
Opleiding Informatica

NoodleGP:

Automatic Guitar Tablature Generation Using Conformers

Peter Branger, s3692965

Supervisors:
1st Supervisor: Dr. Erwin Bakker & 2nd Supervisor: Dr. Michael Lew

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 28/05/2025

www.liacs.leidenuniv.nl

Abstract

This paper introduces NoodleGP, a hybrid CNN–Transformer model designed for automating guitar
tablature transcription from audio-input. Recognizing the limitations of previous purely convolutional
approaches, such as limited global context awareness and inherent string-fret ambiguities, NoodleGP
integrates a pretrained ResNet CNN backbone with Transformer-based self-attention layers, aiming to
leverage both local spectral-temporal patterns and global sequence dependencies.

Through experimentation on the GuitarSet dataset, the model’s capability to resolve ambiguous
mappings of pitch to one of multiple potential fret positions is evaluated. The study systematically
explores architectural variations, including different depths of ResNet encoders, the number and depth
of Transformer layers, and evaluating critical hyperparameters like learning rate, dropout, and batch
size. Evaluation metrics include frame-level and note-level F-scores, and tablature disambiguation rates.

Preliminary results indicate that overall transcription accuracy remains modest compared to es-
tablished CNN-only and attention-augmented baselines, though showing potential, especially scoring
higher than the baseline for tablature-generation-specialized metrics. These findings point to interesting
directions for improvement, including richer domain adaptation, explicit onset detection modules, and
integrated convolution–attention blocks to enhance both local feature extraction and global context
modeling.

Contents

1 Introduction 1

2 Related Work 2
2.1 Seminal Papers . 2
2.2 Convolutional Approaches to Automatic Tablature Transcription 2
2.3 Groove modeling . 3
2.4 Annotated Guitar Datasets . 3

3 Fundamentals 4

4 Baseline methods 6

5 NoodleGP 8
5.1 NoodleGP Detailed Architecture . 8
5.2 NoodleGP Implementation . 10

6 Data and Preprocessing 11
6.1 GuitarSet . 12
6.2 Data preparation . 12
6.3 Datawrapper . 13
6.4 Datasplits . 13

7 Experiments 13
7.1 Baseline . 13
7.2 Experimental Training Setup . 14
7.3 Grid Search for Hyperparameter Optimization . 14
7.4 Grid Search Results . 15

8 Baseline Comparison 15
8.1 Experimental Results . 16

9 Conclusions and Further Research 18
9.1 Contributions . 18
9.2 Future work . 18

References 21

1 Introduction

Over the past decade, the advances in of ma-
chine learning and Music Information Retrieval
has dramatically enhanced our capacity to au-
tomatically transcribe acoustic music into sym-
bolic notation, underpinning applications in music
education, interactive learning tools, and large-
scale musicological analysis. Early methods in-
clude the A* search–based fingering arrangement
algorithm[BF13] to generate guitar tablature. The
method tried to improve fingering ambiguity, al-
though the implementation and approach left much
room for improvement. Even when limited to sim-
ple note-level transcription, guitar tablature must
resolve polyphonic textures across six strings and
contend with inherent ambiguities, most notably
that identical pitches may be produced by multiple
string-and-fret combinations, rendering the task a
challenging problem due to source ambiguities.

Given the laborious and time-consuming process of
producing accurate guitar tablature by hand, auto-
mated transcription techniques promise to greatly
broaden access to high-quality tabs. Moreover, these
methods can be employed to refine existing tab-
lature, especially for obscure repertoire that has
typically been transcribed only once and may con-
tain errors. Finally, as new music is released at
an ever-increasing rate, automated systems offer a
scalable solution to clear the substantial backlog of
non-transcribed works.

However, existing CNN-only transcription mod-
els evaluated on GuitarSet[XBP+18], such as
TabCNN[WK19], Tab-Estimator[KHT22], and
FretNet[CHK23], remain hampered in their per-
formance by their inherently local inductive bias:
convolutional filters operate over limited receptive
fields and must either rely on very deep or dilated
architectures to capture long-range temporal de-
pendencies, which in turn increases computational
cost and risks overfitting on the modestly sized and
inherently unbalanced GuitarSet[XBP+18]. Conse-
quently, these approaches often struggle to resolve
the string-and-fret ambiguities inherent in poly-
phonic passages, since local feature aggregation
lacks the global context needed to disambiguate

simultaneous note events and detect the correct
fingering across musical phrases. The absence of an
explicit mechanism for modeling interactions span-
ning entire spectrogram sequences further limits
their ability to produce consistent and musically
plausible tablature, motivating the exploration of
transformer-and-self-attention–based architectures
that have been shown to be capable of capturing
global dependencies[VSP+23].

In this work it has been studied how Transformer-
based architectures[VSP+23], leveraging self-
attention to model global context, can be applied to
simple guitar tablature transcription and evaluated
the proposed novel architecture against baseline
methods. The main research question of this paper
is: ”How well can a Hybrid-Transformer model re-
solve string-fret mappings?”. A tailored Transformer
model that integrates spectrogram-based encoders
with sequence-to-sequence decoding strategies is
proposed, benchmarking performance is evaluated
using transcription and pitch accuracy, and mean
opinion score of experienced guitarists. The con-
ducted experiments explore the impact of using
pretrained ResNet[HZRS15] encoders as spectro-
gram feature extractors, and Transformer models
with different numbers of self-attention layers and
hidden dimensions. A grid-search for the tuning
hyperparameters, such as learning rate, batch size,
and dropout rate, has been performed in order to de-
termine the optimal configuration for the proposed
architecture.
The rest of this paper is organized as follows: Sec-
tion 2 discusses related work, focusing on founda-
tional papers, convolutional models, domain adap-
tation techniques, the Conformer architecture, and
available annotated guitar datasets. Section 3 pro-
vides essential background information on guitar
tablature, evaluation metrics, and the Constant-
Q Transform spectrograms[SK10]. Section 4 con-
ceptually discusses the baseline models that func-
tion as the most direct comparison to the proposed
model. Section 5 introduces the proposed model,
NoodleGP, including its research motivation, archi-
tectural details, and full implementation. Section 6
describes the GuitarSet[XBP+18] dataset, the ap-
plied data preprocessing, augmentation strategies,
validation pipeline, dataset wrapper implementa-

1

tion, and dataset splitting methodology. Section
7 describes the experimental setup including the
training loop, the performed grid-search, and re-
sults of the hyperparameter tuning. In section 8 the
experimental results are described, discussed and
compared against the baseline, the user evaluation
results are also shown and discussed. Finally, Sec-
tion 9 describes the conclusions and contributions,
discusses limitations, and proposes directions for
further research.

2 Related Work

A wide range of deep-learning methods have
been developed for automatic tablature transcrip-
tion on the GuitarSet dataset, ranging from
frame-level CNN models, to attention-based note-
level systems, continuous-pitch estimators, domain-
adaptation pipelines, and semi-supervised frame-
works leveraging unlabeled audio. Before the ad-
vent of widely available neural networks, other
now classical techniques, such as SVMs[PE06],
HMMs[BTSB12][BKTB12], etc, were used to lay
the foundation of a complex and interesting field of
audio processing.

2.1 Seminal Papers

Several influential works have shaped automatic gui-
tar transcription through various innovative meth-
ods. Below we will discuss a few of the papers that,
while by today’s standards are outdated, shaped
the field substantially.
Poliner and Ellis[PE06] introduced supervised tran-
scription using frame-wise Support Vector Machines
(SVMs) combined with a Hidden Markov Model
(HMM) for temporal continuity. This approach pio-
neered multi-label classification for music transcrip-
tion, influencing guitar-focused methodologies.
Barbancho et al.[BTSB12] leveraged guitar-specific
inharmonicity analysis to determine precise fret and
string combinations, directly generating accurate
tablature. This method explicitly tackled fret as-
signment using guitar acoustics.
Barbancho et al.[BKTB12] extended their work to
chord sequences using an HMM framework, incor-
porating multipitch analysis, chord transition gram-
mar, and playability constraints to optimize realistic

finger movements.
Yazawa et al.[YSN+13] enhanced transcription real-
ism by incorporating explicit playability constraints
using dynamic programming as the core technique.
This approach ensured physically feasible fingerings,
significantly improving transcription accuracy.

2.2 Convolutional Approaches to Auto-
matic Tablature Transcription

Recent advances in automatic guitar tablature
transcription have predominantly utilized convo-
lutional neural networks (CNNs) to process au-
dio inputs and predict corresponding string-fret
combinations. Notable models in this domain in-
clude TabCNN[WK19], Tab-Estimator[KHT22],
and FretNet[CHK23], each introducing distinct ar-
chitectural innovations while operating within the
convolutional paradigm.

TabCNN[WK19] employs a series of 2D convo-
lutional layers to analyze CQT-spectrograms of
guitar audio, directly estimating the fret posi-
tions for each string at every time frame. Building
upon this foundation, Tab-Estimator[KHT22] inte-
grates Conformer-style self-attention mechanisms
and a beat-informed quantization layer, facilitat-
ing both frame-level and note-level tablature pre-
dictions through a multi-task learning approach.
FretNet[CHK23] diverges by framing tablature tran-
scription as a continuous pitch estimation problem,
utilizing a dual-head output to predict discrete acti-
vations and relative pitch deviations, complemented
by an onset-detection module for event grouping.

Despite their contributions, these models share in-
herent limitations characteristic of convolutional ar-
chitectures. CNNs primarily capture local patterns
due to their constrained receptive fields, necessi-
tating deeper networks or dilated convolutions to
model long-range dependencies—approaches that
can increase computational complexity and the risk
of overfitting. In contrast, Transformer-based archi-
tectures, with their self-attention mechanisms, offer
a more efficient means of capturing global context
and long-term temporal relationships across entire
spectrogram sequences, presenting a promising alter-
native for future developments in guitar tablature

2

transcription.

2.3 Groove modeling

A particularly relevant study is “Automatic Com-
position of Guitar Tabs by Transformers and
Groove Modeling”[CHHY20], which employs a
purely Transformer-XL architecture—12 layers deep
with 8 attention heads and roughly 41 million pa-
rameters—to generate fingerstyle guitar tablature.
By extending the usual MIDI event vocabulary
to include STRING, FRET, TECHNIQUE, and
a learned GROOVE token (clustered onset-density
patterns), the model is explicitly encouraged to
capture rhythmic “groove” alongside accurate pitch
and fingering assignments. In objective tests, groove-
aware variants achieved nearly 80% accuracy on bar-
level onset patterns, and in listening studies their
continuations earned mean-opinion scores almost
indistinguishable from human-composed excerpts,
demonstrating that sufficiently deep Transformer
architectures can excel at both precise transcription
tasks and nuanced rhythmic modeling.

Domain Adaptation[RED24]

An alternative strategy for guitar transcription in-
volves adapting high-resolution piano transcription
models to guitar audio. This process entails align-
ing the activations of a pre-trained piano model
with guitar scores using time-warping techniques,
thereby generating pseudo-labeled guitar data for
fine-tuning. This approach leverages the temporal
precision of piano models, particularly their accu-
rate onset detection capabilities. However, it’s im-
portant to note that the evaluation metrics used in
this context differ from those commonly employed
in guitar transcription studies. Specifically, onset-
only F1 scores assess whether predicted note onsets
occur within a specified time window of the ground
truth, without considering pitch, string, or fret accu-
racy. In contrast, tablature F1 scores evaluate both
the timing and the correctness of string-fret assign-
ments. Consequently, direct comparisons between
onset-only and tablature F1 scores are not mean-
ingful. Nonetheless, the strong temporal detection
performance of piano-trained models when applied
to guitar audio suggests that integrating their on-

set detection capabilities with guitar-specific pitch
and fingering estimation could enhance the overall
accuracy of guitar tablature transcription systems.

Conformer

In the Conformer[GQC+20] architecture was pro-
posed, a hybrid of convolutional neural networks
with self-attention layers for end-to-end speech
recognition. On the LibriSpeech benchmark, an es-
tablished benchmark for automatic speech recogni-
tion (ASR) models, Conformer based ASR-models
established new state-of-the-art word error rates,
demonstrating that combining CNNs and attention
yields significant gains over pure Transformer or
CNN models. The guitar-tablature transcription
pipeline proposed in this work similarly aims to
leverage the complementary strengths of CNNs and
transformer architectures.

2.4 Annotated Guitar Datasets

DadaGP [SKC+21] is a large symbolic guitar corpus
comprising 26 181 song scores in GuitarPro formats
(gp3–gp5) spanning 739 musical genres. It provides
an encoder/decoder that converts these files into an
event-based token sequence—encoding note on/off
events, string/fret assignments, tempo changes, and
expressive techniques—enabling sequence-model
training for generative and transcription tasks.
The IDMT-SMT-Guitar [KME23] dataset contains
recordings from seven electric and acoustic guitars
under varying pickup settings, including isolated
notes, chords, short licks, and polyphonic excerpts.
Each audio file is paired with XML annotations
of pitch, string and fret positions, plucking style
(finger, pick, mute), and expressive effects such as
bends and vibrato, supporting fine-grained super-
vised transcription research.
GAPS [RGED24] offers 14 hours of real classical gui-
tar performances by over 200 players, each audio
file precisely aligned to high-resolution MIDI “score”
data and accompanied by performance video. This
diverse corpus—freely available under a permissive
license—provides note-level timestamps for super-
vised and zero-shot transcription benchmarking.
EGDB [CHH+22] contains 240 tablature excerpts
played on an electric guitar and captured via hexa-

3

phonic pickup, then rendered through six amplifier
presets to total 118 minutes of audio. Each record-
ing is matched with detailed tablature annotations,
enabling evaluation of transcription models under
varied timbral conditions.
SynthTab[ZZCD24] synthesizes over 6700 hours of
guitar audio across 15 211 tracks and 23 timbres
by rendering DadaGP’s tokenized tablature with
commercial guitar plugins. It preserves original fin-
gerings and technique markings, producing vast
pseudo-labeled data.
AnimeTAB [ZJX22] is a MusicXML fingerstyle gui-
tar dataset focusing on anime and video-game sound-
tracks, comprising 412 full tracks and 547 structural
clips (intro, verse, chorus, bridge). It includes an
analysis toolkit for melody/bass extraction, key de-
tection, and chord labeling.
GuitarSet [XBP+18] was selected as the benchmark
dataset in this our own experiments, because it
is both widely used in atuomatic guitar tablature-
generation research, and publicly available under
an open license. The dataset is recorded with a
hexaphonic pickup that yields individual string
signals, and richly annotated with time-aligned
string/fret positions, pitch contours, chord labels,
beats/downbeats, and playing style metadata. Its
widespread adoption in the guitar transcription re-
search community provides a well-established base-
line for comparison and reproducibility, ensuring
that our results can be meaningfully benchmarked
against prior research.

3 Fundamentals

In this section we introduce the fundamental con-
cepts for defining the problem of the guitar tran-
scription task. Furthermore, we introduce the fun-
damental building blocks of the proposed solution.
This includes integral concepts, the evaluation
metrics used to compare the performance of the
proposed method are defined, and methods used in
this work.

Guitar Tablature At the root of the problem lies the
subject of the transcription itself. As opposed to
the musical notation most are familiar with, guitar
tablature is a form of musical notation indicating

instrument finger placement, rather than the played
pitch. Each line represents one of the guitar’s six
strings, and numbers on the lines denote where on
the neck of the guitar to press. The combination of
string and pressure point is a fret, small metal bars
that bind the string to a specific pitch. An example
of the notation is depicted in Figure 1. The reason
this form of notation is used as the standard for
most guitarists, is that a guitar has several ways of
playing the same pitch. For instance, the ’E’ note
can be played on five different locations on the
guitar, making it potentially difficult to intuitively
tell which one would need to be played when given
classical musical notation. Another way of phrasing
this, is to say that the problem of deciding where
to place your finger on the guitar is inherently
ambiguous.

Figure 1: Example comparison between sheet music
and guitar tablature (Tab), where each horizontal
line represents a string.

Perfomance measures. To measure the performance
of the model through experimentation, as well as
to be able to compare to the baseline methods,
performance measures for tablature transcriptions,
precision, recall, F1 and tablature disambiguation
rate (TDR) as defined in TabCNN[WK19] are used.

The guitar used in GuitarSet[XBP+18] is capable
of producing 120 different string-fret combinations,
calculated by multiplying the 6 strings by the fret-
count (20). These string-fret combinations account
for a total of 44 different pitches. Each training
instance consists of two items. First a so-called
”frame”, which is a small excerpt of larger annotated
audio segments which contains the notes played in
that time-window, as well as the information of
when which notes are played where on the guitar.
Second it contains note-level data, a singled out note
of varying duration with the pitch and string-fret

4

combination. The training instance initially con-
tains only the audio segment of the instance (in
the form of a constant-Q Transform spectrogram
of the frame and note), after prediction the model
compares it to the ground truth. The test instances
contain only the audio segment, and are not shown
the corresponding annotation. e is a vector of all
ones, Z denotes a matrix of N × 120, where the 120
comes from the total amount of string-fret combina-
tions since there are 6 strings and 20 frets per string,
Zgt is the matrix containing the ground truth, Zpred

is the matrix containing the predictions, N is the
amount of testing frames for this specific instance,
⊙ denotes element-wise multiplication, and finally
T denotes the transpose operator.
Tablature precision, denoted as ptab, is defined in Eq
1. It is the ratio between the number of correctly
identified pitches (numerator) and the total num-
ber of pitches (denominator), measuring how often
identified pitches are actually correct.

ptab =
eT (Zgt ⊙ Zpred)e

eTZprede
(Eq 1)

Tablature recall, denoted as rtab, is defined in Eq
2. It is the ratio between the number of correctly
identified string-fret combinations and the the to-
tal number string-fret combinations in the ground
truth, measuring how often the model manages to
predict string-fret combinations actually present in
the signal.

rtab =
eT (Zgt ⊙ Zpred)e

eTZgte
(Eq 2)

Tablature F-measure, denoted as ftab, is defined in
Eq 3. It is the harmonic mean of tablature precision
and recall, measuring the overall performance of the
model when it comes to predicting tablature.

ftab =
2ptabrtab
ptab + rtab

(Eq 3)

Tablature Disambiguation Rate, denoted as TDR, is
defined in Eq 4. It is the ratio between the total
number of correctly predicted string-fret combina-
tions and the total number of correctly predicted
pitches, measuring how often correctly predicted
pitches are assigned the correct tablature, in other
words, how often the pitches are assigned the cor-
rect string-fret combination option. Y denotes a

matrix of N × 44, where the 44 represents the total
unique pitches a guitar can produce, again gt and
pred refer to matrices containing the ground-truth
and predicted values.

TDR =
eT (Zgt ⊙ Zpred)e

eT (Ygt ⊙ Ypred)e
(Eq 4)

Constant-Q Transform (CQT) Spectrogram[SK10],
is a spectral analysis technique that, unlike the
Short-Time Fourier Transform’s fixed linear fre-
quency bins, uses geometrically spaced frequency
bins whose bandwidths grow with frequency, yield-
ing a constant ratio of center frequency to band-
width (the “Q” factor) across all bins. This design
aligns more naturally with musical pitch perception,
each octave is subdivided into the same number
of bins so that for instance, the distance between
A4 and A5 occupies the same number of bins as
between C5 and C6.

In practice, a CQT-spectrogram of a guitar record-
ing will display time on the horizontal axis, loga-
rithmically spaced pitch bins on the vertical axis,
and the magnitude of each bin’s energy as intensity,
giving a clear, musically meaningful depiction of
harmonic content over time.

The CQT-spectrogram has proven to be
highly effective in previous research on the
subject[KHT22][WK19][CHK23], therefore we
adopt it in our audio-preprocessing stage.

Figure 2: Example CQT spectrogram of one
of the GuitarSet audio files (00 BN1-129-
Eb comp mic.wav) and its harmonics, x-axis
represents the note in frequency, the y-axis denotes
time, the brightness represents the intensity of the
note-frequency and its harmonics in decibels.

5

4 Baseline methods

In this section we discuss the baseline methods used
in our experiments, and their conceptual differences
to NoodleGP. We discuss the methods in chronolog-
ical order, starting with TabCNN[WK19], then Tab-
Estimator[KHT22], and finally FretNet[CHK23]. In
our experiments we compare the performance of
our proposed network NoodleGP to these baselines.

TabCNN [WK19] employs a lightweight convolu-
tional neural network to estimate, for each fixed-
length Constant-Q Transform window, independent
string-level fret classes, capturing local spectral pat-
terns effectively but lacking mechanisms to model
long-range temporal dependencies across frames. Be-
cause convolutional kernels have a limited receptive
field, deep or dilated layers are required to incorpo-
rate broader context, which increases computational
cost and heightens overfitting risk on datasets of
modest size such as GuitarSet (360 excerpts, 30 s
each). This local inductive bias also offers no explicit
mechanism for enforcing fingering consistency across
nonadjacent notes, leading to occasional physically
implausible string-fret assignments when context
spans multiple musical phrases.

Figure 3: TabCNN[WK19] global model architec-
ture. Figure adapted from the TabCNN paper.

Tab-Estimator[KHT22] integrates self-attention (in
a Conformer-inspired block) with beat-informed
quantization in a multi-task framework that jointly
predicts frame-level and note-level outputs, thereby
capturing both local and global dependencies and
aligning predictions with musical meter. Beat-
informed quantization ties note predictions to a
metric grid, improving timing accuracy in strict-
tempo performances but risking misalignment on
rubato passages or recordings with unreliable beat
annotations. The explicit modeling of global interac-
tions enhances consistency of string-fret assignments
across phrases, but the quadratic complexity of self-
attention and dependency on beat tracking can
increase runtime and limit robustness in real-time
or noisy scenarios.

6

Figure 4: Tab-estimator[KHT22] pipeline. Figure
adapted from the Tab-Estimator paper.

The convolutional stack of tab-estimator consists
of several convolutional blocks, followed by max-
pooling, dropout layers and a linear layer.

Figure 5: Tab-estimator[KHT22] convolutional
stack. Figure adapted from the Tab-Estimator pa-
per.

The convolutional blocks within the convolutional
stack consist of a 2 dimensional convolutional layer,
followed by batch-normalization, and finally a non-
linear layer, that being a ReLu activation function.

Figure 6: Tab-estimator[KHT22] convolutional
block. Figure adapted from the Tab-Estimator pa-
per.

FretNet[CHK23] advances beyond discrete fret clas-
sification by predicting continuous-valued pitch
contours anchored to string-fret combinations, en-
abling representation of expressive techniques such
as bends and vibrato, and grouping these streams
into note events via onset detection and clustering.
Continuous-valued outputs offer finer pitch trajec-
tories but may propagate ground-truth annotation
noise unless robust clustering and smoothing are

7

applied. The dual-head architecture also yields com-
petitive tablature-estimation metrics yet introduces
additional inference complexity to enforce playabil-
ity constraints and manage clustering artifacts.

Figure 7: Fretnet[CHK23] model architecture. Fig-
ure adapted from the FretNet paper.

The proposed Transformer–CNN hybrid architec-
ture leverages a pretrained ResNet backbone to ex-
tract local spectral–temporal features and employs
sinusoidal positional encodings with multi-head self-
attention to integrate global context, striking a bal-
ance between efficient local pattern extraction and
comprehensive sequence modeling. While this hy-
brid approach benefits from parameter efficiency
relative to pure Transformers and improved contex-
tualization compared to CNN-only models, it may
still face challenges in handling out-of-distribution
audio variations and extreme expressive techniques
without further domain adaptation or data aug-
mentation. Continuous efforts in domain adapta-
tion—such as aligning piano-trained models to gui-
tar via score-activation matching—offer promising
directions to enhance generalizability of these tran-
scription systems.

5 NoodleGP

This chapter details our novel proposed method
for automatic tab transcription NoodleGP, con-
sisting of a ResNet[HZRS15] CNN, functioning

as an encoder, and a Transformer leveraging self-
attention[VSP+23], as depicted in Figure 10.

5.1 NoodleGP Detailed Architecture

NoodleGP: CNN Module. For the CNN module,
the model utilizes a pre-trained multi-layer CNN,
namely ResNet[HZRS15] is used. Resnet’s modular
design includes variants such as ResNet-18 (where
the 18 refers to the amount of learnable layers),
all the way up to ResNet-152, allowing systematic
exploration of model capacity, depth, and perfor-
mance in alignment with computational constraints.
The bottleneck residual blocks in deeper ResNet
variants utilize 1× 1 convolutions to compress and
then expand feature dimensions, reducing parame-
ter count and computational cost without sacrificing
representational power. With ResNet being trained
on datasets such as ImageNet-1k, which consists of
over 1 million training images, the already trained
weights have proven to be widely applicable to
different tasks. Finally, its hierarchical, multi-scale
feature maps capture both fine-grained details and
broader spectral-temporal patterns, providing ef-
fective embeddings for the subsequent Transformer
modules.

Due to memory constraints and practical experimen-
tal considerations, ResNet-18, the smallest ResNet
variant was chosen. ResNet-18 begins with a 7×7
convolutional layer comprising 64 filters, stride 2,
and padding 3, which reduces the input resolution
from 224×224×3 to 112×112×64. A following 3×3
max-pooling layer (stride 2, padding 1) then yields
56×56×64 feature maps.
The main body of ResNet-18, depicted in Figure 8
consists of four stages (conv2 x through conv5 x),
each containing two “basic blocks.” Every basic
block comprises two 3×3 convolutional layers, each
followed by batch normalization and ReLU activa-
tion, preserving the same number of channels within
the stage. In stages where spatial downsampling
occurs (e.g., transitioning from 56×56 to 28×28),
the first convolution within the block applies stride
2, and the identity shortcut employs a 1×1 pro-
jection convolution to match the doubled channel
dimension (e.g., from 64 to 128). Subsequent stages
follow this pattern, doubling filters to 256 and 512

8

in conv4 x and conv5 x respectively. The last layer
(layer conv4 x) is unfrozen from the start, to allow
for the model to be fine-tuned to better extract
features from the spectrograms.

Figure 8: ResNet-18[HZRS15] pipeline.

ResNet’s modular architecture scales from ResNet-
18 up to ResNet-152, allowing systematic explo-
ration of model capacity and depth under compu-
tational constraints. In deeper variants, bottleneck
residual blocks introduce additional 1×1 convolu-
tions to first compress and then expand feature
dimensions, further reducing parameter count and
computational cost without sacrificing representa-
tional power. ResNet also benefits from extensive
community support and availability of pretrained
weights in frameworks such as PyTorch and Ten-
sorFlow/Keras, facilitating rapid prototyping and
reproducibility. Trained on the ImageNet-1k dataset,
which contains approximately 1.28 million training
images, these pretrained weights have demonstrated
broad applicability across diverse vision tasks. Fi-
nally, ResNet’s hierarchical, multi-scale feature
maps capture both fine-grained details and broader
spectral-temporal patterns.

NoodleGP: Transformer Module. For the Trans-
former module, see Figure 9, the encoder–decoder
Transformer framework as described in ”Atten-
tion Is All You Need”[VSP+23] was selected.
This choice was motivated by its multi-head self-
attention mechanism, which excels at modeling
long-range dependencies across entire sequences,

something which reasonably seemed to be essential
for capturing the intricate yet repeating patterns
found in music theory. Its easily parallelizable
architecture[VSP+23](abstract) that facilitates full
use of modern GPU hardware to accelerate train-
ing made experimentation efficient and fluid. The
Transformer’s configurable depth, number of atten-
tion heads, and feed-forward dimensions allowed me
to systematically vary model capacity and study
its impact on transcription performance. The well-
documented Pytorch implementation facilitated the
integration with the CNN-encoder.

In our instantiation, seen in Figure 9 the Trans-
formerModule uses an embedding dimension of 1024
It applies 8 parallel attention heads. We employ 2
encoder layers and 6 decoder layers, as the ResNet
is the main encoder of the architecture. Each layer’s
position-wise feed-forward network has a size of
4096. The values for the embedding dimension (ED)
and feed-forward network (FFN) were chosen so
that the FFN is 4 times as large as the ED, as this
is recommended by the authors of ”Attention Is All
You Need”[VSP+23]. The ED value was chosen to
maximize the depth within the memory and time
constraints. The 6 decoder layers and the head-
count were chosen as this is also the discussed size
in ”Attention Is All You Need”, the 2 encoder layers
were chosen as the ResNet-18 encoder functions as
the encoding, as well as to speed up inference.

NoodleGP: Positional Encoding Module. For the
Positional Encoding module, see Figure 9 the
fixed sinusoidal scheme from ”Attention Is All You
Need”[VSP+23] was adopted, which injects token
order into the Transformer without introducing any
extra learnable parameters by relying solely on de-
terministic sine and cosine functions. This approach
keeps the model compact and reduces the risk of
overfitting, while its continuous formulation allows
seamless transition to sequence lengths beyond those
seen during training. The sinusoidal basis also em-
beds a built-in relative-position bias, enabling the at-
tention mechanism to infer distances between tokens,
enabling the model to capture the repeating pat-
terns in musical sequences. Because the transitions
between notes follow a pattern (some notes sounding
harmonious and some not), the chances of a certain

9

note being next in a series of notes isn’t equal for
all. By registering the full positional matrix as a
non-learnable buffer, the encoding adds negligible
computational and memory overhead. Integration
with PyTorch’s native API is also straightforward, a
simple slice-and-broadcast in the forward pass aligns
perfectly with inputs of shape (S, B, D), and be-
cause the encodings are fixed at initialization, every
experiment remains fully reproducible without re-
liance on random seeds for positional weights. These
characteristics make sinusoidal positional encoding
an ideal complement to the ResNet-derived fea-
ture embeddings and the standard encoder–decoder
Transformer described above.

Figure 9: Pipeline of the ResNet-18 encoding
through the Positional Encoding module, to the
transformer.

5.2 NoodleGP Implementation

In this subsection, an overview of the end-to-end
structure of the ResNet–Transformer hybrid model
is given, illustrating how the individual modules in-
troduced earlier are connected to form the complete

10

transcription pipeline.

Figure 10: End-to-end transcription pipeline. Note:
The transformer uses an embedding dimension of
1024, it applies 8 parallel attention heads, employs
2 encoder layers and 6 decoder layers, each layer’s
position-wise feed-forward network has a hidden
size of 4096.

1. Backbone Extraction: Input spectrogram

tensors of shape (B,C,H,W) are passed
through a ResNet-18 encoder (all layers ini-
tially frozen), yielding feature maps of shape
(B, 512, H ′,W ′).

2. Finetuning: Along with the transformer, the
script unfreezes backbone.layer4 and adds
its parameters to the optimizer at full learning
rate, enabling higher-level CNN features to
be fine-tuned.

3. Sequence Projection: The feature maps are
mean-pooled over the height dimension to pro-
duce a sequence of length S = W ′, then each
1024-dimension vector is linearly projected to
the Transformer model dimension dmodel and
augmented with sinusoidal positional encod-
ings.

4. Transformer Encoder–Decoder: A cus-
tom TransformerModule processes the source
sequence (with padding mask) through con-
figurable encoder and decoder layers; the de-
coder re-uses encoder outputs directly, with
no separate token embedding.

5. Dual Classification Heads:

• Frame Head: Multi-layer-perceptron
(MLP) (Dropout → 128 → ReLU →
Dropout → 6× 21) applied per encoder
time step, yielding per-frame softmax log-
its over 21 frets for each of the 6 strings.

• Note Head: Encoder outputs are deci-
mated via linear interpolation to a fixed
nnotes length, then the same MLP struc-
ture predicts per-note string–fret soft-
max distributions.

In short, NoodleGP-18 combines a lightweight, par-
tially unfrozen pre-trained ResNet-18 encoder with
a compact, sinusoidally-aligned Transformer to turn
spectrograms into temporally coherent token se-
quences, then uses dual MLP heads to output frame
and note-level string-fret predictions.

6 Data and Preprocessing

This section details our end-to-end preparation of
the GuitarSet dataset for transcription modeling.

11

We begin by converting hexaphonic recordings and
JAMS annotations into unified NPZ archives con-
taining time–frequency features and quantized tabla-
ture. Next, we describe the data augmentation used.
We then describe the wrapper for the NPZ files, a
custom QuantizedNpzDataset and DataLoader that
handles batching, padding, and tokenization. Fi-
nally, a reproducible 80/10/10 train/validation/test
split ensures consistent evaluation.

6.1 GuitarSet

GuitarSet is an annotated dataset for guitar tran-
scription, which leverages hexaphonic pickup record-
ings to automate note-level annotation and sup-
port detailed analysis of polyphonic guitar per-
formance. It comprises 360 audio excerpts, each
approximately 30 seconds long, captured from six
professional guitarists performing identical sets of
30 lead sheets in two modes—comping and solo-
ing—resulting in a diverse collection of playing
styles and textures. The 30 lead sheets themselves
span five musical styles (Rock, Singer–Songwriter,
Bossa Nova, Jazz, Funk), three chord progres-
sions (12-bar Blues, Autumn Leaves, Pachelbel’s
Canon), and two tempi (slow, fast), with each ex-
cerpt’s key sampled uniformly at random to max-
imize tonal variety. Audio was captured simulta-
neously via a hexaphonic pickup—providing sep-
arate signals for each string, yielding three ver-
sions per excerpt: the raw six-channel “hex” record-
ing, an interference-reduced “hex cln” version, and
a mono “mic” mix for reference. See table 6.1
for a breakdown of the attributes of three files
”00 BN1-129-Eb comp mic.wav” (1), ”02 Jazz3-
150-C comp mic.wav” (2), and ”00 Rock2-85-
F solo mic.wav” (3).

File Style Tempo (BPM) Key Mode

1 Bossa Nova 1 129 Eb Comp

2 150 C Comping

3 Rock 2 85 F Solo

Table 1: Track specifications for three randomly se-
lected GuitarSet excerpts.

Each excerpt is accompanied by a JAMS file encod-
ing 16 annotation tiers, including six per-string pitch
contours, six MIDI note tracks, chord labels (both

instructed and performed), beat and downbeat posi-
tions, tempo, and key information, all time-aligned
to the audio stream. By combining automated hexa-
phonic signal separation with JAMS’ JSON-based
schema, GuitarSet provides a scalable annotation
pipeline that dramatically reduces manual effort
while ensuring high alignment accuracy between au-
dio and symbolic data. Because of the multimodal-
ity, and open-source nature of this resource, Gui-
tarSet has become a benchmark for models of gui-
tar transcription and analysis, underpinning studies
in note-level transcription, chord recognition, and
performance modeling. The flattened note distri-
bution over the 21 quantized fret-classes is highly
imbalanced (see counts above). The “no-note” class
(Class 20) overwhelmingly dominates, accounting
for 71.71% of all note-slots, reflecting the fact that
most time-bins contain no active note. Among the
remaining 20 fret classes, Class 6 (4.07%), Class
4 (3.32%), and Class 3 (3.19%) are the most fre-
quent, while mid-range pitches (e.g. Classes 0–2 and
5–9) each occupy roughly 1.2–2.8%. The tail classes
(Classes 11–19) are extremely rare (together <1%),
with some (Classes 16–19) below 0.01%.

Figure 11: Class distribution histogram of GuitarSet

6.2 Data preparation

The JAMS files are first converted into MIDI format
using the tab-estimator conversion toolkit[KHT22],
and the resulting MIDI sequences are then aligned
with their corresponding WAV files to produce
unified NPZ archives. Each NPZ file contains

12

time–frequency representations (e.g., CQT, Mel
spectrograms) alongside quantized tablature and
onset data. During this process, MIDI tracks are
automatically quantized to the nearest semitone
grid to ensure consistent note timing and improve
transcription accuracy. Finally, each NPZ is sub-
divided into bar-level segments, yielding a larger,
bar-aligned dataset that facilitates training on man-
ageable sequence lengths.

6.3 Datawrapper

To facilitate architectural tweaks and training, we
developed a custom QuantizedNpzDataset wrap-
per and accompanying DataLoader. The methods of
the datawrapper were adapted from Tab-Estimator
to work with a Transformer[VSP+23] architecture.
The dataset wrapper loads the instances, which
come in the form of NPZ files, collections of NumPy
arrays that can be accessed as a dictionary, stacks
selected feature channels into tensors, and tokenizes
quantized tablature into integer sequences. A tai-
lored collate function pads input feature maps and
target sequences to the same length within each
batch, producing masks for teacher-forcing and at-
tention. This modular design cleanly separates data
preparation from model logic and supports optional
transforms for further augmentation or normaliza-
tion. The datawrapper allows for seeding, and like
Tab-Estimator[KHT22], it uses random.shuffle(),
meaning the splits are easily reproducible and com-
parable.

6.4 Datasplits

Using a custom dataset splitter the full
QuantizedNpzDataset is partitioned into train-
ing, validation, and test subsets using a repro-
ducible random split. First, the configuration file is
loaded to obtain the NPZ directory and DataLoader
parameters. The full dataset is instantiated and
its length N determined. Given fractional splits
(αtrain = 0.8, αval = 0.1, αtest = 0.1) summing to
1, the integer subset sizes are computed. A fixed
random seed ensures the splits are deterministic
across runs. Next, PyTorch’s random split utility
allocates dataset indices into the three subsets.
Each resulting subset is wrapped in a DataLoader

that applies the same batch size, worker count,
and padding collate function used in training. The
training loader is configured with shuffling enabled
to introduce stochasticity in mini-batch selection,
while the validation and test loaders have shuffling
disabled to ensure consistent evaluation. Pinned
memory is enabled for faster host-to-device trans-
fers. This modular splitting and loader construction
supports easy experimentation with different split
ratios, batch settings, and ensures that model se-
lection and final reporting are based on held-out
data.

7 Experiments

To assess NoodleGP’s transcription performance, we
conduct a series of controlled experiments. First, we
establish our baseline by evaluating leading guitar-
tab transcription models on GuitarSet. Next, we
detail the experimental training setup, including op-
timizer and scheduling choices. Finally, we describe
our grid-search procedure for hyperparameter tun-
ing and summarize its outcomes.

7.1 Baseline

To contextualize the experimental results, the lead-
ing automatic tablature transcription models evalu-
ated on GuitarSet are chosen as the baseline. This
set comprises the CNN-only approaches TabCNN
[WK19] and FretNet [CHK23], together with the hy-
brid, Conformer-inspired Tab-Estimator [KHT22].
Including all three models ensures coverage of purely
convolutional architectures as well as those integrat-
ing self-attention mechanisms.
Particular emphasis is placed on Tab-Estimator due
to its fully public, well-documented codebase and
straightforward execution pipeline, which enable lo-
cal verification of baseline results. To guarantee a
fair comparison, the original six-fold cross-validation
protocol from GuitarSet is adopted: in each fold,
80% of excerpts serve as training data, 10% as valida-
tion for hyperparameter tuning, and the remaining
10% as test data.
Applying this identical six-fold scheme to both
the baseline models and the proposed Trans-
former–CNN hybrid ensures that evaluation met-
rics—such as frame-level F1, note-level F1, and

13

playability rate—are directly comparable. Any ob-
served performance differences can thus be at-
tributed solely to architectural and training strat-
egy innovations rather than to variations in dataset
splits or evaluation procedures.

7.2 Experimental Training Setup

The training loop’s parameter are mainly controlled
from a dedicated configuration files, but command-
line arguments are parsed using Python’s argparse
module to allow run-time overrides of hyperpa-
rameters (e.g., epochs, learning rate, batch size,
etc.). Model parameters requiring updates are op-
timized with the AdamW algorithm, which decou-
ples weight decay from gradient updates to im-
prove the convergence stability. To increase sta-
bility further, a composite learning-rate sched-
ule was implemented. An initial linear warm-up
phase using LinearLR gradually increases the learn-
ing rate over a fixed number of iterations, fol-
lowed by CosineAnnealingWarmRestarts to pe-
riodically anneal and restart the rate, encapsu-
lated within SequentialLR for smooth transitions.
During each training batch, the model computes
token logits that are compared to ground-truth
sequences via CrossEntropyLoss (with padding
indices ignored) to produce a scalar loss. Gradi-
ents are back-propagated and then clipped using
clip grad norm to a maximum norm of 1.0, pre-
venting exploding gradients and ensuring stable up-
dates. After each optimizer step, the learning-rate
scheduler is advanced to adjust the rate dynami-
cally according to the defined schedule. At the end
of every epoch, a validation pass is run with gra-
dients disabled (via torch.no grad()) to compute
the validation loss on unseen data, facilitating effi-
cient memory use and faster evaluation.

7.3 Grid Search for Hyperparameter Op-
timization

To identify the best combination of training set-
tings for the model, an exhaustive 3-fold validated
grid search is performed over five key hyperparam-
eters, with a fixed epoch count and early stop-
ping for efficiency purposes. The splits for train-
ing/validation/test were 0.8, 0.1 and 0.1 respec-

tively. All permutations of the variables are tested
on the same three folds, meaning each hyperparam-
eter combination sees the exact same training and
test-sets. To achieve this, three seeds (42, 43, 44),
chosen at random, are set to be the folds’ seeds. All
values in the grid were selected based on preliminary
manual testing, after which only remotely viable
options were retained. The epoch count was chosen
based on earlier simpler grid searches, in which no
run experienced any benefits beyond this range on
the testing (read shallow) depth of the model. The
class-weighting flag refers to an integer flag that
selects the weighting for the cross entropy loss, 0 de-
noting no weights at all, 1 meaning inverse weighting
based on class instance count giving higher weights
to classes that are less represented in the training
set, 2 meaning inverse weighting with clamped val-
ues. For the clamped values, manual testing was
done over a longer period of development. Due to
time constraints, these values are not included in
the grid search, and are fixed to (0.1, 600). Due to
the imbalance of the dataset, the weights seem to
provide some speedup in generalization, though end
up converging to around the same F1 values.

• Number of epochs: {250}

• Learning rate: {1e-5, 1e-4, 1e-3}

• Batch size: {16, 32, 64}

• Weight decay: {0, 1e-3, 1e-2}

• Dropout rate: {0, 0.1}

• Class-weighting flag: {0, 1, 2}

This yields a total of 162 unique configura-
tions. Each run is executed in its own di-
rectory (run 0, . . . , run 107) and the ex-
act command line is logged to a file named
according to its hyperparameter values (e.g.
e250 lr0.001 bs32 wd0.01 do0.1 cew1.txt).

To allow for efficient search, a shallower architec-
ture compared to the full-scale model is employed
during the grid-search, as well as the specific ResNet-
module[HZRS15] being kept at the shallowest avail-
able model, in order to accommodate hardware
constraints. This combined reduced depth lowers

14

memory footprint and speeds up each epoch, al-
lowing the script to evaluate more configurations
within a reasonable time frame. After training, each
model is evaluated on the validation set using the
precision, recall, F-measure and TDR. Models are
ranked primarily by the summed F1 scores of note
and frame and TDR to balance overall performance
and discovery reliability. The hyperparameter set
that maximizes these metrics while respecting the
computational constraints is selected for final eval-
uation and further experimentation.

7.4 Grid Search Results

To evaluate the results of the 3-fold cross-validated
grid search, we summed and averaged the summed
F1 scores across folds, then selected the model with
the highest mean summed F1. The best configura-
tion corresponded to Run 59:

• Learning Rate = 1e−4

• Batch Size = 16

• Weight Decay = 0

• Dropout = 0.1

• Class-weighting flag = 1 (Class-count
based inverted weights)

This configuration was then used for the training of
the final model.

Figure 12: Parallel-coordinates plot where each line
denotes a configuration. Each intersection with a
vertical axis denotes the specific value of that vari-
able. The line in red is Run 59.

8 Baseline Comparison

The metrics used for the baseline comparison were
chosen, as they have been widely used in related
research and the baseline methods, the metrics for
the evaluation are the ones as defined in section 3,
Fundamentals, as well as performing a 6-fold cross
validation on the entire dataset. For comparability
the same type of 6-fold cross validation was per-
formed as was done in both TabCNN[WK19] and
Tab-Estimator[KHT22], namely holding out 1 of the
6 guitarists featured on GuitarSet for testing, using
the other 5 for training, with a training/validation
ratio of 0.9. For the number of epochs, 250 was
still used, as a compromise between allowing time
for generalization, and efficiency. The final model
is trained on a transformer-depth of 1024, a feed-
forward depth of 4096, 2 encoder layers, and 6 de-
coder layers. The depth values were chosen as this
was the maximum transformer-depth that was pos-
sible to be used within the memory-constraints, the
feed-forward depth was chosen to be 4 times as large
as the transformer-depth, as this is recommended
by ”Attention Is All You Need”[VSP+23], the en-
coder and decoder layers were chosen as values lower
tended to under-perform, yet values higher caused
difficulties with the memory-constraints, and consid-

15

ering that the ResNet-CNN[HZRS15] functions as
the encoder, the model architecture is built around
a small encoder dimension.

8.1 Experimental Results

The models generated by the cross-validation were
then ran over the entirety of the dataset, and the
following table shows the results. The two tables
are split up based on Frame and Note. The P, R,
F1 and TDR refer to the Precision, Recall, F1 and
Tablature Disambiguation rate as defined in sec-
tion 3. The note-table contains only Tab-Estimator,
as TabCNN[WK19] and FretNet[CHK23] only re-
ported the frame-based scores. The numbers pre-
fixed by ± represent the standard deviation of
the scores, calculated over the 6 folds. NoodleGP
refers to the model described in the implementation,
whereas NoodleGP(s) refers to a smaller variant of
the model, with the depth of the model being re-
duced to 256 from 1024, the dimension of the FFN
being reduced to 1024 from 4096, the number of
encoder layers being reduced to 1 from 2, and the
number of decoder layers being reduced to 3 from
6. The s indicates the small variant, whereas the 34
indicates that ResNet34[HZRS15] was used instead
of ResNet18.

P R F1 TDR

Tab-Est-note
0.781
±0.031

0.777
±0.039

0.775
±0.029

0.919
±0.021

NoodleGP-note
0.242
±0.012

0.580
±0.022

0.341
±0.012

0.908
±0.009

NoodleGP(s)-note
0.239
±0.006

0.585
±0.021

0.337
±0.009

0.909
±0.006

NoodleGP(34)-note
0.236
±0.015

0.573
±0.031

0.334
±0.020

0.906
±0.009

NoodleGP(34s)-note
0.227
±0.011

0.573
±0.027

0.325
±0.014

0.906
±0.014

Table 2: Note-based Precision, Recall, F1 and
TDR of TabCNN[WK19] and the proposed method
NoodleGP.

P R F1 TDR

TabCNN-frame
0.809
±0.029

0.696
±0.061

0.748
±0.047

0.899
±0.033

Tab-Est-frame
0.789
±0.027

0.780
±0.040

0.781
±0.029

0.918
±0.020

FretNet-frame 0.801 0.669 0.727 Missing

NoodleGP-Frame
0.355
±0.035

0.797
±0.029

0.490
±0.035

0.937
±0.007

NoodleGP(s)-frame
0.352
±0.022

0.813
±0.031

0.491
±0.020

0.936
±0.008

NoodleGP(34)-frame
0.348
±0.033

0.791
±0.037

0.483
±0.037

0.933
±0.009

NoodleGP(34s)-frame
0.324
±0.029

0.782
±0.045

0.458
±0.036

0.935
±0.011

Table 3: Frame-based Precision, Recall, F1 and
TDR of TabCNN[WK19], Tab-Estimator[KHT22],
FretNet[CHK23], and the proposed method
NoodleGP.

The model’s precision is notably lower than that
of the baselines, even though its recall exceeds
theirs. In practical terms, this means the model is
predicting more liberally, detecting more of the true
fret positions, but also generating many incorrect
predictions. As a result, its overall F1 score falls
below the baselines’, driven down primarily by the
drop in precision despite the gain in recall. It can be
seen that the TDR metric lies substantially higher
than the precision, recall and F1. This is because
TDR measures the amount of correct string-fret
combinations, only for correctly identified pitches.
When the model does make a correct prediction,
it captures the exact string–fret combination most
the time. In other words, although correct predic-
tions are relatively rare, most of those predictions
pinpoint the true string and fret simultaneously.
Another reason is that string-fret combinations
are heavily skewed to certain frets (see Figure 11),
making the task easier for the models.

It can also be seen that the model’s performance
is higher for frame-level than note-level. For note-
level the model sees and attempts to identify a
single note-event, whereas with frame level it get
shown a small snippet of a larger piece. This im-
plies the model has learnt the relations between
the notes more than the individual pitches played.
Tab-Estimator’s note-level scores align with their
frame-level scores, having minimal differences on
the metrics. This aligns with the initial theory of

16

the transformer model being better at the temporal
relations between the notes, than at identifying the
individual notes, at which the CNNs excel.

The smaller model’s recall lies higher than the larger
model’s, and the precision and TDR are lower by
only a very small amount, implying the smaller size
better aligns with the size of the dataset, reducing
overfitting. The ResNet34 encoder also doesn’t seem
to improve performance on the dataset, providing di-
minishing returns. Larger ResNet-encoders couldn’t
be tested due to time and memory-constraints, and
as such are still a possible study.

In Figure 13 a heatmap is depicted showing the
predictions compared to the ground-truth, where
the y-axis represents a string-fret combination of
the ground-truth, and the x-axis represents the pre-
diction the model made for this specific pair. The
diagonal represents correct predictions, and any-
thing off of the diagonal represents an incorrect
prediction. In Table 4 the most common mistakes
are shown, with the number of times the model
made this specific mistake shown in the count col-
umn. The data shows that most of the mistakes
made are by a bias where the model predicts the
open fret of the correct string shifted up by 1. This
consistent miss prediction could be a result of bias
in the dataset, as a result of the small size.

Figure 13: Heatmap of paired mistakes

Rank (string, fret)gt (string, fret)pred Count
1 string 0, fret 6 string 1, fret 0 639
2 string 0, fret 7 string 1, fret 0 429
3 string 1, fret 8 string 2, fret 0 390
4 string 0, fret 8 string 1, fret 0 357
5 string 3, fret 4 string 3, fret 5 300
6 string 3, fret 4 string 3, fret 6 288
7 string 4, fret 5 string 4, fret 6 259
8 string 1, fret 6 string 2, fret 0 248
9 string 0, fret 5 string 1, fret 0 218
10 string 1, fret 9 string 2, fret 0 216
11 string 1, fret 5 string 2, fret 0 209
12 string 3, fret 4 string 3, fret 3 203
13 string 0, fret 0 string 1, fret 0 178
14 string 3, fret 6 string 3, fret 7 178
15 string 3, fret 8 string 3, fret 7 173

Table 4: Paired ground-truth - predicted, with
counts of the number of times the mistake was
made.

To visualize the way differences in string and fret
distances between the ground-truth and the predic-
tions, two histograms are featured below. Figure
14 shows the distance of strings between ground-
truth and predicted, whereas Figure 15 shows the
distance between ground-truth fret location and
predicted. Most of the mistakes made were in the
selection of the fret, as can be seen in Figure 14, as

17

the most common distance is 0, and 1 being the only
other distance. The errors made in fret selection
are more diverse, with most mistakes being off by
little, larger distances trailing off to a tail. Fret use
is very varied, being split over 21 different classes,
and though imbalanced towards open predictions,
the inverse weights cause this to be optimized to
predict all classes more equally. The string class has
less variance, as well as no direct weighting, and is
as such more sensitive to imbalance.

Figure 14: Histogram of string prediction distances.

The distance between ground-truth and predicted
for frets is more diverse

Figure 15: Histogram of fret prediction distances.

9 Conclusions and Further Re-
search

In this work, we proposed NoodleGP, a hybrid
ResNet–Transformer architecture for automatic gui-
tar tablature transcription. By combining a pre-
trained ResNet-18 backbone with multi-head self-
attention layers, NoodleGP leverages both local
spectral–temporal features and global sequence de-
pendencies. On the GuitarSet benchmark, our pro-
posed model achieved relatively low frame-level and
note-level F1 scores (0.341 and 0.490, respectively)

and demonstrated a Tablature Disambiguation Rate
of nearly 94% at the frame level, indicating that
when pitches are correctly identified, the model still
resolves string-fret assignments almost all the time.
These results, though substantially below state-
of-the-art CNN-only and self-attention-augmented
baselines, show that CNN-Transformers have the
ability to disambiguate tablature effectively.

9.1 Contributions

The results confirm that the hybrid approach can
learn meaningful fingering patterns under limited
memory conditions. Though only beating the base-
line in TDR and recall, some contributions were
made.

• Open-Source Hybrid Architecture: A complete
pipeline combining a ResNet-18 Encoder, with
Positional Encoding and a dual-headed Trans-
former.

• Targeted Tuning: We performed a focused
162-run grid search to pinpoint optimal hy-
perparameters (LR = 1e-4, BS = 16, Dropout
= 0.1, class-weighting), maximizing note-level
F and TDR under compute constraints.

• Comparative evaluation: A conceptual and
result-based comparison between the hybrid
architecture and related researches.

• Error-Driven Insights: Identified systematic
biases—open-string overprediction and one-
string shifts—via heatmaps and distance his-
tograms, guiding precise next-step improve-
ments.

9.2 Future work

While NoodleGP demonstrates the promise of a
ResNet–Transformer hybrid for guitar tablature
transcription, several avenues could be explored
to further enhance both accuracy and generality:

• Explore deeper CNN backbones. Con-
sider evaluating larger ResNet variants
(ResNet-50, or bottleneck-based ResNets
up to ResNet-152) to capture richer spec-
tral–temporal patterns and improve residual
feature learning.

18

https://github.com/SlumpYo/Noodle-GP/tree/main

• Explore Other CNN backbones. Con-
sider evaluating the performance of other
more modern pre-trained models such as
ConvNeXt[LMW+22].

• Adopt longer-dependency Transformer
variants. It may be beneficial to experiment
with Transformer-XL[DYY+19] like Groove
Modeling[CHHY20] does, or similar archi-
tectures that support segment-level recur-
rence, allowing attention over extended mu-
sical phrases without prohibitive memory
growth.

• Leverage larger or more diverse data

sources. One could pretrain on large pseudo-
labeled corpora (e.g., SynthTab[ZZCD24] or
DadaGP[SKC+21]) and fine-tune on high-
quality human-annotated sets, or integrate
additional guitar datasets (GAPS[RGED24],
EGDB[CHH+22], AnimeTAB[ZJX22]) to im-
prove generalization for deeper models.

• Develop novel augmentation strategies.
Beyond pitch-shifts and time-stretches, apply-
ing SpecAugment, mixup of different guitar
tracks, or physically informed audio modifica-
tions (e.g., simulating string damping or alter-
nate pickup EQ profiles) could enrich training
diversity.

19

References

[BF13] Gregory Burlet and Ichiro Fujinaga. Robotaba Guitar Tablature Transcription Framework.
In Proceedings of the International Society for Music Information Retrieval Conference.
International Society for Music Information Retrieval, Nov 2013.

[BKTB12] Ana Barbancho, Anssi Klapuri, Lorenzo Tardon, and Isabel Barbancho. Automatic transcrip-
tion of guitar chords and fingering from audio. IEEE Transactions on Audio, Speech, and
Language Processing, 20:915–921, Mar 2012.

[BTSB12] Isabel Barbancho, Lorenzo Tardon, Simone Sammartino, and Ana Barbancho. Inharmonicity-
based method for the automatic generation of guitar tablature. IEEE Transactions on Audio,
Speech, and Language Processing,, 20:1857–1868, Aug 2012.

[CHH+22] Yu-Hua Chen, Wen-Yi Hsiao, Tsu-Kuang Hsieh, Jyh-Shing Roger Jang, and Yi-Hsuan Yang.
towards automatic transcription of polyphonic electric guitar music:a new dataset and a
multi-loss transformer model, Feb 2022.

[CHHY20] Yu-Hua Chen, Yu-Hsiang Huang, Wen-Yi Hsiao, and Yi-Hsuan Yang. Automatic composition
of guitar tabs by transformers and groove modeling, Aug 2020.

[CHK23] Frank Cwitkowitz, Toni Hirvonen, and Anssi Klapuri. Fretnet: Continuous-valued pitch
contour streaming for polyphonic guitar tablature transcription. In ICASSP 2023 - 2023
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), page
1–5. IEEE, June 2023.

[DYY+19] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context, Jan 2019.

[GQC+20] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han,
Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-
augmented transformer for speech recognition, May 2020.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, Dec 2015.

[KHT22] Sehun Kim, Tomoki Hayashi, and Tomoki Toda. Note-level automatic guitar transcription
using attention mechanism. In 2022 30th European Signal Processing Conference (EUSIPCO),
pages 229–233, Aug 2022.

[KME23] Christian Kehling, Andreas Männchen, and Andreas Eppler. Idmt-smt-guitar dataset, jan
2023.

[LMW+22] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s, Jan 2022.

[PE06] Graham E. Poliner and Daniel P. W. Ellis. A discriminative model for polyphonic piano
transcription. EURASIP Journal on Advances in Signal Processing, 2007(1):048317, Dec 2006.

[RED24] Xavier Riley, Drew Edwards, and Simon Dixon. High resolution guitar transcription via
domain adaptation, Feb 2024.

[RGED24] Xavier Riley, Zixun Guo, Drew Edwards, and Simon Dixon. Gaps: A large and diverse classical
guitar dataset and benchmark transcription model, Aug 2024.

20

[SK10] Christian Schörkhuber and Anssi Klapuri. Constant-q transform toolbox for music processing.
Proc. 7th Sound and Music Computing Conf., 01 2010.

[SKC+21] Pedro Sarmento, Adarsh Kumar, CJ Carr, Zack Zukowski, Mathieu Barthet, and Yi-Hsuan
Yang. Dadagp: A dataset of tokenized guitarpro songs for sequence models. CoRR,
abs/2107.14653, Jul 2021.

[VSP+23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, Jun 2023.

[WK19] Andrew Wiggins and Youngmoo E. Kim. Guitar tablature estimation with a convolutional
neural network. In Proceedings of the 20th International Society for Music Information
Retrieval Conference (ISMIR), pages 284–291, Nov 2019.

[XBP+18] Qingyang Xi, Rachel M. Bittner, Johan Pauwels, Xuzhou Ye, and Juan P. Bello. Guitarset: A
dataset for guitar transcription. In Proceedings of the 19th International Society for Music
Information Retrieval Conference (ISMIR), pages 453–460, September 2018.

[YSN+13] Kazuki Yazawa, Daichi Sakaue, Kohei Nagira, Katsutoshi Itoyama, and Hiroshi Okuno. Audio-
based guitar tablature transcription using multipitch analysis and playability constraints. In
International Conference on Acoustics, Speech, and Signal Processing, pages 196–200, 10 2013.

[ZJX22] Yuecheng Zhou, Yaolong Ju, and Lingyun Xie. Animetab: A new guitar tablature dataset of
anime and game music, Oct 2022.

[ZZCD24] Yongyi Zang, Yi Zhong, Frank Cwitkowitz, and Zhiyao Duan. Synthtab: Leveraging synthesized
data for guitar tablature transcription. In ICASSP 2024 - 2024 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), page 1286–1290, apr 2024.

21

	Introduction
	Related Work
	Seminal Papers
	Convolutional Approaches to Automatic Tablature Transcription
	Groove modeling
	Annotated Guitar Datasets

	Fundamentals
	Baseline methods
	NoodleGP
	NoodleGP Detailed Architecture
	NoodleGP Implementation

	Data and Preprocessing
	GuitarSet
	Data preparation
	Datawrapper
	Datasplits

	Experiments
	Baseline
	Experimental Training Setup
	Grid Search for Hyperparameter Optimization
	Grid Search Results

	Baseline Comparison
	Experimental Results

	Conclusions and Further Research
	Contributions
	Future work

	References

