
Master Computer Science

Automatic Detection of Differences and Similarities

in Natural Language Treebanks

Name: Andrew Caruana
Student ID: s4014049

Date: 09/07/2025

Specialisation: Data Science

1st supervisor: Francesco Bariatti
2nd supervisor: Matthijs van Leeuwen

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Natural languages are the primary means of communication between people around the world.
However, these languages can differ greatly, or not much at all, mainly based on the geography,
history and culture of the languages’ speakers. Therefore we ask the question, can we auto-
matically find differences and similarities between different languages? Our approach uses a
graph miner to mine frequently occurring subtrees within natural language treebanks, and then
utilise the Minimum Description Length (MDL) Principle to ensure the meaningful patterns
remain and to mitigate the pattern explosion problem. Experiments were conducted on six
languages: English, French, Italian, Czech, Icelandic and Arabic. The results demonstrate that
the approach works, and various language syntax patterns can be found and associated with
one or many languages. Analysis of the results shows that all the languages had a reasonable
number of patterns in common, however, Arabic was the language with the most patterns
not found in other languages. In addition, English had the most patterns shared with other
languages, with only one unique pattern found. Whilst we did have computational limitations,
and a lack of analysis from a linguistic point of view, this thesis illustrates the feasibility of
combining tree mining with MDL-based model selection to differentiate between languages
automatically. Future work may focus on optimising the efficiency of our algorithms, making
use of more or different languages and collaborating with linguists for a more thorough analysis.

2

Contents

1 Introduction 5
1.1 Problem Statement . 5
1.2 Research Objectives . 6
1.3 Thesis Structure . 7

2 Preliminaries 8
2.1 The Minimum Description Length Principle 8
2.2 Tree Definition and Mining . 9

3 Related Work 11
3.1 Language Classification . 11
3.2 Text and Graph Mining . 11
3.3 MDL for Pattern Mining . 12

3.3.1 KRIMP . 12
3.3.2 GraphMDL . 13
3.3.3 SLIM . 13
3.3.4 DIFFNORM . 14

4 Data & Data Processing 15
4.1 Universal Dependencies . 15

4.1.1 Tree Structure and Annotation . 15
4.2 gSpan . 16
4.3 Candidate Extraction . 18

5 Implementation of the MDL Principle 19
5.1 MDL Groundwork . 19

5.1.1 Definitions . 19
5.1.2 Rewritten Trees . 20
5.1.3 The Cover Algorithm . 21

5.2 Encoding Process . 21
5.2.1 Model Encoding . 22
5.2.2 Data Encoding . 22

5.3 The Search Algorithm . 23

6 Experimental Evaluation 26
6.1 Candidate Pattern Order . 26
6.2 Exclusion of Multi-Language Sets . 27
6.3 More Languages . 28

3

6.3.1 Pattern Frequency, Support and Size Distributions 30
6.3.2 UpSet Plot . 31
6.3.3 Jaccard Similarity . 32

7 Discussion and Conclusions 34
7.1 Discussion . 34
7.2 Limitations and Future Work . 35
7.3 Conclusion . 36

A Universal Dependencies Edge Labels 39

4

Chapter 1

Introduction

This chapter lays the foundation for the entire thesis. It introduces the problem that this work
aims to tackle, and gives a concrete description as to how we aim to do so. Finally, we also
provide a short overview of the content of the remaining chapters.

1.1 Problem Statement

Language is a means of communication present in the vast majority of people’s lives world-
wide. Plenty of languages, specifically, natural languages exist with differing levels of relation
between these languages, based on the culture and history of the people that spoke them. This
means that certain languages tend to be quite similar, and others tend to be quite different.
For example, Italian and French are both Romance languages, and therefore one would expect
them to share some similar words and grammar. Whereas, if one were to compare the same
two languages to Mandarin Chinese, they would likely find much less similarity in comparison.

The issue posed, however, is that these similarities and dissimilarities have to be found manu-
ally, by means of linguists who have devoted lots of time and energy to their study. This begs
the question: Can similarities and differences between languages be found automatically, and
with little to no linguistic background?

There has been work done on language classification, which is the task of identifying a language
given a piece of text [1, 2, 3]. However, no work has been done on differentiating languages
between each other. Furthermore, when talking about similarities or differences between a lan-
guage, this means that languages share or do not share certain features, i.e. certain syntactic
patterns are present in some languages, but not in others. It might be interesting to mention the
differences between descriptive and discriminative approaches. Classification is a discriminative
approach, meaning it aims to distinguish data by assigning it to categories. Whereas, with de-
scriptive approaches such as using patterns, we are able to find inherent traits of the data itself.

Pattern mining is already a prominent subfield of computer science; it involves the task of
extracting patterns from all kinds of data. This can be data in the form of text [4, 5], graphs
[6, 7] or even, and especially popular, transactions [8, 9]. Finding a suitable dataset, therefore,
is a crucial first step as it heavily dictates how one would move forward. The Universal Depen-
dencies (UD) [10, 11] dataset fits our requirements perfectly. It is a collection of treebanks for
various languages. A treebank is a collection of trees, where each tree within the UD treebanks

5

represents one sentence in any language. There are also parallel corpora available for different
languages for a fair comparison.

Unfortunately, one major issue when it comes to pattern mining is pattern explosion. When
mining patterns, one often ends up with too many patterns to realistically use and evaluate.
Therefore, one must find a way of reducing the pattern set. One way of doing so is with the
Minimum Description Length (MDL) Principle [12, 13]. Simply put, it states that the best
model to describe some piece of data is the one that compresses it the best. Using the MDL
principle, one can construct a model that captures meaningful patterns from various types
of data, whether it be itemsets [14, 15] or even graphs [16, 17, 18]. We aim to implement
a similar method, however, using the trees provided by Universal Dependencies instead. In
addition, it is worth mentioning that there has been work done on finding the differences and
similarities between various databases using MDL and pattern mining [19], however, this has
not been done for trees.

Once the MDL Principle has been successfully applied, and the best model has been found,
some analysis is done on the model in order to determine if the patterns mined are indeed
meaningful and what the relationship between the patterns found in the various languages is.

1.2 Research Objectives

Our aim is to automatically capture the differences and similarities between different languages.
More specifically, our research question can be said to be the following. Can syntactic similar-
ities and differences between natural languages be automatically identified by mining frequent
subtrees within the Universal Dependencies treebanks using the MDL principle and without
the need for extensive linguistic experience? This research question can thus be broken down
into a few key steps:

1. Data Selection: Within UD, several treebanks are present. Several treebanks are se-
lected that include both closely related languages (such as Italian and French) and
languages that differ (such as English and Arabic).

2. Candidate Pattern Extraction: Utilise a pattern miner to extract patterns from the
data. Where a pattern is a frequently occurring subtree within the original tree itself.
These patterns represent frequently occurring syntactic relationships within languages.

3. Model Construction using the MDL Principle: Construct an MDL-based model to
capture meaningful patterns and combat pattern explosion.

4. Model Analysis: Analyse the model and the patterns contained within. This is done by
comparing the various language associations that each meaningful pattern has.

6

1.3 Thesis Structure

The structure of this thesis is as follows. Chapter 2 introduces some fundamental concepts
for the comprehension of this thesis. Chapter 3 discusses some related work and highlights
some papers that served as inspiration. Chapter 4 provides some details about the Universal
Dependencies dataset and gives an explanation as to how the candidate pattern extraction pro-
cess was done. Furthermore, Chapter 5 delves into how the MDL Principle was implemented,
including our construction of a model and our encoding process. Chapter 6 then goes into the
various experiments conducted and provides some visualisations of the results. Finally, Chap-
ter 7 discusses some key aspects of the results and closes off this work with some limitations
and future work, along with some concluding remarks.

7

Chapter 2

Preliminaries

This chapter introduces the foundational concepts relevant to this work. In particular, it
presents the Minimum Description Length (MDL) Principle, which is crucial for selecting
meaningful patterns. Secondly, this chapter provides the formal definition of a tree and a
pattern used in later parts of this thesis.

2.1 The Minimum Description Length Principle

The Minimum Description Length (MDL) Principle [13, 12] is a fundamental concept for this
thesis. In simple terms, it states that the best model to describe a piece of data is the one
that compresses it the most. To put this formally, given a model family M, the best model
M ∈M is the one that results in the lowest value for L(M) + L(D|M), where L(M) is the
length of the model (in bits) and L(D|M) is the length of the data encoded with M (again, in
bits). Specifically, the type of MDL this refers to is known as two-part MDL, as the encoding
process is done in two steps; the encoding of the model, and then the encoding of the data
given the model.

Use of the MDL principle is often paired with model explainability. This is key in certain cases
as after finding the best model, one can look and see what the model is comprised of and
makes it the best model, unlike popular machine learning models such as neural networks. In
addition, due to a core concept of the MDL principle being that the length of the model it-
self is taken into account, complex models that are prone to overfitting are heavily discouraged.

It is also important to note that despite mentioning terms such as compression and encoding, no
actual compression is being done, we are simply interested in knowing how many bits it would
take to encode the data if it were to be actually encoded. Furthermore, the MDL principle does
not state how to go about ”encoding” the data, as this can differ greatly depending on the
type of data one is working with. However, there are some frequently used encoding methods
that are relevant for this work [13] (all logarithms are base 2 unless specified otherwise):

• An element x such that x ∈ X where X is a set and x is chosen with uniform probability
has a description length of log(|X|) bits [18].

• An integer n ∈ N with an unknown upper bound has a description length of LN(n) bits.
The process LN(x) is known as Universal Integer Encoding, and the specific function
used in this work is known as Elias delta encoding [20].

8

• A sequence of elements S, consisting of items ⟨s0, s1, ..., s|S|−1⟩ where si ∈ X, and X is
a set, has a description length of Lpreq(X,S) bits. This is known as Prequential Plugin
Code [12, 18]. It allows for the encoding of sequences of items one by one, without prior
knowledge of the probability of each item. The order in which items are presented in the
sequence also does not matter. The formula given for this can be seen in Equation 1.1
[18]. Within the formula, Let Si denote S up to and including the element at position
i. Next, we define usg(x, S) to be the number of times the element x appears in S.
Lastly, ϵ is an initial value assigned to each element to avoid a count of 0. For most
work, including this one, ϵ = 0.5 is used.

Lpreq(X,S) = − log

|S|−1∏
i=0

usg (si, S
i−1) + ϵ∑

x∈X [usg (x, Si−1) + ϵ]

 (2.1)

2.2 Tree Definition and Mining

Formally, a tree T can be defined as T = (V,E, VL, EL) where V is the set of vertices (nodes)
in the tree and E is the set of edges, such that each edge connects two nodes E ⊆ V × V .
In addition, if T has |V | nodes and |E| edges, then |E| = |V | − 1. VL and EL are functions
that map each node to a label VL : V → V and EL : E → E , where V and E are the set
of node and edge labels, respectively. A label is a particular value attached to each node and
each edge. Each tree has a depth d which describes the number of layers present. Therefore,
let Vi where i is an integer between 0 and d represent the set of nodes at depth i. There can
only be one node at d = 0, this being the root node, and thus, making these trees rooted
trees. Lastly, let Cv signify the set of nodes that are children of node v ∈ V .

Figure 2.1: Example Tree

9

An example tree can be seen in Figure 2.1. Within this example: V = {v1, v2, v3, v4, v5},
E = {(v1, v2), (v1, v3), (v3, v4), (v3, v5)}, and an example of the label functions being:
V L(v1) → A and EL(v1, v2) → 1. The root node is v1 as it has no incoming edges. Its
label is A, and its children Cv1 = {v2, v3}. Lastly, the tree has 3 layers, so d = 2.

As trees are a data structure, naturally, certain patterns may emerge within the structure of
any particular tree. The extraction of these patterns is known as mining and specifically, tree
mining. Naturally, since a tree is just a graph with restrictions on structure, any graph mining
algorithms will also work on trees. Many methods for graph mining exist [21], all with different
properties depending on what the user prioritises when mining, or the type of trees/graphs
being used. Furthermore, as patterns are simply repetitions of identical parts of a tree, each
pattern is also a tree in itself.

Formally, a pattern T P = (V,E, VL, EL) has the same properties of a tree previously defined.
They are frequently occurring subtrees within the original trees themselves. Each pattern has
a frequency f that states how often the pattern occurs within all the trees mined, and a
support s which indicates how many trees it occurs in. The key difference between frequency
and support being that if a pattern occurs twice in the same tree, its frequency would be
incremented by 2, but its support will only be incremented by 1.

To give a formal definition of frequency and support: frequency f(T P) =
∑N

i=1 countTi
(T P)

where N is the number of trees in the data and where countT (T
P) gives the number of

occurrences of T P in any given tree T . On the other hand, support can be defined like so:
s(T P) = |{i ∈ {1, 2, ..., N}|countTi

(T P) ≥ 1}|.

10

Chapter 3

Related Work

This chapter provides a review on the relevant literature for this thesis. Several works are
discussed, firstly, those relating to language classification, then moving on to pattern mining
and the various pattern mining algorithms that exist and finally, how the MDL principle has
been applied in different ways to tackle the pattern explosion issue.

3.1 Language Classification

Whilst there currently is not any work that also aims to find similarities and differences between
languages in our exact manner, there has been work done on language classification. Language
classification aims to identify what language some text belongs to given a set of languages to
choose from. Botha et al. [1] aimed to classify text as one of the of the 11 official languages
of South Africa. They used various classifiers for their work and found that with few words,
their models were able to accurately classify what language they belonged to. Keep in mind
that all of these methods used words themselves, whilst we only use the structure of various
sentences whilst discarding the lemmas.

In addition, Ölvecký [2] aims to also classify text in various Slavic languages (Polish, Czech
and Slovak). The author found that their method, which utilised a modified N-gram based
approach could achieve up to 95% accuracy in classification. Furthermore, Vatanen et al. [3]
also used N-gram models to classify languages from short texts, however, they found issues
with their models especially with regards to model size and complexity.

3.2 Text and Graph Mining

Given that our data relates to languages, it is important to first discuss some work done on
pattern mining on language data. This often overlaps with Text Mining, as text is nearly always
written in some form of language. There has been work done for pattern mining with use of
Natural Language Processing (NLP) techniques [5]. The authors’ aim was to discover patterns
within linguistically pre-processed text. They tested two pattern mining algorithms, however,
only one of them, GenPrefixSpan [22] produced meaningful patterns. It should also be noted
that the authors only tested their work on one language, that being Portuguese.

11

Figure 3.1: KRIMP Code Table. Taken from [14]

Next, regarding graph mining, various graph mining methods have been developed, one of
which being gSpan [6]. It is relatively simple in nature and was found to be able to handle
large sets of graphs, making it ideal for this work. The authors also found that their methods
outperformed an existing method at the time: FSG, by an order of magnitude.

Gaston [7], on the other hand, is also a solid candidate. Its approach aims to split the graph
mining process into three steps, going from simplest to most complex. These are, finding fre-
quent paths, then frequent trees and finally cyclic graphs. As one of the steps is extracting
trees themselves, it is quite an efficient method for tree mining despite it being a graph miner.

In addition, there are actual rooted tree mining algorithms too, such as TRIPS and TIDES
[23], two algorithms which are very adjustable and can work with most kinds of rooted trees.
The authors also found that their approaches outperformed state-of-the-art algorithms at the
time by several orders of magnitude.

3.3 MDL for Pattern Mining

One of the biggest issues with pattern mining, is that they extract too many patterns. This
makes analysis quite tedious, computationally expensive, and sometimes infeasible. Thus, the
MDL Principle can be applied in order to reduce the pattern set.

3.3.1 KRIMP

One foundational algorithm in this field is KRIMP [14] which deals with mining itemsets and
using MDL to deal with pattern explosion. KRIMP makes use of a code table. which consists
of Itemsets that are mapped to a particular code. An example of a code table in KRIMP can
be seen in Figure 3.1.

KRIMP also introduces two fundamental algorithms for applying the MDL principle to their
data. These being the Cover and Search algorithms. The Cover algorithm tries to fit the pat-
terns into the data such that the data can be reconstructed solely from the patterns. On the
other hand, the Search aims to construct several models (code tables) and compares them in
order to find the one which minimises the total description length. The authors found that

12

Figure 3.2: Creation of a Rewritten Graph (b) from the pattern occurrences in the original
graph (a). Taken from [16].

KRIMP significantly reduced the pattern set by several orders of magnitude, and that the
code tables generated were of a high quality.

3.3.2 GraphMDL

GraphMDL [16] aims to adopt KRIMP, however, in place of itemsets, graphs are mined
instead. It introduces the concept of a rewritten graph, essentially a reconstructed form of
the original graph that shows the patterns present within and how they link to each other.
An example of such can be seen in Figure 3.2. The square nodes in the figures represent the
patterns, and are known as embedding nodes, the circular ones are known as ports, and are
used to highlight which vertex within each pattern is shared in another. The authors found
that using this approach significantly reduced the pattern set and found the patterns to be
meaningful and representative of the original data.

3.3.3 SLIM

SLIM [15] is another type of algorithm when it comes to pattern mining. It takes a different
approach to KRIMP and aims to improve upon KRIMP’s drawbacks. SLIM mines pattern
sets directly from the data and then are constructed from the bottom up, joining co-occurring
patterns to potentially increase the compression rate. The authors found that SLIM mines
high quality patterns whilst evaluating far fewer candidates than KRIMP. Furthermore, it
is worth noting that a version of GraphMDL called GraphMDL+ [17] exists, which is
based on SLIM instead of KRIMP. GraphMDL+ was found to achieve results compared
to that of its predecessor in a much faster time.

13

3.3.4 DIFFNORM

The concept of using the MDL principle to find similarities and differences within data is not
a novel one. In their work, Budhathoki and Vreeken develop the DIFFNORM algorithm
[19], which is able to find differences and similarities (norms) between patterns in databases.
A pattern would then be a tuple of items such as bread, butter. This differs compared to
an approach like KRIMP [14] and GraphMDL [16] as instead of considering itemsets or
sets of graphs, DIFFNORM considers sets of itemsets. This is similar to how our data is
structured, being in the form of trees in various languages. Think of each language as a set
of trees, and since there are multiple languages being considered, multiple sets of trees are
needed.

14

Chapter 4

Data & Data Processing

This chapter discusses the principal dataset used, Universal Dependencies (UD) and discusses
how the treebanks within are mined for candidate patterns.

4.1 Universal Dependencies

Universal Dependencies [10, 11] is a collection of over 200 treebanks across more than 150
different languages. The project is an open community effort consisting of over 600 contrib-
utors. The contributors aim to provide consistently annotated treebanks for several natural
languages. The purpose of which is to promote multilingual parser development, cross-lingual
learning and parsing research from the point of view of language typology [10].

Within UD, multiple datasets of treebanks are available per language. There are several tree-
banks present in UD, some of which span multiple languages and are therefore parallel corpora.
One such corpus, PUD (Parallel Universal Dependencies), contains trees for the same exact
1000 sentences in multiple languages, where each tree therefore represents a single sentence.
The sentences present within PUD were taken from news and Wikipedia documents. The par-
allel nature of the data ensures consistency in regards to patterns found, as the only similarities
and differences that emerge should only do so due to linguistic similarity or dissimilarity, and
should not be influenced by the actual text present for each language. For this thesis, only the
PUD (Parallel Universal Dependencies) dataset is used.

4.1.1 Tree Structure and Annotation

The trees within UD are rooted trees, an example of which can be found in Figure 4.1, with
a more readable version seen in Figure 4.2. Each tree represents a sentence in the original
corpus. As can be seen, each node label represents a Part of Speech (POS) tag of a word’s
syntactical function within the sentence, such as the word dog being a noun or chased being
a verb. Furthermore, each edge label shows the syntactic relation between those two nodes.
The link between the aforementioned nodes has the label nsubj:pass, which indicates that the
noun dog is the passive nominal subject of the verb chased. These edges therefore represent
syntactic dependencies between words. There are a number of POS tags for nodes, which can
be seen in Table 4.1. Regarding edge labels, there are far too many to reasonably list here,
therefore only a short table, Figure 4.2, is provided in this chapter. The comprehensive list

15

is shown in Appendix A. It is also worth noting that the annotations in UD are created by
multiple human annotators. Despite their best efforts to ensure that annotation is consistent
(hence the term universal), some minor underlying variation in labelling is inevitable, despite
efforts to maintain consistency.

Figure 4.1: Universal Dependencies Tree Example. Taken from [10]

Figure 4.2: UD Tree Example (Figure 4.1) presented in tree-like fashion.

When downloaded, the UD treebanks are in the form of CoNNL-U files which contain de-
scriptive information on each sentence and word in such sentence. These CoNNL-U files are
then processed into edge lists (a type of file format commonly used when processing trees or
graphs) for use in candidate extraction.

4.2 gSpan

As the data aspect was addressed, the next step is deciding on which pattern mining approach
to use. Any tree or graph miner would be suitable, so long as it can extract candidate patterns
in a reasonable amount of time. [6] was ultimately selected for its ease of implementation due
to an already existing Python library [24], in addition to its quick runtime, where running the
algorithm on one treebank would take around 15 minutes. The gSpan algorithm is designed
to explore frequently occurring subgraphs from a graph database, whilst tackling the issues of

16

POS Tag Linguistic Function

ADJ adjective

ADP adposition

ADV adverb

AUX auxiliary

CCONJ coordinating conjunction

DET determiner

INTJ interjection

NOUN noun

NUM numeral

PART particle

PRON pronoun

PROPN proper noun

PUNCT punctuation

SCONJ subordinating conjunction

SYM symbol

VERB verb

X other

Table 4.1: UD POS tags and their lin-
guistic functions

Edge Label Linguistic Function

cc coordinating conjunction

cop copula

aux auxiliary

det determiner

case case marking

nmod nominal modifier

nsubj nominal subject

obj object

punct punctuation

Table 4.2: UD dependency edge labels
and their linguistic functions (A compre-
hensive list can be found in Appendix A)

candidate generation and subgraph isomorphism. With both of these being traditionally, very
costly to overcome.

The algorithm makes use of DFS (Depth First Search) codes, a string of text that represents
a subgraph’s structure, and which is generated by means of a DFS traversal. Normally, for
any given graph, multiple DFS traversals are possible, and thus multiple DFS codes can be
generated. The gSpan algorithm, however, accounts for this by imposing a specific lexico-
graphic order for graph traversal, such that isomorphic graphs are not generated more than
once. This results in each subgraph having a minimum DFS code, which can also serve as a
unique identifier.

gSpan organises its search space into a lexicographic DFS tree, where each node corresponds
to a subgraph, which in itself is represented by a DFS code. Subgraph patterns are then ex-
tended recursively along the rightmost path of the DFS traversal. Furthermore, each extension
can add either a forward edge or a backwards edge, allowing for complex cycles to be repre-
sented. Although, in our case, these complex graph structures are naturally, not present. After
generating a candidate pattern by extending the current subgraph along the rightmost path,
gSpan determines the support of the candidate by counting in how many graphs of the input
dataset it occurs as a subgraph. If this count meets or exceeds the minimum support threshold,
the candidate is considered frequent and is also eligible for further extension.

17

The main advantages of gSpan are its relative simplicity and speed, in addition to its capa-
bilities of mining patterns in large datasets. Although the algorithm is by no means new, and
there have been faster algorithms developed, for the purposes of this work, it is fast enough.

4.3 Candidate Extraction

As previously mentioned, a Python library [24] existed that had already implemented the
gSpan library. Although the algorithmic base was there, some testing and modifications had
to be done in order to get it fully working. Firstly, the library did not work out of the box, and
some pieces of code had to be updated in order to work at all. In addition, there were some
concerns that it would not work with directed graphs, as the GitHub repository stated that it
had not been exhaustedly tested on them. However, after conducting some testing ourselves
on a small artificial and a reduced version of some UD treebanks, no issues were found with
mining patterns in directed trees. The modified library can be found here1.

In addition to bug fixes, the library was modified to keep track of frequency as well as support,
as we are still interested in the overall frequency of graphs. It should also be noted that the
minimum support threshold for mining was set to 5 for mining all language trees. As each
language contains 1000 trees, this is a threshold of 0.5%.

1Modified gSpan repository: https://github.com/druxu/gspan

18

Chapter 5

Implementation of the MDL
Principle

This chapter discusses the main contribution of this thesis. It delves into some foundations for
this work, including some definitions and the cover algorithm, the encoding process used and
finally, the search algorithm.

5.1 MDL Groundwork

This section provides some core definitions and concepts that the rest of this work is built
upon. Firstly, we discuss our definition of a model, and singleton patterns. We then introduce
the concept of a rewritten tree, and finally, delve into our Cover algorithm.

5.1.1 Definitions

Model Definition: There are two types of models we need to define. The first one being the
global model M . It contains a collection of local models m, which pertain to a particular set
of languages L and a set of patterns associated with those languages T P . Furthermore, let
mL refer to a specific local model that contains all the patterns associated with language set
L and let L refer to all languages present within a global model M . It is worth noting that
there exists a model for each combination of languages within L Moreover, the local model
that contains all patterns pertaining to all languages present in the global model is known
as the common model, mL. This model also contains all singleton patterns. Lastly, V and E
represent the set of node and edge labels, respectively, within all patterns present in the data.

Singleton Pattern: A singleton pattern is a specific type of pattern introduced such that
the cover algorithm can encode the entire original graph, as the MDL principle only deals
with lossless compression. There are two types of singleton patterns present, these being node
singleton patterns and edge singleton patterns. An example of which can be seen in Figure 5.1.
In this figure is an example for a node singleton with label A and an edge singleton example
with label B. The nodes in the edge singleton are labelled with ϵ. This is an artificial label
manually added into V to represent any node label. As this pattern is meant to cover an edge,
using a placeholder value for the node labels allows us to store much fewer edge singleton
patterns, and therefore, leads to a more efficient encoding process. Note that this is the only

19

case where the label ϵ is used.

(a) Edge Singleton Pattern (b) Node Singleton Pattern

Figure 5.1: Examples of singleton patterns: (a) Edge singleton, (b) Node singleton.

5.1.2 Rewritten Trees

A rewritten tree is a reconstructed tree that shows the patterns present within the original
tree and how they link to each other. However, before we present the formal definition of a
rewritten tree, it is important to discuss the inspiration drawn from GraphMDL with their
rewritten graphs. A rewritten graph is a a reconstructed version of an original graph, that
shows the presence of patterns within and how they link to each other. A visual example can
be seen in Figure 3.2. This type of graph is constructed after the cover algorithm is computed.
To recapitulate slightly, there are two types of nodes present in a rewritten graph, port nodes
and embedding nodes. Embedding nodes represent the patterns themselves, and ports repre-
sent the nodes shared between patterns.

Rewritten Tree Definition: The rewritten tree is exactly the same as GraphMDL’s rewrit-
ten graph, instead of graphs, trees are used. Thus, a rewritten tree can be defined like so:
TR = (V R

emb, V
R
port, E

R, V R
L , ER

L). V
R
emb and V R

port are the sets of embeddings and port vertices
present within the tree. Furthermore, ER is the set of edges and V R

L and ER
L are the sets

of node and edge labels, respectively. In this context, the node labels are pattern IDs, thus
mapping patterns to the vertices of the rewritten tree. Lastly, the edge labels are between
embedding and port vertices, and indicate the port vertex in the original tree that is shared
between the patterns.

20

5.1.3 The Cover Algorithm

This algorithm’s purpose is to check which patterns out of several candidates can be used to
represent the original data and create a corresponding rewritten tree. It checks each pattern
and sees if it occurs in the data, if it does, mark the corresponding nodes and edges as covered
and repeat. If, at the end of the process, there are still some uncovered nodes and edges, sin-
gleton patterns are created in order to cover them. This algorithm can be seen in Algorithm 1.
Lastly, it is important to stress that patterns are considered by order of size (the number of
nodes in a pattern) in descending order, such that to allow larger patterns to cover more of
the original graph.

Algorithm 1 Cover Algorithm

Require: A list of trees T , and a model M containing patterns
Ensure: Each tree is covered using existing patterns or new singleton patterns
1: Sort patterns in M by size (number of vertices), largest first
2: Initialise a counter for singleton pattern IDs
3: Initialise a list of singleton patterns
4: for each tree T in T do
5: Reset the set of used edges in T
6: Select patterns compatible with T ’s language
7: for each pattern p in the selection do
8: if p can be mapped onto T without overlapping covered edges then
9: Cover the matched subgraph in T with p
10: Increase p’s usage count
11: end if
12: end for
13: Identify any uncovered edges and nodes in T
14: while uncovered edges remain in T do
15: Increment usage of relevant edge singletons
16: Mark edges as covered
17: end while
18: while uncovered nodes remain in T do
19: Increment usage of relevant node singletons
20: Mark nodes as covered
21: end while
22: end for

5.2 Encoding Process

The encoding process is made up of two main parts. The encoding of the model M and the
encoding of the data D given model M such that L = L(M)+L(D|M), where L is the total
length of both.

21

5.2.1 Model Encoding

To calculate the length a global model M , we must sum over the length of the local models
within using universal integer encoding, as we do not know the size of these local models.
For each local model, we encode the number of patterns within, again, using universal inte-
ger encoding and we also encode each pattern itself. The equation for which can be seen in
Equation 5.1.

L(M) =

|M |∑
m∈M

LN(|m|) +
|m|∑

TP∈m

L(T P)

 (5.1)

L(T P) =
d∑

i=0

LN(|Vi+1|) +
|Vi|∑
v∈Vi

log(|Vi+1|+ 1) + |V | log(|V|) + |E| log(|E|) (5.2)

The process for encoding a pattern can be seen in Equation 5.2. Firstly, we encode the struc-
ture of the tree. This is done by summing over each layer i in the tree. For each layer i + 1,
we encode the number of nodes at that layer using a universal integer encoding, as the total
number of nodes is unknown. Since the encoding process continues layer by layer until a layer
contains no nodes, the depth of the tree is determined implicitly without requiring a separate
encoding of depth. Furthermore, as the trees are rooted, there is no need to encode the exis-
tence of the root node itself.

Next, for each node in layer i, we encode which node in layer i + 1 is its child. This step
connects the nodes encoded in the previous step by specifying the parent-child relationships
within the tree, therefore encoding the entire tree’s structure. Furthermore, to avoid log(0),
normalization is performed by adding 1 inside the logarithm.

The second part of this equation: V log(|V|) + E log(|E|) deals with encoding the node and
edge labels. To encode the specific label used for each node and edge, we must first encode
the size of the set of all possible node labels |V| and E . Since there are |V | nodes and |E|
edges, we multiply these two logarithms by |V | and |E|, respectively.

5.2.2 Data Encoding

To encode the data D, which contains treebanks of several languages such that each treebank
d ∈ D representing language l. The equation for which can be seen in Equation 5.3.

L(D|M) =

|D|∑
d∈D

L(d|M l) (5.3)

Where Ml =
⋃
{mL ∈ M | l ∈ L}. In layman’s terms ml is the union of local models whose

language set contains language l. Following this, the data can be encoded as follows:

22

L(d|Ml) =

|d|∑
T∈d

1 +

|V |∑
v∈V

LN(|Cv|)


+ Lpreq(T

P ∈M l, ⟨∪T∈dVL ∈ T ⟩)

+
∑

TP∈M l

Lpreq(V ∈ T P , ⟨∪T∈de ∈ ER
L ⟩) (5.4)

This encoding can be split into two main parts. The initial summations on the first line of
the equation encode the structure of the rewritten tree. For each tree present within a given
language, encode whether the root is a port or not, which is represented as the 1 in the equa-
tion. This information is only needed for the root node, as port vertices can only be connected
to root vertices and vice versa, therefore, knowing whether the root is a port or an embed-
ding node is enough to know the type of all the nodes. Next, for each child node, encode the
length of its children, and repeat until the number of children for each node has been encoded.

The second part of the equation deals with encoding the node and edge labels respectively,
where Prequential Plugin codes are used for both. Firstly, to encode the node labels, which
are simply pattern identifiers, we provide a set of all patterns relevant for the rewritten tree’s
language l. The sequence provided is a union of all the node labels seen amongst all rewritten
trees in d. Lastly, to encode the edge labels, which indicate which vertex in any pattern is a
port. To do this, we sum over each relevant pattern and for each one, we compute the Pre-
quential Plugin code, providing the set of nodes for each pattern and a union of all edge labels
seen amongst the rewritten graphs. This method ensures that the most frequently occurring
labels are encoded optimally.

5.3 The Search Algorithm

The final major algorithm present is the Search algorithm. It is responsible for generating many
candidate models and iteratively adding patterns (mined by gSpan) and computing the total
description length each time a pattern is added. If the length goes down after a pattern is
added, the model is labelled as the best model and the process repeated until no more patterns
are left.

The basic outline for our algorithm can be described as follows. It takes the candidate pat-
terns, the tree data and the list of languages as inputs. It initialises an empty best global
model and covers the data with only singleton patterns. This gives us a maximum value for
the best description length. Next, candidate patterns are evaluated one by one. The algorithm
attempts to add each candidate pattern to every local model in the current best global model,
and the addition that results in the best reduction is finalised. If no reduction is possible for
that candidate pattern, then that candidate is skipped. This process is then repeated until all
patterns have been evaluated. After all candidate patterns have been checked, the best model
and best length are returned, along with the evaluation history.

23

Whilst the approach just described works, it has some practicality issues. Firstly, as each can-
didate global model created contains several local models, which model to add a pattern to
is a legitimate question. Therefore, the search algorithm exhaustively tries to add the pattern
to each model and checks the total description length. If one were trying this algorithm with
6 languages, this means 63 models need to be tried for each pattern, where there can be over
5000 patterns for that amount of languages. The formula for this being 2n− 1 where n is the
number of items in the set. Naturally, this is infeasible to compute naively, and therefore, we
made use of parallelisation.

Firstly, the process of trying to add each candidate pattern to each local model is done com-
pletely in parallel, as one can imagine. However, in addition to this, a batch size was introduced
which grows quite slowly, but steeply, in order to process patterns in larger sizes (and in paral-
lel). The rate at which the batch size grows is controlled by the number of candidate patterns
there are. The more patterns there are, the slower it grows. Initially, it pays us to compute
each pattern one at a time if it is likely to get added to the model, however, if towards the
tail end, each candidate pattern is getting rejected, it would be more efficient to process them
in batches, such that if no pattern in the batch is accepted, they can all be discarded. This
is the case due to the order that candidate patterns are fed into the search algorithm, being
frequency based in descending order. Unfortunately, however, the computation time is still
incredibly high, and most patterns were found within the first few hours as it follows an ex-
ponential decay. Thus, a maximum time limit of 6 hours was set, after which, the algorithm
will wait for the current batch to finish processing and then return the current best model and
best length. The pseudocode for our algorithm can be seen in Algorithm 2.

24

Algorithm 2 Search Algorithm

Require: Candidate patterns P , data D, list of languages L
Ensure: An improved global model with minimal total description length
1: Initialise the best model Mbest with no patterns
2: Cover trees with Mbest and compute initial description length Lbest

3: Initialise the growth rate to 1
|P|

4: Initialise the batch size at 0, and have it grow according to the previously set rate
5: while there are remaining patterns do
6: Select a batch of patterns based on the batching strategy
7: Results ← []
8: for all pattern p in batch (in parallel) do
9: for all language subsets S ⊆ L where p is applicable (in parallel) do

10: Create a copy of Mbest and insert p into it for language set S
11: Cover trees with this model, compute new description length L
12: results ← results ∪(L,M, pS)
13: end for
14: end for
15: Select the result with minimal length Lmin

16: if Lmin < Lbest then
17: Update Mbest ←M and Lbest ← Lmin

18: Remove the selected pattern p from P
19: else
20: Remove all batch patterns from P
21: end if
22: if time limit exceeded then
23: break
24: end if
25: end while
26: return best model Mbest, length Lbest, and evaluation history

25

Chapter 6

Experimental Evaluation

This chapter provides details on the experiments done, which specific treebanks were used
throughout said experiments, and also discusses the results of those experiments. Note that
all experiments were done using Python, and on a Linux server running Rocky OS. The server
has 512GB of RAM and 128 AMD Epyc 7702 CPU at 2GHz with 256 threads. Lastly, the
GitHub repository can be found here. 1

When running experiments, the first task was to determine which treebanks (languages) to
include. Ideally, we would like to include as many as possible, however, as running the Search
algorithm is quite computationally intensive and time consuming, this is not feasible. Initially,
we selected three languages to run some basic experiments on. These being English, French
and Italian, which were picked as we can understand these languages, and therefore if needed,
we can refer back to the original text for further context. For the following experiments and
until specified otherwise, these are the only languages that are being used, and is hereby re-
ferred to as the small set.

6.1 Candidate Pattern Order

The first experiment conducted was on the small set to determine the optimal order for feed-
ing candidate patterns into the Search algorithm. Naturally, the order that patterns are fed in
greatly affects the resulting best model, as it could be that a non-optimal pattern is added to
the model, which then prevents other, potentially better, candidate patterns from being added.
Three experiments were conducted, feeding the patterns in three different orders: frequency
(descending), number of vertices (descending) and frequency (ascending). Intuitively, feeding
the most frequent patterns first makes the most sense, as they would be often need to be used
to cover the original data. This is also the same order that was used in KRIMP [14]. If some
patterns share the same value for their respective criterion, they are then sorted by the other
unused criterion in descending order. If they match on both criteria, they are then sorted by
canonical code, so that the order they are fed in remains consistent between runs.

The best description lengths achieved for each order can be seen in Figure 6.1. As shown by
the figure, starting the search algorithm with the most frequent patterns first by far yielded

1Thesis Repository: https://github.com/druxu/masters thesis

26

the best compression percentage of the original data with the best length achieved being just
under 60% of the original length. Whilst (c) reaches a good description length rather quickly,
and the others did not achieve good results at all, they may eventually reach a good description
length if left longer than 6 hours. However, since (c) was the quickest, this order will be used
for future experiments.

(a) Best length over time (Lowest Frequency
First)

(b) Best length over time (Highest Number of
Vertices First)

(c) Best length over time (Highest Frequency First)

Figure 6.1: Evolution of model length over time using different pattern ordering strategies.
The best length achieved is relative to the description length of the initial empty model,
which is the same for all subfigures. Note that the Y-scales differ per subfigure. For ease
of reading, 5000 seconds ≈ 1.4 hours

6.2 Exclusion of Multi-Language Sets

One question we proposed is whether or not it is worth having local models representing multi-
ple language combinations, as it greatly increases computation time. By default, we used these

27

Figure 6.2: Best length over time (No Multi-Language Sets) (5000 seconds ≈ 1.4 hours)

multi-language sets, however, we decided to disable them and run the Search algorithm
to see how it might affect the resulting best description length. Keep in mind that the common
model is still in use, as it is also used to store the singleton patterns.

In Figure 6.2, we can see how the description length decreases over time. It is comparable to
Figure 6.1c, as the only difference between them being the inclusion of multi-language sets.
There does not seem to be much of a difference at all between the best description lengths
achieved. That being said, ultimately we would lose some interpretability of results if multi-
language sets were to be excluded. As the inclusion of multi-language sets had seemingly no
effect on the results, despite the much more intensive computation process, it can be said
that the parallelisation of the Search algorithm is effective. Due to these observations, multi-
language sets will be used in all future experiments.

6.3 More Languages

Naturally, the next logical step in the experimenting process is to try the algorithm with more
languages and to see what the best model looks like. Three more languages were added to the
existing set of English, French and Italian, these being: Czech, Icelandic and Arabic. Czech
was chosen as it is still an Indo-European language, but is much further related to the current
three as it is in the Slavic family. Icelandic was chosen as it is a part of the Germanic language
family, like English, so it might be interesting to see if any patterns are shared between them.
Lastly, Arabic was chosen to be a ”dark horse”. As it is a Semitic language, one would assume
there would not be many commonalities between it and the other languages. The best length
achieved over time for these languages can be seen in Figure 6.3. A maximum compression
of just under 65% was achieved, with it likely being able to achieve a better one if more time
was allotted.

28

Figure 6.3: Best Length over Time (6 Languages) (5000 seconds ≈ 1.4 hours)

In addition to showing the best length over time, Table 6.1 shows the 10 most frequent
patterns present within the best model. Within the table, it can be seen that most of these
frequent patterns were added to the common model, which is to be expected. However, there
were a few patterns that were added to different local models instead. Interestingly enough,
the eighth most frequent pattern was added to the model for Arabic and Icelandic, which was
unexpected as one would not necessarily think these two languages would have such a high
frequency pattern in common. However, just because a pattern is found in a certain local model
it does not necessarily mean that that pattern is only found in those languages pertaining to
that local model. This is because the Search algorithm automatically determines which local
model a pattern gets added to. Furthermore, one can see that the frequency does decrease a
fair bit from the first to the last position, indicating that there are a small number of highly
frequent patterns that could explain the exponential decay seen in Figure 6.3.

Node 1 Node 2 Edge Frequency Support Model

NOUN ADP case 11572 4963 Common

NOUN DET det 8823 3196 Czech, English, French, Italian

VERB PUNCT punct 7836 4973 Common

NOUN ADJ amod 7596 4063 Common

NOUN NOUN nmod 6592 3436 Arabic, Czech, Icelandic

VERB NOUN obl 5093 3396 Arabic, English, French, Icelandic, Italian

VERB NOUN obj 3781 2941 Common

VERB NOUN nsubj 3235 2760 Arabic, Icelandic

NOUN PUNCT punct 3105 1941 Common

PROPN ADP case 2736 1980 Common

Table 6.1: Top 10 Most Frequent Patterns. All of these patterns only had 2 vertices. The
Node and Edge columns show the labels node and edge labels respectively in each pattern.
The Model column indicates which local model that pattern is present in.

29

6.3.1 Pattern Frequency, Support and Size Distributions

As a type of sanity check, to ensure that our Search algorithm correctly captures important,
frequently occurring subtrees, we plotted the distributions for frequency, support and the num-
ber of vertices within each pattern in the best model found. In Figure 6.4, one can see these
distributions. The frequency and support distributions are suitable, where a few patterns are
extremely frequent (over 5000), and most are reasonably frequent. The median support was
679, as there are 6000 total trees, this means the median support was around 10% of the
total. Interestingly enough, each pattern accepted into the global model only had 2 vertices.
This was quite peculiar, and warranted further analysis.

(a) Pattern Frequency Distribution (b) Pattern Support Distribution

(c) Number of Vertices in Patterns Distribution

Figure 6.4: Distribution statistics of selected patterns across frequency, support, and num-
ber of vertices.

One hypothesis as to why only patterns with 2 nodes were being selected, is that they happen
to be the most frequent and thus, the algorithm selects them first. Following the selection of
these few, highly frequent patterns, it could be that the remaining patterns that reduce the
description length further also happen to contain just 2 vertices due to the patterns previously
selected. We took a look at all the candidate patterns mined and plotted their size against
their frequency. This can be seen in Figure 6.5. The pattern’s size (number of vertices) is
plotted on the y-axis, and the mean frequency on the x-axis. Mean frequency was plotted as
each dot represents a collection of patterns that all share the same number of vertices. This
was done as otherwise there would be thousands of dots overlapping each other, and would

30

therefore be difficult to interpret. The size of each dot also represents a value, this being how
many patterns can be found with that size. This value scales linearly with the area of each
dot. The plot shows that indeed, there are a reasonable amount of highly frequent patterns
of size 2. Although there are more patterns of sizes 3 and 4, they are much less frequent on
average, which then explains why all patterns selected only have 2 vertices.

Figure 6.5: Candidate Pattern Size vs Mean Frequency

6.3.2 UpSet Plot

We then made use of an UpSet plot, a type of plot which allows one to visualise set intersec-
tions on a large scale in a more coherent way than a Venn diagram. This plot can be seen in
Figure 6.6. Each black dot or black dot combination represents a set of languages. The bar
on top of each set combination shows the size of the set, i.e. how many patterns are present
within, and the bar on the left of each language represents how many patterns were added
that correspond to that language across all the local models. Note that only non-empty local
models are shown in the plot.

The most populous local model is the common model; unsurprisingly, since the most frequent
patterns are fed first, these most frequent patterns are likely to be present in many if not
all languages. The second biggest local model is the one with just Arabic, which aligns with
expectations, since it is the one most distantly related to the other languages. Other notable
combinations include French, Italian and English, and Czech, Italian, English and Icelandic,
both with a total of three patterns. The global model as a whole has 49 patterns total. English,
Italian and French also have the least number of patterns in their individual sets, meaning that
most patterns present in these languages are also present in others. Note for this plot, the
singleton patterns have been removed as they added clutter to the plot due to the sheer number
of them (82). However, the plot including the singletons can still be seen in Figure 6.7.

31

Figure 6.6: UpSet Plot for all Non-Empty Language Sets. (Singletons Excluded)

Figure 6.7: UpSet Plot for all Non-Empty Language Sets. (Singletons included)

6.3.3 Jaccard Similarity

In addition to the UpSet plot, we wanted a way to highlight which language pairs were the
most similar. Whilst this information can be deduced from the UpSet plot, we decided to plot
a Jaccard Similarity score heatmap, as seen in Figure 6.8. Jaccard Similarity is a statistic that
calculates the similarity between sets. The score ranges from 0 to 1, where 0 means the two
sets are completely different, and 1 meaning the sets are identical. The equation for Jaccard
Similarity can be seen in Equation 6.1. It is computed by dividing the size intersection between
sets A and B with the union of those same two sets.

J(A,B) =
|A ∩B|
|A ∪B|

(6.1)

By far, the language that had the highest similarity score with the other 5 languages was
English, which is unsurprising given the prominence and influence other languages have had

32

Figure 6.8: Jaccard Similarity Score between Languages

on English and vice versa. On the other hand, the language that was the most dissimilar to the
others was Arabic, which is also to be expected. The language pair with the highest similarity
was English and Italian, which is quite an interesting observation as intuitively, one might
expect French and Italian or French and English to be higher as both French and Italian are
Romance languages and French historically had lots of influence on the English language.

33

Chapter 7

Discussion and Conclusions

This chapter brings this thesis to a close with a discussion about the results, and whether
the aim for this work has been successfully accomplished. Furthermore, we delve into some
limitations and potential future work, before some brief concluding remarks.

7.1 Discussion

In the previous chapter, we showed some experiments done and the results obtained from such
experiments. The analysis performed shows that the methods implemented do allow us to find
meaningful patterns for each of the languages that highlight the differences and similarities
between them. The results achieved were more or less expected, however, there are still some
talking points in need of discussion.

Limited Pattern Size and Time Constraints

Most notably, the selection of patterns with only two vertices was unexpected. Granted, we
found that patterns containing just 2 nodes were by far the most frequent, it is still a bit
peculiar that no patterns with three or more vertices were found. In Figure 6.5 we can also
see that there are many patterns with 3, 4 and 5 vertices that may have been interesting
to explore. It is possible that the 6 hour time limit had an effect on this, as perhaps, more
patterns would have been added had the 6 hour restriction been raised or even removed com-
pletely. An interesting add-on to this thought would be that perhaps if sorting by pattern size
in ascending order might have shown similar results to sorting by most frequent due to the
patterns accepted into the model only having 2 vertices.

Compression Ratios and Redundancy in Syntactic Structures

One other important point to mention is the compression ratios achieved by our algorithm.
The compression percentage achieved (35-40%) shows that there is a substantial amount of
redundancy in the syntactic structure of the original data, as the biggest reductions in descrip-
tion length are found in the first few patterns added to the model. Especially since reasonably
good compression ratios are achieved in such a short time, with the graphs all following a

34

rough exponential decay.

Minimum Support Threshold

Furthermore, we mentioned the use of a minimum support threshold for pattern mining. We
set this value to 5 as initially, we thought having as low a value as possible for this would
be better, due to there being more candidate patterns to choose from. However, the patterns
actually selected for the model tended to be rather frequent, so perhaps, it might have been a
better idea to raise this minimum support threshold to reduce the number of patterns we need
to process in the Search algorithm, as this was the main computational bottleneck of this work.

Necessity of the MDL Principle

Lastly, whilst we did manage to find patterns that allow us to differentiate between various
languages using this method, the question has to be asked whether there might have been a
simpler way to go about it, and whether the MDL principle was even needed. In hindsight, the
5000 or so patterns present in the 6 languages analysed might not have been too difficult to
analyse in its entirety, without the need of reducing the pattern set. However, this may be a
different story if many more languages were to be used.

7.2 Limitations and Future Work

There are several key limitations to keep in mind that we had to juggle throughout this thesis.
However, there are two primary ones that are important to consider.

Firstly, computation power was a massive limitation on what we could do. We already discussed
the 6 hour time limit for the Search algorithm, which, while we found that to be suitable, ide-
ally the Search and Cover algorithms could be made more efficient, and could be run for longer
periods of time to potentially find more patterns.

Secondly comes analysis. Whilst we aimed to find differences and similarities in languages
without the need of a linguist, we found that there is limited analysis that can be done with-
out prior linguistic knowledge. The relations between languages can be seen by means of the
visualisations provided in Chapter 6, however, analysis of the patterns themselves was not
done, as we are computer scientists.

In the future, the Search and Cover algorithms could be overhauled to be more efficient, and
we could pass the resulting patterns to a linguist for their own input on the results. Not to
mention, it might be interesting to make some additions, such as using different languages, or
perhaps even non-parallel corpora as well as parallel corpora to see whether that has an effect
on the results or not.

35

7.3 Conclusion

As the aim of this thesis was to find a way to automatically differentiate between various
languages, it can be said that this was accomplished with some caveats. We successfully mined
the Universal Dependency treebanks for patterns using gSpan, built a model and selected the
patterns using the MDL principle and performed some experimentation and analysis on the
resulting best model. Within this best model, we ultimately did find ways of analysing the
patterns and found interesting observations regarding the similarities and differences between
languages. However, we were limited by the fact that analysis on the individual patterns is
difficult due to a lack of linguistic knowledge.

36

Bibliography

[1] G. Botha, V. Zimu, and E. Barnard, “Text-based language identification for south african
languages,” SAIEE Africa Research Journal, vol. 98, no. 4, pp. 141–146, 2021.

[2] T. Ölvecký, “N-gram based statistics aimed at language identification,” IIT. SRC.
Bratislava, pp. 1–17, 2005.

[3] T. Vatanen, J. J. Väyrynen, and S. Virpioja, “Language identification of short text seg-
ments with n-gram models.,” in LREC, 2010.

[4] N. Zhong, Y. Li, and S.-T. Wu, “Effective pattern discovery for text mining,” IEEE
transactions on knowledge and data engineering, vol. 24, no. 1, pp. 30–44, 2010.

[5] A. C. Mendes and C. Antunes, “Pattern mining with natural language processing: An
exploratory approach,” in International Workshop on Machine Learning and Data Mining
in Pattern Recognition, pp. 266–279, Springer, 2009.

[6] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,” in 2002 IEEE
International Conference on Data Mining, 2002. Proceedings., pp. 721–724, IEEE, 2002.

[7] S. Nijssen and J. N. Kok, “The gaston tool for frequent subgraph mining,” Electronic
Notes in Theoretical Computer Science, vol. 127, no. 1, pp. 77–87, 2005.

[8] H. Yao and H. J. Hamilton, “Mining itemset utilities from transaction databases,” Data
& Knowledge Engineering, vol. 59, no. 3, pp. 603–626, 2006.

[9] J. S. Park, M.-S. Chen, and P. S. Yu, “Using a hash-based method with transaction trim-
ming for mining association rules,” IEEE transactions on knowledge and data engineering,
vol. 9, no. 5, pp. 813–825, 2002.

[10] “Universal Dependencies.” https://universaldependencies.org, 2025. Accessed:
2025-06-11.

[11] J. Nivre, M.-C. De Marneffe, F. Ginter, J. Hajič, C. D. Manning, S. Pyysalo, S. Schus-
ter, F. Tyers, and D. Zeman, “Universal dependencies v2: An evergrowing multilingual
treebank collection,” arXiv preprint arXiv:2004.10643, 2020.

[12] P. D. Grünwald, The minimum description length principle. MIT press, 2007.

[13] T. C. Lee, “An introduction to coding theory and the two-part minimum description
length principle,” International statistical review, vol. 69, no. 2, pp. 169–183, 2001.

[14] J. Vreeken, M. Van Leeuwen, and A. Siebes, “KRIMP: mining itemsets that compress,”
Data Mining and Knowledge Discovery, vol. 23, pp. 169–214, 2011.

37

https://universaldependencies.org

[15] K. Smets and J. Vreeken, “SLIM: Directly mining descriptive patterns,” in Proceedings
of the 2012 SIAM international conference on data mining, pp. 236–247, SIAM, 2012.

[16] F. Bariatti, P. Cellier, and S. Ferré, “GraphMDL: Graph pattern selection based on min-
imum description length,” in Advances in Intelligent Data Analysis XVIII: 18th Inter-
national Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April
27–29, 2020, Proceedings 18, pp. 54–66, Springer, 2020.

[17] F. Bariatti, P. Cellier, and S. Ferré, “GraphMDL+ interleaving the generation and mdl-
based selection of graph patterns,” in Proceedings of the 36th Annual ACM Symposium
on Applied Computing, pp. 355–363, 2021.

[18] F. Bariatti, P. Cellier, and S. Ferré, “KG-MDL: Mining graph patterns in knowledge graphs
with the mdl principle,” arXiv preprint arXiv:2309.12908, 2023.

[19] K. Budhathoki and J. Vreeken, “The difference and the norm—characterising similarities
and differences between databases,” in Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11,
2015, Proceedings, Part II 15, pp. 206–223, Springer, 2015.

[20] P. Elias, “Universal codeword sets and representations of the integers,” IEEE transactions
on information theory, vol. 21, no. 2, pp. 194–203, 2003.

[21] C. Jiang, F. Coenen, and M. Zito, “A survey of frequent subgraph mining algorithms,”
The Knowledge Engineering Review, vol. 28, no. 1, pp. 75–105, 2013.

[22] C. Antunes, “Pattern mining over nominal event sequences using constraint relaxations,”
Unpublished doctoral dissertation, Instituto Superior Técnico, Lisboa, 2005.

[23] S. Tatikonda, S. Parthasarathy, and T. Kurc, “TRIPS and TIDES: new algorithms for
tree mining,” in Proceedings of the 15th ACM international conference on Information
and knowledge management, pp. 455–464, 2006.

[24] Yu, Tian, “gSpan-mining: A Python implementation of gSpan.” https://pypi.org/

project/gspan-mining/, 2020. Accessed: 2025-06-17.

38

https://pypi.org/project/gspan-mining/
https://pypi.org/project/gspan-mining/

Appendix A

Universal Dependencies Edge Labels

This table is a comprehensive list of all the possible edge labels found within Universal Depen-
dencies [10, 11].

Table A.1: UD Edge Labels and Their Syntactic Functions

Edge Label Syntactic Relation

acl clausal modifier of a noun

acl:relcl relative clause modifier

advcl adverbial clause modifier

advmod adverbial modifier

advmod:emph emphasising word, intensifier

advmod:lmod locative adverbial modifier

amod adjectival modifier

appos appositional modifier

aux auxiliary

aux:pass passive auxiliary

case case marking

cc coordinating conjunction

cc:preconj preconjunction

ccomp clausal complement

clf classifier

compound compound

compound:lvc light verb construction

compound:prt phrasal verb particle

compound:redup reduplicated compounds

compound:svc serial verb compounds

conj conjunction

cop copula

csubj clausal subject

csubj:outer outer clause clausal subject

39

Edge Label Syntactic Relation

csubj:pass clausal passive subject

dep unspecified dependency

det determiner

det:numgov pronominal quantifier governing the case of a noun

det:nummod pronominal quantifier agreeing in case with the noun

det:poss possessive determiner

discourse discourse element

dislocated dislocated elements

expl expletive

expl:impers impersonal expletive

expl:pass reflexive pronoun used in reflexive passive

expl:pv reflexive clitic with an inherently reflexive verb

fixed fixed multiword expression

flat flat expression

flat:foreign foreign words

flat:name names

goeswith goes with

iobj indirect object

list list

marker marker

nmod nominal modifier

nmod:poss possessive nominal modifier

nmod:tmod temporal modifier

nsubj nominal subject

nsubj:outer outer clause nominal subject

nsubj:pass passive nominal subject

nummod numeric modifier

nummod:gov numeric modifier governing the case of a noun

obj object

obl oblique nominal

obl:agent oblique agent in passive construction

obl:arg oblique argument

obl:lmod locative modifier

oblq:tmod temporal modifier

orphan orphan

paratixis parataxis

punct punctuation

reparandum overridden disfluency

root root

40

Edge Label Syntactic Relation

vocative vocative

xcomp open clausal complement

41

	Introduction
	Problem Statement
	Research Objectives
	Thesis Structure

	Preliminaries
	The Minimum Description Length Principle
	Tree Definition and Mining

	Related Work
	Language Classification
	Text and Graph Mining
	MDL for Pattern Mining
	KRIMP
	GraphMDL
	SLIM
	DIFFNORM

	Data & Data Processing
	Universal Dependencies
	Tree Structure and Annotation

	gSpan
	Candidate Extraction

	Implementation of the MDL Principle
	MDL Groundwork
	Definitions
	Rewritten Trees
	The Cover Algorithm

	Encoding Process
	Model Encoding
	Data Encoding

	The Search Algorithm

	Experimental Evaluation
	Candidate Pattern Order
	Exclusion of Multi-Language Sets
	More Languages
	Pattern Frequency, Support and Size Distributions
	UpSet Plot
	Jaccard Similarity

	Discussion and Conclusions
	Discussion
	Limitations and Future Work
	Conclusion

	Universal Dependencies Edge Labels

