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1 Introduction

Combinatorial game theory studies games with perfect information and no chance
elements. Examples include Go and Chess. Classically, combinatorial game theory
studies games with two players, usually called Left and Right, abbreviated as L and R.
These players alternate turns, until a player has no available moves, at which point the
other player is declared the winner. A useful tool is taking the sum of games. This is a
larger game, in which the two subgames have been placed next to each other, and a
player can move on exactly one of the subgames on their turn. An example use case of
addition of games is the analysis of a Go endgame, which usually consist of regions
that have no direct impact on each other. Therefore, A Go endgame viewed as the
sum of these different regions. An important question in combinatorial game theory is
which player will win a given game. This can be determined with the outcome classes,
which indicate the winner of a game, assuming that every player plays optimally. These
outcome classes are used to define equality of games. Using addition and equality of
games, the set of two-player games form an abelian group.

When studying three-player games, adding Center, abbreviated as C, as player, assump-
tions must be made to combat “kingmaking”. This occurs when a player cannot win
themselves, but can choose which of the other players will win. In this thesis, we will
use the player preferences introduced by Li [Li78]. Then, with analogous definitions of
addition and equality, the set of three-player games form a commutative monoid, only
missing the existence of additive inverse elements. In this thesis, we try to determine if
additive inverses exist. We will conclude that the most intuitively logical candidate for
inverses, conjectured by Greene [Gre17], is not an inverse. It remains unclear whether
three-player games, with Li’s player preferences, form an abelian group.

1.1 Overview

In the next section, we give a brief overview of related works in the field of combinatorial
game theory. This forms the context in which this thesis should be read.

Section 3 gives the basic results of two player combinatorial game theory. We show
that two player game positions, with a certain definition of addition and equality, form
an abelian group. We clarify the results using the ruleset Domineering.

We begin Section 4 by attempting to create a structure analogous to that of two-player
games when expanding the player count to three players. The ruleset we use in this
section is Rhombination. Using player preferences introduced by Li [Li78], the game
positions with three players form a commutative monoid, only missing the existence
of additive inverse elements in order to be an abelian group. Next, we show, using
rotations, that all Rhombination outcome classes are non-empty. This thesis also
shows that the intuitive candidate for additive inverse elements for three player games,
hypothesised by Greene [Gre17], are not inverse elements. It remains unclear whether
inverses exist. We end Section 4 by considering alternative assumptions, under which
we hypothesise that this candidate for inverse elements does work. However, these
alternative assumptions suffer from different drawbacks.

We conclude by giving an idea on how one might be able to decide whether three player
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games, with our original assumptions, have additive inverse elements.
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2 Related work

One of the pioneers of combinatorial game theory was Conway in On Numbers And
Games in 1976 [Con76]. Here, Conway introduces the concept of partisan games, which
are games in which the available moves for each player differ. Examples of partisan
rulesets are Domineering and Rhombination, which we will both use in this thesis.
Most of the research in combinatorial game theory has been done for two player games,
as these have a rich structure. It has been shown that the so called short games form
an abelian group [Sie13].

As mentioned in the introduction, a problem one must deal with when studying three-
player games is that of “kingmaking”. Different authors have chosen for different
solutions to this problem. Li has chosen to introduce static player preferences [Li78],
while Straffin has decided a player’s preferences depend on who has wronged them in
the game [Jr.85]. Instead of player preferences, some authors, like Loeb, have chosen to
look at coalitions of players that are able to win a game [Loe96]. Cincotti focusses on the
partial order structure, and restricts himself to a subset of games, called numbers [Cin05].
All of these approaches have different advantages and disadvantages. Thus research
regarding three-player games is divided between all these different approaches. Greene
has followed in Li’s footsteps, and explored the three player ruleset Rhombination
with Li’s player preferences [Gre17].

In this thesis, we build on Greene’s work by answering the open questions left in her
thesis. Namely, we show that the intuitive candidate for additive inverse elements
are in fact, not inverses, and we show that all Rhombination outcome classes are
non-empty.
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3 Two-player games

The definitions and theorems in this section are based on the book Combinatorial
Game Theory by A. Siegel [Sie13]. For this thesis, we define N := Z≥0.

In this section, we will give the relevant definitions and theorems for combinatorial
games with two players. We will call our players Left and Right, who take alternating
turns. Once a player is unable to make a move, they lose the game, and the other
player is declared the winner. This section builds towards Theorem 3.22, in which we
conclude that the set of two-player games form an abelian group. In this section we will
give a definition of equality for games, which differs from the games being equal as sets.
To avoid confusion, we will be using ∼= to indicate that two games are set theoretically
equal.

Combinatorial games contain no chance elements and both players have perfect infor-
mation. As mentioned above, the last player to make a move wins. As such, we do not
allow draws.

The ruleset we will be using for our examples with two players is domineering. In a
Domineering game, the players are faced with a grid of available squares. On their
turn, a player must place a domino, covering two adjacent empty squares, on this grid.
The left player may only do so in a vertical orientation, while the right player may only
do so in a horizontal orientation. Once a player cannot make a move, the other player
wins.

Example 3.1. The following is a Domineering game:

.

We let Left make the first move on this game. The following is a possible (not necessarily
optimal) play-out of this game, where →α means that this is a possible move player α
can make:

→L →R .

Left can now no longer make a move, so this would be a win for Right.

We now definite a game recursively.

Definition 3.2. A game G of birthday n ∈ N≥0 is an ordered pair (GL,GR), where
GL and GR are sets of games of birthdays between 0 and n − 1, inclusive on both
sides, and such that if n > 0, there exists a game H ∈ GL ∪ GR of birthday n− 1. A
game is a game of birthday n for an n ∈ N≥0. We write a game G as G ∼= {GL | GR}.
Furthermore, if GL = {GL

1 , ..., G
L
m} and GR = {GR

1 , ..., G
R
k } for some m, k ∈ N, we

write G ∼= {GL
1 , ..., G

L
m | GR

1 , ..., G
R
k }. For example, the unique game of birthday 0 is

0 := {∅ | ∅}, since there are no games of at most birthday −1. This game can also be
written as 0 ∼= { | }.

Intuitively, the sets GL and GR are the sets of moves the Left and Right player,
respectively, can make. We call elements of these sets moves, options, or children. In
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Figure 1: Full game tree of an example Domineering game

most literature, our definition of a game corresponds with that of a short game. Since
we will only be working with short games, we will simply call them games.

The birthday of a game can be thought of as the height of the game tree, which
corresponds to the maximum number of turns a game can last.

An important distinction to be made is between a game and a ruleset. Intuitively, a
game is a position with the possible moves both players can make. A ruleset is a system
which governs what the possible games are. Examples of rulesets are Go, Chess, and
Domineering, while a specific Go position is then a game. In order to illustrate the
definition of a game, we will give an example of a domineering game.

Example 3.3. The following is an example of a domineering game:

.

Using the ruleset we introduced, we can determine what the possible moves are for
Left and Right and picture this as a game tree as seen in Figure 1. We see that Left
has two possible moves, while Right only has one. We can write this game using the
notation introduced in Definition 3.2. this gives us:

∼=
{

,

∣∣∣∣ }
.

We can go further, as the definition of a game is recursive. Using the fact that:

∼= { | 0}, ∼= {0 | }, and ∼= 0,

we find

∼= {{ | 0}, 0 | {0 | }}.
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Finally, 0 ∼= { | } gives us

∼= {{ | { | }}, { | } | {{ | } | }}.

This is extremely cryptic, so it is usually preferable to visualize games instead.

Definition 3.4. The player-order function is the cyclical permutation function (LR),
which maps a player to the player that is after them in the player order.

We will now introduce the addition of two games. This is a binary operation defined as
follows.

Definition 3.5. Let G ∼= {GL | GR} and H ∼= {HL | HR} be games. The sum of these
games, denoted by +, is defined recursively as follows:

G+H ∼=
{(

GL +H
)
∪
(
G+HL

)
|
(
GR +H

)
∪
(
G+HR

)}
,

where for α ∈ {L,R}:

Gα +H := {X +H : X ∈ Gα}, G+Hα := {G+X : X ∈ Hα}.

Intuitively, the sum of two games is a larger game, where the two subgames have been
placed next to each other. On their turn, a player may make a move on exactly one of
the subgames.

Example 3.6. Consider the following sum of Domineering games:

+ .

Assuming that Left makes the first move, the following are two possible play-outs:

+ →L →R ,

in which case Right wins, and

+ →L + ,

in which case Left wins.

Lemma 3.7. Let G and H be games. Then G+H is a game.

Proof. We use induction on the sum of the birthday ofG and the birthday ofH. Our base
case is that both G and H have birthday 0. The only game of birthday 0 is 0 and since 0
has no left or right options, we have 0+0 ∼= {0L+0∪0+0L | 0R+0∪0+0R} ∼= { | } ∼= 0,
which is a game.

Now, let N ∈ N be such that G + H is a game for all games G of birthday n′

and games H of birthday m′ with n′ + m′ ≤ N . Let G be a game of birthday n
and H be a game of birthday m, such that n + m = N + 1. Then for all options
X ∈

(
GL +H

)
∪
(
G+HL

)
∪
(
GR +H

)
∪
(
G+HR

)
of G+H, we can use our induction

hypothesis to conclude that X is a game. Let k be the highest birthday of all these
games X. Then G+H is a game of birthday k + 1.
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Lemma 3.8. Let G be a game. Then G+ 0 ∼= G.

Proof. We use induction on the birthday of G. Our base case is that G has birthday
zero. So G ∼= 0. We have shown in the proof of Lemma 3.8 that 0 + 0 = 0.

Let N ∈ N be such that H + 0 ∼= H for all games H of birthday at most N . Now,
let G be a game of birthday N + 1. Using our induction hypothesis, we get G+ 0 ∼=
{GL + 0 ∪G+ 0L | GR + 0 ∪G+ 0R} ∼= {GL ∪ ∅ | {GR ∪ ∅}} ∼= G.

Lemma 3.9. Addition of games is commutative and associative.

Proof. We will first prove that G+H ∼= H +G, for all games G and H. We proceed
by induction on the sum of the birthday of G and the birthday of H. Our base case is
that both G and H have birthday 0, which means that G ∼= H ∼= 0. Since G ∼= H, it
follows that G+H ∼= H +G.

Now, let N ∈ N be such that G + H ∼= H + G for all games G of birthday n′ and
games H of birthday m′ with n′ +m′ ≤ N . Let G ∼= {GL | GR} be a game of birthday
n and H ∼= {HL | HR} be a game of birthday m such that n+m = N + 1. Then all
options X ∈

(
GL +H

)
∪
(
G+HL

)
∪
(
GR +H

)
∪
(
G+HR

)
of G +H are games of

birthday at most N . Thus

G+H ∼=
{(

GL +H
)
∪
(
G+HL

)
|
(
GR +H

)
∪
(
G+HR

)}
∼=

{(
HL +G

)
∪
(
H + GL

)
|
(
HR +G

)
∪
(
H + GR

)} ∼= H +G.

Using induction, we conclude that addition of games is commutative.

We will now prove for all games G,H, J , that (G+H) + J ∼= G+ (H + J). We proceed
by induction on the sum of the birthday of G, the birthday of H, and the birthday of J .
Our base case is that G, H, and J have birthday 0, which means that G ∼= H ∼= J ∼= 0.
Thus (G+H) + J ∼= 0 ∼= G+ (H + J).

Now, let N ∈ N be such that (G+H) + J ∼= G+ (H + J) for all games G of birthday
n′, games H of birthday m′, and games J with birthday k′, with n′ +m′ + k′ ≤ N . Let
G ∼= {GL | GR} be a game of birthday n, H ∼= {HL | HR} a game of birthday m, and
J ∼= {J L | J R} a game of birthday k, such that n+m+ k = N +1. We will show that
(G+H)+J and G+(H+J) have the same Left options, which is sufficient to conclude
(G+H) + J ∼= G+ (H + J), due to symmetry. All (Left) options of (G+H) + J have
a birthday of at most N . Using our induction hypothesis:

(G+H) + J ∼=
{((

GL +H
)
+ J

)
∪
((
G+HL

)
+ J

)
∪
(
(G+H) + J L

)
| ...

}
∼=

{(
GL + (H + J)

)
∪
(
G+

(
HL + J

))
∪
(
G+

(
H + J L

))
| ...

}
.

These are the Left options of G+ (H + J). Using symmetry, we have (G+H) + J ∼=
G+ (H + J).

Definition 3.10. Let G be the set of games. We recursively define the outcome
functions for both players, where for α ∈ {L,R}, this is the function oα : G → {L,R},
given by

oα(G) =

{
α if oσ(α)(H) = α for some H ∈ Gα

σ(α) else
.
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We now define the outcome function o : G → {L,R}2, where

o(G) = (oL(G), oR(G)).

We denote this by o(G) = oL(G)oR(G). We use the outcome function to define the
outcome classes. Let α, β ∈ {L,R}. Then αβ := {G ∈ G : o(G) = αβ}.

If a game G has a valid option that will lead to a win for player α, they will choose
that move. If such a move does not exist, which includes the player having no possible
move, the other player will win. When a player plays optimally, they make moves that
follow their outcome function. That is to say, given that player α has an available move,
if oα(G) = β ∈ {L,R}, player α will move to a child H such that oσ(α)(H) = β. The
outcome function tells us which player will win, if both players play optimally. Since
the outcome function maps each game to a outcome class, the outcome classes are a
partition of set of games.

Example 3.11. Since the game 0 has no moves for either player, we have 0 ∈ RL.
Now, let

G = + .

We have seen in Example 3.6 that if Left starts, they have a move with which they can
force a win. Thus oL(G) = L. Furthermore, if Right starts on G, the following is the
only possible sequence of moves

+ →R + →L .

This leads to a win for Left. Thus oR(G) = L, and o(G) = LL.

In the literature, the outcome classes are denoted by P ,N ,L, and R. These capture
the characteristics of the outcome class in a single letter. For example, L = LL is the
class of games where Left can always win, and N = LR is the class of games where
the N ext player to move can win. We have chosen to use a more systematic notation
for the sake of consistency with the outcome classes for three players.

Definition 3.12. Let G and H be games. We say that G and H are equal if for all
games X it holds that o(G+X) = o(H +X). We denote this by G = H.

Note that we define what it means for games to be equal and that this differs from being
set theoretically equal. Whenever we talk of two games being equal in the remainder of
this thesis, we are referring to the game theoretical equality introduced above.

Lemma 3.13. Equality of games is an equivalence relation.

Proof. Let G,H and J be games. Then for all games X it holds that o(G + X) =
o(G+X). Thus equality is reflexive.

If o(G+X) = o(H +X), then o(H +X) = o(G+X), which gives us symmetry.

IfG = H andH = J , then for all gamesX it holds that o(G+X) = o(H+X) = o(J+X).
Thus G = J and equality is transitive.

Since equality of games is reflexive, two games being set theoretically equal implies
game theoretical equality. Therefore, Lemma 3.8 still holds game theoretically.
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Lemma 3.14. Let G,H and J be games with G = H. Then G+ J = H + J .

Proof. Let X be a game. Using associativity, we have:

o((G+ J) +X) = o(G+ (J +X)) = o(H + (J +X)) = o((H + J) +X),

which gives us that G+ J = H + J .

Definition 3.15. Let G be a game. We now recursively define its negative −G :=
{−

(
GR

)
| −

(
GL

)
} where for α ∈ {L,R}, we define − (Gα) := {−H : H ∈ Gα}.

Example 3.16. It holds that −0 ∼= 0, as there are no available moves for either player.
Furthermore

− ∼= −{ | 0} ∼= {−0 | } ∼= {0 | } ∼= .

In general, it holds that the negative of a Domineering game is the game rotated
by 90 degrees. Though we will not prove this rigorously, it is intuitively clear, as the
negative of a game swaps the available moves for both players. Since the dominoes the
players place on their turn are 90 degrees rotations of each other, it follows that the
negative of a game is the game rotated by 90 degrees.

Lemma 3.17. Let G be a game of birthday n, then −G is also a game of birthday n.

Proof. The proof of this lemma is an elementary induction proof, which we will not
provide.

Lemma 3.18. Let G be a game. Then −(−G) ∼= G.

Proof. The proof of this lemma is an elementary induction proof, which we will not
provide.

We will now build towards Theorem 3.20, which gives us a one-to-one correspondence
between games equal to zero and games in the outcome class RL. In order to prove
this theorem, we must first prove the following lemma.

Lemma 3.19. Let G and H be games, such that o(G) = o(H) = RL. Then o(G+H) =
RL.

Proof. We will proceed by induction on the sum of the birthday of G and the birthday
of H. Our base case is that G ∼= H ∼= 0. It is clear that o(0 + 0) = RL.

Now, let N ∈ N be such that o(G+H) = RL for all games G and H of birthday n′ and
m′ respectively, satisfying n′+m′ ≤ N and o(G) = o(H) = RL. Let G and H be games
of birthdays n and m respectively, such that n+m = N+1 and o(G) = o(H) = RL. We
wish to show that o(G+H) = RL. This is equivalent to showing that for α ∈ {L,R},
the equality oα(G + H) = σ(α) holds. By symmetry, it is sufficient to prove that
oL(G+H) = R. If G+H does not have a Left option oL(G+H) = R is immediately
clear. We now assume that G+H has a Left option.

Left, playing optimally on G + H, will move to a game GL + H or G + HL. Since
Right can win on both G and H playing second, they can respond with an optimal
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move on the same subgame. That is, Right can then move to a game (GL)R +H with
oL

(
(GL)R

)
= R, or G+ (HL)R with oL

(
(HL)R

)
= R. Our induction hypothesis gives

us that oL
(
(GL)R +H

)
= R, and oL

(
G+ (HL)R

)
= R. Thus Right will always have

a winning move, and so oL(G+H) = R holds.

Theorem 3.20. Let G be a game. Then G = 0 if and only if G ∈ RL.

Proof. Suppose G = 0. From the definition of equality, we have that for all games X it
holds that o(G+X) = o(X). Therefore, we have that o(G) = o(G+ 0) = o(0) = RL.
Thus G ∈ RL.

Now, suppose that G ∈ RL. Let X be a game. We will prove that o(G+X) = o(X). By
symmetry, it is sufficient to prove that oL(G+X) = oL(X). Suppose that oL(X) = R.
Then Lemma 3.19 gives us that oL(G+X) = R = oL(X). Now, suppose that oL(X) = L.
Then beginning on G +X, Left has an option G +XL, such that oR

(
XL

)
= L. By

assumption, it holds that oR(G) = L. We use Lemma 3.19 once again, to conclude
that oR

(
G+XL

)
= L. Since such a Left option exists, it holds that oL(G+X) = L =

oL(X).

Theorem 3.21. Let G be a game. Then G+ (−G) = 0.

Proof. Using Theorem 3.20, it is sufficient to prove that G + (−G) ∈ RL. We use
induction on the birthday of G. Our base case is that G ∼= 0, in which case 0+(−0) ∈ RL
holds.

Now, let N ∈ N be such that H + (−H) ∈ RL holds for all games H of birthday at
most N . Let G be a game of birthday N + 1. We will prove that G+ (−G) ∈ RL. Due
to symmetry, it is sufficient to show that oL(G+ (−G)) = R.

Suppose that an optimal move for Left on G + (−G) is to play to a Left option
GL + (−G). Then Right can move to GL + (−(GL)). Using our induction hypothesis,
we have GL + (−(GL)) ∈ RL. Thus this leads to a win for Right, if both player play
optimally.

The other option for Left is to move to a Left option G+(−(GR)). Using our induction
hypothesis, we have GR + (−(GR)) ∈ RL, which Right can move to. Thus whatever
Left does, Right will be able to win. So oL(G+ (−G)) = R.

We conclude, using symmetry and induction, that G+(−G) ∈ RL for all games G.

The above theorem tells us that −G is an additive inverse element of G using game
theoretical addition and equality. This leads us to our main result.

Theorem 3.22. The set of games modulo equality is an abelian group.

Proof. Lemma 3.7 tells us that the sum of games is a game. Addition is commutative
and associative by Lemma 3.9. Lemma 3.13 tells us that equality of games is an
equivalence relation, thus the set of games modulo equality is well-defined. Furthermore,
by Lemma 3.14, addition is consistent with respect to equality, making addition a
well-defined operation for the set of games modulo equality. Lemma 3.8 tells us that 0
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is a neutral element for addition and through Theorem 3.21 we have the existence of
inverse elements. Thus the set of games modulo equality is an abelian group.

A group structure is an incredibly rich structure and this result tells us that we can
analyse combinatorial games using group theory. In the remainder of this thesis, we
will try to recreate this structure for combinatorial games with three players.
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4 Three-Player games

4.1 The basics

We now introduce a third player to our games, whom we will call Center. We let play
proceed cyclically, with Center playing after Left, Right after Center and Left after
Right. In this subsection we will be redefining games to include three players, and
adapting most of the results from our section on two-player games. Our conclusion will
be that three-player games form a commutative monoid, instead of an abelian group,
due to the absence of additive inverse elements. For the rest of this thesis, we will be
using the ruleset Rhombination for our examples and results. Rhombination is
very similar to Domineering, but now a game is a grid of equilateral triangles. On a
player’s turn, that player must place a rhombus, covering two adjacent empty triangles,
in a certain orientation, which can be found in Table 1. Rhombination is introduced
by Greene [Gre17].

L C R

Table 1: Moves for the different players in Rhombination.

Example 4.1. An example play-out of Rhombination games is shown below, where
→α means that this is a possible move player α can make.

→L →C →R 0.

Definition 4.2. A game G of birthday n ∈ N≥0 is an ordered triple (GL,GC ,GR), where
GL, GC , and GR are sets of games of birthdays between 0 and n− 1, inclusive on both
sides, and such that if n > 0, there exists a game H ∈ GL∪GC ∪GR of birthday n−1. A
game is a game of birthday n for an n ∈ N≥0. We write a game G as G ∼= {GL | GC | GR}.
Furthermore, if GL = {GL

1 , ..., G
L
m}, GC = {GC

1 , ..., G
C
l }, and GR = {GR

1 , ..., G
R
k } for

some m, l, k ∈ N, we write G ∼= {GL
1 , ..., G

L
m | GC

1 , ..., G
C
l | GR

1 , ..., G
R
k }. For example,

the unique game of birthday 0 is 0 := {∅ | ∅ | ∅}, since there are no games of at most
birthday −1. This game can also be written as 0 ∼= { | | }.

When referring to a game for the remainder of this thesis, we are using the definition
of a three-player game given above, instead of the definition of a two-player game. The
only difference between these definitions is that we have added the possible moves for
Center.

We will now formalise our player order with the following definition.

Definition 4.3. The player-order function σ is the cyclical permutation function
(LCR), which maps a player to the player that is after them in the player order. That
is, the player to make a move after player α ∈ {L,C,R}, is player σ(α).

Definition 4.4. Let G ∼= {GL | GC | GR} and H ∼= {HL | HC | HR} be games. Then
the sum of these games, denoted by +, is defined recursively as follows:

G+H ∼=
{(

GL +H
)
∪
(
G+HL

)
|
(
GC +H

)
∪
(
G+HC

)
|
(
GR +H

)
∪
(
G+HR

)}
,
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where for α ∈ {L,C,R}:

Gα +H := {X +H : X ∈ Gα}, G+Hα := {G+X : X ∈ Hα}.

Example 4.5. Consider the following sum of Rhombination games:

G ∼= +

(
+

)
.

In Lemma 4.8 we will be concluding that addition of three-player games is associative,
just like two-player games. Thus

G ∼= + + .

Assuming Left makes the first move, the following are the only possible play-outs:

+ + →L + →C →R 0 ,

in which case Right wins, and:

+ + →L + →C ,

in which case Center wins.

Many proofs in this subsection are almost the same as their analogues from the previous
section, with the only difference being that there is a third player. We will, for the
most part, not give these proofs. However, we will give the proof of Lemma 4.6 as an
example. When there is a major difference, we will give the proof.

Lemma 4.6. Let G and H be games. Then G+H is a game.

Proof. We use induction on the sum of the birthday of G and the birthday of H. Our
base case is that both G and H have birthday 0. The only game of birthday 0 is 0
and since 0 has no Left, Center, or Right options, we have 0 + 0 ∼= {0L + 0 ∪ 0 + 0L |
0C + 0 ∪ 0 + 0C | 0R + 0 ∪ 0 + 0R} ∼= { | | } ∼= 0, which is a game.

Now, let N ∈ N be such that G + H is a game for all games G of birthday n′

and games H of birthday m′ with n′ + m′ ≤ N . Let G be a game of birthday n
and H be a game of birthday m, such that n + m = N + 1. Then for all options
X ∈

(
GL +H

)
∪
(
G+HL

)
∪
(
GC +H

)
∪
(
G+HC

)
∪
(
GR +H

)
∪
(
G+HR

)
of G+H,

we can use our induction hypothesis to conclude that X is a game. Let k be the highest
birthday of all these games X. Then G+H is a game of birthday k + 1.

Lemma 4.7. Let G be a game. Then G+ 0 ∼= G.

Proof. The proof for this lemma is analogous to the proof for Lemma 3.8.

Lemma 4.8. Addition of games is commutative and associative.
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Proof. The proof for this lemma is analogous to the proof for Lemma 3.9.

Just like in two-player games, we would like to classify games in outcome classes.
However, in three-player games we have to deal with “kingmaking”. “kingmaking”
occurs when a player is unable to win a game themselves, but can choose which of
the other players becomes the winner. In Example 4.5, we can see a “kingmaking”
situation. If Left starts, they are unable to win themselves, and must choose between
letting Center, or Right win. This makes it difficult to classify these kinds of games in
outcome classes. In order to combat this problem, many different solutions have been
studied, as mentioned in the relevant work section.

In this thesis we will use Li’s solution [Li78]. Li proposes to give each player preferences
for who they would like to make the last move. A player now wants to have made a
move as recently as possible when the game ends. This means that a player α would
most like for themselves to have made the last move. If this is not possible they would
like player σ(α) to win. Their least favourite player to make the last move is σ−1(α).
For example, if the Left player can choose between letting the Center or Right player
win, as in Example 4.5, they will choose to let the Center player win, as σ(L) = C.
This gives the player preferences in Table 2.

player First preference Second preference Last preference
Left Left Center Right

Center Center Right Left
Right Right Left Center

Table 2: Player preferences as introduced by Li [Li78].

We solidify these preferences in our definition of the outcome function and the outcome
classes.

Definition 4.9. Let G be the set of games. We recursively define the outcome functions
for all players, where for α ∈ {L,C,R}, this is the function oα : G → {L,C,R}, given
by

oα(G) =


α if oσ(α)(H) = α for some H ∈ Gα

σ(α) else if oσ(α)(H) = σ(α) for some H ∈ Gα

σ−1(α) else

.

We now define the outcome function o : G → {L,C,R}3, where

o(G) = (oL(G), oCG(), oR(G)).

We denote this by o(G) = oL(G)oC(G)oR(G). We use the outcome function to define
the outcome classes. Let α, β, γ ∈ {L,C,R}. Then αβγ := {G ∈ G : o(G) = αβγ}.

If a game G has a valid option where player α is able to win, they will choose that
move. If such a move does not exist, they will prefer letting player σ(α) win, to letting
player σ−1(α) win. Note that if player α has no available moves, player σ−1(α) will
immediately win. The outcome function tells us which player will win, if all players
follow their established player preferences. Just as in the two-player case, we say that a
player is playing optimally when they make moves that follow their outcome function.
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Definition 4.10. Let G and H be games, we say that G and H are equal if for all
games X it holds that o(G+X) = o(H +X). We denote this by G = H.

Lemma 4.11. Equality of games is an equivalence relation.

Proof. The proof for this lemma is analogous to the proof for Lemma 3.13.

Lemma 4.12. Let G,H and J be games with G = H. Then G+ J = H + J .

Proof. The proof for this lemma is analogous to the proof for Lemma 3.14.

Theorem 4.13. The set of games, for three players, modulo equality is a commutative
monoid.

Proof. Lemma 4.6 tells us that the sum of games is a game. Addition is commutative
and associative by Lemma 4.8. Lemma 4.11 tells us that equality of games is an
equivalence relation, thus the set of games modulo equality is well-defined. Furthermore,
by Lemma 4.12, addition is consistent with respect to equality, making addition a
well-defined operation for the set of games modulo equality. Lastly, Lemma 4.7 tells us
that 0 is a neutral element for addition.

When dealing with two players, we concluded that the set of game values was an
abelian group. The ingredient we are missing, now that we have three players, is the
existence of additive inverse elements.

4.2 Rotations

In the change from two to three players, the number of outcome classes has grown from
4 to 27. This leads us to wonder whether these outcome classes are non-empty. Greene
has been able to show that, for the rule set Rhombination, 24 of these classes are
non-empty [Gre17]. The state of the remaining three outcome classes: RCL,CLR, and
LRC was unknown. This section builds towards Theorem 4.22, in which we conclude
that all 27 Rhombination outcome classes are non-empty.

For convenience, we define the following Rhombination games:

1L ∼= {0 | | } ∼= , 1C ∼= { | 0 | } ∼= , 1R ∼= { | | 0} ∼= .

These are the games in which a single player has an available move.

Proposition 4.14. Let

G ∼= .

It holds that G ∈ RCL.
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Figure 2: Game tree of G when Left begins. Black letters represent which player makes
the move, while the blue letters represent the outcome of the resulting game.

Proof. The game tree when Left starts on G is shown in Figure 2. We can see that,
whatever move Left starts with, Right will win. Thus oL(G) = R.

The game tree of G when Center starts can be seen in Figure 3. We see that Center
has a move where they will win. Thus oC(G) = C.

The game tree of G when Right starts can be seen in Figure 4. We see that Right can
choose whether to let Left or Right win. Recalling our player preferences, Right prefers
Left winning, to Center winning, since σ(R) = L. Thus oR(G) = L.

Putting everything together we have that o(G) = RCL. Thus G ∈ RCL holds.

Proposition 4.14 gives us that the outcome class RCL is non-empty. Instead of manually
finding examples of games in the remaining two outcome classes, we will introduce
rotations, with corresponding lemmas, and a theorem which will let us prove these
outcome classes are non-empty. Rotations, its associated lemmas, and Theorem 4.19
are based on Greene’s work [Gre17].

Definition 4.15. Let G be a game. We recursively define:

G120 :=
{
(GC)120 | (GR)120 | (GL)120

}
,

where for α ∈ {L,C,R}: (Gα)120 := {(H)120 : H ∈ Gα}.

Example 4.16. Let
G ∼= 1L ∼= {0 | | }.

Then, using the fact that ∅120 ∼= ∅, we find that 0120 ∼= { | | } ∼= 0. This gives us:

G120 ∼= { | | 0} ∼= 1R,

and
G240 := (G120)120 ∼= { | 0 | } ∼= 1C .
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Figure 3: Game tree of G when Center begins. Black letters represent which player
makes the move, while the blue letters represent the outcome of the resulting game.
Dots represent that there are more children, which are not necessary for our analysis.
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Figure 4: Game tree of G when Right begins. Black letters represent which player
makes the move, while the blue letters represent the outcome of the resulting game.
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In general, if G is a Rhombination game, it holds that G120 is the game G rotated
counter clockwise by 120 degrees. Though we will not prove this rigorously, it is
intuitively clear, as for each player α ∈ {L,C,R}, the moves available to them, playing
on G120, are the moves available to player σ(α) on G. Since the rhombus player σ(α)
places on their turn is a 120 degree counter clockwise rotation of the rhombus player α
must place, it follows that G120 is the game G rotated counter clockwise by 120 degrees.

Lemma 4.17. Let G be a game of birthday n. Then G120 is also a game of birthday n.

Proof. We use induction on the birthday of G. Our base case is the game 0, for which
it holds, as mentioned in Example 4.16, that 0120 = 0, which is of course a game of
birthday 0.

Suppose N ∈ N is such that H120 is a game with the same birthday as H for all games
H of birthday at most N . Let G be a game of birthday N + 1, then all of its options
have a birthday of at most N , which means that the children of G120 also all have a
birthday of at most N by our induction hypothesis. Furthermore, there must exist one
option H ∈ GL ∪ GC ∪ GR with a birthday of exactly N . Thus H120 also has a birthday
of N . We now conclude that G120 is a game of birthday N + 1.

Lemma 4.18. Let G be a game. Then G360 := ((G120)120)120 ∼= G.

Proof. We use induction on the birthday of G. Our base case is that G ∼= 0. Since
0120 ∼= 0, we have that 0360 ∼= 0.

Let N ∈ N be such that for all games H of birthday at most N , the identity H360 ∼= H
holds. Let G be a game of birthday N + 1. Then for all games X ∈ GL ∪ GC ∪ GR, it
holds that, X360 ∼= X. Thus (GL)360 ∼= GL, (GC)360 ∼= GC , and (GR)360 ∼= GR. Now we
can conclude that:

G360 ∼=
{
(GL)360 | (GC)360 | (GR)360

} ∼= {GL | GC | GR} ∼= G.

Theorem 4.19. Let G be a game, and α, β, γ ∈ {L,C,R}. Then G ∈ αβγ if and only
if G120 ∈ σ−1(β)σ−1(γ)σ−1(α).

We will first give an example of the theorem.

Example 4.20. It holds that 1L ∈ LLC. Using Theorem 4.19, we conclude that
(1L)

120 ∈ σ−1(L)σ−1(C)σ−1(L) = RLR. In Example 4.16, we have shown that (1L)
120 =

1R, which is consistent, since 1R ∈ RLR

Proof of Theorem 4.19. We assume, without loss of generality, that Left makes the
first move on G. We use induction on the birthday of G. The base case is that the
birthday of G is 0, which means that G ∼= 0. It holds that 0 ∈ RLC. Furthermore, it
holds that 0120 = 0 ∈ RLC = σ−1(L)σ−1(C)σ−1(R).
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Let N ∈ N be such that for all games H with birthday at most N , and outcome classes
αβγ, the following holds:

H ∈ αβγ if and only if H120 ∈ σ−1(β)σ−1(γ)σ−1(α).

Let G be a game of birthday N + 1 and αβγ an outcome class. Every Left option
GL ∈ GL is a game of birthday at most N . Thus we can use our induction hypothesis
on these games. This gives us that for δ ∈ {L,C,R}: oC(GL) = δ if and only if
oL((G

L)120) = σ−1(δ).

We claim that oL(G) = L if and only if oR(G
120) = R holds. By definition, it holds

that oL(G) = L if and only if there exists an option GL with oC(G
L) = L. Using our

induction hypothesis, this is true if and only if there exists a Right option (GL)120

of G120, with oL((G
L)120) = σ−1(L) = R. Since this is a winning move for Right,

such a move exists if and only if oR(G
120) = R. Thus oL(G) = L if and only if

oR(G
120) = R = σ−1(L).

Now, we claim that oL(G) = C if and only if oR(G
120) = L holds. By definition, it holds

that oL(G) = C if and only if there does not exists an option GL with oC(G
L) = L,

and there does exist an option GL with oC(G
L) = C. Using our induction hypothesis,

this is true if and only if there does not exists a Right option (GL)120 of G120, with
oL((G

L)120) = σ−1(L) = R, and there does exist a Right option (GL)120 of G120, with
oL((G

L)120) = σ−1(C) = L. Now, Right does not have a winning move on G120, but can
let Left win, which is their second choice. Thus this is true if and only if oR(G

120) = L.
Thus oL(G) = C if and only if oR(G

120) = L = σ−1(C).

All that remains is to prove that oL(G) = R if and only if oR(G
120) = C holds.

By definition, it holds that oL(G) = R if and only if for all Left options GL, it
holds that oC(G

L) = R, which includes the case that Left has no options. Using our
induction hypothesis, this is true if and only if for all Right options (GL)120, it holds
that oL((G

L)120) = σ−1(R) = C. Now, all Right’s options on G120 lead to a win for
Center. So this is true if and only if oR(G

120) = C. Thus oL(G) = R if and only if
oR(G

120) = C = σ−1(R).

We have now proven for all δ ∈ {L,C,R} that oL(G) = δ if and only if oR(G
120) =

σ−1(δ). By induction and generality, we conclude that for all games G, and outcome
classes αβγ, the following holds:G ∈ αβγ if and only ifG120 ∈ σ−1(β)σ−1(γ)σ−1(α).

Example 4.21. Let

G ∼= .

Proposition 4.14 tells us that G ∈ RCL. We now use Theorem 4.19 to conclude that
G120 ∈ σ−1(C)σ−1(L)σ−1(R) = LRC. FurthermoreG240 = (G120)120 ∈ σ−1(R)σ−1(C)σ−1(L) =
CLR. G120 and G240 are picture below for reference:

G120 ∼= , G240 ∼= .

20



Theorem 4.22. All 27 outcome classes are non-empty for the rule set Rhombination.

Proof. Greene has presented examples of Rhombination games in all outcome classes,
except for RCL,CLR, and LRC [Gre17]. So all that remains to show is that RCL,CLR,
and LRC are non-empty. Proposition 4.14 tells us that RCL is non-empty. Now,
Example 4.21, which uses Theorem 4.19, shows that CLR and LRC are also non-
empty.

4.3 Inverses

At the end of Section 4.1, we concluded that three player games form a commutative
monoid. In order to form an abelian group, as in the two player case, the existence of
additive inverses is required. Greene hypothesises that for all games G, it holds that
G+G120 +G240 = 0 [Gre17]. This would mean that −G = G120 +G240. The intuition
behind this is that these rotations give every player the same opportunities. Theorem
4.25 shows that does not hold. For this subsection, we let:

H ∼= .

We will show that the outcome classes of H and H + 1L + 1C + 1R are not equal. This
proves that 1L + 1120L + 1240L = 1L + 1C + 1R ̸= 0

Lemma 4.23. It holds that oL(H) = L.

Proof. The game tree when Center starts on H is shown in Figure 5. We can see that
whatever move Center starts with, Left will win. Thus oC(G) = L.

Lemma 4.24. It holds that oC(H + 1L + 1C + 1R) ̸= L.

Proof. In Figure 6 a partial game tree of H + 1L + 1C + 1R when Center starts can
be seen. The tree shows a specific starting move for Center, which leads to a win for
Right. Since Center prefers Right winning to Left winning, we know that regardless of
Center’s other options, they will not choose to let Left win. Therefore, it holds that
oC(H + 1L + 1C + 1R) ̸= L.

Theorem 4.25. It does not hold for all games G that G+G120 +G240 = 0.

Proof. Suppose it does hold for all games G that G+G120+G240 = 0. Then, through the
definition of equality, we have that for all gamesX, the equality o(G+G120+G240+X) =
o(X) holds. We let X = H and G = 1L. This gives us o(1L + 1C + 1R +H) = o(H).
However, Lemma 4.23 and Lemma 4.24 tell us that o(1L+1C +1R +H) ̸= o(H), which
gives us a contradiction.
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A possible reason why these are not additive inverses, even though each player gets the
same moves, is that it is no longer optimal for a player to ensure they have as many
future moves as possible, as in the two-player case. Now, a player, knowing they cannot
win, might sabotage their own position in order to help the player after them in the
player order.

4.4 Alternative assumptions

In the previous section, we have concluded it does not hold, with Li’s player preferences,
for all (Rhombination) games G that G+G120 +G240 = 0. We now ask ourselves if
we could redefine our outcome classes such that this does hold. Our goal is to eliminate
any preferences between the players. Furthermore, we would like to have fewer outcome
classes, which will lead to a less strict definition of equality. We hypothesise that this
intuitive candidate for additive inverse elements does hold using these new outcome
classes, though we have been unable to prove this. However, we will conclude that this
approach has several flaws. These make it far from a perfect solution, even if one were
to show inverses exist. We will now only differentiate between the case that the starting
player can force a win, whatever their opponents do, and the case where they cannot.
So when a “kingmaking” situation occurs, the only thing we care about is that the
active player cannot force a win.

We now redefine our outcome classes as follows:

Definition 4.26. Let G be the set of games. We recursively define the functions
fα : G → {L,C,R,O}, for α ∈ {L,C,R}, given by

fα(G) =


α if oσ(α)(H) = α for some H ∈ Gα

σ−1(α) else if Gα = ∅
β else if oσ(α)(H) = β for all H ∈ Gα

O else

.

Now the outcome functions for all players are given by oα : G → {T, F}, for α ∈
{L,C,R}, where

oα(G) =

{
T if fα(G) = α

F else
.

We now define the outcome function as o(G) : G → {T, F}3, where

o(G) = (oL(G), oC(G), oR(G)).

We denote this by o(G) = oL(G)oC(G)oR(G). We use the outcome function to define
the outcome classes. Let α, β, γ ∈ {L,C,R}. Then αβγ := {G ∈ G : o(G) = αβγ}.

The functions fα tell us which, if any, player can force a win, whatever the other players
do. Since we are only interested in whether the active player can force a win, the
outcome functions set every other case to F .

Example 4.27. It holds that 0 ∈ FFF . Furthermore 1L ∈ TFF . Now let

G ∼= + + + .
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Then, assuming Left makes the first move, they have one distinct move, which is to
move to the following game:

+ + .

On Center’s turn, they have two possible moves, which leads to the following play-outs:

+ + →C + →R →L 0 ,

in which case Left wins, and:

+ + →C + →R ,

in which case Right wins. Since Center can choose whether Left wins, Left is unable to
force a win. Therefore, oL(G) = F .

We use the same definition of equality as before, but now using our new outcome
classes.

As previously mentioned, we conjecture that, with these outcome classes, the equality
G+G120 +G240 = 0 holds for all games G. Our belief stems from the fact that we have
eliminated preferences between the players, which seems to have been a key reason the
desired equality does not hold with Li’s preferences. Furthermore, we have reduced the
number of outcome classes. This relaxes the definition of equality.

Even if our conjecture were to hold, there are still drawbacks to these assumptions.
First of all, we no longer have a one-to-one correspondence between an outcome class
and games that are equal to zero as in Theorem 3.20, this can be seen in Example
4.28. This would be useful, as it is far easier to show a game is in an outcome class
then showing it is equal to zero explicitly. The second problem is that a majority of all
games, especially the games with a higher birthday, are in the outcome class FFF , as
no starting player can force a win. Thus the outcome classes say quite little about the
games. Another problem with this approach is that it is no longer possible to determine
the outcome class of a game based on the outcome class of its children, as information
is lost.

Example 4.28. Let

X = ,

G = + .

Then G ∈ FFF , as the second player to move will win. Furthermore, it holds that
X ∈ TTT . If G = 0 were to hold, then we would have o(G+X) = o(X). However, it
holds that o(G+X) = FFF ̸= o(X). Therefore G ̸= 0. This shows that G ∈ FFF does
not imply G = 0. Since 0 ∈ FFF , it follows that there is no one-to-one correspondence
between an outcome class and games equal to 0.

25



5 Conclusion and future directions

In this thesis, we have tried to create a structure like that of two-player combinatorial
games, when adding a third player. In order to do this, we have adopted the player
preferences introduced by Li [Li78]. Using these player preferences, we have shown
that all 27 outcome classes are non-empty for the rule set Rhombination. Lastly, we
have proven that the intuitive candidates for additive inverse elements, hypothesised
by Greene [Gre17], are not inverse elements.

Future work could be done in studying the alternative outcome classes, introduced
in Section 4.4. An important result would be whether additive inverses exist in this
scenario.

Another open question we have not been able to answer is whether three player games
form an abelian group. Since the intuitive candidate for additive inverse elements does
not work, our hypothesis is that three player games do not form an abelian group. A
possible approach to prove our hypothesis is to look at the group of differences. The
lemmas in this section are based on the work of Bruns and Gubeladze [BG09]. We will
work with an arbitrary commutative monoid in the following lemmas. In Lemma 5.3,
we construct a map which is bijective if and only if our commutative monoid is an
abelian group. This gives an approach to determine whether the set of three-player
games modulo equality is an abelian group.

LetM a commutative monoid. We now define an equivalence relation ∼ on the Cartesian
product M ×M by

(a, b) ∼ (c, d) ⇐⇒ ∃k ∈ M such that a+ d+ k = b+ c+ k.

Lemma 5.1. It holds that ∼ is an equivalence relation on M ×M .

Proof. Let (a, b) ∈ M ×M . Using k = 0, we have a + b = a + b. This gives us that
(a, b) ∼ (a, b). Thus ∼ is reflexive.

Let (a, b), (c, d) ∈ M × M with (a, b) ∼ (c, d). There exists a k ∈ M such that
a + d + k = b + c + k. Using commutativity of +, and symmetry of =, we have
c+ b+ k = d+ a+ k. Thus (c, d) ∼ (a, b), and ∼ is symmetric.

Let (a, b), (c, d), and (e, f) ∈ M × M , with (a, b) ∼ (c, d) and (c, d) ∼ (e, f). Then
there exist k, k′ ∈ M , such that a + d + k = b + c + k and c + f + k′ = d + e + k′.
Let x = c + d + k + k′. Then a + f + x = b + e + x. Thus (a, b) ∼ (e, f), and ∼ is
transitive.

We denote elements of (M × M)/ ∼ as (a, b), where a, b ∈ M , and (a, b) is the
equivalence class of (a, b).

Lemma 5.2. The set (M ×M)/ ∼, with coordinate wise addition, is an abelian group.

Proof. We must first show that coordinate wise addition is a well-defined operation
on (M × M)/ ∼. That is, that it is independent of representative elements. Let
(a, b), (c, d), (e, f) ∈ M × M , such that (a, b) ∼ (c, d). It is simple to show that
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(a+ e, b+ f) ∼ (c+ e, d+ f). Using this fact, we have (a, b) + (e, f) = (a+ e, b+ f) =
(c+ e, d+ f) = (c, d) + (e, f). Thus coordinate wise addition is well defined on (M ×
M)/ ∼.

Commutativity and associativity follow immediately from commutativity and asso-
ciativity of addition on M . Furthermore, for all elements (a, b) ∈ (M × M)/ ∼, it
holds that (a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b). Thus (0, 0) is a neutral element for
coordinate wise addition. Lastly, for all elements (a, b) ∈ (M ×M)/ ∼, it holds that
(a, b)+(b, a) = (a+ b, a+ b). Using (a+b, a+b) ∼ (0, 0), we have (a+ b, a+ b) = (0, 0).
Thus (b, a) is an additive inverse element of (a, b). We now conclude that (M ×M)/ ∼
is an abelian group.

Lemma 5.3. The map i : M → (M ×M)/ ∼, defined by i(a) = ((a, 0)) is a homomor-
phism. Furthermore, it is bijective if and only if M is an abelian group.

Proof. We will first prove that i is a homomorphism. It is easy to see that i(0) = (0, 0).
Let a, b ∈ M . Then i(a + b) = (a+ b, 0) = (a, 0) + (b, 0) = i(a) + i(b). Thus i is a
homomorphism.

Suppose that i is bijective. Let i−1 be its inverse map. Then for G ∈ M , we have

G+ i−1
(
(0, G)

)
= i−1

(
(G, 0)

)
+ i−1

(
(0, G)

)
= i−1

(
(G, 0) + (0, G)

)
= i−1 (0) = 0.

Thus for every G ∈ M , the element i−1
(
(0, G)

)
∈ M is G’s inverse. Thus M is an

abelian group if i is bijective.

Now, suppose that M is an abelian group. In order to show that i is bijective, we

construct the map j : (M × M)/ ∼ → M defined by j
(
(a, b)

)
= a − b, where −b

is the additive inverse of b. Let (a, b), (c, d) ∈ M × M , such that (a, b) ∼ (c, d). To

show j is well-defined, we must prove that j
(
(a, b)

)
= j

(
(c, d)

)
. Using (a, b) ∼ (c, d),

we have that a − b = c − d. So j
(
(a, b)

)
= a − b = c − d = j

(
(c, d)

)
. Thus j is

well-defined. Let a ∈ M . Then j(i(a)) = j
(
(a, 0)

)
= a− 0 = a. Therefore j ◦ i = IdM .

Now, let (a, b) ∈ (M × M)/ ∼. Then i
(
j
(
(a, b)

))
= i(a − b) = (a− b, 0). Using

(a− b, 0) ∼ (a, b), we have that (a− b, 0) = a, b. Thus i ◦ j = Id(M×M)/∼. We conclude
that j is an inverse map of i, which implies that i is bijective.

Using the set of three-player games modulo equality as our monoid, we have that this
is an abelian group if and only if the map i is bijective. If one were to show that the
map i is not bijective, Lemma 5.3 would prove that M is not an abelian group. On
the other hand, this gives a possible approach to show M is an abelian group, without
having to explicitly find additive inverse elements, though the explicit inverse elements
might be required to show that i is bijective.
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