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Abstract

Large language models (LLMs) often hallucinate and lack company-specific knowledge, which
limits their value in business settings. Retrieval-augmented generation (RAG) can be a solution
by combining large language models with document retrieval to answer domain-specific
questions. RAG’s effectiveness depends on design choices like document chunking and prompt
formulation. This study compares two chunking methods—fixed-size and semantic—and
examines three prompt engineering strategies—keyword expansion, query reformulation, and
chain-of-thought prompting—using a RAG chatbot developed for Leadinfo. It also compares
human and LLM evaluations. The performance is assessed by both humans and an LLM
focusing on faithfulness, answer relevance, and context relevance. The results show that
fixed-size chunking performs as well as semantic chunking across all metrics. However, prompt-
engineering strategies significantly lowered evaluation scores by ∼18% on average. Agreement
between human and LLM raters was only slight, and the LLM scored answers ∼0.8 points
higher on a 5-point scale. They do agree substantially on multiple-choice questions. These
results suggest that simple chunking combined with minimal prompting produces the best
outcomes. For evaluation, a hybrid approach provides the best balance of cost and reliability.
Humans assess open questions and generate a ground-truth set that the LLM can use for
large-scale automated evaluation. Future research should improve hybrid workflows to close
the gap between automated and human judgment in real-world, complex applications.
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1 Introduction

Large language models (LLMs) such as GPT-4 have become increasingly popular for knowledge work
[AAA+23]. However, organizations still struggle to obtain reliable, domain-specific answers. That is
because proprietary information is missing from public training data, and the models’ knowledge
freezes at the moment of training, making it quickly outdated [CHGD24]. These limitations
restrict the usefulness of standard LLM solutions in commercial environments where accuracy and
confidentiality matter.

Retrieval-Augmented Generation (RAG) offers a solution by letting an LLM ground its answer
in documents retrieved from an internal knowledge base. While promising, the effectiveness of a
RAG system depends on many design choices. In particular, how documents are split into chunks
and how prompts are engineered may strongly influence both retrieval accuracy and answer quality,
yet their combined impact remains underexplored. This research will look into these design choices.

Using RAG does not guarantee good results. Therefore, it is important to evaluate the quality
of a RAG system. As RAG systems give open responses, which can be formulated in many ways, it
is hard to evaluate automatically, but human evaluation is expensive and time-consuming. There
is a growing demand for RAG applications, and thus for automated evaluation. Therefore, this
research will look into how human evaluation compares to automated LLM evaluation.

1.1 Research Question

As there are different ways to design and evaluate a RAG chatbot, the following research question
emerges:

”How do chunking techniques and prompt engineering strategies impact RAG-based question
answering, and how does LLM-based evaluation compare to human judgment in assessing RAG
performance?”

1.2 Thesis Overview

The remainder of this thesis is structured as follows: Section 2 describes the relevant background
information for this thesis; Section 3 discusses the approach of this research; Section 5 describes
the experiments and their outcome; Section 6 evaluates the results. Section 7 concludes the thesis.

This bachelor’s thesis was written as part of the Computer Science & Economics program at
LIACS (Leiden Institute of Advanced Computer Science), in collaboration with Leadinfo, and
under the supervision of Dr. Peter van der Putten and Dr. Joost Broekens.

2 Background

This section will cover the background literature on LLMs and RAG, particularly chunking strategies
and prompt engineering techniques. Different human and automated LLM evaluation methods will
also be covered.
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2.1 Large Language Models and Their Limitations

Deploying Large Language Models (LLMs) in business settings remains challenging for several
reasons [AAA+23]. First, because proprietary or confidential information is absent from public
training corpora, LLMs cannot provide domain-specific answers. Second, their knowledge is frozen
at training time, so responses can be outdated or the LLM can hallucinate [FDN+24]. Finally,
worries over data privacy, model bias, and the “black-box” nature of current systems further hinder
adoption in industry [CHGD24]. These limitations restrict the usefulness of off-the-shelf LLMs in
commercial applications.

2.2 Retrieval-Augmented Generation

A possible solution to this problem is Retrieval-Augmented Generation (RAG). RAG is an approach
that combines retrieval-based techniques with generative models to improve the quality and accuracy
of responses. Figure 1 shows how a RAG chatbot works [Yin24].

1. The first step is to build this database with relevant and up-to-date information. The data
can come from different sources, like internal documents, PDFs, or a website.

2. The embedding model encodes the documents into embeddings. The document embeddings
are stored in a vector database. This allows for fast semantic similarity search later on.

3. The user asks a question in natural language, which is also stored using the same embedding
model, so it can be compared with the stored documents.

Figure 1: RAG pipeline with retrieval and generation modules.
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• Optional: Apply prompt-engineering by, for example, adding key domain terms or
clarifying vague wording, so the query carries enough context and is less ambiguous
before it is embedded.

4. The embedded user question is used to search the vector store. The most relevant documents
or chunks are retrieved based on semantic similarity.

5. The LLM combines the (engineered) user’s question and the retrieved documents to generate
a response.

6. The answer, based on grounded information, is sent to the user.

These steps ensure that a RAG chatbot provides the user with an answer based on relevant data.
However, multiple aspects determine the quality of output of a RAG chatbot. Two of these factors
are:

1. Chunking strategy: Data from a knowledge base is divided into smaller chunks, since LLMs
can handle only a limited amount of context [L+24]. In addition, a larger context comes with
larger financial costs. It is also not desirable to provide the user with too much information.

2. Prompt quality: The performance of an LLM depends on the quality of a prompt. Especially
in a RAG chatbot, the correct documents must be retrieved [ZHS+24]. Users can provide
a chatbot with a wide variety of prompts, which vary a lot in quality as well. To get more
stable and improved responses, the prompt can be engineered to get better results. To make
answers more consistent and relevant, the prompt can be enriched with user-specific data,
such as the user’s department, role, or current project, so that the RAG chatbot retrieves
and ranks documents that best match that context.

2.2.1 Chunking Strategies in RAG

The chunking strategy to be used is an often overlooked part of a RAG system [ZJF+24]. Chunking
plays a crucial role in RAG, as it determines what information will be added to the context of the
prompt. If the data is not chunked well, it can lead to incomplete contexts or excessive irrelevant
information, which impacts the performance. Additionally, a larger context comes with larger
computational costs. Therefore, it is important to have a well-designed chunking strategy. Multiple
chunking strategies can be applied, such as fixed-size chunking, paragraph-based chunking, semantic
chunking, markdown-based chunking, and Perplexity chunking. Table 1 shows an overview of the
different strategies.

Fixed-size chunking means that the data is split into chunks of a fixed size (e.g. 1000 to-
kens) [LPP+20]. These chunks can be disjoint or overlapping (e.g., 200 tokens). Most often, the
chunks are overlapping to help preserve context and make sure an important answer is not split
between two chunks. The advantage of this strategy is that it is very fast and requires very limited
computation. The disadvantage is that this breaks logical units, because it can split data in the
middle of a sentence or paragraph. It works well for factual data, but less for data where coherence
is critical.

Paragraph-based chunking splits text on natural language barriers like the end of a sentence or
paragraph [WNM+19]. This method respects logical units, which improves coherence in chunks.
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Strategy Description Advantages Disadvantages
Fixed-size chunking Splits text into fixed-size

chunks (e.g., 1000 tokens)
regardless of meaning.

Fast and easy to im-
plement. Low compu-
tational cost.

Breaks logical units.
Poor coherence.

Paragraph-based
chunking

Splits at natural language
boundaries such as sen-
tences or paragraphs.

Respects logical struc-
ture. Improves coher-
ence.

Leads to imbalance
in chunk sizes. Af-
fects embedding consis-
tency.

Markdown-based
chunking

Splits content based on
document structure such
as headers, sections, or
HTML tags.

Ideal for structured
documents (FAQs,
manuals). Preserves
hierarchy.

Not suitable for un-
structured or plain
text.

Semantic chunking Splits based on changes
in meaning or topic, of-
ten using embeddings or
similarity.

Keeps semantically re-
lated content together.
Improves retrieval rel-
evance.

Computationally
intensive. Requires em-
beddings or similarity
models.

Perplexity chunking Uses language model per-
plexity to detect topic
shifts and define chunk
boundaries.

Adapts to logical/lan-
guage transitions. Im-
proves coherence.

Requires language
model scoring. Slightly
slower than rule-based
methods.

Table 1: Comparison of chunking strategies for RAG Systems.

However, it can also lead to a loss of coherence between chunks. Another disadvantage is that it
leads to an imbalance in chunk sizes. As each chunk is embedded with a vector, it will lose nuance
for longer or shorter chunks, which leads to uneven retrieval quality.

Markdown-based chunking uses the document structure, like markdown headers, HTML tags or
titles, to split content [GXG+23]. This works great for structured documents like FAQs or manuals.
It does not work well for raw text, as there is no clear document structure.

Semantic chunking splits the text based on semantic coherence [GXG+23]. This means that a
new chunk is started when the similarity with the previous text drops. Therefore, related information
is kept together within each chunk. This approach improves the quality of retrieval in RAG systems,
but it is more computationally intensive.

Perplexity chunking is a chunking strategy proposed by [ZJF+24]. This method addressed the
limitations of traditional chunking strategies. It identifies and groups sentences with linguistic and
logical connections. Perplexity chunking works by analyzing the distribution of perplexity scores
across sentences. A perplexity score represents how well a language model predicts a given piece of
text. The lower the perplexity, the more confident a model is in predicting the next words. If there
is a significant change, the text is segmented into chunks.

2.2.2 Prompt Engineering Techniques

Prompt engineering is another part of a RAG system that can have a big impact on perfor-
mance [SSS+24]. When everything part of the RAG pipeline is set up well, but the prompt is not
well understood, it will not lead to good performance. A too short, vague, or under-specified prompt
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can lead to incomplete retrieval and incorrect or irrelevant answers. Expanding the prompt not
only has benefits, but a poorly expanded prompt can unnecessarily increase the context length.
Therefore, it is important to have a well-designed prompt engineering strategy. Several prompt
engineering techniques can be applied, such as keyword expansion, query reformulation, few-shot
expansion, and chain-of-thought prompting. Table 2 shows an overview of the different techniques.

Keyword expansion adds relevant keywords or synonyms to the original query [ZW24]. Instead
of only searching based on the keywords present in the original prompt, the prompt can be enhanced
to contain more synonyms or relevant keywords. The advantage of this strategy is that it increases
recall during retrieval by matching more documents. The risk of this technique is that the prompt
is altered too much and that it introduces irrelevant information.

Another strategy is query reformulation [SZ24]. That is, to rewrite the user query in a more
detailed or unambiguous form. The method improves the specificity of the retrieval phase, ensuring
better precision. However, the user’s query may be misunderstood. It is especially useful for short,
vague queries. It can also be expanded by injecting user context, which enriches the query by
appending relevant background information before retrieval. This could be information like the
department or previous queries.

Few-shot expansion involves providing the model with a few examples of similar question-answer
pairs. This helps the model better understand the type of response expected. While this improves
model robustness, it also consumes more prompt space, which can become an issue for longer
documents.

Chain-of-Thought prompting guides the model to reason step-by-step before answering. This
can improve factuality and logical consistency in complex queries. However, it can increase response
latency, as the model generates longer outputs.

2.3 Evaluation of RAG Systems

RAG systems offer many possibilities for customization, as there are, for example, numerous
options for chunking and prompt engineering. This leads to the question of which configuration is
most effective in a specific domain. This is referred to mainly as RAG evaluation [BSB25]. The
evaluation of RAG consists of systematically evaluating the performance of a RAG system. This
remains a complex challenge, as traditional evaluation metrics like exact match or F1-score are
not suited for open-ended or generated responses, because these answers can be partially correct,
contextually dependent, or phrased differently. Therefore, different evaluation techniques have
emerged, focusing on human judgment and increasingly on LLMs as evaluators [BSB25], [SFKPZ23].
A crucial aspect of the evaluation is assessing the performance of the retrieval component [BSB25].
This means determining whether the retrieved chunks are relevant to the query. RAG systems are
often evaluated on the following aspects [YGZ+24]:

• Faithfulness: How accurate is the answer generated by the system based on the context?

• Answer relevance: How relevant is the answer to the given query?

• Context relevance: How relevant is the retrieved context to the query?
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Technique Description Advantages Disadvantages
Keyword expan-
sion

Adds synonyms or related
terms to the query.

Increases recall. Im-
proves document
matching.

Risk of introducing ir-
relevant terms.

Query reformula-
tion and context
injection

Rewrites the user query
in a more detailed or un-
ambiguous form, poten-
tially enriched with user
context such as depart-
ment, location, or previ-
ous queries.

Improves retrieval
precision. Personalizes
and clarifies the query.

Possible misinterpreta-
tion of user intent.
Risk of bloated or
noisy queries.

Few-shot expan-
sion

Provides few-shot exam-
ples in the prompt to
guide the model.

Boosts model robust-
ness and improves
understanding of
expected answers.

Increases prompt
length and computa-
tional cost.

Chain-of-
Thought prompt-
ing

Guides the model to rea-
son step-by-step before
answering.

Improves factuality,
reasoning quality,
and complex answer
consistency.

Longer response times.
Higher token usage.

Table 2: Comparison of prompt engineering strategies for RAG systems.

2.3.1 Types of Evaluation

Human judgment of a RAG system can offer high-quality insights [ZLX+24]. Especially in a domain-
specific scenario, human insights are valuable. However, human judgment is time-consuming,
expensive, and can be subject to bias. Therefore, there is a growing need for automated judg-
ment [BSB25]. Many factors influence the outcome, making it difficult to automate. Several methods,
such as RAGAS [EJAS24] and ARES [SFKPZ23], have been proposed to evaluate RAG systems.
RAGAS evaluates systems on the metrics context relevance, answer faithfulness, and answer
relevance, while ARES is focused on hallucination detection.

2.3.2 Reference Database

A reference database is crucial to evaluate the performance [BSB25]. These databases contain
question-answer pairs, which can be used as a reference to judge the performance of a RAG pipeline.
The database can be created by humans. For example, by human experts in a specific domain. An
existing dataset can also be enhanced. This can be done for a database that contains questions and
context, but no answers [XCJS24]. Or, a database can be enhanced to reflect specific error types to
assess their robustness and reliability [PNEF24]. A dataset can also be completely created using an
LLM, as the creation of a database is time-consuming. By providing an LLM with context, it can
generate question-answer pairs related to that context [TY24]. To create a diverse dataset, different
types of questions can be generated. Different evaluation scenarios can be used, for example, the
scenarios proposed by RAGProbe [SBK+24]:

• S1: A question to retrieve a number for which the answer is in a single document
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• S2: A question to retrieve the date/time for which the answer is in a single document

• S3: A multiple-choice question for which the answer is in a single document

• S4: A question combining multiple questions for which the answers are in a single document

• S5: A question combining multiple questions for which the answers are in a set of documents

• S6: A question for which the answer is not in the document corpus

Another framework that characterizes question difficulty and cognitive complexity is Bloom’s
taxonomy [For10]. Bloom’s taxonomy ranks cognitive skills into a hierarchy. This ranges from
simple recalling to more difficult skills such as analyzing, evaluating, or creating. This hierarchy
can be used to create a diverse set of questions for the reference database. Bloom’s taxonomy has
the following levels:

• Remember: Recall facts and basic concepts

• Understand: Explain ideas or concepts

• Apply: Use information in new situations

• Analyze: Draw connections among ideas

• Evaluate: Justify a decision or course of action

• Create: Produce new or original work

2.4 Research Gap and Motivation

Retrieval-Augmented Generation (RAG) is a strong approach to enhance Large Language models
and overcome their limitations, especially in a commercial setting. Multiple things affect the quality
of retrieved documents and the response. Previous research has shown that chunking strategies play
a crucial role in retrieval effectiveness. Fixed-size chunking, paragraph-based chunking, semantic
chunking, markdown-based chunking, and perplexity-based chunking have all been explored to
different extents. Additionally, prompt engineering techniques have been studied to improve how
user queries interact with retrieval and generation. Different methods like keyword expansion, query
reformulation, context injection, few-shot prompting, and chain-of-thought prompting have been
shown to increase retrieval precision and response quality.

Prior research on the separate effects of chunking strategies and prompt engineering. There is a
lack of studies that systematically examine the combined effect of chunking strategies and prompt
engineering. Multiple studies evaluate the methods in academic benchmarks, but this differs as it is
performed in a business setting.

The main gap is a lack of standardized and robust evaluation approaches for RAG systems,
especially in applied settings. Traditional evaluation metrics, like Exact Match of F1-score, are not
suitable for open-ended answers. As a result, other methods have to be used, like human judgment
and the use of LLMs as evaluators. However, human judgment is time-consuming and expensive,
but the quality of the LLM evaluation is not guaranteed. Therefore, research is needed to create
human-like automated evaluation for RAG systems.
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These gaps highlight the need for an approach that combines chunking and prompt engineering
techniques and assesses the reliability and scalability of different evaluation methods of this approach.
By addressing this gap, the research contributes to an understanding of the interaction effects of
chunking and prompting strategies. It also offers insight into different evaluation methods of RAG
systems.

3 Methodology

This chapter explains how the study was designed and conducted. It covers the data-gathering
process, the design of the RAG chatbot, and the procedures used to compare human and LLM
evaluations. Details of the RAG chatbot and automated evaluation implementation are discussed
in Chapter 4.

3.1 Research Design

This research follows the Design Science Research methodology. A baseline RAG chatbot was
developed and evaluated. The implementation and evaluation were done at Leadinfo [Lea25a].
The code of the RAG chatbot and evaluation can be found on GitHub. The chatbot focused on
Leadinfo’s product information and was targeted at employees of the commercial department.
Different RAG pipelines were configured and tested. Retrieval and response quality were evaluated
by humans and an LLM.

3.2 Dataset and Preprocessing

The RAG chatbot worked with a database that contains Leadinfo data. Data was retrieved from
different sources, namely the Leadinfo Help Center [Lea25b], an internal Notion database [Not25],
and the Leadinfo website [Lea25a]. The Help Center contains different articles explaining different
aspects of Leadinfo. The Notion database contains the following elements:

• Competitors: A list of Leadinfo’s competitors containing relevant information about them,
and things where Leadinfo outperforms competitors.

• Product FAQs: A list of FAQs about Leadinfo.

• Content center: A list of materials for customers or partners of Leadinfo.

• Product feedback: A list containing product feedback on Leadinfo.

All of this data was cleaned up and stored with the containing metadata, so that sources could be
provided.

3.3 RAG Chatbot

A RAG chatbot was developed to execute the experiment. Different RAG pipelines were constructed
to evaluate the impact of design choices, especially regarding chunking strategies and prompt
engineering techniques. The implementation details are described in Chapter 4.
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3.3.1 Chunking Strategies

In Section 2.2.1, different chunking strategies have been discussed. For this research, fixed-size
chunking and semantic chunking were compared. Fixed-size chunking has the advantage of being
low-cost, while semantic chunking can preserve content better. The other strategies mentioned,
paragraph-based chunking, markdown-based chunking, and perplexity chunking, were not selected.
Paragraph-based chunking can result in highly imbalanced chunk sizes and inconsistent embeddings,
which hurts retrieval. Markdown-based chunking is mainly suitable for highly structured documents;
however, the documents in this research are not all structured. Finally, perplexity chunking requires
extra complexity due to the need for language model scoring and tuning, which is not in the scope
of this study.

3.3.2 Prompt Engineering Techniques

In Section 2.2.2, several prompt engineering techniques have been covered. In this experiment, a
baseline version without prompt engineering was compared to an enhanced version that applies
keyword expansion, query reformulation, and chain-of-thought prompting. These methods were
selected because they impact the quality of document retrieval and the clarity of generated responses.
Keyword expansion is used because it should improve recall. Query reformulation should improve
precision, and context injection incorporates relevant background information, such as previous
messages, to improve disambiguation. Chain-of-thought prompting is included, so that the model
reasons step-by-step. This should improve the answer clarity, especially when the queries are more
complex. Few-shot prompting is excluded because it can bloat the prompt with too much context.

3.3.3 RAG Pipelines Setup

To assess the impact of chunking and prompt engineering strategies, four RAG pipeline configurations
are implemented:

1. Model 1 (Baseline): Fixed-size chunking, no prompt engineering.

2. Model 2 (Chunking-enhanced): Semantic chunking, no prompt engineering.

3. Model 3 (Prompt-enhanced): Fixed-size chunking, with prompt engineering.

4. Model 4 (Combined-enhanced): Semantic chunking, with prompt engineering.

3.4 RAG Evaluation

The performance of the RAG chatbot and the effectiveness of different chunking and prompt
engineering strategies were evaluated on the following aspects using a Likert scale [BH17].

• Faithfulness: How accurate is the answer generated by the system based on the context?

• Answer relevance: How relevant is the answer to the given query?

• Context relevance: How relevant is the retrieved context to the query?

These metrics were used to compare the four proposed model versions and to draw conclusions
about the impact of chunking and prompt engineering techniques.
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3.4.1 MCQ Database

To obtain an objective ground truth while preserving the open-ended nature of RAG answers,
a structured multiple-choice-question (MCQ) database was created. Each item consisted of a
generated question, the correct option, and three false answer options. The MCQ enabled measuring
how accurately an LLM judge selected the correct option, and measuring agreement between LLM
and human raters.

The LLM was supplied with the entire Leadinfo database and instructed to cluster related
articles so that questions could draw on information from multiple related sources. Following the
scenarios defined in RAGProbe, adapted to this use case [SBK+24]. The six scenarios are combined
into four by treating token type (number vs date) and question format (MCQ vs free text) as
superficial. That means S1-S3 are merged, while keeping S4 for single-document synthesis, S5 for
cross-document synthesis, and S6 as the unanswerable control.

Each question will also be created based on one of the first four levels of Bloom’s taxonomy:
remember, understand, apply, or analyze. The two higher Bloom levels were excluded because they
do not work well with the multiple-choice format.

The answers were also compared with cosine similarity applied to TF-IDF vectors [WD20]. This
is a quick and affordable way to compare two outputs. This fast, low-cost metric made it possible
to compare human and LLM evaluation with a baseline.

3.4.2 Human Evaluation

To assess the quality of the chatbot’s responses in a reliable and interpretable manner, several
domain experts evaluated the chatbot. They evaluated the chatbot’s answers using a Likert scale
on the aspects of faithfulness, answer relevance, and context relevance. Additionally, the evaluators
received a question, with a generated answer by the RAG chatbot, together with the answer options
from the multiple-choice database. They chose the answer option that is most semantically similar
to the generated response.

The human evaluators were instructed on the definition and guidelines for each evaluation
dimension to ensure consistency. The inter-rater agreement was assessed with Cohen’s kappa [VKS10].
The human evaluation provided insight into the performance of different RAG pipelines and was
used to compare with the automated evaluation.

3.4.3 Automated LLM Evaluation

The evaluation was also done automatically with an LLM as a judge. The LLM was presented with
the same query and generated answer as humans. However, it received the whole file as context,
instead of just the chunks, as that would mitigate the impact of different chunking strategies. Using
this information, it rated the answers on the same aspects as humans with a Likert scale. The LLM
also evaluated the MCQ database by selecting the answer option most semantically similar to each
generated response.

This automated evaluation enabled large-scale benchmarking with minimal human effort and
provided a consistent metric between model versions. The judgments were compared to human
judgment. This provided insight into the ability of an LLM to evaluate the performance of a RAG
pipeline while also highlighting how it performed across varying question difficulties and Bloom
levels.
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3.5 Experiment Setup

A structured experiment was conducted at Leadinfo to evaluate the RAG pipelines and to compare
human and automated assessments. Six Leadinfo employees (domain experts) first posed free-form,
domain-specific questions to the RAG chatbot, yielding 64 question-answer pairs. Each answer was
then rated on a Likert scale for faithfulness, answer relevance, and context relevance by the user
who asked it and by an LLM. In a second phase the same raters, plus the GPT-4 judge, viewed the
chatbot’s answer alongside four multiple-choice options, which the chatbot itself had never seen,
and selected the option whose meaning best matched the answer. Finally, as a naive baseline, the
cosine similarity between the answer’s embedding and each option’s embedding was computed, and
the top-scoring option was taken as the baseline prediction.

4 Implementation Details

To conduct the experiments, a RAG chatbot was implemented. The chatbot system was designed
to retrieve relevant documents from an internal knowledge base and generate context-aware answers
using a Large Language Model.

4.1 Chatbot Framework

The chatbot was built using different components. The database consisted of a set of text files,
retrieved from Leadinfo’s website, Leadinfo’s help center website, and Notion pages. The database
was embedded in a vector database with FAISS, which is an open-source vector database, designed
for efficient similarity search and retrieval [DGD+24]. The RAG pipelines were created with the
open-source LangChain framework [TA23]. LangChain is suitable for prompt engineering. The
LLM selected for answer generation is GPT-4o, which is a fast, intelligent, and flexible model, with
a 128k tokens context window, which is suitable for understanding context well [Ope24].

The RAG chatbot is developed for Leadinfo. The use case for the chatbot is for employees to
be able to get answers fast on different aspects of Leadinfo. That is done because Leadinfo is a
fast-growing company, so there are many employees with limited experience. Having a chatbot
that can provide answers to most questions reduces the load on experienced colleagues, who would
normally receive the questions. For this use case, the RAG chatbot must be easily accessible for
employees. Therefore, it is integrated with Slack, which is a messaging platform for teams and
companies [Sla25a]. The platform is used at Leadinfo, and by integrating the RAG chatbot here, it
is easily available to all colleagues. To do this, an existing framework for an AI chatbot in Slack
is used [Sla25b]. This is modified to fit the needs, and the RAG pipelines are integrated into this
platform. Figure 2 shows an example question asked of the RAG chatbot in Slack.

4.1.1 Chunking Implementation

For fixed-size chunking, the text was split into overlapping segments of 1000 tokens with an overlap
of 200 tokens. This is shown in Figure 3.

Semantic chunking was implemented using a cosine similarity threshold between sentence
embeddings generated by a SentenceTransformer model. A new chunk was started whenever the
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semantic similarity between sentences dropped below a predefined threshold. This is shown in
Figure 4

Figure 2: Example interaction with the RAG chatbot in Slack.

Figure 3: Flow chart of fixed-size chunking.
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Figure 4: Flow chart of semantic chunking.

4.1.2 Prompt Engineering Techniques

Prompt engineering is done in three ways. The first is done before searching the database. The
MultiQueryRetriever module from LangChain was applied. This is a retriever that uses the original
query to generate k different paraphrased versions that capture the sentiment of the original prompt.
Each of these prompts is used to retrieve the relevant document. The results are aggregated, which
should give a broader, more relevant set of documents.

The other methods are applied after the documents are retrieved. This is done by asking an LLM
to reason step-by-step to improve clarity. Next to that, it also reformulates the original prompt,
because the user prompts can be vague. Additionally, it is used to incorporate the context from
earlier messages into the prompt to enhance clarity. The instructions for the LLM are shown below.

LLM Prompt: Improving the user query

You are a helpful assistant who reformulates user queries for a retrieval system. Your goal is
to generate a standalone, specific version of the user’s query.
If context is provided, use it to disambiguate or enrich the question.
Please reason step by step and explain your thought process before giving your final answer.
User Query: {query}
User context: {context block}
Reformulated Query:

4.1.3 RAG Pipeline Integration

The different RAG pipelines were created. A random model selector chooses a configuration for
the model. This process is shown in Figure 5. The configuration is used for the generation of the
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response of the LLM. Each request is handled by a randomly selected model.

Figure 5: Flow chart of the different RAG pipelines.

4.2 Multiple-Choice Database

A multiple-choice question (MCQ) database was created to evaluate the RAG chatbot with a
structured database and a ground truth. The instructions for the LLM to create the database and
evaluate the results are discussed.

4.2.1 MCQ Database Generation

An LLM was provided with clusters of related documents from the Leadinfo database, and it was
instructed to create MCQs with different difficulties and Bloom levels. This process was repeated
with multiple subsets of articles until a database of 100 questions was created. These covered
different topics, difficulties, and Bloom levels. The prompt used to generate the database is shown
below.

Prompt: Generate MCQs from articles

I want you to generate multiple-choice questions (MCQs) based on a given set of help articles.
Each question should be self-contained and understandable without external context, so it
can be asked independently (e.g., to another model) without showing the answer options.

For each MCQ, include:
- 1 correct answer
- 3 plausible but incorrect distractors
- The difficulty level (S1–S4, described below)
- The Bloom level (B1–B4, described below)
- The related article(s) used to generate the question (filenames)

Use the following difficulty levels:
- S1: The answer is directly found in a single document.
- S2: The question logically combines multiple facts found in a single document.
- S3: The question combines knowledge from multiple documents in the corpus.
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- S4: The answer is not found in the document corpus (to test out-of-distribution detection).

Use the following Bloom levels:
- B1: Remember; Recall facts and basic concepts.
- B2: Understand; Explain ideas or concepts.
- B3: Apply; Use information in new situations
- B4: Analyze; Draw connections among ideas

Distribute the questions as evenly as possible across the four difficulty levels (S1–S4). Each
question should be clearly labeled with its difficulty level, and avoid creating all questions at
the same difficulty level.

Distribute the questions as evenly as possible across the four Bloom levels (B1–B4). Clearly
indicate the Bloom level for each question. Avoid generating all questions at the same Bloom
level.

Return the questions and answers in the following JSON format:

[

{

"difficulty": "S1",

"question": "What is ...?",

"correct_answer": "Correct answer here.",

"incorrect_answers": [

"Wrong option 1",

"Wrong option 2",

"Wrong option 3"

],

"related_articles": [

"filename1.txt"

]

},

...

]

Do this for the following sets of documents:
{Set of 5 related documents}

4.2.2 LLM as a Judge

The LLM was instructed to evaluate question-answer pairs based on the aspects of faithfulness,
answer relevance, and context relevance. The model GPT-4.1 was used for this, as this is more
advanced and better at understanding longer contexts than GPT-4o, which is used for the RAG
pipelines [Ope]. The prompt used for the LLM as a judge is:
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Prompt: LLM-Based evaluation of RAG answer

You are a helpful evaluator of RAG chatbot responses.

You will be shown:
- A user query
- A chatbot-generated answer
- The context used to generate the answer

Rate the answer on the following 3 aspects:
1. Faithfulness (accuracy of the answer compared to the context)
2. Answer Relevance (how well it answers the user’s question)
3. Context Relevance (how useful the context is for answering the question)

Use the 1–5 scale below for each aspect:
1 = Very Poor
2 = Poor
3 = Fair
4 = Good
5 = Excellent

Return your answer in this exact JSON format:

{

"faithfulness": { "score": X, "justification": "..." },

"answer_relevance": { "score": X, "justification": "..." },

"context_relevance": { "score": X, "justification": "..." }

}

Query: {question}
Chatbot Answer: {answer}
Retrieved Context: {context}

The LLM was also used to evaluate the MCQ database. This was done with the following
prompt:
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Prompt: Chat-style evaluation of MCQ

Your task is to determine which option expresses the same meaning as the given answer.
Answer:
{rag answer}

Select the most semantically equivalent option from the list below.
Options:
{options}

Reply with only the letter A, B, C, or D.

5 Results

The results of the experiment were obtained by asking six Leadinfo employees to evaluate the
RAG chatbot. The experiment consisted of the two parts mentioned before: RAG chatbot open
questions evaluation and multiple-choice question evaluation. This is analyzed to get an insight
into the performance of different RAG configurations and to compare how human and automated
LLM evaluations compare.

5.1 Open-Ended Questions Data Exploration

The open questions were asked by six Leadinfo employees, who are domain experts. They were
asked to question the RAG chatbot and review each question. Each question-answer pair was
simultaneously evaluated by another LLM. This results in a data set of 64 question-answer pairs,
evaluated by both a human evaluator and an LLM as a judge. Each question is answered by
a random model. Each question-answer pair is reviewed on the aspects of faithfulness, answer
relevance, and context relevance. An overview of this is visible in Table 3.

Descriptive statistics, including the means, medians, and standard deviations for each model,
provide a clear overview of model performance and human and LLM evaluation, which is visible in
table 4a and 4b. These trends are visually represented in figures 6 and 7.

The experiment was done at Leadinfo. Employees were asked to question the RAG chatbot
with questions they came across in their daily work. This means that no standard set of open
questions was used to evaluate the chatbot. Therefore, the distribution of human evaluators across
models can impact the result. Therefore, the distribution of evaluators across models is reviewed.
A chi-square test of independence was conducted. This test examined whether the frequency of
responses from each user was evenly distributed over the four models. The results indicated no
significant association between user and model (χ2(15, N = 64) = 7.75, p = .933). This suggests
that the allocation of users to models was random, and thus, potential user bias is unlikely to have
affected the results.

Normality of faithfulness, answer relevance, and context relevance ratings for both LLM and
human evaluations were assessed using the Kolmogorov-Smirnov and Shapiro-Wilk tests. In all
cases, results indicated significant deviations from normality (all p < .001). Despite this, analyses
were conducted using ANOVA and MANOVA, as these tests are generally robust to violations of
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normality with sample sizes above 30, and given that the data are ordinal or categorical, which is
common in evaluation studies.

Statistic Value
Total number of questions 64
Unique reviewers (human judges) 6
Responses answered by model 1 14
Responses answered by model 2 18
Responses answered by model 3 17
Responses answered by model 4 17

Table 3: Overview of the Dataset: Question-Answer per model and reviewer distribution

Model
Faithfulness Answer Relevance Context Relevance

Mean SD Median Mean SD Median Mean SD Median
1 3.71 1.54 4.5 3.93 1.44 4.5 3.64 1.22 4.0
2 4.06 1.26 4.5 4.06 1.26 4.5 3.67 1.37 4.0
3 3.25 1.53 4.0 3.44 1.15 4.0 3.13 1.36 3.0
4 3.19 1.53 3.0 2.94 1.53 4.0 2.75 1.36 3.0

(a) Means, medians, and standard deviations per evaluation metric and per model for human
evaluation

Model
Faithfulness Answer Relevance Context Relevance

Mean SD Median Mean SD Median Mean SD Median
1 4.71 0.61 5.0 4.93 0.27 5.0 4.43 0.94 5.0
2 4.83 0.38 5.0 4.89 0.32 5.0 4.44 1.10 5.0
3 3.81 0.98 4.0 4.31 0.70 4.0 3.19 1.38 3.0
4 4.31 0.98 5.0 4.50 0.16 5.0 3.19 1.38 3.0

(b) Means, medians, and standard deviations per evaluation metric and per model for LLM
evaluation

Table 4: Means, medians, and standard deviations per evaluation metric, model, and evaluator
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Figure 6: Box plot of evaluation distribution per metric per judge

Figure 7: Mean plotted with CI for faithfulness, answer relevance, and context relevance
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5.2 Evaluating the RAG Models

A two-way MANOVA with Model (1–4) and Judge (human vs LLM) as fixed factors, visible in
Table 5, revealed significant effects for Model (Wilks’ Λ = 0.829, p = 0.008) and Judge (Wilks’
Λ = 0.757, p < 0.001), but not for their interaction (Wilks’ Λ = 0.933, p = 0.511). Univariate
follow-ups (Table 6) showed that Model differences persisted on each metric, while Judge effects
were especially strong for answer relevance. Post-hoc Tukey tests (Table 7) confirmed that Models
1 and 2 outperformed Models 3 and 4 on all metrics. Figures 8, 9 , and 10 show the estimated
marginal means with a 95% CI, where this difference is visible. Thus, the results indicate that
models 1 and 2 are generally producing more faithful, answer-relevant, and contextually correct
answers than models 3 and 4.

Effect Wilks’ Λ F dfhyp dferr p-value
Model 0.829 2.56 9 287.33 0.008
Judge 0.757 12.63 3 118 < 0.001
Model × Judge 0.933 0.92 9 287.33 0.511

Table 5: Results of MANOVA for Model, Judge, and their interaction.

Dependent variable Model F (p) Judge F (p) Model × Judge F (p)
Faithfulness 4.29 (0.007) 17.60 (< 0.001) 0.36 (0.781)
Answer relevance 4.34 (0.006) 33.81 (< 0.001) 0.93 (0.469)
Context relevance 6.17 (< 0.001) 4.95 (0.028) 0.55 (0.648)

Table 6: Tests of between-subjects effects (Type III sums of squares).

Metric Comparison Mean diff.∆ p-value
Faithfulness Model 2 > Model 3 0.91 0.009
Answer relevance Model 2 > Model 4 0.75 0.019
Context relevance Model 1 > Model 4 1.07 0.011

Model 2 > Model 3 0.90 0.027
Model 2 > Model 4 1.09 0.005

Table 7: Significant pairwise model differences (Tukey HSD, α = 0.05).
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Figure 8: Estimated marginal mean for faithfulness per model

Figure 9: Estimated marginal mean for answer relevance per model
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Figure 10: Estimated marginal mean for context relevance per model

5.3 Chunking and Prompt Engineering Effects

To evaluate how both design choices of the RAG chatbot and the type of judge influence the three
evaluation metrics, a three-way MANOVA was carried out with Judge (human vs LLM), Chunking
strategy (fixed-size vs semantic), and Prompt engineering (none vs expansion) as fixed factors.
As shown in Table 8, there was a significant multivariate main effect of Judge (Wilks’ λ = .757,
p < .001) and Prompt engineering (Wilks’ λ = .861, p < .001). Chunking showed no multivariate
effect (Wilks’ λ = .970, p = .304), and none of the two-way or three-way interactions reached
significance (all p ≥ .117). These results indicate that applying prompt engineering lowers scores
across all metrics, and switching from fixed-size to semantic chunks does not influence evaluation
outcomes. It also indicates that human raters assign systematically lower scores than the LLM.

Effect Wilks’ Λ F dfhyp dferr p-value
Judge 0.757 12.63 3 118 < .001
Chunking 0.970 1.23 3 118 .304
Prompt Engineering 0.861 6.35 3 118 < .001
Judge × Chunking 0.996 0.17 3 118 .918
Judge × Prompt Engineering 0.951 2.01 3 118 .117
Chunking × Prompt Engineering 0.995 0.19 3 118 .904
Judge × Chunking × Prompt Engineering 0.986 0.54 3 118 .654

Table 8: Results of MANOVA for Judge, Chunking, Prompt Engineering, and their interactions.
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Dependent variable Judge F (p) Chunking F (p) Prompt Eng. F (p)
Faithfulness 17.60 (< .001) 0.00 (.988) 10.54 (.001)
Answer relevance 33.81 (< .001) 0.15 (.699) 10.20 (.002)
Context relevance 4.95 (.028) 0.55 (.459) 18.04 (< .001)

Table 9: Univariate ANOVAs for Judge, Chunking, and Prompt Engineering on each metric.

5.3.1 Effect of Chunking Strategies

There was no significant multivariate effect of chunking strategy on faithfulness, answer relevance,
or context relevance, which is visible in table 8 (Wilks’ λ = .970, p = .304). This indicates that
switching from fixed-size chunking to semantic chunking did not lead to a statistically significant
improvement or reduction in evaluation scores. This lack of significant difference is also visually
reflected in figures 11, 12 and 13, where the estimated marginal means for each evaluation aspect
remain similar across the two chunking strategies.

Figure 11: Faithfulness Evaluation (Fixed-size chunking compared to semantic chunking)
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Figure 12: Answer Relevance Evaluation (Fixed-size chunking compared to semantic chunking)

Figure 13: Context Relevance Evaluation (Fixed-size chunking compared to semantic chunking)
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5.3.2 Effect of Prompt Engineering Strategies

Prompt engineering has a significant multivariate effect on the evaluation outcomes, which is
visible in Table 8 (Wilks’ λ = .861, p < .001). The use of prompt engineering led to a statistically
significant decrease in scores for faithfulness, answer relevance, and context relevance. Follow-up
univariate ANOVAs (Table 9) show that prompt engineering has a significant effect on each metric
(all p < .05). This significant decrease in scores is also evident in Figures 14, 15, and 16, which
show consistently lower estimated marginal means for faithfulness, answer relevance, and context
relevance when prompt engineering is applied. Thus, applying prompt engineering has a significantly
negative effect on the performance.

Figure 14: Faithfulness Evaluation (No prompt engineering compared to prompt engineering)
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Figure 15: Answer Relevance Evaluation (No prompt engineering compared to prompt engineering)

Figure 16: Context Relevance Evaluation (No prompt engineering compared to prompt engineering)
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5.4 Human and Automated Evaluation Comparison

A key element of this study is also to compare human and LLM evaluations. This will be done for
the open-ended questions and the multiple-choice database.

5.4.1 Open-ended Question Evaluation

Each open question is evaluated by a human and an LLM. To compare the average rating per
metric, a paired t-test is done to compare mean scores from the LLM and human users across all
three evaluation metrics, which is visible in Table 10. The LLM consistently rated higher than
human evaluators for each metric, with all differences being statistically significant (p < 0.05). This
shows that LLM evaluates responses with higher scores than human raters.

Additionally, the weighted Cohen’s kappa coefficients are calculated. The weighted Cohen’s
kappa is used because that accounts for the ordinal nature of the evaluation metrics, as they are
rated on a Likert scale. The results, visible in Table 11, indicate poor, slight, and fair agreement
between the human and LLM raters [LK77]. This further reinforces the finding that, despite
statistically significant differences in mean scores, LLM evaluations are not aligned with human
judgments on an individual item level.

This is visualized in the Figures 17, 18, 19, where scatter plots display human and LLM
evaluations across the three criteria. The size of each dot represents the frequency of that specific
rating combination. Here it is also visible that there is a low correlation between human and LLM
evaluation for answer relevance (R2 = 0.155) and context relevance (R2 = 0.140), and virtually no
correlation for faithfulness (R2 = 5.85× 10−6)

Metric LLM Mean User Mean n t-stat p-value
Faithfulness 4.42 3.56 64 4.05 < 0.001
Answer Relevance 4.66 3.59 64 6.50 < 0.001
Context Relevance 3.81 3.30 64 2.67 0.010

Table 10: Paired t-test results for LLM vs User

Metric Weighted Cohen’s Kappa
Faithfulness −0.002
Answer Relevance 0.182
Context Relevance 0.348

Table 11: Weighted Cohen’s Kappa for agreement between LLM and human raters
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Figure 17: Relationship between human and LLM judgments of faithfulness.

Figure 18: Relationship between human and LLM judgments of answer relevance.
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Figure 19: Relationship between human and LLM judgments of context relevance.

5.4.2 Relative Consistency in Evaluation

Section 5.4.1 shows that human and LLM evaluations are statistically different. However, it is
also important to know whether the human and LLM evaluations are consistent in the relative
ranking of the models. To test this, Spearman’s rank correlation coefficients were calculated using
the mean scores per model. Table 12 shows that there is a strong correlation for faithfulness and
context relevance, and a moderate correlation for answer relevance. However, these results are not
statistically significant, due to the limited number of models (N=4).

Metric Spearman’s ρ p-value
Faithfulness 0.800 0.200
Answer Relevance 0.600 0.400
Context Relevance 0.949 0.051

Table 12: Model-level Spearman’s rank correlations between LLM and human mean ratings per
model.

At item level, Spearman’s rank correlation coefficients were also calculated between human
and LLM ratings for each evaluation metric, to see if humans and LLMs agree on an individual
level. As shown in Table 13, the correlation for answer relevance was moderate and statistically
significant (ρ = 0.393, p = 0.001), indicating some consistency in the relative ranking of responses
between LLM and human raters for this metric. However, for faithfulness (ρ = 0.103, p = 0.418)
and context relevance (ρ = 0.064, p = 0.613), correlations were weak and not significant, suggesting
little to no agreement in the relative ranking of individual responses.
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These results contrast with the finding when comparing the means of the different metrics,
where a (moderate) strong correlation was found. This shows that humans and LLMs do not agree
on an individual level, but align in the overall trend.

Metric Spearman’s ρ p-value
Faithfulness 0.103 0.418
Answer Relevance 0.393 0.001
Context Relevance 0.064 0.613

Table 13: Item-level Spearman’s rank correlation between LLM and human ratings for each metric

5.5 Multiple-Choice Question Database

The multiple-choice database is created to evaluate how human and LLM evaluations align with
ground truth. It is also used to evaluate how well a generated multiple-choice question database
can be used to evaluate the performance of a RAG system.

5.5.1 Data Exploration

The dataset consists of responses to 100 unique multiple-choice questions. Each question is answered
by the RAG chatbot without knowing the answer options. Each evaluator chooses the multiple-
choice option that is most similar to the answer of the RAG chatbot. The questions are evaluated
by two groups of three humans, each answering 50 questions. Each user was also asked to rate the
relevance of the question on a Likert scale, to see how well the database was created. Additionally,
the questions are automatically evaluated by an LLM and a cosine similarity baseline. The LLM
selects based on semantic equivalence, while cosine similarity compares BERT embeddings of the
generated answer with each option.

Table 14 provides an overview of the dataset, including the number of unique questions, total
responses, and the distribution across difficulty and Bloom levels.

Characteristic Count
Number of unique questions 100
Number of human evaluators 6 (2 pairs of 3 - each 50 questions)
Number of automated evaluators 2 (LLM, Cosine - each 100 questions )
Questions per difficulty level 31 / 35 / 21 / 13
Questions per Bloom level 17 / 43 / 30 / 10

Table 14: Overview of the multiple-choice dataset characteristics.

5.5.2 Accuracy per Rater

To see how the quality of rating differed per evaluator, the accuracy of each rater and model
was evaluated by calculating the proportion of correct answers out of all questions rated, which
is visible in Table 15. Among the human raters, accuracies ranged from 56.0% to 88.0%. The
average accuracy across all six human raters was 72.0%. The LLM achieved an accuracy of 81.0%,
while the cosine similarity baseline reached 74.0%. These results indicate that the LLM performed
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comparably to the top-performing human raters and outperformed both the human average and
the cosine baseline.

Rater Accuracy (%)
Human average 72.0
LLM 81.0
Cosine 74.0

Table 15: Accuracy per rater and model.

5.5.3 Inter-Rater Agreement

The agreement between raters was evaluated at the question level using Fleiss’ kappa, which is
appropriate for assessing reliability across multiple rater combinations. The results for all different
combinations of evaluators are summarized in Table 16. When considering only human raters, very
high agreement was observed (κ = 0.901 for humans 1–3; κ = 0.822 for humans 4–6). Adding the
LLM or cosine baseline to each human group led to a decrease in kappa values (κ = 0.624 for
humans 1–3 + LLM; κ = 0.594 for humans 1–3 + Cosine), indicating lower agreement between
humans and automated methods. The lowest agreement was seen when both automated methods
were included with human raters (κ = 0.549 for humans 1–3 + LLM + Cosine; κ = 0.451 for
humans 4–6 + LLM + Cosine). Agreement between only the LLM and cosine was lower than
among human raters, but still substantial (κ = 0.709). All kappa values were statistically significant
(p < .001), indicating agreement exceeded chance.

Raters Kappa p-value
Humans 1–3 0.901 < .001
Humans 1–3 + LLM 0.624 < .001
Humans 1–3 + Cosine 0.594 < .001
Humans 1–3 + LLM + Cosine 0.549 < .001
Humans 4–6 0.822 < .001
Humans 4–6 + LLM 0.523 < .001
Humans 4–6 + Cosine 0.487 < .001
Humans 4–6 + LLM + Cosine 0.451 < .001
LLM + Cosine 0.709 < .001

Table 16: Fleiss’ Multirater Kappa (κ) and significance for all combinations of human raters, LLM,
and cosine baseline.

5.5.4 Agreement With the Human Majority

The agreement between LLM ratings and the human majority answer was computed for each
question, as shown in Table 17. This was done to determine whether the automated evaluators rate
like humans. The agreement between the automated evaluation and the human majority answer
was calculated using Cohen’s kappa, to get a chance-corrected measure of alignment. The LLM
achieved a kappa of 0.778 with the human majority, while the cosine similarity baseline achieved
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a kappa of 0.651. These results indicate substantial agreement and were statistically significant
(p < .001), while the LLM obtained a higher agreement score. These findings show that both
automated evaluators closely reflect the human majority vote, with the LLM outperforming the
cosine baseline.

Comparison Kappa p-value
Human majority vs. LLM 0.778 < .001
Human majority vs. Cosine 0.651 < .001

Table 17: Cohen’s kappa (κ) for agreement between the human majority answer and model
predictions.

5.5.5 Correlation between Perceived Relevance and Answer Accuracy

Each question in the multiple-choice database was given a relevance score by each human on a
Likert scale. To see if more relevant questions are associated with increased correctness, Spearman’s
rank correlation coefficients were calculated.

As shown in Table 18, only the LLM-selected answers show a small, but statistically significant,
positive correlation with relevance (ρ = .231, p = .021). This shows that the LLM tends to be more
accurate when the questions are more relevant. In contrast, the correlations between relevance and
correctness for the human-majority and cosine-based answers are not statistically significant.

Comparison Spearman’s ρ p-value
Relevance vs. Human Majority .182 .071
Relevance vs. LLM .231 .021
Relevance vs. Cosine .187 .062

Table 18: Spearman’s rank correlations between relevance and correctness variables.

5.5.6 Performance as a Function of Difficulty and Bloom Level

All questions in the multiple-choice database were generated based on a difficulty and Bloom
level, as described in Section 3.4.1. There are four different difficulty levels and four Bloom levels
incorporated in the database. Figure 20 shows the mean accuracy per difficulty level per evaluator.
The human majority and cosine evaluation achieved the highest accuracy at the lowest levels, after
which accuracy steadily declines. LLM accuracy remains nearly constant across difficulty levels.
Figure 21 displays the mean accuracy achieved by each evaluator across the different Bloom levels.
The mean accuracy is highest for levels 2 and 3, and lowest in levels 1 and 4. Again, the LLM’s
evaluations remain relatively stable throughout the different levels.
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Figure 20: Mean accuracy by difficulty for Human Majority, LLM, and Cosine Baseline. Error bars
indicate standard deviation.

Figure 21: Mean accuracy by Bloom level for Human Majority, LLM, and Cosine Baseline. Error
bars indicate standard deviation.
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A two-factor MANOVA tested whether the four difficulty levels and the four Bloom levels
influenced the three accuracy scores for each evaluator. Although Kolmogorov–Smirnov and
Shapiro–Wilk tests showed non-normality for every dependent variable (p < .001), MANOVA is
robust to such deviations with categorical factors and n > 30, so the analysis proceeded. The
multivariate test revealed no reliable overall effect of difficulty, Bloom level, or their interaction (all
p > .05; Table 19).

Separate one-way ANOVAs, however, uncovered two specific patterns (Table 20). For the
human-majority scores, accuracy declined significantly with increasing difficulty (p = .035) and
also differed across Bloom levels (p = .006). Tukey’s HSD showed that the Bloom effect was driven
by a drop from level 2 to level 4 (p = .009). None of the six difficulty pairs survived the post-hoc
correction, indicating a gradual rather than stepwise decline. For the cosine baseline, difficulty
again reached significance (p = .036). Post-hoc tests revealed lower accuracy at difficulty level 4
than at levels 1 (p = .033) and 3 (p = .018). By contrast, neither factor influenced LLM accuracy
(all p > .05).

Thus, difficulty and Bloom level systematically lead to lower human performance and, to a
lesser extent, the cosine baseline. LLM accuracy remains stable. This robustness aligns with the
descriptive trends in Figures 20 and 21 and suggests that the LLM performs better with higher
difficulty or Bloom levels.

Effect Wilks’ Λ F p-value
Difficulty 0.832 1.87 .058
Bloom 0.829 1.91 .052
Difficulty × Bloom 0.863 1.48 .156

Table 19: Multivariate tests for effects of difficulty and Bloom levels.

Dependent variable Effect F (df) p-value
Cosine Correct Difficulty 2.96 (3, 90) .036
Human Majority Correct Difficulty 2.99 (3, 90) .035
Human Majority Correct Bloom 4.37 (3, 90) .006

Table 20: Summary of significant univariate ANOVA results.

Dependent variable Effect Comparison Mean ∆ 95% CI p-value
Cosine Difficulty 1–4 0.39 0.02–0.76 .033
Cosine Difficulty 3–4 0.42 0.05–0.77 .018
Human Majority Bloom 2–4 0.46 0.09–0.83 .009

Table 21: Summary of significant Tukey-HSD pairwise comparisons.

6 Discussion

This research investigated the impact of different chunking strategies and prompt engineering
techniques on RAG performance. It also evaluated the alignment between human and automated
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LLM evaluation. By looking at both open-ended and multiple-choice scenarios, the findings offer
several insights into the implications of deploying RAG pipelines in a business context and how
they can be evaluated.

6.1 Key findings

The results make clear that the type of chunking applied did not have a significant impact on
chatbot performance (Wilks’ λ = .970, p = .304). This suggests that simple chunking strategies
may be sufficient for business applications. There may be limited benefit to investing in more
complex alternatives for comparable situations. On the other hand, prompt engineering had a
noticeable negative effect on the key metrics of faithfulness, answer relevance, and context relevance
(Wilks’ λ = .861, p < .001). Instead of improving performance, more elaborate prompts seemed to
introduce ambiguity or distract from the main query, leading to lower scores. Applying prompt
engineering must be thoroughly evaluated, as it gave worse results in this experiment. However,
as prompt engineering tactics were bundled rather than tested in isolation, no conclusions can be
drawn on which specific technique caused the decline, or whether some might actually be beneficial
on their own.

Comparing human and automated LLM evaluation revealed both similarities and key differences.
LLMs consistently gave higher ratings to chatbot responses than human evaluators did for all
metrics (all paired t-tests p < .01). Agreement at the response level was low, with weighted Cohen’s
κ ranging from –.00 to .35, which means no to only fair agreement between human and LLM scores.
This means that human and LLM evaluations cannot be directly compared, as they gave different
results in this experiment.

Despite this, the relative ordering of models on average showed a moderate to strong correlation
(Spearman’s ρ between .600 and .949) between human and LLM ratings, suggesting that while
the two approaches disagree on specifics, they do agree on overall trends of models’ performance.
However, this result was not significant (all p > .05), so no conclusions can be drawn from this.

The analysis of the multiple-choice dataset shows the potential of automated evaluation. The
LLM (81%) outperformed the average human (72%) in accuracy, and even aligned closely with the
human majority in many cases. The cosine similarity baseline, while useful for quick comparisons,
did not achieve the same level of alignment. These results point to the value of LLMs for scalable
and efficient evaluation in tasks with a ground truth. Although caution is still needed when the
questions are more difficult or advanced.

6.2 Implications

These findings suggest that investing heavily in advanced chunking might not give a significantly
different result, and that prompt engineering should be approached carefully. Simple, well-structured
prompts and chunking strategies may often suffice.

Automated evaluation by an LLM shows its potential when used carefully. For evaluating
open questions, LLMs tend to rate significantly higher than humans, which is a risk. Using solely
automated LLM evaluation tasks without a ground truth might lead to wrong findings about the
system’s performance. It could potentially be used to compare performance, as the relative ranking
of models is moderately to strongly correlated with human ranking.
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LLMs show clear potential for evaluating tasks with a clear ground truth, such as multiple-choice
questions. They show to be more accurate than human judgment or cosine comparison, and deliver
results quickly. However, LLMs can lack critical judgment. Therefore, organizations should combine
automated and human evaluations to ensure both efficiency and nuanced assessment.

6.3 Limitations

Several limitations should be considered when interpreting these results. The study was conducted
within a single organization and on a relatively limited dataset, which may affect generalizability.
Additionally, due to the limited scope and high cost of human evaluation by domain experts, the
number of question-answer pairs evaluated was limited, as there were 64 question-answer pairs.

We did not compare the LLM-judge scores with automated suites such as RAGAS or ARES.
Benchmarking against those metrics is left for future work.

The open-ended nature of the questions and the subjectivity in human ratings introduce potential
biases, and there is a risk that findings are at least partly shaped by the particular context and
data at hand. Additionally, due to the scope of the project, the employees were free to determine
which questions they wanted to ask the RAG system. This was done to get a more diverse set
of questions evaluated, which is more representative in a business setting. However, this means
there is no standard set of open questions used, nor did we check that proper content was available
in principle to answer the questions. Therefore, the quality of questions and ratings could have
differed between users. This could have potentially impacted the evaluations.

The multiple-choice database was completely generated by an LLM. This has several advantages,
but it also means that the ground truth is not generated by human experts. This could potentially
mean that not all ground truth is true. An LLM could also encode bias in the ground truth, which
could improve the accuracy of the LLM evaluator. In addition, while the multiple-choice database
was designed to cover a range of difficulty levels and cognitive demands, the actual distribution was
uneven, in part due to the constraints of both the source material and the LLM’s output. Using a
structured (MCQ) database might also be less representative of a real-world application.

The MCQ dataset was not used to compare individual RAG configurations, because each model
contributed only around 25 answers, and the automatically generated ground truths were not
independently validated. A meaningful comparison would require either a larger MCQ set or human
verification of all ground truths.

6.4 Future Research

This research provides several opportunities for further research on RAG design choices and on
different types of (automated) LLM evaluation of RAG systems.

6.4.1 RAG Design Choices

Further research could extend these findings by testing additional chunking strategies and by
expanding the scope to include a broader variety of domains and datasets. Prompt engineering could
also be evaluated more thoroughly. In this experiment, keyword expansion and query reformulation
were applied. The separate effects and different methods could be evaluated to see the impact of
individual prompt engineering techniques.
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6.4.2 Automated Evaluation of Open Questions

The results show that an LLM evaluates with higher scores than a human. Research can be done
on tuning an LLM so that it evaluates more critically and human-like. For example, by calibrating
the LLM with, for example, rubric examples or adding more context. Once calibrated, the LLM
judge can be benchmarked against automated evaluation frameworks such as RAGAS and ARES.

Although human and LLM evaluations on open questions significantly differ, they are similar in
relative ranking. However, due to the small size of the experiment, the results were not significant.
Research should be done on a larger scale with more model configurations to see if the relative
ranking of human and LLM aligns, as this would be a valuable way to automatically evaluate
different RAG configurations.

6.4.3 Automated Evaluation With a Ground Truth

As seen in this research, evaluating with a ground truth gave better results. Therefore, more research
could be done on efficiently and effectively creating or generating databases with ground truths,
as this currently requires much effort. Future work should automate RAG assessment by building
a reusable MCQ or structured QA dataset template. This can be used with a domain-specific
database to automatically create a MCQ or structured QA dataset with minimal effort.

High-quality ground truth is essential for quality assessment. Therefore, research can also be
done on different methods of creating datasets and the effect on the quality of the ground truths.
Different types of datasets, such as MCQ or structured databases, and different design methods,
such as manual, hybrid, or fully automated, can be compared. The goal is to create scalable pipelines
that maintain human-level precision while reducing cost.

6.4.4 Hybrid Evaluation

Open-ended questions better mirror daily usage but make evaluation difficult and costlier. Structured
datasets are more suitable for automated LLM evaluation, but are less representative of real-world
scenarios. Therefore, future research should look into hybrid evaluation.

This can be done by tuning an LLM so that it creates most of the questions and answers and
flags the low-confidence ones for manual review. Experiments should measure the reliability and
time savings of this method.

Another method would be for domain experts to create a small, high-quality reference set of
question-answer pairs. This would serve as an example of correct, complete, and well-grounded
answers for the LLM. Then, it should be measured if this improves the LLM evaluation significantly.

7 Conclusion

This thesis set out to investigate how chunking, prompt engineering, and evaluation methods impact
the performance and assessment of RAG chatbots. The results show that simple chunking is just as
effective as more complex methods, while prompt engineering can lower performance if not applied
carefully. Automated evaluation using LLMs works well for structured tasks but still differs from
human judgment in open-ended cases. Overall, the best results are achieved by pairing simple
design choices with a balanced mix of human and automated evaluation. Future work should focus
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on refining these approaches, especially hybrid evaluation, for even better reliability and practical
use.
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