text for each letter.

The function find_span() is responsible for locating the character offsets of each annotated value within
the extracted text. It first attempts an exact match using text.find(), and if that fails (often due to
OCR noise), it applies fuzzy string matching via the rapidfuzz library:

cand, score, loc = process.extractOne(
clean(value), [(m.group(), m.start()) for m in re.finditer(r".{20}", text, re.S)],
scorer=fuzz.token_sort_ratio,

)

This is important as OCR degradation often introduces subtle errors such as character substitutions or
spacing artifacts. Fuzzy matching ensures that even imperfect renderings of the original field values can
be aligned with their location in the text, allowing training to proceed with noisy inputs.

3. Training Data Construction Training examples are constructed by loading the text from each
PDF and its corresponding JSON annotation. The script attempts to find each field’s text span and
converts valid spans into char_span() objects in a SpaCy Doc. These spans are compiled into example
objects:

span = doc.char_span(start, end, label=KEY2LABEL[k], alignment_mode="contract")
example = Example.from_dict(doc, {"entities": [span for span, _ in spans]})

Longer spans are prioritized to avoid overlap with shorter substrings (e.g., full names vs. partial names).

This makes sure supervised NER training as SpaCy requires span-annotated documents. This process
ensures that each entity is correctly located within the letter’s text, enabling the model to learn to
recognize and generalize these patterns during training.

4. NER Model Training The Dutch language model nl_core_news_lg is loaded as the base and
extended with the custom NER component. During training, examples are shuffled and passed to SpaCy’s
training loop, where weights are updated using backpropagation:

for i in range(n_iter):
random.shuffle(train_examples)
losses = nlp.update(train_examples, drop=0.35)

Fine-tuning an existing language model allows leveraging pre-trained linguistic features while adapting
the model to the specific domain of debt communication. This is more efficient than training from scratch
and leads to better performance on limited data.

14

5. Inference and Field Recovery At inference time, a letter’s OCR text is passed through the
trained model. Detected entities are mapped to their original keys and stored in a result dictionary:

doc = nlp(ocr_text)
results = {ent.label_: ent.text for ent in doc.ents}

If multiple entities of the same label are found, a selection strategy (e.g., choosing the first occurrence)
is used. Inference transforms noisy unstructured text into a clean, structured metadata dictionary. This
is the core functionality needed to automate letter processing in real-world applications.

3.5 CRF-Based Metadata Extraction Model
A Conditional Random Field (CRF) model was developed to extract structured metadata from OCR-
processed debt collection letters. This model treats the letter text as a sequence of tokens and assigns each
token a label corresponding to a metadata field or the label “O” (outside any entity). The implementation
is encapsulated in the DebtLetterCRF class and utilizes the sklearn-crfsuite library for training and
inference.

1. Labeling Scheme and Model Configuration Each token is annotated using the BIO tagging
scheme (Begin, Inside, Outside), which allows for multi-token spans such as names or addresses. For
example, in the name “Jente Rousselet-Verhoeven”, the tokens might be labeled as:

Jente → B-DEBTOR_NAME
Rousselet → I-DEBTOR_NAME
Verhoeven → I-DEBTOR_NAME

The CRF is configured with L-BFGS optimization, using L1 and L2 regularization to prevent overfitting
given the large number of features:

self.crf = CRF(
algorithm=’lbfgs’,
c1=0.1,
c2=0.05,
max_iterations=200,
all_possible_transitions=True

)

The BIO scheme enables precise reconstruction of multi-token entities, and the chosen optimization
settings balance convergence performance with model generalization.

2. Feature Engineering for Tokens The core of the CRF model lies in its rich feature set, extracted
from each token and its context. These features are designed based on domain knowledge of how debt
letters are structured and written. The most important categories include:

• Lexical features: Lowercased token, prefix/suffix of length 2–3, token length.

• Character-type flags: Is the token uppercase, title-cased, numeric, or containing digits/special
symbols (e.g., €)?

• Regex-based indicators: Regular expressions are used to flag:

– Dates (e.g., \d{1,2}[-/.]\d{1,2}[-/.]\d{2,4})

– Euro amounts (e.g., €\d+[.,]\d+)

– IBAN numbers (two letters followed by alphanumerics)

– Postal codes (Dutch format: 4 digits + 2 uppercase letters)

– Phone numbers, invoice numbers, email addresses

• Dictionary features: Manually compiled word lists are used to identify:

– Amount indicators (e.g., "bedrag", "saldo")

– Date indicators (e.g., "datum", "gedateerd")

15

– Name prefixes (e.g., "Geachte", "Dhr.")

– Dutch months, address suffixes (e.g., "straat", "laan"), company types (e.g., "B.V.")

• Context features: Features from surrounding tokens within a window of three tokens to the left
and right are included to capture local context. This is particularly useful in formal documents
like debt letters, where certain patterns and honorifics frequently precede important fields. For
example, the Dutch word "Geachte" which translates to “Dear” is a common formal salutation
used at the beginning of a letter. It is often followed by a title and a name, such as:

"Geachte", "mevrouw", "Janssen,"

In this case, the CRF model evaluates the current token (e.g., "Janssen") and includes simplified
features from the previous tokens. Sample contextual features might look like:

-2:word.lower = geachte
-1:word.lower = mevrouw
0:word.istitle = True
+1:word.endswith_comma = True

These features help the CRF recognize that the current token is likely a name, based on cap-
italization (e.g., word.istitle = True) and the presence of a formal salutation and honorific
immediately before it. Note that istitle refers to whether the word is capitalized not that it is
itself a title which makes it a useful signal for proper nouns such as names.

These help the model learn local patterns, such as "Geachte [NAME]" or "€ [AMOUNT]".

• Positional features: Features are added to indicate whether a token appears early or late in the
document, and whether it begins a line. These exploit the layout tendencies of debt letters (e.g.,
the debtor’s name usually appears near the top).

This step is crucial as these engineered features inject prior knowledge about the expected structure of
debt letters into the model. Regular expressions and dictionaries act like weak classifiers, while context
features help capture local syntactic patterns. Positional features compensate for the lack of layout
awareness in linear CRFs.

3. Training Procedure The CRF model is trained on tokenized OCR-extracted text paired with
corresponding BIO labels. Tokenization is performed using NLTK’s Dutch word_tokenize function,
with custom logic to preserve important punctuation (e.g., “€” remains attached to amounts). Feature
vectors are generated for each token in the sequence and paired with gold-standard labels from the
annotations.

Data is split into training and testing sets using an 80/20 ratio. The model is trained on the training
set using:

crf.fit(X_train, y_train)

The CRF requires parallel sequences of features (X) and labels (y) to learn the mapping from observations
to metadata tags. The chosen train/test split allows robust evaluation while ensuring sufficient training
examples for each label.

4. Inference and Reconstruction At inference time, a new letter is processed by extracting tokens,
generating features, and passing them to the trained CRF model. The predicted BIO labels are then
merged to reconstruct multi-token entities:

y_pred = crf.predict_single(features)

Tokens with contiguous B- and I- tags are combined to form complete metadata fields (e.g., a name
or address). Optional postprocessing may normalize fields like dates or IBANs to canonical formats,
although for evaluation, raw predicted spans are compared against the ground truth.

16

3.6 Local LLM-Based Extraction
The third metadata extraction approach leverages instruction-tuned large language models (LLMs) to
interpret full letter text and extract structured fields. These models are capable of extraction via prompt-
based querying, reducing the need for token-level supervision.

1. Model Selection and Setup Three local instruction-tuned LLMs were selected to cover a spectrum
of performance and resource constraints:

• TinyLLaMA (1.1B) A lightweight model suitable for edge devices with constrained memory and
compute. Chosen to test the limits of minimal infrastructure.

• Gemma 4B A balanced model optimized for instruction-following. Offers good performance with
manageable compute cost. Selected as a middle-ground candidate.

• DeepSeek (14B) A large-scale open-source LLM with strong reasoning and generation capabili-
ties. Chosen to represent near state-of-the-art performance in local setups.

All models were run offline using quantized gguf versions and the llama_cpp interface. Each was
configured with an 8K context window and executed on local CPU with sufficient RAM.

2. Prompt Engineering To guide the model’s behavior, a system prompt was crafted to reflect the
domain-specific task. It defines a structured objective for the assistant, instructing it to extract key
metadata fields:

You are an AI assistant specialized in analyzing debt collection letters. Extract and organize
the following information from the provided debt letter:

1. creditor_account
2. subject
3. client_number
4. letter_date
5. creditor_email
6. deadline_date
7. invoice_number
8. invoice_date
9. letter_id
10. debt_amount
11. original_amount
12. debtor_name
13. debtor_address
14. creditor_name
15. creditor_address

Format your response as a structured JSON object the keys mentioned above. Your response
should contain 15 keys and values. No other output is needed, return a single JSON object.
If any information is not found, indicate it as "None".

This prompt is wrapped in special tokens (<system>, <user>) and appended with the full OCR-extracted
text of a synthetic debt letter. The model is then asked to generate a structured report as output.

3. PDF and Text Handling The input to the model is the OCR text extracted from a debt letter
in PDF format. This is handled by the PyPDF2 library:

with open(pdf_path, ’rb’) as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:

text += page.extract_text()

This extracted text is directly embedded into the prompt and passed to the model.

17

4. Inference and Output Parsing Once the prompt is assembled with the system instruction,
the OCR-extracted letter text, and appropriate wrapping tokens, it is passed to the models using the
create_completion() method:

response = llm.create_completion(
prompt=prompt,
max_tokens=1024,
temperature=0.1,
stop=["</model>", "<user>"]

)

The output is a structured JSON object representing the extracted metadata fields. It is printed directly
or passed to downstream code for further parsing or evaluation.

The choice of parameters in create_completion() is deliberate and tailored for the task:

• max_tokens=1024: This sets the maximum number of tokens the model is allowed to generate. It
ensures enough space for the full JSON output, including all metadata fields, even in verbose cases.
Since each key-value pair might take 10–20 tokens, a budget of 1024 tokens is safe for structured
output.

• temperature=0.1: This controls the randomness of the model’s output. A low temperature like
0.1 encourages deterministic and fact-based completions, which is ideal for information extraction
tasks where consistency and accuracy are more important than creativity.

• stop=["</model>", "<user>"]: These are stop tokens that tell the model when to stop gen-
erating. The </model> token marks the end of the response, and <user> prevents the model
from accidentally generating text meant to simulate a user turn. This keeps the output clean and
confined to the structured response block.

These parameters collectively ensure that the model behaves in a deterministic, task-constrained, and
efficient manner producing structured metadata reliably without hallucination or over-generation.

3.7 Evaluation Procedure
All models (CRF, SpaCy, LLMs) produce a structured JSON output. These are evaluated using a shared
scoring tool, MetadataEvaluator, which compares predictions against ground truth using both exact
and fuzzy matching.

Evaluation Dataset The evaluation set includes 200 debt letters not seen during training. Each letter
includes:

• OCR-extracted text

• Ground truth metadata annotations

• Model-predicted metadata

Only fields that occurred in at least 50% of examples were included in the final evaluation to ensure
statistical robustness.

Evaluation Metrics We compute field-level metrics using string similarity and normalization heuris-
tics:

• Exact Match Identical normalized string

• Partial Match Similarity ≥ 70% (based on rapidfuzz token sort ratio)

• Incorrect / Missing

• Precision, Recall, F1-Score

The 70% threshold was determined via pilot testing, balancing sensitivity to OCR errors with strictness
against incorrect values. Lower thresholds allowed false positives, while higher ones unfairly penalized
near-matches.

18

Evaluation Protocol For each model:

1. Predictions are saved as JSON

2. MetadataEvaluator computes per-field scores

3. Precision, Recall, F1-scores are averaged across all fields

Hardware and Runtime Measurement To ensure fair benchmarking, all evaluations were per-
formed on the same machine: a 2021 16-inch MacBook Pro equipped with an Apple M1 Max chip
and 32GB of unified memory, running macOS Sequoia 15.5. The models were executed using CPU-only
inference via native ARM-optimized Python environments. Runtime per letter was measured using high-
resolution timers (time.perf_counter()), and averaged across the 200 test samples per model. This
ensures consistency in comparing computational efficiency across all extraction approaches.

19

Chapter 4

Results

This section presents the performance of the metadata extraction pipelines on the synthetic debt let-
ter dataset. All models were evaluated using the same dataset, metric definitions, and scoring script
(MetadataEvaluator), ensuring direct comparability.

4.1 SpaCy NER Performance
The SpaCy model, fine-tuned using annotated synthetic letters, achieved strong performance on several
structured metadata fields. Table 4.1 summarizes its field-level precision, recall, and F1-scores.

Field Precision Recall F1-score

creditor_account 97.96% 97.96% 97.96%
subject 91.84% 97.83% 94.74%
client_number 91.58% 97.75% 94.57%
letter_date 89.80% 97.78% 93.62%
creditor_email 88.54% 95.51% 91.89%
deadline_date 97.56% 86.02% 91.43%
invoice_number 80.41% 96.30% 87.64%
invoice_date 65.22% 89.55% 75.47%
letter_id 61.22% 96.77% 75.00%

Average 84.46% 95.83% 89.50%

debt_amount, original_amount, debtor_name,
debtor_address, creditor_name, creditor_address 0.00% 0.00% 0.00%

Table 4.1: Field-wise performance of the SpaCy NER model on 200 test letters. Fields are sorted on
F1-score. Model failed entirely to predict the fields with 0.00% scores. Averages are calculated only over
predicted fields.

Overall Analysis

The overall averaged (taking all fields into account, also those with 0.00% scores) performance across all
fields is as follows:

• Average Precision: 50.94%

• Average Recall: 57.03%

• Average F1-score: 53.49%

Analysis

SpaCy shows high reliability for fields that appear in clear, well-structured formats such as creditor_account,
subject, and letter_date. These fields often appear with consistent phrasing making them easier for
the NER model to learn and detect.

20

However, performance drops sharply for fields like invoice_date, letter_id, and creditor_email,
which exhibit greater variability or more complex phrasing. Importantly, SpaCy failed entirely to ex-
tract six fields: debt_amount, original_amount, debtor_name, debtor_address, creditor_name, and
creditor_address. This may be due to:

• Their lower frequency or visibility in training data,

• Lack of strong lexical cues or consistent formatting,

• Ambiguity or complex phrasing not handled well by token-level NER.

4.2 Conditional Random Field (CRF) Performance
The Conditional Random Field model was trained on the synthetic debt letters using handcrafted features
such as token casing, digit patterns, and surrounding context. Table 4.2 summarizes its field-level
precision, recall, and F1-scores.

Field Precision Recall F1-score

creditor_account 88.89% 31.37% 46.23%
creditor_email 100.00% 6.86% 12.83%

Average 94.45% 19.12% 29.53%

debt_amount, original_amount, debtor_name,
debtor_address, creditor_name, creditor_address, subject,
client_number, letter_date, deadline_date, invoice_number,
invoice_date, letter_id 0.00% 0.00% 0.00%

Table 4.2: Field-wise performance of the CRF model on test letters. Fields with 0.00% scores were either
not predicted or failed evaluation due to limited training instances, ambiguous annotations, insufficiently
distinctive token patterns, or inherent model limitations in capturing the relevant structure.

Analysis

The CRF model demonstrated sparse success on a few structured fields especially creditor_account
and creditor_email but failed to generalize more broadly. Key challenges include:

• Reliance on local handcrafted features, limiting adaptability to varied phrasing and layout,

• Poor performance on rare or multi-word entities,

• Inability to capture context or structure beyond shallow token dependencies.

Its high precision on select predictions is outweighed by its inability to find most fields (low recall),
resulting in an overall macro-average F1-score of just 29.53%.

4.3 Large Language Models
This section evaluates three instruction-tuned large language models (LLMs) on the debt letter metadata
extraction task: TinyLLaMA (1.1B parameters), Gemma3 (4B), and DeepSeek (14B). The significant
differences in their performance can be largely attributed to their parameter scale, model capacity, and
inference resource requirements.

4.3.1 1.1 Billion Parameters
The 1.1B parameter TinyLLaMA model is a compact instruction-tuned language model which struggled
significantly with metadata extraction from debt letters. Table 4.3 reports very low precision, recall, and
F1-scores across all fields.

21

Field Precision Recall F1-score

creditor_account 20.00% 14.29% 16.67%
subject 0.00% 0.00% 0.00%
client_number 33.33% 28.57% 30.77%
letter_date 25.00% 12.50% 16.67%
creditor_email 75.00% 30.00% 42.86%
deadline_date 0.00% 0.00% 0.00%
invoice_number 0.00% 0.00% 0.00%
invoice_date 0.00% 0.00% 0.00%
letter_id 33.33% 28.57% 30.77%
debt_amount 0.00% 0.00% 0.00%
original_amount 0.00% 0.00% 0.00%
debtor_name 100.00% 9.09% 16.67%
debtor_address 0.00% 0.00% 0.00%
creditor_name 0.00% 0.00% 0.00%
creditor_address 0.00% 0.00% 0.00%

Average 26.53% 11.56% 15.92%

Table 4.3: TinyLLaMA model field-wise performance on test letters.

Analysis

TinyLLaMA’s poor performance is primarily due to inconsistent output formatting. As shown in Fig-
ure 4.1, the model often fails to produce valid JSON structures, making it incompatible with automated
evaluation pipelines. Although some fields appear in the raw output, the formatting issues prevent
correct parsing and assessment. Additionally:

• Its limited model size restricts its capacity to manage multi-entity document understanding,

• Missing structured cues and ambiguity in layout further reduce its ability to generalize.

=== Debt Letter Analysis Results ===

1. Referentiecode: (Encoded as base64)
"==?" means no data found
"4255b20b-b5d9-4d19-95c3-4c5307119f4a" is the creditor_account encoded as hexadecimal
- The rest of the decoded structure contains information about debt, such as creditor_email
, ...

4. National Debtor’s Name (Name):
The client’s name is Eva Puig.

6. Hoofdsom:
This part does not contain any relevant information about the debt...

13. Betreft: (Subject)
This section contains a general description of the debt, such as "Jogged overdue amount."
...

Figure 4.1: TinyLLaMA output example with verbose, unstructured natural language format instead of
clean JSON. Some fields are redundant, nested, or missing entirely.

4.3.2 4 Billion Parameters
The Gemma 4B parameters LLM performed moderately well, especially for common and consistently
formatted fields. Table 4.4 shows that fields such as creditor_email, client_number, and letter_date
were extracted with high precision and recall. Other fields with less structure or variation in layout
performed less reliably.

22

Field Precision Recall F1-score

creditor_account 73.49% 91.04% 81.33%
subject 88.00% 91.00% 89.47%
client_number 93.75% 97.83% 95.74%
letter_date 94.62% 94.62% 94.62%
creditor_email 100.00% 98.98% 99.49%
deadline_date 89.00% 79.00% 83.72%
invoice_number 77.00% 85.00% 80.79%
invoice_date 65.00% 78.00% 70.93%
letter_id 89.58% 46.74% 61.43%
debt_amount 60.00% 50.00% 54.55%
original_amount 55.00% 48.00% 51.29%
debtor_name 50.00% 40.00% 44.44%
debtor_address 60.00% 55.00% 57.37%
creditor_name 50.00% 50.00% 50.00%
creditor_address 50.00% 55.00% 52.38%

Average 76.32% 82.24% 78.90%

Table 4.4: Gemma model field-wise performance.

Analysis

Gemma offers a balanced trade-off between performance and compute requirements. Its strengths stem
from:

• Strong ability to identify frequent, clearly structured fields,

• Moderate success in semi-structured data environments,

However, it underperforms on long-tail and ambiguous fields that is, fields that are rare, inconsistently
presented, or vary significantly in structure and language across different letters, making them harder to
extract reliably.

4.3.3 14 Billion paramaters
DeepSeek 14B parameters achieved very good performance across most fields, as shown in Table 4.5. It
consistently extracted key fields with both high precision and recall.

Field Precision Recall F1-score

creditor_account 100.00% 83.33% 91.23%
subject 96.00% 97.00% 96.49%
client_number 92.86% 84.78% 88.64%
letter_date 86.46% 95.40% 90.71%
creditor_email 98.98% 97.98% 98.48%
deadline_date 95.00% 93.00% 94.00%
invoice_number 98.00% 96.00% 97.00%
invoice_date 97.00% 97.00% 97.00%
letter_id 92.11% 76.09% 83.33%
debt_amount 97.00% 96.00% 96.49%
original_amount 95.00% 97.00% 96.00%
debtor_name 98.00% 99.00% 98.49%
debtor_address 97.50% 97.50% 97.50%
creditor_name 98.50% 99.00% 98.75%
creditor_address 97.50% 98.00% 97.75%

Average 96.79% 93.67% 95.20%

Table 4.5: DeepSeek model field-wise performance.

Analysis

DeepSeek shows strong extraction capabilities, attributed to:

23

• Large model size with strong instruction-following abilities,

• Robust context handling in complex legal/financial text,

• Reliable outputs across both frequent and infrequent fields.

4.3.4 Model Comparison and Runtime Summary

Model Parameters Precision Recall F1-score Runtime (s) Memory (MB)

TinyLLaMA 1.1B 26.53% 11.56% 15.92% 2.1 320
Gemma 4.0B 76.32% 82.24% 78.90% 4.7 7000
DeepSeek 14.0B 96.79% 93.67% 95.20% 6.3 9000

Table 4.6: Model-level comparison of performance, size, runtime, and memory usage.

While the evaluations offer valuable insights, several limitations should be noted. First, all models
were assessed on a synthetic dataset designed to mimic real Dutch debt collection letters. Although
as realistic as possible, it may not capture the full variability or formatting anomalies found in actual
documents. Second, OCR noise was artificially introduced but may differ in severity and character in
real-world scanned documents. Third, the evaluation assumes one correct value per metadata field per
letter, which may not reflect the complexity of some real documents where multiple valid references (e.g.,
multiple dates or names) may exist. These factors may slightly inflate performance metrics compared to
deployment in uncontrolled real-world settings.

Performance Visualization
To better visualize overall model performance across key evaluation metrics, Figure 4.2 provides a
heatmap comparing precision, recall, and F1-score for each model.

Figure 4.2: Heatmap of model performance across precision, recall, and F1-score. Darker shades indicate
higher values.

Main Results Summary
Across all evaluated models, significant differences were observed in extraction performance, robustness,
and resource requirements.

• DeepSeek (14B) achieved the highest overall performance, with an average F1-score of 95.20%.
It reliably extracted nearly all metadata fields, including both structured (e.g., creditor_email)

24

and less structured ones (e.g., debtor_address). Its high accuracy comes at the cost of greater
runtime (6.3s per letter) and memory usage (3.1GB).

• Gemma (4B) offered a strong trade-off, reaching 78.90% average F1. It excelled in high-frequency
fields and showed moderate generalization to more complex entities. Its resource demands were
more manageable, making it a viable middle-ground solution.

• SpaCy NER performed strongly (F1 ≈ 89.50%) on clearly structured fields like creditor_account
and letter_date, but entirely failed to detect critical financial fields such as debt_amount or
debtor_address.

• CRF showed isolated success in detecting frequent fields but failed to generalize. With an overall
F1 of 11.90%, it was the weakest performer besides TinyLLaMA.

• TinyLLaMA (1.1B) had the lowest performance (F1 = 15.92%), hindered by limited capacity
and formatting issues. While a few fields were partially recovered, inconsistent output structure
prevented reliable evaluation.

Note: SpaCy and CRF were evaluated on token-level annotations, whereas LLMs were evaluated based
on JSON output parsing.

Cross-Model Comparison and Trends
While individual model analyses provide detailed insights, a comparative view reveals broader perfor-
mance trends and trade-offs:

• Performance progression: There is a clear progression with increasing model capacity and task-
specific instruction tuning: CRF < TinyLLaMA < SpaCy < Gemma < DeepSeek. This reflects
how larger models can handle more complex or ambiguous input with greater accuracy.

• Field-specific strengths: SpaCy performs well on structured fields; DeepSeek dominates across
the board. Gemma offers the best performance-to-compute trade-off.

• Error resilience: DeepSeek exhibited the lowest rate of field confusion or misclassification. In con-
trast, TinyLLaMA and CRF often failed to distinguish fields like debt_amount vs. original_amount.

Statistical Stability and Variance
Although each model was evaluated on the same test set, some variability was observed in repeated runs:

• SpaCy and CRF produced consistent outputs across runs (variance < 1%).

• Gemma and DeepSeek showed standard deviation of F1-scores < 1.5 percentage points per field.

• TinyLLaMA exhibited the most variation due to unstable formatting particularly verbose or
malformed outputs (e.g., invalid JSON).

Error Analysis
Qualitative error inspection revealed model-specific challenges. All LLMs were evaluated using the same
prompt; however, differences in how models interpreted and followed the prompt contributed to output
variability. In some cases, prompt adherence was loose, leading to verbose or malformed outputs. Stricter
prompt compliance may improve reliability and evaluation scores.

• TinyLLaMA: Hallucinated values, frequent invalid JSON formatting.

• CRF: Over-reliance on surface cues, missed multi-token spans, low recall.

• SpaCy: Difficulty with multi-word financial fields and rare phrases.

• Gemma: Occasional confusion between semantically close fields (e.g., debt_amount vs. original_amount).

• DeepSeek: Occasionally over-generated or duplicated fields in rare cases.

25

Cross-Field Confusions
Several models—especially TinyLLaMA and Gemma—exhibited confusion between conceptually related
fields:

• debt_amount vs. original_amount

• debtor_name vs. creditor_name

• creditor_address vs. debtor_address

Such errors may propagate into downstream systems and highlight the need for post-processing rules or
disambiguation strategies.

26

Chapter 5

Discussion

This chapter discusses each model’s performance in detail, linking findings to existing literature and
practical constraints. It then synthesizes these insights to compare model suitability, reflects on domain-
specific observations from field interviews, and concludes with limitations and directions for future re-
search.

5.1 Interpretation of Results and Model Suitability
The central research question investigated was identifying the most suitable local model for extracting
structured metadata from Dutch debt collection letters, considering accuracy, robustness, computational
efficiency, and deployment feasibility. Detailed insights into each evaluated model through strengths,
limitations, considerations, real-world applicability, and improvement potential are explored, explicitly
connecting each with relevant literature.

5.1.1 Conditional Random Field (CRF)
Strengths CRFs demonstrated high precision for structured fields like creditor account numbers and
email addresses due to explicit feature engineering. This makes decisions easily interpretable, which
is essential in legal and financial contexts. Additionally, CRFs are computationally efficient and offer
low-cost deployment potential, aligning with literature that emphasizes lightweight, interpretable mod-
els—particularly beneficial in constrained or resource-limited settings.

Limitations However, CRFs underperformed significantly in recall, struggling to generalize across
varying document structures. The rigid feature design limits adaptability to unseen templates, reducing
reliability in dynamic operational environments. Maintaining the feature set requires substantial manual
effort if document formats.

Real-World Considerations While CRFs may be useful for predictable scenarios with minimal docu-
ment variability, they are unsuitable for standalone deployment in realistic settings—such as debt letters
where document diversity is high and quality issues from OCR scans or photographed documents can
significantly degrade model performance.

Potential Improvements Improving CRFs would involve extensive manual feature engineering and
frequent updates to remain relevant, making them less attractive candidates for substantial further
investment.

5.1.2 SpaCy NER
Strengths SpaCy excelled in extracting structured entities such as creditor accounts, client numbers,
and letter dates, benefiting from its deep contextual understanding and span-based extraction capabili-
ties. Its performance aligns well with research highlighting SpaCy’s effectiveness in structured contexts.

27

Furthermore, SpaCy’s local and scalable deployment makes it attractive for environments with privacy
constraints.

Limitations SpaCy struggled significantly with critical financial entities like debt amounts and ad-
dresses, indicating limitations in handling complex, variably structured data or ambiguous language.

Real-World Considerations While SpaCy can effectively support structured metadata extraction,
its inconsistency in crucial fields severely limits standalone use in high-risk financial operations.

Potential Improvements Further development should focus on expanding and diversifying train-
ing data, enhancing tokenization, improving phrase-matching rules, and employing hybrid approaches
integrating rule-based preprocessing or fallback mechanisms.

5.1.3 Large Language Models (LLMs)
Strengths DeepSeek demonstrated excellent overall accuracy across structured and unstructured fields,
showcasing robust interpretative capabilities and flexibility, consistent with literature highlighting the
strengths of larger LLMs in instruction-following and generalization. Gemma provided a balanced trade-
off between accuracy and computational efficiency, suitable for moderate resource scenarios. LLMs’
zero-shot generalization, robustness to noise, and ease of rapid prototyping without additional retraining
make them compelling for real-world deployment.

Limitations TinyLLaMA performed poorly due to its limited model size, underscoring the constraints
of minimal-resource LLM deployment. Additionally, the stochastic nature of LLM outputs and occasional
inconsistencies introduce reliability risks in deterministic-critical applications. While larger models such
as DeepSeek delivered better performance, their superiority must be interpreted cautiously: model size
alone does not guarantee effectiveness. Gemma performed strongly on common fields and delivered
moderately good results on complex ones, making it competitive under resource constraints, even if
DeepSeek consistently outperformed it overall. This suggests that factors such as instruction tuning,
architecture, and training corpus also significantly influence output quality.

It is important to emphasize that model performance differences are not solely attributable to the model
name, but largely depend on underlying factors such as the number of parameters and architectural
design.

Real-World Considerations DeepSeek 14B is suitable for high-stakes environments due to its supe-
rior performance, although with significant computational demands. However, its deployment may be
restricted in domains with cost limitations. Gemma 4B being more resource-efficient, provides a practical
middle ground for moderately critical applications. TinyLLaMA 1.1B while lightweight, lacks practical
utility due to performance and stability limitations.

Potential Improvements Optimization of DeepSeek to reduce computational requirements could sig-
nificantly enhance deployment feasibility. Developing hybrid strategies—such as integrating deterministic
verification mechanisms or ensemble methods—could further strengthen LLM applicability, particularly
in domains requiring a balance between performance, reliability, and governance constraints. These
strategies can also support fallback modes or cost-sensitive deployments without entirely relying on
large-scale LLM infrastructure.

To synthesize the comparative findings across the five evaluated models, Table 5.1 summarizes their
relative advantages and disadvantages with respect to real-world deployment for metadata extraction.

28

Model Advantages Disadvantages

CRF Lightweight, interpretable, precise
for structured fields

Limited generalization, requires
manual feature engineering, poor
recall on diverse layouts

SpaCy NER Context-aware, privacy-friendly lo-
cal deployment, good for structured
entities

Needs extensive labeled data, strug-
gles with ambiguous or variably
structured fields

DeepSeek 14B High accuracy; robust generaliza-
tion, zero-shot capability, handles
structured and unstructured fields
well

High computational cost, deploy-
ment complexity in low-resource
settings

Gemma 4B Balanced accuracy and efficiency,
suitable for moderate-resource en-
vironments, consistent across many
fields

Still computationally heavier than
classical models, does show instabil-
ity in edge cases

TinyLLaMA 1.1B Very lightweight, fast inference,
minimal hardware requirements

Low accuracy, unstable outputs,
unreliable for critical metadata ex-
traction tasks

Table 5.1: Comparison of evaluated models for metadata extraction from debt letters

This comparative summary helps clarify the trade-offs between classical models and local LLMs, inform-
ing context-specific deployment choices. The next section complements these technical evaluations with
domain insights gathered from field interviews.

5.2 Field Insights on Debt Letter Processing and Interpretation
In addition to the technical study, qualitative insights were obtained through interviews with a debt coun-
selor from a local municipality and a representative of a private debt collection organization. The selected
stakeholders offer two perspectives: the advisory function assisting individuals in financial trouble and
the operational aspect of dispatching and managing debt correspondence.

The debt advisor highlighted that numerous persons seeking assistance are overwhelmed by the cor-
respondence they receive. Specifically, they find it challenging to figure out the subject of the letter,
the amount owed, and the necessary measures to do. The adviser observed that numerous clients ar-
rive with bags containing unopened or half read correspondence, frequently attributable to feelings of
guilt, stress, or a lack of comprehension regarding the material. The counselor indicates that the most
essential information includes the total debt amount, payment date, and contact information of the is-
suing agency; nevertheless, these elements are frequently obscured by convoluted legal terminology or
inconsistent formats.

The debt collection agency representative affirmed that their templates differ based on the creditor
they serve, and the language is deliberately formal to guarantee legal enforcement. Nevertheless, they
recognized that this results the letters being challenging for the average reader to comprehend. The
agency indicated that their existing workflow necessitates considerable human effort to identify essential
fields during customer responses or case transfers. They indicated interest in automation solutions;
nevertheless, they acknowledged that privacy and document diversity present significant obstacles.

The interviewees underscored the significance of obtaining structured metadata from debt letters. They
emphasized the realistic limitations and requirements of both public assistance services and private
collection organizations, which informed the evaluation criteria employed in this thesis.

5.3 General Commentary
Comparative analysis underscores clear performance hierarchies among the models. CRF and SpaCy
offer limited flexibility and perform best in stable, structured scenarios. Conversely, LLMs, particularly
DeepSeek, deliver superior flexibility and robustness. However, the substantial computational require-
ments of large models are a considerable deployment constraint. These clear trade-offs highlight the
necessity of tailoring model selection to specific operational constraints and accuracy requirements.

29

Practical deployment requires balancing computational resource availability, privacy requirements, and
accuracy criticality. For scenarios prioritizing accuracy, such as financial compliance, DeepSeek jus-
tifies resource investment. Gemma serves adequately in contexts demanding moderate accuracy with
constrained resources. While CRF and SpaCy are computationally efficient and privacy-friendly, their
inability to consistently handle complex, high-risk extraction tasks limits their use as standalone solu-
tions.

5.4 Study limitations
This research acknowledges several limitations. The synthetic dataset, while carefully constructed, may
not capture all structural and linguistic edge cases found in authentic debt collection letters. Real-world
documents often contain more diverse formatting styles, ambiguous phrasing, and OCR noise than those
simulated here. OCR quality, in particular, can constrain extraction accuracy—especially on distorted
or low-resolution scans.

Additionally, the evaluation assumes one correct value per field, potentially overlooking cases where
multiple valid entries exist. Stringent matching criteria may have penalized near-correct results, while
annotation variability could have affected reliability. LLM results are also sensitive to prompt phrasing
and runtime conditions, leading to inconsistent outputs that complicate deterministic evaluation.

Despite these constraints, the controlled setup offers valuable insights into model behavior under noisy,
privacy-preserving conditions.

The further developments should prioritize enhancing SpaCy’s financial entity extraction capabilities,
exploring hybrid models combining structured and flexible approaches, optimizing LLM deployment,
and validating models against authentic debt letters under operational conditions. Furthermore, explor-
ing deterministic constraints and ensemble methods for LLMs to address output variability would be
beneficial.

30

Chapter 6

Conclusions

This thesis aimed to identify the most suitable local NLP model for extracting structured metadata from
Dutch debt collection letters, balancing considerations of accuracy, robustness, computational efficiency,
and deployment feasibility. A series of research questions guided the investigation, comparing Conditional
Random Fields (CRFs), SpaCy Named Entity Recognition (NER), and local instruction-tuned Large
Language Models (LLMs) on a synthetically generated dataset representing real-world complexities.

6.1 Answers to the Research Questions
RQ1: The Conditional Random Field (CRF) model achieved high precision on structured fields like
creditor_account and creditor_email, but suffered from very low recall. This is due to its dependence
on handcrafted features, which limits its ability to generalize across varied layouts and phrasing. The
model especially struggled with multi-token or ambiguous entities. While CRFs are lightweight and
interpretable, they are not robust enough to handle the variability present in debt letters.

RQ2: The SpaCy NER model performed well on structured and commonly formatted fields such as
letter_date, subject, and creditor_account. However, it completely failed to detect several critical
fields like debtor_name, debt_amount, and creditor_name. The model benefits from consistent training
data patterns but struggles with rare or loosely structured content, limiting its reliability for full metadata
coverage.

RQ3: The DeepSeek 14B instruction-tuned LLM showed the best overall performance, extracting nearly
all metadata fields with high precision and recall. It was especially effective across both structured and
unstructured entities. The Gemma 4B model also showed strong results on frequent fields with lower
resource usage, offering a practical middle ground. TinyLLaMA 1.1B, on the other hand, struggled due
to inconsistent output formatting and limited capacity.

RQ4: In terms of computational efficiency on consumer-grade hardware, CRF and SpaCy were the
fastest and most lightweight. DeepSeek 14B required the most memory and time per letter, while
Gemma 4B offered a better trade-off between performance and resource use. TinyLLaMA 1.1B had fast
runtime but poor extraction quality. Thus, there is a clear trade-off between extraction performance and
computational cost.

RQ5: When it comes to scalability and integration into local workflows, CRF and SpaCy are suitable for
limited use cases focusing on structured fields. However, for broader and more flexible extraction needs,
instruction-tuned LLMs like Gemma and DeepSeek are better suited. A hybrid setup using lightweight
models for predictable fields and LLMs for complex segments appears most promising, especially for
privacy-sensitive or offline applications.

6.2 Contributions
This thesis contributes uniquely to both scientific literature and practical applications by:

31

• Constructing a realistic synthetic dataset reflecting Dutch debt collection letters, capturing lin-
guistic, structural, and OCR-related complexities, providing a valuable benchmark for future NLP
research.

• Evaluating and benchmarking diverse local NLP methods (CRF, SpaCy, and LLMs) under privacy-
sensitive conditions, an area previously underserved in existing research.

• Demonstrating the practicality and limitations of local deployment scenarios, crucial for applica-
tions involving sensitive legal and financial data.

By systematically comparing these approaches, this research establishes clear guidance for practitioners
on choosing appropriate NLP tools based on specific operational requirements and constraints.

6.3 Future work
Future research could address several open questions and areas for further exploration, expanding in
both technical and practical directions:

• How would the evaluated models perform on authentic, real-world debt collection letters with
actual OCR errors, layout inconsistencies, and domain-specific phrasing?

• Can hybrid models combining lightweight structured extractors (e.g., CRFs or SpaCy) with instruction-
tuned LLMs provide scalable pipelines that balance performance, cost, and reliability?

• What strategies such as constrained decoding, consistency-checking rules, or prompt templating
could improve the deterministic behavior of LLMs for critical legal-financial extractions?

• Could further fine-tuning and quantization of models like DeepSeek or Gemma reduce inference
time and memory usage to support broader deployment on consumer-grade hardware?

• How can annotation protocols and evaluation metrics be refined to better reflect practical expec-
tations, such as handling multiple correct field values or tolerating OCR-induced phrasing errors?

• Can advanced synthetic data generation techniques (e.g., layout-aware text synthesis or image-to-
text diffusion models) further improve realism and variability of training datasets?

Addressing these directions would not only improve the technical performance and deployment feasi-
bility of metadata extraction systems but also increase their real-world impact. Ultimately, this would
contribute to more transparent, accessible, and supportive financial communication for individuals nav-
igating debt.

32

Bibliography

[1] Monica Agrawal, Stefan Hegselmann, Hunter Lang, Yoon Kim, and David Sontag. Large language
models are few-shot clinical information extractors. arXiv preprint arXiv:2205.12689, 2022. https:
//arxiv.org/abs/2205.12689.

[2] Explosion AI. Model architectures, 2025. URL https://spacy.io/api/architectures. Accessed:
2025-06-01.

[3] Anhai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration. Morgan Kaufmann,
Waltham, MA, 2012.

[4] Anne J Gilliland. Setting the stage. In Introduction to metadata, pages 1–19. Getty Publications,
2008.

[5] Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim, Won-
seok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document understanding
transformer. arXiv preprint arXiv:2111.15664, 2021.

[6] Nicholas Kushmerick, Daniel S Weld, and Robert B Doorenbos. Wrapper induction for information
extraction. In Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI), pages 729–735, 1997.

[7] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. In Proceedings of the 18th International
Conference on Machine Learning (ICML), pages 282–289, 2001.

[8] Daniel Lopresti and Jiangying Zhou. Optical character recognition errors and their effects on natural
language processing. International Journal on Document Analysis and Recognition, 11(3):141–153,
2008. URL https://www.cse.lehigh.edu/~lopresti/tmp/AND08journal.pdf.

[9] National Legal Center. Attorney’s guide to reading a collection letter. https://nationallegal.
com/attorneys-guide-to-reading-a-collection-letter/, 2021.

[10] Rasmus Berg Palm, Florian Laws, and Ole Winther. Cloudscan–a configuration-free invoice analysis
system using recurrent neural networks. arXiv preprint arXiv:1708.07403, 2017.

[11] Ray Smith. An overview of the tesseract ocr engine. In Ninth International Conference on Document
Analysis and Recognition (ICDAR), pages 629–633. IEEE, 2007.

[12] Charles Sutton and Andrew McCallum. An introduction to conditional random fields.
arXiv preprint arXiv:1011.4088, 2012. URL https://homepages.inf.ed.ac.uk/csutton/
publications/crftutv2.pdf.

[13] Daniel Truhn and Jakob Nikolas Kather. Privacy-preserving large language models for structured
medical information retrieval. npj Digital Medicine, 7(1):1–9, 2024.

[14] Isabella Catharina Wiest, Fabian Wolf, Marie-Elisabeth Leßmann, Marko van Treeck, Dyke Ferber,
Jiefu Zhu, Heiko Boehme, Keno K. Bressem, Hannes Ulrich, Matthias P. Ebert, and Jakob Nikolas
Kather. Llm-aix: An open source pipeline for information extraction from unstructured medical
text based on privacy preserving large language models. medRxiv, 2024. doi: 10.1101/2024.09.02.
24312917. URL https://www.medrxiv.org/content/10.1101/2024.09.02.24312917v1.

33

https://arxiv.org/abs/2205.12689
https://arxiv.org/abs/2205.12689
https://spacy.io/api/architectures
https://www.cse.lehigh.edu/~lopresti/tmp/AND08journal.pdf
https://nationallegal.com/attorneys-guide-to-reading-a-collection-letter/
https://nationallegal.com/attorneys-guide-to-reading-a-collection-letter/
https://homepages.inf.ed.ac.uk/csutton/publications/crftutv2.pdf
https://homepages.inf.ed.ac.uk/csutton/publications/crftutv2.pdf
https://www.medrxiv.org/content/10.1101/2024.09.02.24312917v1

[15] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre-training
of text and layout for document image understanding. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 4460–4467, 2020.

[16] Yiheng Xu, Yang Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio,
Cha Zhang, Wanxiang Che, et al. Layoutlmv2: Multi-modal pre-training for visually-rich document
understanding. arXiv preprint arXiv:2012.14740, 2020.

[17] Weinan Zhang, Amr Ahmed, Jie Yang, Vanja Josifovski, and Alex J. Smola. Annotating nee-
dles in the haystack without looking: Product information extraction from emails. In Proceedings
of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1365–1374. ACM, 2015. doi: 10.1145/2783258.2788580. URL https://wnzhang.net/papers/
em-crf-kdd.pdf.

34

https://wnzhang.net/papers/em-crf-kdd.pdf
https://wnzhang.net/papers/em-crf-kdd.pdf

	Abstract
	Acknowledgments
	Introduction
	Problem Statement
	Research Aim
	Research Questions
	Thesis Structure

	Background and related work
	Metadata Extraction
	Techniques for Metadata Extraction
	Rule-Based and Lexical Heuristics
	Conditional Random Fields (CRFs)
	Statistical NER with Local Models (SpaCy)
	Transformer-Based Models
	Large Language Models (LLMs)

	Method
	Challenges in Debt Letter Metadata Information Extraction
	Realistic Synthetic Dataset Construction and Augmentation
	OCR Preprocessing and Text Cleaning
	SpaCy NER Pipeline for Metadata Extraction
	CRF-Based Metadata Extraction Model
	Local LLM-Based Extraction
	Evaluation Procedure

	Results
	SpaCy NER Performance
	Conditional Random Field (CRF) Performance
	Large Language Models
	1.1 Billion Parameters
	4 Billion Parameters
	14 Billion paramaters
	Model Comparison and Runtime Summary

	Discussion
	Interpretation of Results and Model Suitability
	Conditional Random Field (CRF)
	SpaCy NER
	Large Language Models (LLMs)

	Field Insights on Debt Letter Processing and Interpretation
	General Commentary
	Study limitations

	Conclusions
	Answers to the Research Questions
	Contributions
	Future work

