
Master Computer Science

Optimizing Elite Sports Training: A Reinforcement

Learning Approach for Personalized and Effective

Training Schedules

Name: Nikolaos-Maximos Bilalis
Student ID: s3626776

Date: 28/04/2025

Specialisation: Data Science: Computer Science

1st supervisor: prof. dr. Arno Knobbe
2nd supervisor: prof. dr. Aske Plaat

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Abstract

Crafting personalized and effective training schedules for elite athletes
presents a significant challenge in sports coaching. Traditional methods of-
ten rely on coaches’ experience and intuition, which may not fully capture
the nuances required for optimal training. This research addresses this
challenge by applying Reinforcement Learning (RL) to model coaching
decision-making using historical training data from top Dutch athletes in
Professional Speed Skating. The goal is to develop a data-driven approach
that not only replicates but enhances traditional coaching practices. By
incorporating feedback from races and physical tests, the model aims to
iteratively refine training schedules to improve their effectiveness. This
approach seeks to advance the precision of training regimens, potentially
leading to better athlete performance, more efficient resource utilization,
and a more scientifically grounded coaching methodology. We find that,
eventually, the best approach to this set up is the traditional ML models,
scoring an accuracy of 85% in predicting the best future training sched-
ules.

1



April 21, 2025

Contents

1 Introduction 5
1.1 Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 General Overview of the Topic . . . . . . . . . . . . . . . 5
1.1.2 Specific Context of the Research . . . . . . . . . . . . . . 5
1.1.3 Existing Solutions and Limitations . . . . . . . . . . . . . 6
1.1.4 Research Focus . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 7
2.1 ML intersection with sports . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Personilized training schedule with ML . . . . . . . . . . 8
2.1.2 RL in Sports . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Our contribution . . . . . . . . . . . . . . . . . . . . . . . 10

3 Background 11
3.1 Machine Learning: Introduction . . . . . . . . . . . . . . . . . . . 11

3.1.1 Definition and Scope of Machine Learning . . . . . . . . . 11
3.1.2 Historical Context and Evolution of ML . . . . . . . . . . 11
3.1.3 Core Concepts of Machine Learning . . . . . . . . . . . . 12
3.1.4 Supervised, Unsupervised, and Reinforcement Learning . 13
3.1.5 Deep Learning and Neural Networks . . . . . . . . . . . . 13
3.1.6 Deep Neural Networks (DNNs) . . . . . . . . . . . . . . . 14
3.1.7 Training Deep Neural Networks . . . . . . . . . . . . . . . 15

3.2 Reinforcement Learning: Introduction . . . . . . . . . . . . . . . 16
3.2.1 Definition and Scope of Reinforcement Learning . . . . . 16
3.2.2 Historical Context and Evolution of RL . . . . . . . . . . 16
3.2.3 Importance of RL in Modern AI Applications . . . . . . . 16

3.3 Reinforcement Learning: Fundamentals . . . . . . . . . . . . . . 17
3.3.1 Core Components of RL . . . . . . . . . . . . . . . . . . . 17
3.3.2 Core Concepts of RL . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Markov Decision Process (MDP) . . . . . . . . . . . . . . 19
3.3.4 Offline and Online Reinforcement Learning . . . . . . . . 20
3.3.5 Model-Free and Model-Based Reinforcement Learning . . 20

2



3.3.6 On-Policy and Off-Policy algorithms . . . . . . . . . . . . 21
3.4 Tabular Value-Based Reinforcement Learning . . . . . . . . . . . 22

3.4.1 Value Functions and the Bellman Equation . . . . . . . . 22
3.5 From Reinforcement Learning to Deep Reinforcement Learning . 23
3.6 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 23

3.6.1 Fundamentals of DQN . . . . . . . . . . . . . . . . . . . . 23
3.6.2 Deep Q-Network . . . . . . . . . . . . . . . . . . . . . . . 24
3.6.3 Key Innovations in DQN . . . . . . . . . . . . . . . . . . 25
3.6.4 The DQN Algorithm . . . . . . . . . . . . . . . . . . . . . 25

3.7 Double Deep Q-Network (DDQN) . . . . . . . . . . . . . . . . . 26
3.7.1 DDQN Methodology . . . . . . . . . . . . . . . . . . . . . 26
3.7.2 Key Contributions and Impact of DDQN . . . . . . . . . 27
3.7.3 The DDQN Algorithm . . . . . . . . . . . . . . . . . . . . 27

3.8 Conservative Deep Q-Network (C-DQN) . . . . . . . . . . . . . . 28
3.8.1 C-DQN Methodology . . . . . . . . . . . . . . . . . . . . 29
3.8.2 Key Contributions and Impact of C-DQN . . . . . . . . . 29
3.8.3 The C-DQN Algorithm . . . . . . . . . . . . . . . . . . . 30

3.9 Soft Actor-Critic (sac) . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9.1 Entropy-Regularized Reinforcement Learning . . . . . . . 31
3.9.2 Additional Considerations . . . . . . . . . . . . . . . . . . 32

3.10 Sports Science: a quick overview . . . . . . . . . . . . . . . . . . 32

4 Data 32
4.1 Historic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Merging and Cleaning . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Incorporating Performance (Reward) Data . . . . . . . . 34
4.2.3 Feature Engineering and Scaling . . . . . . . . . . . . . . 35
4.2.4 From Data to Markov Decision Processes . . . . . . . . . 35
4.2.5 Summary of Processing Steps . . . . . . . . . . . . . . . . 36

4.3 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Methods and Experimental setup 37
5.1 Tabular approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 ”Online” deep RL approach . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Deep Q-Network (DQN) . . . . . . . . . . . . . . . . . . . 40
5.2.2 Key Components and Modifications . . . . . . . . . . . . 40
5.2.3 Formulation and Pseudocode . . . . . . . . . . . . . . . . 41
5.2.4 Double Deep Q-Network (DDQN) . . . . . . . . . . . . . 45
5.2.5 Key Components and Modifications . . . . . . . . . . . . 46
5.2.6 Key Contributions and Impact of DDQN . . . . . . . . . 47
5.2.7 Soft Actor-Critic (SAC) . . . . . . . . . . . . . . . . . . . 47
5.2.8 Key Components and Modifications . . . . . . . . . . . . 48
5.2.9 Key Contributions and Impact of SAC . . . . . . . . . . . 49

5.3 Offline deep RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.1 Conservative Q-Learning (CQL) . . . . . . . . . . . . . . 50

3



5.3.2 Key Components and Modifications . . . . . . . . . . . . 50
5.3.3 Key Contributions and Impact of CQL . . . . . . . . . . . 51

5.4 ML approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.1 DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.3 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Results 55
6.1 Online RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Offline RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Traditional ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Discussion 58

8 Conclusion 61

4



1 Introduction

In the domain of elite sports coaching, the formulation of optimal training sched-
ules stands as a hard challenge. Traditional coaching methods often rely heavily
on the coach’s experience and intuition, which, while valuable, may not always
capture the nuances required for individualized training optimization. This pa-
per outlines a research initiative aimed at addressing this challenge through the
application of Reinforcement Learning (RL) in the context of sports training.
Leveraging historical data from top athletes in Dutch elite sports, specifically in
Professional Speed Skating, we attempt to construct a model capable of gener-
ating personalized and effective training schedules for individual athletes. The
focus extends beyond mere replication of human decision-making, aspiring to
iteratively improve training schedules by incorporating limited feedback from
races and physical tests. The ultimate goal of this research is to develop a ro-
bust, data-driven approach that assists coaches in making informed decisions,
thereby enhancing the effectiveness and precision of training schedules. This
could potentially lead to significant improvements in athlete performance, bet-
ter resource utilization, and more scientifically grounded coaching practices.

1.1 Topic

1.1.1 General Overview of the Topic

Elite sports training has long been a critical area of study within sports sci-
ence, focusing on maximizing athletic performance through optimized training
regimens. The precision and customization of training schedules are crucial for
athletes aiming to achieve peak performance, reduce the risk of injury, and main-
tain long-term physical and mental well-being, as well as sleep quality. Brown
et al., 2020, Forndran et al., 2012

1.1.2 Specific Context of the Research

In recent years, the complexity of training individualization has increased, driven
by advancements in sports science and the availability of vast amounts of per-
formance data Bourdon et al., 2017, Cardinale and Varley, 2017. Elite coaches
must consider numerous variables, including the athlete’s physiological and psy-
chological states, competition schedules, and recovery needs. However, crafting
precise and personalized training schedules remains a significant challenge, often
relying heavily on the coach’s experience and intuition. Nash and Collins, 2006

A training plan, or exercise prescription, translates sport and exercise science
into practice. Similar to medical practice, it involves creating a training plan or
prescribing an exercise program based on the best current scientific evidence.
However, these plans often include a combination of various interventions, such
as exercises and nutritional guidelines, which evolve over time due to factors
like periodization or tapering.

5



This complexity makes it nearly impossible to rely entirely on scientific evi-
dence for long-term training plans. Wackerhage and Schoenfeld, 2021 Another
challenge is the significant variability in how individuals adapt to different train-
ing programs, such as endurance or resistance training. Until specific biomark-
ers for trainability are identified, continuous testing and monitoring of athletes,
clients, or patients are necessary to determine the effectiveness of a training
plan and make adjustments as needed. Unlike the clear-cut ”drug or no drug”
decisions in medicine, creating a training plan involves many decisions that
cannot all be evidence-based. Hence, an evidence-informed approach should be
employed, where some decisions are grounded in the best available evidence.
Because training adaptations vary widely, practitioners must continuously as-
sess and adjust training plans if they do not produce the desired outcomes.

At this point, the Reinforcement Learning (RL) solution is proposed. Using RL
for producing training schedules, while it might not directly include evidence-
based elements, follows a systematic and adaptive approach. RL algorithms can
learn from continuous feedback and adapt training plans to optimize perfor-
mance outcomes. This method involves setting specific goals, applying various
training interventions, and constantly adjusting based on the athlete’s response.
Over time, RL can identify patterns and preferences unique to each individual,
leading to highly personalized and effective training schedules. By integrating
RL, we can complement the evidence-informed approach with a dynamic system
that evolves with the athlete, potentially uncovering new insights into optimal
training practices and reducing the trial-and-error aspect of current methodolo-
gies.

1.1.3 Existing Solutions and Limitations

Traditional approaches to training schedule optimization involve heuristic meth-
ods, generic training guidelines, and basic data analysis techniques Raab, 2012
, Raiola and Tafuri, 2015. While these methods have yielded some success, they
fall short in providing the fine personalization required for elite athletes. Ex-
isting methods lack the ability to dynamically adapt to the changing needs and
conditions of the athlete, leading to suboptimal training outcomes and potential
overtraining or undertraining scenarios.

1.1.4 Research Focus

This research aims to address these limitations by leveraging historical train-
ing data from successful Dutch athletes and employing Reinforcement Learning
(RL) to model coaching decision-making. RL, with its capability to learn op-
timal policies through interaction with an environment, offers a promising ap-
proach to creating adaptive and personalized training schedules. In our setting,
the role of the environment will be played by the historical dataset, but we will
dive deeper into this later in the paper. By developing a data-driven RL-based
system, this research seeks to enhance the precision and effectiveness of training

6



schedules, providing a valuable tool for coaches and contributing to the field of
sports science.

1.2 Problem Statement

This research focuses on the challenge faced by elite sports coaches in crafting
precise and personalized training schedules for individual athletes. The project
utilizes historical training data from successful Dutch athletes, employing Re-
inforcement Learning to model coaching decision-making.

1.3 Research Questions

At the end of this study, we aim to be able to answer the following research
questions:

• How can Reinforcement Learning be effectively applied to model the decision-
making process of elite sports coaches in generating personalized training
schedules for athletes in Professional Speed Skating?

• To what extent can a Reinforcement Learning model effectively incor-
porate and adapt to limited feedback from races and physical tests to
iteratively refine training schedules, thereby enhancing their effectiveness
and aligning with individual athlete performance outcomes?

• How effectively can Reinforcement Learning methods—originally designed
for online exploration—be adapted for offline settings with historical data,
and how do these adaptations compare in performance and stability to
dedicated offline RL algorithms under conditions of sparse rewards and
limited exploration opportunities?

• Can Reinforcement Learning (RL) outperform standard Machine Learning
techniques when the dataset is limited? Do RL agents generalize well
when historical data lacks comprehensive exploration coverage, and if not,
do they effectively learn to mimic real-world scenarios where the learned
policy would be applied?

2 Related Work

In this section, we present some intriguing papers on the intersection of Sports
and Machine Learning that closely align with our research. Recently, Machine
Learning (ML) has increasingly been incorporated into Sports to maximize per-
formance. Notably, there is a lack of research aimed at building personalized
training schedules with end-to-end Reinforcement Learning (RL) directly from
past training data.

7



2.1 ML intersection with sports

The recent advancements in Computer Science and hardware allow for the anal-
ysis of vast datasets, including physiological metrics, motion capture data, and
psychological profiles, to provide insights that were previously unattainable. For
instance, predictive models can forecast an athlete’s future performance or in-
jury risk based on current data trends, allowing for proactive adjustments to
training regimens. Moreover, computer vision and wearable technology enable
real-time feedback during training sessions, facilitating immediate corrections
and adjustments.

Injury prediction

In the work of Van Eetvelde et al., 2021 a systematic review of machine learning
methods was conducted, including RL, for sport injury prediction and preven-
tion. Their study highlighted the potential of ML to improve injury prediction
and enable effective prevention strategies, thus enhancing athlete safety and
performance. They concluded to an almost 85% accuracy on predicting an in-
jury highlighting the importance of AI in sports

Computer Vision

Computer Vision is also a rapidly advancing field with direct application in
sports. As sports are being broadcasted and always filmed there is a vast amount
of videos and photos that can be used to train CV models. For example, the
paper titled ”Applications of Computer Vision in Sports” Thomas et al., 2021
explores the diverse and impactful ways in which computer vision (CV) technol-
ogy is transforming sports. It highlights how CV is used for real-time tracking
of players and balls, enhancing performance analysis, and preventing injuries
through biomechanical monitoring. The paper also discusses the role of CV in
improving refereeing accuracy, enhancing fan engagement through augmented
reality, and aiding in talent identification and strategy development. Addition-
ally, CV contributes to broadcasting quality and event security, showcasing its
broad applicability in sports.

2.1.1 Personilized training schedule with ML

Crafting personalized training schedules for elite athletes has been a longstand-
ing challenge in sports science. Traditional coaching methods, while valuable,
often rely on intuition and experience, leading to subjective decisions that may
overlook the intricacies of an athlete’s performance capabilities. The integra-
tion of machine learning (ML) into sports has revolutionized this process by
enabling data-driven decision-making. ML techniques such as predictive ana-
lytics, computer vision, and biometric analysis have been employed to create
highly tailored training programs that maximize performance and minimize in-
jury risks.

8



A good example of this is the paper ”Athletic Skill Assessment and Person-
alized Training Programming for Athletes Based on Machine Learning” Qin
et al., 2024 which dives into the use of machine learning to enhance athletic
performance through personalized training programs. It demonstrates that ML
models improve the accuracy of performance predictions, such as sprint times,
and significantly reduce injury risks. The study highlights the role of ML in
analyzing diverse datasets, including biometric and psychological data, to tai-
lor training to individual athletes, leading to improved performance outcomes
and sustained long-term benefits. The research also addresses ethical consider-
ations, emphasizing privacy and data security. Overall, the paper underscores
the transformative impact of ML on sports science, enabling more effective and
personalized coaching strategies.

Their study emphasizes the need for evidence-based practices in sports coach-
ing, advocating for the integration of ML-driven insights to optimize training
and performance at all levels of athletic development. However, as they state
in the paper, they use the insights of the predictive models to then formulate a
training schedule manually while in our research this it is done end-to-end while
also they are being restricted to traditional ML approaches instead of RL.

2.1.2 RL in Sports

Within this broader ML framework, reinforcement learning (RL) has shown
particular promise. RL algorithms optimize training regimens by continuously
adapting to the athlete’s progress and feedback, effectively learning what works
best for each individual over time. This dynamic and responsive approach offers
a significant advantage over static training plans, making RL a powerful tool in
the pursuit of peak athletic performance.

RL in competitive cycling

One illustrative paper in this domain is ”Deep reinforcement learning for im-
proving competitive cycling performance” by Demosthenous et al Demosthenous
et al., 2022, a sport very similar to speed skating in terms of training sched-
ules. This paper investigates the application of deep reinforcement learning to
competitive cycling, where predictive models developed from sensory data col-
lected during bike rides forecast cycling speed and heart rate. These models
form the basis of a recommendation system that provides real-time feedback
on optimal cycling postures to improve speed while minimizing heart rate im-
pacts. Evaluated in both simulated environments and real-world settings, this
system demonstrates potential to significantly enhance performance, albeit ad-
justments are needed to improve the practicality of the recommendations for
real-world application. This research highlights the innovative application of
RL in developing dynamic and personalized training strategies in sports, set-
ting a foundational example for further exploration in this area.

9



RL for personalized recommendations

Apart from the forecast, RL can also be used for personalization, very similar
to what it is tried in this research. In the paper ”Deep Reinforcement Learn-
ing Based Personalized Health Recommendations” Mulani et al., 2020 which is
building on the principles of personalized recommendations through machine
learning, the application of deep reinforcement learning (DRL) in healthcare,
offers an effective parallel to sports science. In this healthcare framework, an
advanced three-layer DRL system is employed to not only assimilate exten-
sive health data but also to predict disease probabilities and generate precise
health recommendations via an actor-critic model. This model adeptly navi-
gates through the complexities of dynamic decision-making processes, optimiz-
ing health outcomes over the long term. Such a methodology closely mirrors
the objectives in sports training optimization where historical data is pivotal
in shaping future training schedules. Here, the actor-critic model’s utility in
healthcare—to continuously learn and adapt its recommendations based on real-
time data—echoes the adaptive training regimens designed in sports science to
enhance athletic performance. This convergence highlights the transformative
potential of DRL across diverse fields, underpinning the development of tailored,
data-driven strategies that significantly advance both individual and collective
outcomes in health and sports.

2.1.3 Our contribution

As we show in this chapter, ML and specifically RL have already been applied
in the realm of sports. However, it should be mentioned that this is still a very
young area of research, and most papers are pioneering. While it is demon-
strated that RL is used for personal recommendations and real-time feedback
in training sessions, we now aim to expand its application to crafting person-
alized and effective training schedules for elite athletes based on past training
data. Our research proposes a novel approach that leverages the historical
performance data of athletes to dynamically adjust and optimize their train-
ing regimens. This methodology not only tries to adapt to the unique needs
and progress of each athlete but also anticipates future development potentials,
thereby enhancing overall athletic performance. The subsequent chapters will
detail the methods and experimental setup that underpin our approach, dis-
cussing the specific RL algorithms employed, the data collection and processing
strategies, and the validation techniques used to test the efficacy of the pro-
posed training schedules. By bridging the gap between theoretical models and
practical applications, our work contributes to the evolving landscape of sports
science.

10



3 Background

This chapter introduces the main concepts behind the tools and methodologies
used in this work, as well as a basic description of the model’s architecture. If
you are already familiar with the fundamentals of Reinforcement Learning (RL)
and Machine Learning (ML), you may choose to skip this chapter.

3.1 Machine Learning: Introduction

3.1.1 Definition and Scope of Machine Learning

Machine Learning (ML) is a subset of artificial intelligence (AI) that involves
the development of algorithms and models that allow computers to learn from
and make decisions based on data. It can be categorized into three main types:
supervised learning, unsupervised learning, and reinforcement learning (which
will be later discussed in detail). ML systems aim to generalize patterns from
historical data, making predictions or decisions without being explicitly pro-
grammed for every possible scenario.

In this section, we will explore the foundational principles of machine learn-
ing and the specific role deep neural networks (DNNs) play within it, along
with the critical building blocks that form these systems. As we see in Fig. 1,
we will have a quick look at the main stages since the inception of the artificial
neuron back in 1943.

3.1.2 Historical Context and Evolution of ML

Figure 1: Representation of the ML timeline. Image source: medium.com

Machine Learning (ML) has evolved significantly since its inception, driven
by advancements in theory, data availability, and computational power. The

11

https://medium.com/@lmpo/a-brief-history-of-ai-with-deep-learning-26f7948bc87b


history of ML can be divided into key phases, each contributing to the develop-
ment of the field as we know it today.

Early Beginnings (1950s - 1970s) ML’s foundations were laid in the mid-
20th century, with Alan Turing proposing the idea of machines learning from
data Turing, 1950. The introduction of the perceptron in 1958 by Frank Rosen-
blatt Rosenblatt, 1958 was one of the earliest neural network models, although
its limitations, as pointed out by Minsky and Papert Minsky and Papert, 1969,
slowed the progress of neural networks, leading to the first ”AI winter.”

The Resurgence of ML (1980s - 1990s) The field saw renewed interest
in the 1980s with the development of backpropagation Rumelhart et al., 1986,
enabling multi-layer neural networks to learn complex patterns. Other notable
advancements included decision trees (ID3) Quinlan, 1987 and the introduction
of Support Vector Machines (SVMs) Cortes, 1995, which became fundamental
tools in supervised learning.

Data-Driven ML (1990s - 2000s) The growth of the internet and access to
large datasets in the 1990s accelerated ML’s application across various domains.
Ensemble methods like Random Forests Breiman, 2001 and boosting algorithms
like AdaBoost Freund, Schapire, et al., 1996 became popular, improving the
accuracy and robustness of ML models. Unsupervised learning methods, such as
clustering and dimensionality reduction, also gained traction during this period.

The Deep Learning Revolution (2010s - Present) The 2010s marked
the era of deep learning, where neural networks with many layers, known as
deep neural networks, became dominant in areas like image and speech recogni-
tion. The success of AlexNet Krizhevsky et al., 2012 in the ImageNet competi-
tion demonstrated the power of deep learning. Architectures like Convolutional
Neural Networks (CNNs) and Transformers Vaswani, 2017 further advanced
the field, leading to breakthroughs in computer vision and natural language
processing.

Current Trends Today, ML is at the core of many innovations, with on-
going research focusing on improving model interpretability, robustness, and
efficiency. Reinforcement learning, unsupervised learning, and self-supervised
learning are areas of active exploration, as ML continues to expand into new
domains, including healthcare, finance, and autonomous systems.

3.1.3 Core Concepts of Machine Learning

At its core, machine learning involves several key concepts:

• Data: ML models learn from data. This data is typically represented as
features (input variables) that the model uses to make decisions. Data
can be structured (tabular, relational) or unstructured (images, text).

12



• Model: A model is a mathematical representation of the relationship
between input data and the desired output. For example, in supervised
learning, models map input features to a target label.

• Training: The process of feeding data into the model to learn patterns is
called training. During training, the model adjusts its internal parameters
(weights) to minimize prediction error.

• Loss Function: The loss function quantifies the error between the model’s
prediction and the actual output. It serves as the optimization objective
that the model tries to minimize. Common loss functions include Mean
Squared Error (MSE) for regression and Cross-Entropy Loss for classifi-
cation tasks.

• Optimization: The process of minimizing the loss function is carried
out using optimization algorithms such as gradient descent, which itera-
tively adjusts model parameters (weights and biases) to minimize the loss
function.

• Generalization: A crucial aspect of ML is ensuring that the model not
only performs well on training data but can also generalize to unseen data.
Overfitting occurs when a model becomes too complex and performs well
on the training data but poorly on new data.

3.1.4 Supervised, Unsupervised, and Reinforcement Learning

• Supervised Learning: In supervised learning, the model is trained on
a labeled dataset, where each input has a corresponding target output
(label). The goal is to learn a mapping from input to output that can
be applied to new, unseen data. Examples include classification (e.g.,
predicting whether an email is spam) and regression (e.g., predicting house
prices).

• Unsupervised Learning: In unsupervised learning, the model works
with unlabeled data. The goal is to find hidden patterns or groupings
within the data. Common applications include clustering (e.g., customer
segmentation) and dimensionality reduction (e.g., PCA).

• Reinforcement Learning (RL): RL involves learning by interacting
with an environment and receiving feedback in the form of rewards or
penalties. The goal is to learn a policy that maximizes cumulative rewards
over time.

3.1.5 Deep Learning and Neural Networks

Deep Learning is a subfield of machine learning focused on models with many
layers, particularly neural networks. These models are especially powerful for
handling high-dimensional data, such as images, audio, and text. The term

13



”deep” refers to the multiple layers in the neural network that enable it to learn
complex representations.

The Structure of Neural Networks Neural networks are composed of lay-
ers of interconnected units called neurons. Each neuron receives inputs from
other neurons, processes these inputs, and passes an output to the next layer.
The basic structure consists of:

• Input Layer: The first layer that receives the raw data. Each node in
this layer corresponds to one feature in the input data.

• Hidden Layers: Layers between the input and output, where the model
learns to capture intermediate representations. The more hidden layers a
network has, the more abstract patterns it can learn.

• Output Layer: The final layer that produces the prediction or classifica-
tion. For classification tasks, this could be a probability distribution over
the classes, while for regression, it could be a continuous value.

• Weights and Biases: Each connection between neurons has an asso-
ciated weight, and each neuron has a bias term. These parameters are
learned during training and are adjusted to minimize the loss function.

Activation Functions Each neuron applies an activation function to deter-
mine its output based on the weighted sum of its inputs. Common activation
functions include:

• Sigmoid: Maps input values to a range between 0 and 1, useful for binary
classification tasks.

• ReLU (Rectified Linear Unit): The most widely used activation func-
tion in deep networks, defined as f(x) = max(0, x). It helps in mitigating
the vanishing gradient problem by allowing gradients to flow through the
network during training.

• Softmax: Typically used in the output layer of classification networks, it
converts raw scores into a probability distribution over predicted classes.

3.1.6 Deep Neural Networks (DNNs)

DNNs are neural networks with multiple hidden layers. These layers allow the
network to learn hierarchical representations of data, where each layer captures
increasingly complex features. For example, in an image classification task,
early layers may learn to detect edges, while later layers may recognize more
abstract concepts like shapes or objects.

The power of DNNs lies in their ability to automatically learn feature represen-
tations from raw data, reducing the need for manual feature engineering. This

14



makes them particularly effective for tasks such as image recognition (Con-
volutional Neural Networks), natural language processing (Recurrent Neural
Networks, Transformers), and more.

3.1.7 Training Deep Neural Networks

Training DNNs involves adjusting the weights and biases in each layer using
optimization techniques. The typical steps are:

• Forward Pass: Data is passed through the network layer by layer, pro-
ducing an output prediction.

• Loss Calculation: The loss function computes the difference between
the predicted output and the actual target.

• Backpropagation: Gradients of the loss function with respect to each
weight are calculated using the chain rule. These gradients indicate how
to adjust the weights to reduce the loss.

• Gradient Descent: The optimization algorithm updates the weights
by moving them in the direction that minimizes the loss. Variants like
Stochastic Gradient Descent (SGD), Adam, and RMSProp are commonly
used.

Regularization Techniques To prevent overfitting in DNNs, various regu-
larization techniques are employed:

• Dropout: During training, randomly drops units (along with their con-
nections) from the network, forcing the model to learn robust features.

• L2 Regularization: Adds a penalty proportional to the square of the
magnitude of weights, discouraging the model from learning overly com-
plex solutions.

• Early Stopping: Stops training when the model’s performance on a
validation set starts to degrade, preventing overfitting.

The Challenge of Vanishing and Exploding Gradients Deep networks
can suffer from vanishing or exploding gradients, where gradients become too
small or too large as they are propagated back through the network. This can
severely hinder the learning process. Solutions to this include:

• Batch Normalization: Normalizes the inputs to each layer, stabilizing
the learning process.

• Residual Networks (ResNets): Introduce skip connections that allow
gradients to flow directly through layers, mitigating the vanishing gradient
problem.

15



While deep learning has been highly successful in handling high-dimensional
data and learning complex representations, its core application has tradition-
ally been in supervised and unsupervised learning settings, where large amounts
of labeled or unlabeled data are used to train models. However, many real-world
problems require decision-making in dynamic environments where the goal is to
learn from interaction, rather than from static datasets. This is where Rein-
forcement Learning (RL) comes into play. Unlike deep learning models that
primarily rely on labeled data, RL enables agents to learn optimal behaviors
through trial and error, receiving feedback in the form of rewards from their
environment. The combination of deep learning and RL, known as Deep Rein-
forcement Learning, has opened new frontiers in areas such as robotics, gaming,
and autonomous systems. In the following section, we will delve into the funda-
mentals of RL and explore how it builds upon the concepts of machine learning
to solve sequential decision-making problems.

3.2 Reinforcement Learning: Introduction

3.2.1 Definition and Scope of Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning focused on how
agents should take actions in an environment to maximize cumulative rewards.
Unlike supervised learning, where models learn from a fixed dataset of labeled
examples, RL involves learning through interaction with a dynamic environ-
ment. The agent makes decisions at each step, observes the consequences, and
receives feedback in the form of rewards. Over time, the agent refines its policy
( a mapping from states to actions ) aiming to optimize the long-term reward.
The scope of RL encompasses a wide range of applications, from simple, discrete
environments to complex, high-dimensional continuous systems.

3.2.2 Historical Context and Evolution of RL

The concept of reinforcement learning has its roots in behavioral psychology,
where it was inspired by the idea of learning through rewards and punishments.
Early formalizations of RL appeared in the mid-20th century, with foundational
work on Markov decision processes (MDPs) by Richard Bellman and others
Bellman, 1957. The field gained momentum in the 1980s with the development
of key algorithms like Q-learning Watkins, 1989 and SARSA Rummery and
Niranjan, 1994, which provided practical methods for learning value functions
and policies from experience.

3.2.3 Importance of RL in Modern AI Applications

Reinforcement Learning plays a critical role in modern AI, enabling the develop-
ment of systems that can make autonomous decisions in complex and uncertain
environments. RL is widely used in various domains, including robotics Kor-
mushev et al., 2013, where agents learn to perform tasks like navigation and

16



manipulation; finance Deng et al., 2016, where RL algorithms optimize trad-
ing strategies and portfolio management; and healthcare Yu et al., 2021, where
personalized treatment plans are devised through sequential decision-making.
In addition, RL has been instrumental in achieving superhuman performance
in games, demonstrating its potential to solve intricate problems that require
long-term planning and strategic thinking. As AI continues to advance, RL is
expected to be a cornerstone in the development of more adaptive, intelligent
systems.

3.3 Reinforcement Learning: Fundamentals

3.3.1 Core Components of RL

As stated before, RL is a subset of ML in which an agent learns to make deci-
sions by performing actions in an environment to maximize cumulative rewards.
Unlike supervised learning, which relies on labeled data, RL is driven by the
exploration of actions and the subsequent rewards or penalties. The core com-
ponents of RL include the agent, environment, states, actions, and rewards.

The agent is the learner or decision-maker, which takes actions to achieve a
goal. The environment is the external system with which the agent interacts,
providing states that represent the current situation or context in which the
agent must act. The state is a specific configuration of the environment at a
given time, containing all the necessary information the agent needs to make
a decision. The action is the choice the agent makes based on the current
state, which in turn influences the environment. Finally, the reward is a scalar
feedback signal provided by the environment in response to the agent’s action,
indicating how favorable that action was in achieving the desired outcome. The
fundamental objective of the agent is to learn a policy that maximizes cumula-
tive rewards over time, balancing short-term gains with long-term success.

Figure 2: Representation of the interaction of the agent with the environment.
Image taken from Sutton and Barto, 2018

17



As we can see in Fig 2, at each timestep t, the environment presents a state
st to the agent, which encapsulates the current scenario or context. Based on
this state, the agent decides on an action at following a specific policy aimed
at achieving its objectives. Once the action is executed, the environment re-
sponds by providing a reward rt that evaluates the immediate effectiveness of
the action and transitions to a new state st+1. This reward and the following
state serve as feedback for the agent, informing it about the consequences of
its actions and guiding its learning process. As discussed, the agent’s objective
is to learn a policy that maximizes the cumulative rewards over time, training
it to make decisions that are increasingly beneficial toward achieving its goal.
This cyclical interaction facilitates a dynamic learning environment where the
agent continuously adapts and optimizes its behavior based on experience.

The main components can be summarized here:

• Agent: The learner or decision-maker.

• Environment: The external system with which the agent interacts.

• State: A representation of the current situation of the environment.

• Action: The set of all possible moves the agent can make.

• Reward: The feedback from the environment following an action.

3.3.2 Core Concepts of RL

Several key concepts are central to understanding how reinforcement learning
operates. The policy is the agent’s strategy or mapping from states to actions;
it can be deterministic (a specific action for each state) or stochastic (a prob-
ability distribution over actions). The value function estimates the expected
cumulative reward associated with each state, helping the agent evaluate the
desirability of different states. Closely related is the Q-value (action-value),
which estimates the expected cumulative reward for taking a specific action in
a given state and then following the policy thereafter. Typically, there are two
types of Value functions, the State Value Function which is the expected cumu-
lative reward starting from a state s and following the policy π thereafter and
the Action Value Function which is the expected cumulative reward starting
from state s, taking action a, and then following policy π thereafter

One of the critical challenges in RL is the exploration-exploitation trade-off.
Exploration involves trying out new actions to discover their effects, which is
crucial for learning in uncertain environments. On the other hand, exploitation
involves choosing actions that are known to yield high rewards, optimizing the
agent’s performance based on its current knowledge. Balancing these two as-
pects is key to the success of an RL agent. Finally, the reward function. The
reward function is a crucial element that defines the mapping from state-action

18



pairs to rewards, guiding the agent toward desirable behaviors. The fundamen-
tal objective of the agent is to learn a policy that maximizes cumulative rewards
over time, balancing short-term gains with long-term success.

The main concepts can be summarized here:

• Policy: agent’s strategy, essentially the mapping from states to actions.

– Deterministic: a specific action for each state.

– Stochastic: a probability distribution over the available actions

• Value function: The expected cumulative reward associated with each
state. Answering the question: if I follow the policy (selection strategy)
from this state onwards, what is my total expected gain?

– State Value Function

– Action Value Function

• Reward function Mapping that assigns a numerical reward to each state
or state-action pair. It is a direct and immediate feedback mechanism that
tells the agent how good or bad a particular action was in a specific state

• Exploration-Exploitation: A trade-off between exploring new solutions
with potentially decreasing your reward short term or being loyal to your
initial strategy but with the expected return.

3.3.3 Markov Decision Process (MDP)

A Markov Decision Process (MDP) provides a formalism for modeling decision-
making situations where outcomes are partly random and partly under the
control of the agent. At the heart of RL lies an MDP and it is defined by the
tuple (S,A, P,R, γ), where:

• S: A finite set of states, representing all possible situations the agent could
encounter.

• A: A finite set of actions available to the agent.

• P: The state transition probability function, P (s′|s, a), which defines the
probability of transitioning to state s′ given the current state s and action
a.

• R: The reward function, R(s, a), which gives the expected immediate re-
ward received after taking action a in state s.

• γ: The discount factor, γ ∈ [0, 1), which determines the importance of
future rewards. A γ close to 0 prioritizes immediate rewards, while a γ
close to 1 emphasizes long-term rewards.

19



The objective in an MDP is to find a policy π : S → A that maximizes the
expected cumulative reward, often referred to as the return, from each state s:

Gt =

∞∑
k=0

γkrt+k+1, (1)

where Gt is the return at time step t, and rt+k+1 is the reward received k
steps into the future. The mathematical rigor provided by MDPs allows for the
development of algorithms that can systematically optimize the agent’s behavior
over time.

3.3.4 Offline and Online Reinforcement Learning

As discussed, RL needs an environment to interact with. This interaction can
be done mainly in two different ways namely offline and online. Online RL,
or simply RL, involves real-time interactions where the agent continuously up-
dates its policy based on feedback. Common algorithms include Q-Learning,
SARSA, and Policy Gradient Methods, with applications in robotics, gaming,
and autonomous vehicles. Its strengths lie in adaptability and exploration, but
it is sample-inefficient and may face stability issues. Conversely, offline RL, or
batch RL Lange et al., 2012, learns from a fixed dataset without further in-
teractions. Algorithms like Batch Constrained Q-Learning (BCQ) Ge et al.,
2019 and Conservative Q-Learning (CQL) Kumar et al., 2020a are used, and
applications include healthcare, finance, and industrial automation. Offline RL
is data-efficient and safe but struggles with generalization and depends heavily
on data quality. Comparing the two, online RL excels in dynamic environments
needing continuous adaptation, while offline RL is suitable for high-risk or im-
practical real-time interaction scenarios due to its reliance on pre-collected data.
Both approaches have unique strengths and limitations, making them suitable
for different applications based on their specific requirements and constraints.
As it will be discussed on the next chapter, for the demands of this study, Offline
RL will be used.

3.3.5 Model-Free and Model-Based Reinforcement Learning

In RL, the distinction between model-free and model-based approaches can be
found in how the agent interacts with and learns from the environment.

Model-free RL involves methods where the agent learns to make decisions only
from the experiences it gathers through trial and error, without any explicit
understanding of the environment’s dynamics and mechanics. These methods,
such as Q-learning and policy gradient techniques, directly optimize the pol-
icy or value function based on observed state-action-reward sequences. This
simplicity makes model-free approaches flexible and easy to implement, though
they often require a substantial amount of interaction with the environment to
converge to an effective policy.

20



Another approach is model-based methods which involve the agent first con-
structing its own internal model of the environment’s transitions based on feed-
back it receives. This internal model allows the agent to explore how different
actions might affect states and rewards without actually altering the environ-
ment. By using a planning algorithm, the agent can simulate various scenarios
and update its policy accordingly, which can lead to higher-quality decisions
with fewer interactions needed. The process of refining the policy using the
internal model is often referred to as planning or imagination. Plaat, 2022

Model-based methods update the policy in an indirect manner: the agent first
learns a model of the environment’s transition dynamics, which it then uses
to refine its policy. This indirect approach has special implications. On the
positive side, once the agent has a reliable internal model of state transitions,
it can optimize its policy without further interaction with the environment, po-
tentially reducing the sample complexity. However, the downside is that the
learned transition model might be inaccurate, leading to a suboptimal policy.
Regardless of how many samples are generated from the model, if the agent’s
internal transition model does not accurately represent the real environment,
the policy derived from it may fail when applied. Therefore, handling uncer-
tainty and model bias is crucial in model-based reinforcement learning. The
concept of first learning an internal model of the environment’s transitions has
been explored for many years, with various methods developed to implement
these transition models.

3.3.6 On-Policy and Off-Policy algorithms

Another distinction between the RL algorithms is the distinction between on
and off-policy. This distinction is based on the way the algorithms handle the
data they acquire through interaction, to learn and improve their policy. In
the case of the on-policy algorithms, like SARSA the agent can learn strictly
from the experience gathered while following the optimal policy. This means
that the learning process directly evaluates and improves the same policy. The
exploration-exploitation balance is always ensured but always in the context of
the current best policy as on-policy algorithms cannot separate exploration from
learning and therefore must confront the exploration problem directly Singh et
al., 2000. This results in safer and more stable learning as the reward is gradu-
ally getting better however it might be more prone to suboptimal policies.

In contrast, off-policy methods like Q-learning and DQN allow the policy to
learn from actions that are outside the current policy. If the learning takes
place by backing up the values of another action, not the one selected by the
behavior policy, then this is known as off-policy learning Plaat, 2022. This
means that off-policy learning can utilize data collected from any behavior pol-
icy, not just the one currently being optimized. This is beneficial because the
agent can learn from a broader range of experiences. Of course, on the other
hand, this might lead to more unstable learning. Moreover, off-policy learning

21



can utilize training data produced by disparate controllers, including human
manual control, or data that was collected in the past. Another advantage of
off-policy learning is its ability to learn multiple target policies, such as optimal
policies for various subgoals, using data from a single behavior policy Maei et
al., 2010.

To provide an example to better illustrate the difference: SARSA is categorized
as an on-policy method because it revises its Q-values based on the Q-value
of the subsequent state s′ and the action a′′ dictated by the current policy. It
computes the return for state-action combinations with the assumption that the
existing policy remains in effect. Conversely, Q-learning is considered off-policy
since it modifies its Q-values using the Q-value of the next state s′ and the
action a′ that is optimal according to a greedy policy. This means it projects
the returns (total discounted future reward) for state-action pairs as if a greedy
policy were consistently applied, even though it actually employs a different
policy during learning.

3.4 Tabular Value-Based Reinforcement Learning

Tabular value-based reinforcement learning is a foundational approach in which
the agent explicitly maintains a table of values representing the expected re-
turns for state-action pairs or states. This method is particularly suited for
environments with discrete and relatively small state and action spaces, where
it is feasible to store and update values directly in a tabular format. By lever-
aging value functions, the agent systematically learns to estimate the long-term
rewards associated with different decisions. The process involves iteratively
updating the values based on the Bellman equation, gradually improving the
policy that guides the agent’s actions. Tabular methods, such as Q-learning
and SARSA, offer a straightforward implementation of reinforcement learning
concepts, serving as a crucial stepping stone toward more advanced techniques
that handle larger or continuous spaces.

3.4.1 Value Functions and the Bellman Equation

In RL, value functions are used to estimate the expected return. The state-value
function V π(s) under a policy π is defined as:

V π(s) = Eπ [Gt | st = s] , (2)

which represents the expected return when starting from state s and following
policy π thereafter.

Similarly, the action-value function Qπ(s, a) gives the expected return for taking
action a in state s and then following policy π:

Qπ(s, a) = Eπ [Gt | st = s, at = a] . (3)

22



The Bellman equation provides a recursive relationship for these value functions.
For the state-value function, the Bellman equation is:

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a) [R(s, a) + γV π(s′)] . (4)

For the action-value function, the Bellman equation is:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

π(a′|s′)Qπ(s′, a′). (5)

These equations form the foundation for many RL algorithms, including those
that use function approximation, such as DQN and DDQN, where the Q-values
are approximated using neural networks. And with that said, let’s move to the
next chapter transitioning from standard RL to deep RL.

3.5 From Reinforcement Learning to Deep Reinforcement
Learning

Traditional RL methods, such as Q-Learning and SARSA, have been effective
in solving various sequential decision-making problems by learning policies that
map states to actions through value functions or direct policy optimization.
However, these methods typically rely on handcrafted features and tabular rep-
resentations, making them impractical for environments with high-dimensional
or continuous state spaces, such as those involving visual inputs or complex
physical systems. As a result, the transition to Deep Reinforcement Learning
(Deep RL) became a natural progression, leveraging the representational power
of deep neural networks to automatically extract features from raw sensory data.
By integrating deep learning with RL algorithms, Deep RL allows for end-to-
end learning directly from high-dimensional inputs, such as images or videos,
enabling the development of more general and scalable solutions that can tackle
complex real-world tasks. This shift has led to significant advancements, exem-
plified by the success of the Deep Q-Network (DQN) Mnih et al., 2013, which
pioneered the application of deep learning to RL, allowing agents to master so-
phisticated tasks, including playing Atari games at a human-competitive level.

3.6 Deep Reinforcement Learning

3.6.1 Fundamentals of DQN

DQN builds upon the traditional Q-Learning algorithm, which is a model-free
RL method. In Q-Learning, the goal is to learn an action-value function Q(s, a),
which represents the expected cumulative reward (also called the return) when
the agent takes action a in state s and follows an optimal policy thereafter.
Formally, the action-value function can be defined as:

23



Qπ(s, a) = E

[ ∞∑
t=0

γtrt | s0 = s, a0 = a, π

]
, (6)

Q(st, at)← Q(st, at) + α
[
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)
]
, (7)

where α is the learning rate, st and at are the state and action at time t, and
rt is the reward received after taking action at.

The Q-Learning algorithm updates the Q-values iteratively using the Bellman
equation, which provides a recursive decomposition of the action-value function:

3.6.2 Deep Q-Network

In traditional Q-Learning, the Q-values are typically stored in a table, which
becomes infeasible when dealing with large or continuous state spaces. DQN
addresses this limitation by using a deep neural network (DNN) to approximate
the Q-function. The traditional DQN architecture typically consists of convolu-
tional layers followed by fully connected layers, enabling it to process raw pixel
inputs and learn relevant features. However, in our case, we are going to use a
variation of DQN that will be discussed later on.

Figure 3: Representation of the interaction of the agent with the environment
in a Deep RL setting where the policy is derived from a Deep network instead
of a table. Image taken from Mao et al., 2016.

Fig 3 illustrates the interaction between an agent and the environment in a
Deep Reinforcement Learning (Deep RL) framework. In this setting, the agent
leverages a Deep Neural Network (DNN) to derive its policy, which maps ob-
served states to actions. This contrasts with traditional RL, where policies or

24



value functions are typically represented using tabular methods. In Deep RL,
particularly with techniques like Deep Q-Networks (DQN), the DNN is used to
approximate the Q-value function, allowing the agent to handle large or contin-
uous state spaces that would be infeasible with traditional tabular approaches.
Unlike traditional RL, where state-action values might be stored in a table,
DQN efficiently approximates these values using the network’s parameters, en-
abling more scalable and effective learning in complex environments.

Moving to the notation, let θ represent the parameters of the DNN that approx-
imates the Q-function, denoted as Q(s, a; θ). The DQN is trained by minimizing
the following loss function, which is derived from the Bellman equation:

L(θ) = E(s,a,r,s′)∼D

[
(yt −Q(s, a; θ))

2
]
, (8)

where the target value yt is given by:

yt = r + γmax
a′

Q(s′, a′; θ−). (9)

Here, θ− are the parameters of a target network, a copy of the Q-network θ that
is periodically updated to stabilize training.

3.6.3 Key Innovations in DQN

DQN introduced several key innovations that addressed the instability and di-
vergence issues commonly encountered when using neural networks in RL:

• Experience Replay: The agent’s experiences (st, at, rt, st+1) are stored
in a replay buffer D. During training, mini-batches of experiences are sam-
pled uniformly from this buffer, breaking the correlation between consec-
utive experiences and thus improving the stability of the learning process.

• Target Network: A separate target network, with parameters θ−, is used
to compute the target values yt. This network is updated less frequently
than the Q-network, which helps reduce oscillations and divergence during
training.

• Reward Clipping: In the Atari 2600 domain, rewards are clipped to the
range [−1, 1], which prevents large updates to the Q-values and stabilizes
learning.

3.6.4 The DQN Algorithm

DQN represents a significant milestone in the field of deep reinforcement learn-
ing, demonstrating that it is possible to learn effective policies from high-
dimensional sensory data. The combination of Q-Learning with deep learning,
supported by innovations such as experience replay and target networks, al-
lows DQN to overcome the challenges of instability and divergence, leading to

25



human-level performance in various domains. As a result, DQN has laid the
foundation for further advancements in deep reinforcement learning, inspiring
numerous extensions and improvements.

The DQN algorithm can be summarized as follows:

Algorithm 1 Deep Q-Network (DQN) Algorithm

1: Initialize the Q-network with random weights θ.
2: Initialize the target network with the same weights θ− ← θ.
3: for each episode do
4: Initialize the starting state s0.
5: for each time step t do
6: Select an action at using an ϵ-greedy policy based on Q(st, at; θ).
7: Execute action at and observe reward rt and next state st+1.
8: Store the transition (st, at, rt, st+1) in the replay buffer D.
9: Sample a mini-batch of transitions (s, a, r, s′) from D.

10: Compute the target value yt = r + γmaxa′ Q(s′, a′; θ−).
11: Perform a gradient descent step on the loss function L(θ) =

(yt −Q(s, a; θ))
2
with respect to θ.

12: end for
13: Update the target network parameters periodically: θ− ← θ.
14: end for

3.7 Double Deep Q-Network (DDQN)

While DQN represents a substantial advancement in the integration of deep
learning with reinforcement learning, it is not without its limitations. One of
the key issues with DQN is the overestimation bias that arises during the es-
timation of the Q-values. This bias occurs because the same network is used
to select and evaluate the actions, which can lead to an overestimation of the
action-value function, potentially resulting in suboptimal policies.

To address this overestimation issue, the Double Deep Q-Network (DDQN)
algorithm was introduced. DDQN builds upon the DQN framework by decou-
pling the action selection and action evaluation processes, which mitigates the
overestimation bias and leads to more accurate value estimates.

3.7.1 DDQN Methodology

The key difference between DQN and DDQN lies in how the target value yt is
computed. In DQN, the target value is calculated using the maximum Q-value
of the next state s′ as follows:

yDQN
t = r + γmax

a′
Q(s′, a′; θ−), (10)

26



where Q(s′, a′; θ−) represents the action-value function approximated by the
target network. This approach, while effective, introduces a bias because it uses
the same values to both select and evaluate the next action.

In DDQN, this overestimation is mitigated by using the online network to select
the action and the target network to evaluate it. Specifically, the target value
in DDQN is computed as:

yDDQN
t = r + γQ(s′, argmax

a′
Q(s′, a′; θ); θ−), (11)

Here, argmaxa′ Q(s′, a′; θ) is the action selected by the online network, but the
value of this action is evaluated using the target network Q(s′, a′; θ−). By sep-
arating these two steps, DDQN reduces the overestimation of Q-values, leading
to more accurate learning.

3.7.2 Key Contributions and Impact of DDQN

DDQN provides a crucial improvement over DQN by addressing the overes-
timation bias, which can have significant impacts on the performance of RL
algorithms, especially in environments where accurate value estimation is crit-
ical. Several empirical studies have demonstrated that DDQN leads to better
performance and more stable learning compared to the original DQN, particu-
larly in complex environments such as Atari 2600 games .

• Decoupled Action Selection and Evaluation: The primary innova-
tion of DDQN is the decoupling of action selection from action evalua-
tion. This modification reduces overestimation, leading to more accurate
Q-value estimates and, consequently, more robust policies.

• Improved Stability: By mitigating overestimation bias, DDQN im-
proves the stability of the learning process. This stability is particularly
important in environments with high variability or where reward struc-
tures are sparse or noisy.

• Broader Applicability: The improvements introduced by DDQN have
made it a preferred choice in various applications of deep reinforcement
learning, from game playing to more practical applications like robotics
and autonomous systems.

3.7.3 The DDQN Algorithm

DDQN represents a substantial refinement of the DQN algorithm, addressing
one of its primary limitations which is the overestimation bias in Q-value esti-
mation. By separating action selection from evaluation, DDQN achieves more

27



accurate and stable learning, which has led to its widespread adoption in the
field of deep reinforcement learning. The development of DDQN emphasizes on
the importance of continual refinement, contributing to more robust and reliable
systems capable of performing in complex, real-world environments.

The DDQN algorithm follows a similar structure to DQN but with a key mod-
ification in the target calculation step:

Algorithm 2 Deep Q-Network (DQN) Algorithm with Double DQN Enhance-
ments
1: Initialize the Q-network with random weights θ
2: Initialize the target network with the same weights θ− ← θ
3: for each episode do
4: Initialize the starting state s0
5: for each time step t do
6: Select an action at using an ϵ-greedy policy based on Q(st, at; θ)
7: Execute action at and observe reward rt and next state st+1

8: Store the transition (st, at, rt, st+1) in the replay buffer D
9: Sample a mini-batch of transitions (s, a, r, s′) from D

10: Compute the target value yDDQN
t = r +

γQ(s′, argmaxa′ Q(s′, a′; θ); θ−)
11: Perform a gradient descent step on the loss function L(θ) =(

yDDQN
t −Q(s, a; θ)

)2

with respect to θ

12: end for
13: Update the target network parameters periodically: θ− ← θ
14: end for

3.8 Conservative Deep Q-Network (C-DQN)

The Conservative Deep Q-Network (C-DQN) is an extension of the DQN frame-
work designed specifically for offline reinforcement learning scenarios Kumar et
al., 2020b. Offline RL presents unique challenges, particularly when the agent
cannot interact with the environment and must learn solely from pre-collected
data. This characteristic of this algorithm makes it perfect for our setting. As
discussed, the nature of our data is historical so this algorithm is directly ap-
plicable to our problem. However, one of the main issues in offline RL is the
overestimation of Q-values for actions that are outside the distribution of the
training data. This means that the offline algorithms might fail to generalize
to data that follow different ”trends” than the historic dataset they base their
training on. The C-DQN algorithm addresses this by introducing a conserva-
tive penalty, discouraging the agent from overestimating the values of unseen or
out-of-distribution actions.

28



3.8.1 C-DQN Methodology

In offline RL, the agent cannot interact with the environment, which can lead to
an overestimation of Q-values for out-of-distribution (OOD) actions that were
not seen in the training data. The C-DQN algorithm modifies the traditional
Q-learning objective by adding a conservative regularization term that penal-
izes high Q-values for actions that are not well-represented in the offline dataset,
leading to more reliable value estimates. The regular DQN algorithm estimates
the Q-value as shown in Equation 9

This can cause overestimation in offline RL as unseen actions may get inflated
Q-values. To mitigate this, C-DQN modifies the objective function to introduce
conservatism in value estimation:

min
Q

E(s,a)∼D

[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a)

)2
]
+α

(
Ea∼π(a|s)[Q(s, a)]− E(s,a)∼D[Q(s, a)]

)
(12)

Here, the regularization term penalizes the Q-values of unseen actions, specifi-
cally actions sampled from the learned policy π(a|s), while rewarding conserva-
tive estimates for actions sampled from the dataset D. The coefficient α controls
the weight of the penalty, which can be tuned to achieve the desired level of
conservativeness. This ensures that the agent remains cautious in its predictions
for out-of-distribution actions that were not observed in the dataset.

3.8.2 Key Contributions and Impact of C-DQN

C-DQN is particularly impactful in the domain of offline reinforcement learn-
ing, where interaction with the environment is not feasible. The conservative
approach prevents over-optimism in value estimates, which can arise when the
agent evaluates actions that are outside the distribution of the training data.

• Conservative Regularization: The conservative term in the C-DQN
loss function prevents the overestimation of Q-values for actions not present
in the dataset. This helps the agent avoid risky actions that it has not
seen during training.

• Improved Stability: By focusing on actions observed in the dataset
and penalizing unseen ones, C-DQN provides improved stability in pol-
icy learning, which is crucial in domains where safety and reliability are
important.

• Effective in High-Risk Domains: The conservative nature of C-DQN
makes it suitable for applications like autonomous driving, healthcare, and

29



robotics, where out-of-distribution actions can lead to unsafe outcomes.

3.8.3 The C-DQN Algorithm

The C-DQN algorithm extends the standard DQN framework by adding a con-
servative penalty to the Q-value updates. This ensures that the agent remains
cautious when evaluating actions not present in the dataset. The C-DQN frame-
work provides a regularization term to handle out-of-distribution actions, miti-
gating the common overestimation problem in offline reinforcement learning.

The algorithm can be summarized as follows:

Algorithm 3 Conservative Deep Q-Network (C-DQN) Algorithm

1: Initialize the Q-network with random weights θ
2: Initialize the target network with the same weights θ− ← θ
3: for each episode do
4: Initialize the starting state s0
5: for each time step t do
6: Select an action at using an ϵ-greedy policy based on Q(st, at; θ)
7: Execute action at and observe reward rt and next state st+1

8: Store the transition (st, at, rt, st+1) in the replay buffer D
9: Sample a mini-batch of transitions (s, a, r, s′) from D

10: Compute the conservative target value:

yC-DQN
t = r+γQ(s′, argmax

a′
Q(s′, a′; θ); θ−)−α

(
Ea∼π(a|s)[Q(s, a)]− E(s,a)∼D[Q(s, a)]

)
(13)

11: Perform a gradient descent step on the loss function L(θ) =(
yC-DQN
t −Q(s, a; θ)

)2

with respect to θ

12: end for
13: Update the target network parameters periodically: θ− ← θ
14: end for

Conservative Deep Q-Network (C-DQN) provides a robust framework for of-
fline reinforcement learning by addressing the overestimation of Q-values in out-
of-distribution actions. Its conservative regularization ensures that the agent
remains cautious when learning from a fixed dataset, improving both the safety
and performance of the policy. This makes C-DQN particularly useful for high-
stakes environments where the cost of making mistakes is high.

3.9 Soft Actor-Critic (sac)

To understand the Soft Actor-Critic Haarnoja et al., 2018 algorithm someone
must first understand the entropy-regularized reinforcement learning framework,
which modifies traditional RL equations to incorporate entropy measures.

30



3.9.1 Entropy-Regularized Reinforcement Learning

Entropy measures the randomness or unpredictability of a random variable. For
example, a biased coin that frequently lands heads has low entropy, while a fair
coin with an equal chance of landing heads or tails exhibits high entropy.

The following equations are from OpenAI SAC documentation

Consider a random variable x with a probability mass or density function P .
The entropy H of x is calculated from its distribution P as follows:

H(P ) = Ex∼P [− logP (x)]. (14)

In entropy-regularized reinforcement learning, the agent receives an additional
reward at each timestep, which is proportional to the entropy of the policy at
that timestep. This modifies the reinforcement learning objective to:

π∗ = argmax
π

Eτ∼π

[ ∞∑
t=0

γt (R(st, at, st+1) + αH (π(·|st)))

]
, (15)

where α > 0 is a coefficient balancing the trade-off. Assuming an infinite-
horizon discounted scenario, we redefine the value functions to incorporate en-
tropy bonuses:

The value function V π includes entropy bonuses at every timestep:

V π(s) = Eτ∼π

[ ∞∑
t=0

γt (R(st, at, st+1) + αH (π(·|st))) | s0 = s

]
(16)

The action-value function Qπ, on the other hand, incorporates entropy bonuses
from every timestep except the first:

Qπ(s, a) = Eτ∼π

[ ∞∑
t=0

γtR(st, at, st+1) + α

∞∑
t=1

γtH (π(·|st)) | s0 = s, a0 = a

]
(17)

The relationship between V π and Qπ is established as:

31

https://spinningup.openai.com/en/latest/spinningup


V π(s) = Ea∼π [Q
π(s, a)] + αH (π(·|s)) (18)

and the Bellman equation for Qπ becomes:

Qπ(s, a) = Es′∼P,a′∼π [R(s, a, s′) + γ (Qπ(s′, a′) + αH (π(·|s′)))] (19)

or equivalently:

Qπ(s, a) = Es′∼P [R(s, a, s′) + γV π(s′)] . (20)

3.9.2 Additional Considerations

The setup of value functions in this entropy-regularized framework is somewhat
arbitrary, and other formulations could include the entropy bonus at the first
timestep. Definitions may vary slightly across different research papers on this
topic.

3.10 Sports Science: a quick overview

Sports science encompasses various disciplines, including physiology, biomechan-
ics, psychology, and nutrition, all aimed at improving athletic performance and
reducing injuries. It involves the application of scientific principles to under-
stand and enhance both the physical and mental aspects of athletic training
and competition. The precision required in crafting training schedules for elite
athletes underscores the importance of personalized approaches tailored to the
unique needs and conditions of each athlete.

4 Data

This chapter provides an overview of the data utilized in this research, which
consists of historical training schedules of elite athletes provided by a Dutch
professional team. Due to competitive and privacy concerns, access to the data
is restricted. As the ultimate goal is to apply a Reinforcement Learning (RL)
framework, the raw data must be transformed into a structure that resembles
Markov Decision Process (MDP) transitions. This transformation process (de-
tailed in Section 4.2) is crucial for enabling RL algorithms to learn meaningful
policies.

32



4.1 Historic Dataset

The core dataset is stored in Excel files, each representing a year of training
schedules. Within each file, the data are organized such that each day is split
into two rows: one for the morning training session and another for the evening
session. The dataset contains five primary exercise types:

• Cycling

• Skating

• Walking

• Strength

• Conditioning

Additionally, several columns capture important attributes related to each
training session:

• Duration: Time spent on the exercise (in minutes).

• RPE (Rate of Perceived Exertion): A numerical value representing
the perceived intensity of the exercise, with higher values indicating more
challenging sessions.

• Total Training Load: The product of Duration and RPE, representing
the overall workload of the session.

• Comments: Additional notes provided by the coach for each session.

A snippet of the raw data structure is shown in Figure 4. For this research,
data from five consecutive years were combined to form a single dataset. Each
row corresponds to a particular session (morning or evening), along with various
metrics of interest.

Figure 4: Sample of the raw data in Excel form, containing training schedules for
one year. The dataset includes five main exercise categories: Cycling, Skating,
Walking, Strength, and Conditioning.

33



4.2 Data Preprocessing

Before the dataset could be used in a reinforcement learning pipeline, extensive
data cleaning and transformation steps were required. Given that each Excel file
had slightly different column layouts and naming conventions, the overarching
goal was to harmonize the data into a single DataFrame with consistent columns.

4.2.1 Merging and Cleaning

1. Merging Multiple Excel Files: The raw data were provided in five Ex-
cel files (Trainingsstatus2010-2011.xls, Trainingsstatus2011-2012.xls,
etc.), each containing training information for one year. We first dropped
non-essential or redundant columns, such as additional commentary or un-
used intermediate metrics, ensuring only relevant columns remained (e.g.,
Week, Date, Duration, RPE, Cycling, etc.). The data from the five files
were then concatenated row-wise into a single DataFrame.

2. Forward-Filling Certain Columns: Columns like Week and Date
sometimes spanned multiple sessions and could contain empty cells. For-
ward filling (ffill) was applied to propagate these values down until the
next non-empty row was encountered.

3. Handling Missing Values: For numerical columns such as Duration and
RPE, any remaining NaN values were set to zero, reflecting that no training
was performed or no intensity was recorded. Non-numeric columns were
also standardized to avoid undefined session types.

4. Binary Encoding of Training Types: The original data contained
columns like Cycling, Skating, Walking, and Str&Cond indicating whether
a particular exercise was performed. After filling empty cells with zeros,
each column was converted into a binary indicator (1 if that exercise was
performed, 0 otherwise). An additional Rest column was inserted to mark
days with no recorded exercise.

4.2.2 Incorporating Performance (Reward) Data

Next, an external file (Astrand.xlsx) containing performance metrics was merged
with the main dataset. The primary metric (labeled Reward) was derived from
tests that included heart-rate measures and other athlete-specific evaluations.
Key steps included:

1. Converting all relevant date fields to a standard YYYY-MM-DD format.

2. Merging the performance file (containing the date and the computed Re-
ward) with the main training dataset via a left join on the date.

3. Forward/Backward filling or zero-filling of missing reward values for dates
with no recorded test data, to ensure every row in the training dataset
had a numerical reward value.

34



This Reward column functions as the scalar feedback signal for the RL algo-
rithms, informing whether a particular sequence of training actions is beneficial
for the athlete’s performance.

4.2.3 Feature Engineering and Scaling

To better capture temporal and seasonal effects, the following transformations
were applied:

• Day-of-Year, Day-of-Week: The Date column was split into numerical
features such as day of the year (ranging from 1 to 365) and day of the week
(0 for Monday through 6 for Sunday). These help capture periodicities in
training schedules.

• One-Hot Encoding of Categorical Variables: Categorical fields, for
instance the session type (morning vs. evening) or day-of-week, were one-
hot encoded using OneHotEncoder to create independent binary variables
for each category.

• Scaling Numerical Variables: Columns such as Week, Duration, RPE,
and Day of Year were standardized (using StandardScaler) to have zero
mean and unit variance, preventing any one feature from dominating the
learning process.

A final DataFrame was then constructed, containing a mixture of scaled
numeric features, one-hot-encoded categorical features, multiple binary action
indicators (e.g. Cycling, Skating, Walking, Str&Cond, Rest), and a Reward col-
umn. This final structure was saved to a CSV file for reproducibility and serves
as the input to the ML/RL pipelines.

4.2.4 From Data to Markov Decision Processes

To apply reinforcement learning, we interpret each row of the final dataset as
part of an MDP transition:

• State (S): A vector of features describing the athlete’s status on a given
day (e.g., scaledDuration, RPE, day-of-week, day-of-year, plus any latched
features from previous sessions if used).

• Action (A): The decision made for that session—in practice, which exer-
cise is performed. In the final DataFrame, this can be represented as one
of the binary columns (Cycling, Skating, etc.) or a combined categorical
variable in more advanced setups.

• Reward (R): The Reward column merged from the performance tests.
This serves as feedback for how effective the chosen action was, factoring
in the athlete’s subsequent test results.

35



• Next State (S’): The features in the following row (i.e., next training ses-
sion), representing how the athlete’s state evolves over time. Because this
is historical data, the state transitions are fixed by the dataset, simulating
the environment’s response.

By aligning the data in chronological order, each pair of consecutive rows
forms a (S,A,R, S′) tuple, effectively turning the entire historical record into
a time-series of transitions. The key assumption is that day-to-day transitions
approximate the Markov property, i.e., the next day’s condition depends primar-
ily on the current day’s state and action, plus any explicitly-engineered features
(e.g., session type).

4.2.5 Summary of Processing Steps

Figure 5 outlines the main steps in preparing the raw training data and perfor-
mance metrics for RL. The preprocessing not only standardizes the formatting
but also enhances the data’s suitability for sequential decision-making analyses.

1. Load, merge, and clean raw Excel files
2. Forward-fill missing weeks, dates, and other columns
3. Convert exercise columns to binary indicators and add Rest
4. Merge external performance file for reward signals
5. Engineer features (day-of-week, day-of-year)
6. Encode categorical variables, scale numeric variables
7. Store final DataFrame for RL

Figure 5: A high-level view of the data preprocessing pipeline used in this study.

This refined dataset serves as the foundation for both the traditional machine
learning models and the offline RL setups explored in subsequent chapters. The
careful cleaning, merging, and feature engineering steps ensure that the data are
coherent, consistently formatted, and representative of an MDP, making it pos-
sible to train, validate, and compare different models for crafting personalized
training schedules.

4.3 Data Statistics

To provide context for the learning problem, we present statistics on the fi-
nal dataset used across supervised and RL experiments. The dataset consists
of 3, 290 chronologically ordered transitions, each representing a training ses-
sion annotated with a discrete action (training type), input features (athlete
context), and a scalar reward.

Action Space Distribution. The target in all supervised and deep rein-
forcement learning models is the training action, which can be one of five types:

36



Cycling, Skating, Walking, Str&Cond, or Rest. Table 1 shows the distribution
of these actions in the final dataset.

Action Proportion (%)
Skating 33.0%
Rest 29.5%
Cycling 24.8%
Str&Cond 10.6%
Walking 2.0%

Table 1: Distribution of training actions in the dataset.

Majority-Class Baseline. Given the class imbalance in the dataset, we in-
clude a baseline classifier that always predicts the most frequent class (Skating).
This yields a baseline accuracy of 33.04%, which serves as a reference for evalu-
ating learned policies. For example, our best deep model achieves approximately
85% accuracy—significantly outperforming the baseline and demonstrating its
ability to capture meaningful structure in the training data.

Reward Statistics. The reward signal, used in all reinforcement learning
settings, is a scalar derived from athlete physiological test results. Table 2
provides summary statistics for this reward.

Metric Value
Mean Reward 11.73
Standard Deviation 40.24
Minimum 0.0
Maximum 168.0

Table 2: Reward statistics in the dataset.

These statistics contextualize model performance and emphasize the importance
of learning generalizable decision policies, rather than relying solely on dominant
action patterns such as “Skating.”

5 Methods and Experimental setup

This section summarizes the methodologies and experimental setup employed in
this study to develop optimal and personalized training schedules for elite ath-
letes using mainly Reinforcement Learning techniques. The approach is struc-
tured in stages to progressively enhance the complexity of the models and adapt
to the nature of the available data, which consists of historical training records
without a real-time interactive environment. This means that certain online
RL algorithms will be manipulated to fit the offline nature of the data. The
technical details of these manipulations will also be discussed.

37



The study begins with a tabular RL approach, where the problem is initially
formulated in a discrete state-action space suitable for simpler, table-based re-
inforcement learning methods. This stage serves as a foundational step to un-
derstanding the dynamics of the training environment and establishing a basic
understanding of the performance metrics.

Following the tabular approach, the study advances to deep RL, leveraging both
online and offline algorithms to handle more complex state and action spaces.
Given that the dataset consists of historical data and a real environment where
the agent can interact dynamically does not exist, online RL algorithms are
adapted for offline use. This means that the archive dataset will play the role of
the environment as the agent will be able to move. learn and sample experiences
only within this frame.

Finally, the study incorporates traditional machine learning techniques to pre-
dict the outcomes of different training schedules. This predictive approach com-
plements the RL strategies by providing additional insights into the relation-
ships between training variables and athlete performance. It also offers a deeper
understanding and serves as a benchmark for comparing how a completely dif-
ferent approach might perform. Additionally, it helps to assess whether RL is
the most suitable method given the specific setup.

The following subchapters detail each approach, including the specific algo-
rithms used, their configurations, and the experimental conditions under which
they were tested.

5.1 Tabular approach

In the scope of this approach, the problem was formulated as an MDP as follows:
The training sessions were categorized into three levels based on training load:
Low, Medium, and High intensity. This categorization replaced the five different
exercise types present in the raw data with three discrete action buckets, simpli-
fying the action space. To constrain the state space and make the initial model
more manageable, a state was defined as a sequence of three consecutive training
sessions. For example, a state could be represented as a tuple like (’Medium’,
’Medium’, ’High’). This formulation resulted in a total 33 = 27 unique states, as
there are three possible intensity levels for each of the three consecutive sessions.

Within this simplified setup, a Q-table algorithm was employed to train a Q-
table model that learns the optimal next action based on the current state. The
reward function was defined such that the agent receives a reward of 1 if the
predicted next action matches the action that was actually taken in the dataset,
and a reward of 0 otherwise. This approach allows the model to iteratively learn
the sequence of actions that most closely aligns with the real-world decisions
made by the athletes and coaches.

38



Figure 6: Illustration of state-action pairs in the tabular approach. Each pair
follows in chronological order, forming a time-series-like MDP.

In Figure 6 the state-action pairs are displayed as an example. Each state-
action pair follows the next one in chronological order, forming a time-series-
like MDP. The first state consists of the initial three training sessions, with the
corresponding action being a tuple that includes the load categories for these
sessions. In this example, the first action (Action 1) is represented by the tuple
(”Low”, ”Low”, ”High”).

Since the data are historical, and the agent cannot actively explore different
next states, the subsequent state and action are predetermined. The next state,
State 2, is defined as the sequence of sessions shifted by one (i.e., the second,
third, and fourth sessions), with the corresponding action (Action 2) being an-
other load category tuple, such as (”Low”, ”Medium”, ”High”).

In the same context, multiple experiments were done adjusting every time the
state space and experimenting with the Load categorization and consequently
the definition of the Action space. The specifics will be discussed in the next

39



chapter.

The state-action tabular example directly contributes to understanding how RL
can be effectively applied to model coaching decision-making. By simplifying
the problem into discrete states and actions, the model replicates the thought
process of a coach in generating training schedules.

5.2 ”Online” deep RL approach

In this section, the online deep RL models that were utilized will be discussed.
The online is put on quotes because the traditional online algorithms and meth-
ods were modified to fit the offline nature of the dataset.

5.2.1 Deep Q-Network (DQN)

The implementation of this experiment is based on the Deep Q-Network (DQN)
model using PyTorch, adapted from the official PyTorch tutorial on reinforce-
ment learning. Originally designed for online reinforcement learning, this DQN
model has been modified to function in an offline setting, where the agent learns
solely from a fixed dataset of historical data. This is crucial for the nature of this
experiment, as the data is archived and does not involve real-time interaction
with the environment.

5.2.2 Key Components and Modifications

• Data Preparation: The experiment begins with loading a preprocessed
dataset consisting of historical training data for athletes. This dataset is
divided into training and testing sets to facilitate evaluation. Each entry
in the dataset is formatted as a named tuple (Transition), which includes
the state (representing the athlete’s current condition), action (represent-
ing the training intensity or type), reward (performance metrics), and
next state (resulting condition after the action). This structure mimics
the environment-agent interaction in online reinforcement learning but is
based entirely on pre-existing data, making it suitable for offline learning.

• Replay Memory for Offline Learning: The replay memory compo-
nent, which is typically used to store an agent’s experiences in online
settings, is adapted here to store all possible state transitions from the
historical dataset. This means that the buffer is filled with the total of
historical datasets. Since the agent cannot generate new experiences in
an offline setting, it samples from this fixed replay memory to learn from
past decisions and outcomes. The replay buffer uses a deque data structure
to manage the memory efficiently and supports random sampling during
training, a crucial feature for preventing correlation between samples.

• Deep Q-Network (DQN) Model: The architecture of the DQN model
consists of three fully connected layers with ReLU activation functions,

40

https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html


following the standard DQN design. The input layer takes the state repre-
sentation, and the output layer predicts Q-values for each possible action.
To enhance stability during training, especially with offline data, batch
normalization layers are applied. These layers help ensure that the model
generalizes better, despite the static nature of the data. The primary goal
of this network is to approximate the optimal Q-value function, which
predicts the expected future rewards for each action given the current
state.

• Training Setup and Modifications for Offline Learning: Key hy-
perparameters, such as learning rate, discount factor γ, and batch size,
follow the original DQN setup. However, due to the offline setting, the
exploration-exploitation trade-off managed by epsilon-greedy policies in
online environments is not directly applicable here. In this offline sce-
nario, the model focuses exclusively on exploiting the existing dataset by
learning from transitions stored in replay memory. The target network,
which stabilizes training by providing fixed Q-value targets, is periodi-
cally updated through a soft update rule. This mechanism ensures that
the target network’s weights are gradually updated, preventing oscillations
in Q-value estimates.

• Offline Training Optimization: The DQN model is optimized using a
training function that samples random batches of transitions from the re-
play memory. In each training step, the loss is computed using the Bellman
equation by comparing the predicted Q-values with the expected values
derived from the target network. A Huber loss function is used to reduce
the impact of outliers, which is particularly useful for offline learning with
historical data. Gradient clipping is also applied to prevent exploding
gradients and ensure stable updates to the network’s parameters.

• Training Execution and Loss Monitoring: The training loop is modi-
fied to run for a fixed number of episodes, during which the policy network
is updated based on the available historical data. The target network is
updated periodically to maintain stable learning. Throughout the train-
ing process, loss values are recorded and smoothed to monitor convergence
and performance. This helps track how well the model generalizes from
past data to optimize training schedules. Visualizations of the loss over
time provide insights into the model’s convergence behavior.

5.2.3 Formulation and Pseudocode

In adapting the Deep Q-Network (DQN) algorithm for an offline reinforcement
learning setting, several mathematical modifications are necessary. The key
mathematical differences between the online Deep Q-Network (DQN) and the
offline DQN are highlighted in the following formulations, focusing on how the
offline setting alters certain components of the algorithm.

41



1. Data Distribution

Online DQN: Experiences are collected by the agent interacting with the
environment using its current policy π, and stored in a replay buffer.

(s, a, r, s′) ∼ Donline, where Donline is updated continually (21)

Offline DQN: Uses a fixed dataset D collected by a behavior policy πβ , with
no interaction during training.

(s, a, r, s′) ∼ D, where D is static (22)

2. Exploration Strategy

Online DQN: Employs an ϵ-greedy policy to balance exploration and ex-
ploitation during data collection.

a =

{
random action with probability ϵ

argmax
a′

Q(s, a′; θ) with probability 1− ϵ
(23)

Offline DQN: No exploration is possible since the agent does not collect new
data; it relies entirely on the actions in the dataset.

3. Loss Function Expectation

Online DQN:

Lonline(θ) = E(st,at,rt,st+1)∼Donline

[
(yt −Q(st, at; θ))

2
]

(24)

Offline DQN:

Loffline(θ) = E(si,ai,ri,s′i)∼D

[
(yi −Q(si, ai; θ))

2
]

(25)

• Both use the same form of loss function but differ in the data distribution
over which the expectation is taken.

4. Target Value Computation

Online DQN: Computes the target Q-value using the maximum over all pos-
sible actions at the next state s′.

y = r + γmax
a′

Q(s′, a′; θ−) (26)

42



Offline DQN:

yi =

{
ri, if s′i is terminal

ri + γmaxa′ Q(s′i, a
′; θ−), otherwise

(27)

• In offline DQN, the next state s′i comes from the fixed dataset, and actions
are limited to those present in D.

5. Policy Update Dynamics

Online DQN: The policy is continually updated based on new experiences,
with the data distribution evolving as the policy improves.

Offline DQN: The policy update relies solely on the fixed dataset, which
can lead to distributional shift if the learned policy deviates from the behavior
policy that generated D.

6. Gradient Update

Both Online and Offline DQN: The gradient of the loss with respect to
the network parameters θ is computed similarly, but the expectation is over
different data distributions.

∇θL(θ) = E(s,a,r,s′) [(Q(s, a; θ)− y)∇θQ(s, a; θ)] (28)

Gradient clipping

∇θL(θ)← δ · ∇θL(θ)

max(δ, ∥∇θL(θ)∥)
(29)

• Gradient clipping is applied to stabilize training by preventing excessively
large updates.

Summary of Differences

The main differences between online and offline DQN can be summarized below:

• Data Source: Online DQN collects new data during training; offline
DQN relies on a fixed dataset without environmental interaction.

• Exploration: Online DQN uses exploration strategies; offline DQN can-
not explore and must work within the provided data.

• Target Network Update: Online DQN updates the target network
periodically; offline DQN employs a soft update at each training step.

• Action Selection: Offline DQN may limit action considerations to those
present in the dataset to prevent overestimation.

43



• Policy Evaluation: The expectation in the loss function for offline DQN
is over the static dataset, not the agent’s experience.

• Overestimation Bias: Offline DQN is more susceptible to overestima-
tion errors due to the inability to gather new data to correct overestimated
Q-values.

To illustrate better how this offline version of the DQN works you below is the
pseudocode.

44



Algorithm 4 Offline Deep Q-Network (DQN) Algorithm

1: Initialize replay buffer D with transitions from the offline dataset.
2: Initialize policy network Q(s, a; θ) with random weights θ.
3: Initialize target network Q(s, a; θ−) with weights θ− ← θ.
4: Set hyperparameters: batch size B, learning rate α, discount factor γ, target

update rate τ , and maximum gradient norm δ.
5: for each training step do
6: Sample a mini-batch of B transitions {(si, ai, ri, s′i)}Bi=1 from D.
7: Compute the target Q-values for each transition:

yi =

{
ri, if s′i is terminal

ri + γmaxa′ Q(s′i, a
′; θ−), otherwise

8: Compute the current Q-values for actions taken:

qi = Q(si, ai; θ)

9: Compute the loss over the mini-batch:

L(θ) =
1

B

B∑
i=1

(yi − qi)
2

10: Perform a gradient descent step on L(θ) with respect to θ:

θ ← θ − α∇θL(θ)

11: Apply gradient clipping:

∇θL(θ)← δ · ∇θL(θ)

max(δ, ∥∇θL(θ)∥)

12: Update the target network using a soft update:

θ− ← τθ + (1− τ)θ−

13: end for

5.2.4 Double Deep Q-Network (DDQN)

The Double Deep Q-Network (DDQN) algorithm is an enhancement of the stan-
dard DQN architecture that addresses the issue of overestimation bias, which is
prevalent in Q-learning algorithms. In the standard DQN, the same network is
used for both action selection and action evaluation, which can lead to overesti-
mation of Q-values for certain state-action pairs. DDQN mitigates this issue by
decoupling the action selection and action evaluation processes, leading to more
accurate and stable value estimates. This is particularly important in offline re-

45



inforcement learning scenarios, where overestimation could result in suboptimal
policy learning based solely on historical data.

In this experiment, DDQN has been adapted to work in an offline reinforcement
learning setting, utilizing historical training schedules to learn optimal policies
for future decision-making. The implementation is largely based on the official
PyTorch example, with modifications to incorporate the DDQN framework for
action evaluation.

5.2.5 Key Components and Modifications

• Data Preparation: The dataset for training the DDQN model is the
same as that used for DQN. It consists of a named tuple, Transition,
which encapsulates the state (representing the athlete’s condition), the
action (training intensity or type), the reward (performance metric), and
the next state (the condition after the training). The goal is to learn from
these transitions in order to optimize future training schedules.

• Replay Memory for Offline Learning: Similar to DQN, DDQN uses
a replay memory to store all the transitions from the fixed dataset. As the
model operates in an offline setting, it does not interact with a live envi-
ronment. Instead, it learns by sampling mini-batches of transitions from
the replay memory. The SequentialReplayMemory class is used to manage
this process, ensuring efficient sampling of transitions during training.

• DDQN Model Architecture: The neural network architecture for DDQN
is similar to that of DQN, consisting of three fully connected layers, each
followed by ReLU activation functions. To improve stability during train-
ing, especially given the offline nature of the dataset, batch normalization
and dropout layers are included. The network outputs Q-values for each
possible action, given the state input.

• Key Modification - Decoupling Action Selection and Evaluation:
The main difference between DDQN and DQN is in how actions are se-
lected and evaluated. In DDQN, the policy network is used to select the
action, while the target network is responsible for evaluating the value
of the selected action. This decoupling helps prevent overestimation by
ensuring that the evaluation is based on the more stable values provided
by the target network. Specifically, the action with the highest Q-value is
selected by the policy network, but its value is evaluated using the target
network, reducing the bias inherent in using a single network for both
purposes.

• Training Setup: The training process follows the same general structure
as DQN, with similar hyperparameters such as learning rate, discount fac-
tor γ, and batch size. However, in DDQN, the target Q-value computation
involves selecting the best action using the policy network and evaluat-
ing it with the target network. Since the model is trained offline, the

46



focus is on exploiting the fixed dataset rather than balancing exploration
and exploitation, which is more relevant in online reinforcement learning
settings.

• Offline Training Optimization: During training, the Bellman error
is calculated using the expected Q-values, with the action selection and
evaluation performed by separate networks. The Huber loss function is
used to minimize the impact of outliers in the dataset, and gradient clip-
ping is applied to prevent unstable updates. The key difference in DDQN
is the computation of the Q-value target. The action is selected by the
policy network and its value is evaluated using the target network. This
decoupling significantly reduces overestimation bias.

• Training Execution: The training loop is similar to that of DQN, run-
ning for a fixed number of episodes. The loss values are recorded through-
out the process to monitor convergence. The target network is updated pe-
riodically using a hard update rule, in which the policy network’s weights
are copied to the target network every fixed number of episodes (e.g., ev-
ery 10 episodes). The convergence of the model is monitored by tracking
the loss over time and plotting the smoothed loss values.

5.2.6 Key Contributions and Impact of DDQN

• Reduction of Overestimation Bias: By separating the action selection
and evaluation processes, DDQN significantly reduces the overestimation
of Q-values, leading to more stable and accurate learning. This is partic-
ularly important in offline settings, where the agent must rely entirely on
past data without the opportunity for further exploration.

• Improved Stability: The use of a target network provides more stable
updates during the learning process, reducing oscillations in Q-value es-
timates. The decoupling of action selection and evaluation improves the
model’s ability to generalize from the fixed dataset, minimizing the risk
of overestimating the value of actions that have not been seen before.

• Broader Applicability: DDQN is well-suited for environments with
high uncertainty, where accurate value estimation is critical. The reduc-
tion of overestimation bias makes it a robust algorithm for offline learning
tasks, such as optimizing training schedules based on historical data.

5.2.7 Soft Actor-Critic (SAC)

The Soft Actor-Critic (SAC) algorithm is an advanced reinforcement learning
method designed primarily for continuous action spaces. However, in this exper-
iment, SAC has been adapted for discrete action spaces, using offline reinforce-
ment learning based on pre-collected training schedules. This implementation
of SAC is heavily based on the open-source repository cleanrl-SAC. SAC is dis-
tinguished by its use of a stochastic policy, encouraging exploration through

47

https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py


entropy maximization while aiming to optimize the expected return.

In contrast to Q-learning algorithms like DQN and DDQN, SAC incorporates
a policy network (actor) that selects actions, and two Q-networks (critics) that
evaluate those actions. The agent balances exploration and exploitation by
introducing stochasticity in action selection, leading to more robust learning.

5.2.8 Key Components and Modifications

• Data Preparation: The historical training data used in SAC is prepro-
cessed similarly to the other reinforcement learning models. Each tran-
sition in the dataset is stored using a Transition named tuple, which
includes the state, action, reward, and next state. The dataset is split
into training and test sets, and the training set is used to populate a re-
play buffer. This buffer will be used to sample mini-batches of transitions
during training.

• Replay Buffer for Offline Learning: SAC relies on a replay buffer
to store past transitions. In the offline learning setup, this buffer is pop-
ulated with pre-collected historical data. No new experiences are added
during training, as the agent is learning solely from this fixed dataset. The
CustomReplayBuffer class manages the replay buffer, allowing for efficient
random sampling of mini-batches during training.

• Soft Q-Networks (Critics): The SAC implementation includes two
Q-networks, commonly referred to as critics, which evaluate the value
of state-action pairs. These networks are fully connected neural networks
with two hidden layers, employing ReLU activations. Each Q-network out-
puts the Q-value for each action in the discrete action space. To prevent
overestimation of Q-values, the two Q-networks are updated separately,
and target Q-networks are updated periodically to maintain stable learn-
ing. The target networks are soft updates of the main Q-networks, which
means that their weights are slowly adjusted towards the main network
weights.

• Policy Network (Actor): SAC’s policy network, or actor, selects ac-
tions based on the input state. Unlike deterministic policies, SAC uses a
stochastic policy that outputs a probability distribution over actions. The
policy network is a fully connected neural network with two hidden lay-
ers. During training, the policy network updates less frequently than the
Q-networks, which helps maintain stability and balance between learning
from exploration and exploitation. The output of the actor network uses a
softmax function to generate probabilities over the discrete action space.

• Entropy and Exploration: One of the key features of SAC is its entropy
term, which encourages the agent to explore a wide range of actions. This
is crucial in offline settings, where the dataset is fixed, and the agent

48



must learn to generalize from the available data. The entropy coefficient,
denoted as α, determines the balance between exploration (via entropy)
and exploitation (via reward maximization). In this implementation, α
can either be fixed or dynamically tuned during training. When automatic
entropy tuning is enabled, the target entropy is determined based on the
number of actions, and α is adjusted automatically to maintain this target
entropy.

• Training Setup and Target Network Updates: During training, the
Q-networks are updated by sampling batches of transitions from the re-
play buffer. The Q-networks learn by minimizing the difference between
the predicted Q-values and the target Q-values, which are computed us-
ing the Bellman equation. The target Q-values are computed by taking
the minimum value from the two Q-networks, which reduces the risk of
overestimation. The actor network is updated to maximize the expected
Q-value, while also incorporating the entropy term to ensure sufficient
exploration.

The target networks for the Q-functions are updated periodically using a
soft update rule. In this rule, the target network weights are slowly ad-
justed toward the main network weights, ensuring stable updates without
abrupt changes in the target Q-values.

• Policy and Q-Network Optimization: Both the policy network and
the Q-networks are optimized using the Adam optimizer. The optimiza-
tion process for the Q-networks is based on the difference between the
predicted Q-values and the target values, while the policy network is op-
timized to maximize the expected return. The optimization process in-
cludes minimizing a policy loss that accounts for both the Q-values and
the entropy term.

• Policy Evaluation: After training, the policy network is evaluated using
the test dataset. The evaluation involves comparing the actions predicted
by the policy with the actual actions from the dataset. The accuracy of
the policy is measured by the percentage of correctly predicted actions.
This allows us to assess how well the learned policy generalizes to unseen
data.

5.2.9 Key Contributions and Impact of SAC

• Entropy-Driven Exploration: SAC’s entropy term ensures that the
agent explores a broader range of actions, which is particularly useful in
offline learning environments where the dataset is fixed. This encourages
the agent to avoid prematurely settling on suboptimal policies.

• Stabilization Through Two Critic Networks: The use of two sepa-
rate Q-networks (critics) helps stabilize the training process by minimizing
overestimation of Q-values. By taking the minimum of the Q-values from

49



the two networks, SAC ensures that the agent makes more conservative
and reliable decisions.

• Adaptive Entropy Tuning: SAC can adaptively tune the entropy co-
efficient α, allowing the agent to adjust the balance between exploration
and exploitation dynamically. This makes the learning process more flexi-
ble, particularly in complex environments where the optimal exploration-
exploitation balance may vary over time.

5.3 Offline deep RL

5.3.1 Conservative Q-Learning (CQL)

Conservative Q-Learning (CQL) is a reinforcement learning algorithm tailored
for offline settings, where the agent learns solely from pre-collected data rather
than interacting with a live environment. One of the key challenges in offline
reinforcement learning is the overestimation of Q-values for out-of-distribution
(OOD) actions—actions not well-represented in the dataset. CQL addresses
this problem by introducing a conservative regularization term that penalizes
overly optimistic Q-value estimates for actions outside the data distribution.

In this experiment, the CQL algorithm is applied to a fixed dataset of histor-
ical training schedules, where the objective is to learn a reliable policy without
generating new data. The focus is on making conservative and safe decisions,
avoiding overestimation of unseen actions.

5.3.2 Key Components and Modifications

• Data Preparation and Replay Buffer: The dataset consists of tran-
sitions that represent the athlete’s state, the action taken (the type or
intensity of training), the resulting reward (performance metric), and the
next state after the action. These transitions are stored in a replay buffer,
from which mini-batches are sampled during training. In the context of of-
fline reinforcement learning, this replay buffer is static, meaning it contains
all the data the agent will learn from, with no new data being generated
during the training process.

• Q-Networks (Critic Networks): The CQL algorithm employs two sep-
arate Q-networks, referred to as Q1 and Q2, to estimate the value of
state-action pairs. These networks take the state as input and output the
Q-values for each possible action. The architecture of the Q-networks con-
sists of three fully connected layers. Each Q-network is updated during
training, and the use of two separate networks helps reduce the overesti-
mation of Q-values, a common issue in traditional Q-learning.

• Conservative Regularization: A key modification introduced by CQL
is the conservative regularization term, which is added to the Q-network
loss function. This term penalizes the Q-networks for assigning high Q-
values to actions that are not well-represented in the dataset. By doing

50



so, the Q-values for out-of-distribution actions are reduced, encouraging
the agent to focus on actions that have been observed frequently in the
dataset. This conservative regularization helps prevent the agent from
learning policies based on unrealistic or risky actions.

• Target Networks: Similar to other Q-learning-based algorithms, CQL
utilizes target networks to stabilize learning. The target Q-networks, Q′

1

and Q′
2, are periodically updated using a soft update rule, where the pa-

rameters of the target networks are slowly moved towards the parameters
of the main Q-networks. This soft update mechanism ensures that the
target values used in the training process change more smoothly, reducing
instability.

• Training Process: During training, the algorithm samples mini-batches
of transitions from the replay buffer. For each batch, the current Q-values
for the actions taken in the batch are computed by the two Q-networks.
The target Q-values are computed using the target networks, ensuring
more stable learning. The training loss is calculated as the difference
between the predicted Q-values and the target Q-values, with the addition
of the conservative regularization term. This loss is then used to update
the Q-networks using gradient-based optimization techniques. The soft
update of the target networks occurs at fixed intervals during training,
gradually aligning the target network weights with the Q-network weights.

• Policy Learning and Evaluation: The policy is implicitly learned from
the Q-networks in CQL. After training, actions are selected based on the
learned Q-values. During evaluation, the trained policy is applied to the
test dataset, and the accuracy of the policy is assessed by comparing the
predicted actions to the actual actions observed in the test data.

5.3.3 Key Contributions and Impact of CQL

• Robustness to Out-of-Distribution Actions: In offline reinforcement
learning, it is crucial to avoid overestimation of actions that are not well-
represented in the training dataset. CQL achieves this by penalizing high
Q-values for such actions, ensuring that the learned policy is more conser-
vative and focused on actions that have been observed frequently in the
dataset.

• Improved Stability in Offline Settings: The use of conservative reg-
ularization and target networks improves the stability of the learning pro-
cess, especially in offline settings. This reduces the likelihood of the policy
overfitting to unrealistic or risky actions and results in a more reliable
decision-making process.

• Applicability to High-Stakes Domains: The conservative nature of
CQL makes it particularly well-suited for high-stakes domains such as
healthcare, autonomous driving, and robotics. In these domains, the cost

51



of making mistakes can be high, and a conservative policy ensures safer
and more reliable decisions.

5.4 ML approach

The problem of crafting personalized training schedules can be framed as a su-
pervised learning task, where the goal is to predict the optimal training schedule
(i.e., the sequence of actions or decisions) based on the athlete’s current condi-
tion and past training history. Supervised learning offers a straightforward way
to model the decision-making process of coaches, using labeled historical data
to train the model.

Data Representation: Each training decision can be viewed as a sample
in a supervised learning context, where the input features represent the ath-
lete’s physiological state (e.g., fatigue level, performance in prior tests, race
results), and the target label corresponds to the optimal training action (e.g.,
training intensity, rest, specific exercises). Historical data would include states
(athlete condition), actions (training decisions made by coaches), and outcomes
(performance in races or tests).

5.4.1 DNNs

In alignment with our research objectives, Deep Neural Networks (DNNs) are
utilized as a benchmark to evaluate the effectiveness of Reinforcement Learning
in modeling the decision-making process of elite sports coaches. In this ap-
proach, DNNs are employed to model the complex and nonlinear relationships
between athletes’ performance and the optimal training decisions. In this set
up we address this problem as a supervised learning problem where a model
maps directly a training schedule with performance. Again the performance is
measured by how well the athlete performed in official measurement days and
races. DNNs are well-suited for capturing patterns in high-dimensional data,
making them an appropriate choice for this supervised learning task.

Model Architecture:

The DNN model is designed to capture complex, nonlinear relationships be-
tween input features and training decisions. The architecture comprises:

• Input Layer: The same elements that were used in the RL to describe
the state are used as input features

• Hidden Layers: Several fully connected layers with ReLU activation
functions to capture the nonlinearities in the data. Batch normalization
and dropout are employed to enhance generalization and prevent overfit-
ting.

52



• Output Layer: The output layer consists of a single node representing
the predicted performance outcome, which could be a continuous vari-
able such as a heart-rate-based reward or a categorical value representing
fitness levels.

Training Procedure:

• Loss Function: As the reward is measured based on the heart rate, the
Mean Squared Error (MSE) loss is applied.

• Optimization Algorithm: Adam optimizer is utilized for efficient pa-
rameter updates, ensuring stable convergence.

• Regularization: Dropout layers and L2 regularization are applied to
prevent overfitting, especially given the limited size of the dataset.

• Training Process: The model is trained on the historical data, learning
to predict the athlete’s performance based on their training schedule.

Key Contributions:

• Serves as a baseline for evaluating the predictive capacity of Reinforce-
ment Learning approaches.

• Helps in identifying patterns in training data that contribute to im-
proved athlete performance, providing insights into the relationships be-
tween training load and outcomes.

• Provides a benchmark to assess whether traditional machine learning
methods, like DNNs, can match or outperform RL approaches in pre-
dicting performance.

5.4.2 Decision Trees

Decision Trees were also used to predict athlete performance outcomes, deliver-
ing an interpretable and straightforward model to assess how different training
parameters influence performance metrics.

Model Description:

• Tree Structure: The tree splits the data based on feature values (such
as training duration, type, RPE, and load), progressively narrowing down
the possible performance outcomes at each split.

• Splitting Criteria: Gini impurity or entropy is used to determine the
best splits, ensuring that each branch moves towards homogenous perfor-
mance outcomes.

• Tree Pruning: Maximum tree depth and minimum samples per leaf are
controlled to prevent overfitting, especially given the limited size of the
historical training data.

53



Training Procedure:

• Data Preparation: Each training session is represented as a feature
vector, with the performance outcome as the target variable.

• Model Fitting: The tree is trained to split the dataset based on the input
features, learning how training schedules affect performance outcomes.

• Cross-Validation: K-fold cross-validation is used to ensure the model
generalizes well to unseen data.

Key Contributions:

• Acts as a benchmark to compare against more complex models, such as
DNNs and Reinforcement Learning.

• Provides interpretability, allowing for an easy understanding of how
different training parameters contribute to athlete performance.

• Highlights the limitations of simpler models, showing whether tradi-
tional Decision Trees can capture complex patterns in training data.

5.4.3 XGBoost

XGBoost (eXtreme Gradient Boosting) is a high-performance ensemble learning
method that is used here to model the relationship between athletes’ physio-
logical states and optimal training decisions. XGBoost is particularly adept at
handling structured data and capturing complex interactions among features,
making it suitable for this supervised learning task. For this task XGBClassi-
fier function was used of the xgboost library out of the shelf.

Model Description:

• Ensemble Framework: XGBoost constructs an ensemble of decision
trees sequentially, with each subsequent tree correcting the errors of pre-
vious ones. This gradient boosting approach enhances predictive accuracy
by modeling residual errors.

• Regularization: Incorporates both L1 (Lasso) and L2 (Ridge) regulariza-
tion to penalize complexity, thereby mitigating overfitting and improving
generalization.

• Handling Missing Data: Inherently manages missing values by deter-
mining optimal splits, ensuring robustness for incomplete datasets.

Training Procedure:

• Feature Engineering: Input features mirror those used in the Rein-
forcement Learning setup, including fatigue levels, prior performance in-
dicators, and other physiological metrics.

54



• Data Splitting: A chronological train-test split is used to respect the
temporal nature of data, preventing information leakage. Same as in the
previous examples.

• Model Training: The XGBoost classifier is trained to optimize multi-
class classification accuracy. Hyperparameters such as number of estima-
tors, maximum tree depth, learning rate, subsample ratio, and column
sampling ratio are tuned to maximize performance.

• Evaluation: Performance is assessed using accuracy on the test set, val-
idating the model’s generalization capability.

Key Contributions:

• Provides interpretability through feature importance scores, revealing
influential variables in training decision-making.

• Offers high predictive accuracy and computational efficiency.

6 Results

In this section, the results of the different approached will be presented and
briefly discussed. Starting with the Online RL methods, moving to the Offline
and finally closing with the traditional ML methods.

6.1 Online RL

Below the in Table 3 we see the parameters used and the respective performance
of the Online RL agents. As we see the best-performing agent is SAC with and
accuracy of almost 62%.

Online agents epochs buffer sampl. batch size gamma tau lr Qnet lr policy Accur.
DQN 500 rand 32 0.99 0.05 0.001 - 57.93%
DQN 500 seq 32 0.99 0.05 - 51.52%
DDQN 400 rand 32 0.95 0.05 0.001 - 54.57%
DDQN 400 seq 32 0.95 0.05 0.001 - 59.45%
SAC 5000 rand 32 0.99 0.05 0.001 0.0001 62%

Table 3: Parameters and performance of the online RL agents

6.1.1 Discussion

Contrary to initial expectations, we observed that more complex models per-
formed better in this task, despite having only a small amount of data and a
relatively simplified action space. It is important to note that all experiments
were seeded for consistency.

55



SAC, being considerably more complex than the other models, initially per-
formed poorly. However, hyperparameter optimization was necessary to achieve
the observed performance level. On the other hand, the simpler models (DQN
and DDQN) were less sensitive to hyperparameter changes and showed minimal
improvements when parameters were varied. In the early steps of the training,
the performance seemed to fluctuate but in the end, both of the agents seemed
to converge.

Another interesting observation was that sequential sampling in the replay buffer
led to lower performance for DQN but higher performance for DDQN. This may
indicate that more advanced methods like DDQN can better handle correlated
data, while DQN relies more heavily on randomized sampling to mitigate over-
fitting and stabilize learning.

6.2 Offline RL

Below in Table 4 we see the parameters used and the respective performance
of the Offline RL agents. As we see the best-performing agent is Conservative
DQN with random sampling with an accuracy of almost 79.30% introducing a
significant improvement over the online agents.

Offline RL agents epochs buffer sampling BATCH SIZE GAMMA Accuracy
CDQN 100 random 32 0.99 79.30%
CDQN 100 sequential 32 0.99 71.23%

Table 4: Parameters used and the respective performance of the Offline RL
agents

6.2.1 Discussion

The results demonstrate that conservative DQN trained in an offline setting
with random sampling achieved higher accuracy than the ”online” methods dis-
cussed earlier. This performance difference can be attributed to the inherent
characteristics of CDQN, which make it well-suited for offline learning.

In offline settings, the entire dataset is static and predefined, removing the need
for exploration. CDQN excels in this scenario because its Q-value updates rely
entirely on the data provided, allowing it to efficiently learn policies without the
risk of exploration-exploitation trade-offs. Interestingly, similar to the simple
DQN the performance of the random sampling seemed to be better compared
to the sequential sampling.

Despite the sequential nature of the athlete’s training data, the random sampling
approach yielded better performance than sequential sampling. This observa-
tion can be attributed to several factors.

56



Firstly, breaking temporal correlations is crucial for effective learning in neural
networks. Sequential sampling presents highly correlated data to the model,
as consecutive training days for an athlete are likely to have minimal differ-
ences. This high correlation can lead to inefficient learning, as the model may
make only small updates to its weights, slowing down convergence. Random
sampling, on the other hand, breaks these temporal correlations by providing
a more diverse set of experiences in each batch. This diversity enhances the
model’s ability to generalize and stabilizes the training process by preventing
the model from overfitting to specific sequences in the data.

Secondly, the data characteristics and model capacity play a significant role.
The lack of improved performance with sequential sampling suggests that the
sequential dependencies in the data may not be strong or informative enough for
the model to leverage. Additionally, the model architecture used in this study
may not be designed to capture complex temporal dependencies, especially since
it lacks recurrent components like Long Short-Term Memory (LSTM) networks
or Gated Recurrent Units (GRUs). As a result, the model might not benefit
from sequential data, and random sampling becomes more effective by exposing
the model to a wider variety of states and actions.

Lastly, from a theoretical perspective, random sampling aligns better with the
assumptions underlying many machine learning algorithms. Specifically, these
algorithms often assume that data samples are independently and identically
distributed (IID). Sequential sampling violates this assumption due to the in-
herent dependencies between consecutive samples. Random sampling reduces
the bias introduced by the order of data, leading to better generalization. Ad-
ditionally, it helps balance the bias-variance trade-off by increasing the variance
within batches, which can help the model escape local minima and find more
optimal solutions.

In summary, the superior performance of random sampling in the CDQN train-
ing highlights the importance of considering both the data characteristics and
the model architecture when choosing a sampling strategy. Random sampling
appears to be more effective in this context due to its ability to break tem-
poral correlations, accommodate the model’s capacity, and satisfy theoretical
assumptions about data distribution, ultimately leading to improved learning
and generalization.

6.3 Traditional ML

Here the results of the traditional ML models will be presented. As we can see
in 5 Random Forest is the best-performing model ( along with a standard DNN
classifier ) in predicting future actions based on past data with an accuracy of
85 percent. Second is XGBoost with almost the same score. All models have
quite similar performance indicating that we’ve reached a performance plateau

57



given our current dataset and features.

ML model n estimators max depth min samples leaf lr Accuracy
RandomForest 200 20 2 - 85%
XGBoost 200 5 - 0.01 84%
DNN - - - 0.001 85%

Table 5: Parameters used and the respective performance of the Traditional ML
models

6.3.1 Discussion

As observed in Table 5, traditional machine learning methods outperformed
both online and offline reinforcement learning approaches in terms of predictive
accuracy. This result suggests that supervised learning methods, when ap-
plied to structured historical training data, can capture and generalize decision-
making patterns more effectively than reinforcement learning methods trained
in either an online or offline setting.

The most important factor and the big difference between RL and traditional
Ml I think it si the limited need for exploration. Since the dataset is fixed
and complete, supervised learning models do not suffer from the exploration-
exploitation trade-off inherent in RL. While RL must balance discovering new
strategies and exploiting known good ones, traditional ML models can directly
learn optimal mappings without the need for exploration. And just to be fair,
the RL agents did not even get the chance to explore.

Although reinforcement learning methods—especially offline RL—show promise
in modeling training schedules, they still lag behind traditional supervised learn-
ing approaches in predictive accuracy. However, RL methods may provide ad-
ditional benefits in dynamic environments where new data can be collected, or
when generalization beyond the dataset is required.

7 Discussion

In this RL setting, the state consists of some attributes that describe the fitness
of the athlete. The duration, the RPE, and other attributes that are included
in the state representation have something to tell about how fit a person is.
Each action, representing a training session, transitions the athlete to a new
state—either improved or deteriorated. What we are interested in, is predicting
those actions-trainings that will bring the specific athlete to the best possible
state-fitness level. However, to know what is good and what is bad we need the
reward to penalize bad trainings and reinforce good ones. Fortunately, we have
access to rewards derived from official measurements and race results, which
serve as ground truth indicators of the athlete’s actual performance level.

58



In an online setting, the athlete would train, collect rewards based on the train-
ing outcomes, and adjust the policy accordingly through continuous learning.
However, this research is confined to past data; our environment is effectively
the dataset itself. The dataset becomes a surrogate for the environment, and
the model’s performance is constrained by the diversity and qrepresentativeness
of this dataset. Additionally, as we displayed multiple times in the methods,
there is no notion of exploration, the most important tool of an RL agent to
learn and generalize. Now, let’s say that we have the perfect agent trained on
this dataset and ready to predict the best actions according to the dataset. As
we don’t have the luxury of using an actual person to perform the suggested
actions how can we really evaluate this agent? The only meaningful thing that
is left to measure is the accuracy of the predicted actions versus the actions that
were actually taken.

To do this, we have to use a part of the dataset, unseen to the agent, to evalu-
ate. Now let’s say that this perfect model scored an accuracy of 100 %. That’s
perfect, right? As good as it gets! However, someone might be surprised if we
told them that an agent that scores 40 % could actually be way better than the
one that scored 100? What do these percentages tell us? Since we are predicting
actions and evaluating based on historical actions there is no reassurance that
the target actions are optimal. In that sense, we can not really tell if the agent
is better or worse than the coach, we can only tell at what percentage it mimics
the coach’s behavior.

The only definitive way to understand if the agent has genuinely learned ef-
fective strategies would be to test with a real athlete who physically performs
the trainings suggested by the agent. Given that an individual’s fitness is in-
fluenced by numerous factors such as age, climate, and personal physiology, the
ideal benchmark for evaluating the four RL algorithms would involve having
identical athletes follow the suggested actions from each of the four agents and
the coach. Then, after a couple of months of training, run some evaluation tests
and finally decide who is really better. The coach or one of our trained agents.
However, this scenario is, of course, not feasible.

But why the traditional ML algorithms are better at mimicking and could po-
tentially be a better fit for this problem? The answer about the fitness of ML
algorithms is ”no” they can’t. As they were trained based on the actions that
the specific coach instructed and the reward is not somehow utilized to give a
realistic ground truth we can clearly see that these algorithms could never break
the pattern and do better than the coach. Now let’s discuss the increased perfor-
mance of these algorithms in replicating the coach’s training schedule focusing
on Random Forest which scored the highest performance percentage. These
reasons can be summarized as such:

• Firstly, the problem aligns more naturally with supervised learning, where

59



the goal is to predict historical actions based on labeled data. Random
Forests excels at modeling direct mappings from input features (states) to
target outputs (actions), optimizing for predictive accuracy without the
complexities of RL’s reward structures.

• Random Forests handle static datasets effectively, avoiding challenges in-
herent in offline RL, such as distributional shifts and extrapolation errors.
They are less prone to overfitting in low-data regimes and require fewer
hyperparameters, making them easier to train and tune.

• RL is generally built to work with plenty of data and have ample trial and
feedback sessions before it starts learning meaningful policies. This small
dataset might be enough for a simple RF algorithm but for the complex
RL agents this is an overkill.

• Finally, the evaluation metric—accuracy in predicting historical actions—perfectly
aligns with the objective of supervised learning but not necessarily with
that of RL, which seeks to discover optimal policies that may deviate from
historical actions. RL’s goal and objective was never to mimic the coach.

This means that, in scenarios where the objective is to replicate or predict past
actions from existing data, traditional machine learning approaches like Ran-
dom Forests are more suitable and yield higher accuracy than RL algorithms.
However, if the goal is to learn optimal policies that through maximizing the
rewards can craft optimal personalized training schedules then probably RL is
the way to go.

In conclusion, while our models aim to predict optimal training actions based
on historical data, limitations arise due to the inability to validate these pre-
dictions in a real-world setting. The reliance on past actions as a benchmark
means that high accuracy in mimicking historical actions does not necessarily
equate to optimal performance. Future work could explore alternative evalua-
tion metrics or incorporate simulated environments to better assess the agent’s
effectiveness in enhancing athletic performance.

60



8 Conclusion

This research investigated the applicability and efficacy of Reinforcement Learn-
ing (RL) methods in modeling and optimizing the decision-making process in-
volved in crafting personalized training schedules for elite athletes, specifically
focusing on Professional Speed Skating. The primary goal was to determine how
historical training and performance data, combined with RL algorithms such as
Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Conservative
Q-Learning (CQL), could replicate or potentially enhance the existing coaching
strategies. Complementarily, the study also evaluated the performance of these
RL approaches against conventional Machine Learning (ML) methods, specifi-
cally Random Forests and deep neural networks.

The exploration began by establishing a robust RL framework tailored explic-
itly to the elite sports coaching context, formulating the scheduling problem
as a Markov Decision Process (MDP). States were constructed to reflect ath-
lete physiological status, recent training load, perceived exertion (RPE), and
time-related contextual factors. Actions represented the specific types of train-
ing interventions, and rewards were grounded in objective athlete performance
metrics derived from race outcomes and physical tests. This careful formulation
ensured alignment with realistic coaching practices and physiological probabil-
ity.

Empirical results demonstrated that RL models could indeed capture substantial
aspects of the decision-making patterns exhibited by professional speed skating
coaches. In particular, the RL approach successfully identified and mimicked
complex scheduling and decision-making trade-offs, suggesting the potential vi-
ability of RL-based systems to complement traditional coaching practices. How-
ever, the practical performance of the RL agents was limited by the inherent
limitations of the historical data set: mainly its limited scope, sparse perfor-
mance feedback, and the absence of active exploration opportunities. As a
consequence, while RL models achieved respectable accuracy (approximately
79% with Conservative DQN), they fell short of surpassing the performance of
simpler ML models, which achieved accuracy up to 85%.

Below, we revisit and answer each of the research questions explicitly, inte-
grating the findings and insights from our empirical analysis:

RQ1: How can Reinforcement Learning be effectively applied to
model the decision-making process of elite sports coaches in generat-
ing personalized training schedules for athletes in Professional Speed
Skating?

The study confirmed that the efficacy of RL in modeling elite sports coach-
ing relies heavily upon the precise definition of states, actions, and rewards
within the MDP framework. The chosen formulation included athlete physio-

61



logical data (duration, RPE), temporal elements, and carefully designed reward
signals reflecting performance outcomes. This representation allowed RL mod-
els to effectively mimic real-world coaching behaviors, demonstrating a solid
foundation for sequential decision-making modeling. By aligning the MDP with
the actual details and constraints faced by coaches, RL agents learned realistic
and meaningful scheduling policies from historical data.

RQ2: To what extent can a Reinforcement Learning model effectively
incorporate and adapt to limited feedback from races and physical
tests to iteratively refine training schedules, thereby enhancing their
effectiveness and aligning with individual athlete performance out-
comes?

Our RL models successfully incorporated limited and sparse feedback to itera-
tively adjust training schedules. For instance, following suboptimal performance
indicators, the agents consistently adjusted training intensities or volumes ap-
propriately, reflecting real-world coaching responses. However, this adaptive
capability had clear limitations; due to infrequent and sparse feedback points,
the scope of iterative refinement remained restricted. The RL agents managed
incremental improvements and meaningful alignment with individual perfor-
mance, but we were unable to evaluate or demonstrate extensive or transfor-
mative schedule optimization. Thus, while RL can effectively integrate sparse
feedback, substantial iterative refinement demands richer, more frequent feed-
back signals or augmented data sources, and concerning evaluation, an online
setup is required.

RQ3: How effectively can RL methods—originally designed for on-
line exploration—be adapted for offline settings with historical data,
and how do these adaptations compare in performance and stability
to dedicated offline RL algorithms under conditions of sparse rewards
and limited exploration opportunities?

Now, the important question becomes: can these adapted ”online” agents still
perform? The answer is: yes, but not great. Take SAC for example. When we
removed the entropy and allowed it to only learn from the existing dataset, it
still managed to reach around 62% accuracy. Respectable, but far from opti-
mal. Enter Conservative Q-Learning (CQL)—a method built from the ground
up for offline learning. CQL incorporates regularization to avoid overestimating
unseen actions and directly addresses the core risks of offline training. It out-
performed the rest with almost 79.3% accuracy.

So what’s the takeaway? Trying to force online RL into an offline mold kind
of works, but only up to a point. It gave us useful comparisons, showed us
how much performance comes from exploration, and highlighted the structural
limitations of certain architectures. But at the end of the day, offline-specific
algorithms like CQL are better suited for this problem. They’re designed to

62



be cautious, to handle limited and potentially biased data, and they do this
without trying to reach outside the dataset.

In the broader context, this experiment confirmed that the problem formulation
was valid and instructive. It allowed us to observe meaningful behaviors and
compare methodological choices. It also confirmed that while adapting online
agents is a valid research direction, performance-wise and stability-wise, spe-
cialized offline RL methods are currently the way to go when you’re locked into
historical data.

RQ4: Can Reinforcement Learning (RL) outperform standard Ma-
chine Learning techniques when the dataset is limited? Do RL agents
generalize well when historical data lacks comprehensive exploration
coverage, and if not, do they effectively learn to mimic real-world
scenarios where the learned policy would be applied?

Based on the results, the answer here is pretty straightforward: RL didn’t beat
traditional ML when it came to predictive accuracy. Random Forests and DNNs
scored up to 85%, while even the best RL agent, CQL, topped out at about 79%.
That’s a decent score, but not enough to claim superiority. What’s interesting
is that the RL agents weren’t totally off—they did manage to mimic historical
decision patterns and make reasonable predictions. But that’s exactly the point:
they learned to imitate, not innovate.

Why? Because the dataset itself didn’t give them the space to explore or try
something different. When your data is fixed, and your reward signal is sparse,
it’s hard for an agent to figure out what “better” even looks like. It just sticks
to what it sees, which means it ends up reproducing the same decisions as the
coach who generated the data. So yes, RL can learn to generalize within what
it sees, but not beyond. Or even if it does how could we tell? The agents might
indeed learned underlying features and dynamics of the athlete and the sport
but there is not a feasible way to evaluate this. The only thing we can do is
evaluate the agent for the actions it produced and how well they copy the coach
instead of evaluating with real ”rewards” coming from the athlete performance.
Who knows? If the athlete really did the actions ”training schedule” that the
model was suggesting the reward could be superior.

This makes traditional ML the more natural fit for this task—at least for now. It
doesn’t try to explore or optimize rewards over time. It just learns the mapping
from input to output, and in a fixed-data setup, that’s actually all you need. RL
might shine later, when we have richer datasets, better feedback mechanisms, or
simulated environments where exploration becomes safe and meaningful. Until
then, it’s good to see that RL holds promise—but it’s not quite ready to take
over yet.

63



Reflection and Future Directions

This research highlights both the potential and constraints of applying RL to
personalized elite athlete training. While RL’s conceptual advantages for adap-
tive policy learning remain appealing, practical limitations—particularly data
scarcity, infrequent performance feedback, and exploration constraints—currently
hinder its full efficacy. Traditional ML methods, being inherently less sensitive
to these constraints, proved more effective within our specific data context.

Future research should explore the integration of more frequent, detailed perfor-
mance measurements, simulated athlete responses, or expert-informed synthetic
data augmentation to enable safer and more extensive RL exploration. With
these enhancements, RL’s ability to identify innovative and optimized training
schedules could be effectively unlocked, potentially surpassing traditional ML
approaches. Therefore, this thesis provides a foundation and a clear pathway
toward future improvements in employing RL for more sophisticated and opti-
mized training schedule generation in elite sports.

64



References

Bellman, R. (1957). A markovian decision process. Journal of Mathematics and
Mechanics, 6 (5), 679–684. Retrieved August 14, 2024, from http ://
www.jstor.org/stable/24900506

Bourdon, P. C., et al. (2017). Monitoring athlete training loads: Consensus
statement. International Journal of Sports Physiology and Performance,
12 (s2), S2–161.

Breiman, L. (2001). Random forests. Machine learning, 45, 5–32.
Brown, G. A., Veith, S., Sampson, J. A., Whalan, M., & Fullagar, H. H. (2020).

Influence of training schedules on objective measures of sleep in adoles-
cent academy football players. Journal of Strength and Conditioning Re-
search, 34 (9), 2515–2521. https://doi.org/10.1519/JSC.0000000000003724

Cardinale, M., & Varley, M. (2017). Wearable training-monitoring technology:
Applications, challenges, and opportunities. International Journal of
Sports Physiology and Performance, 12 (s2), S2-55-S2–62. https://doi.
org/10.1123/ijspp.2016-0423

Cortes, C. (1995). Support-vector networks. Machine Learning.
Demosthenous, G., Kyriakou, M., & Vassiliades, V. (2022). Deep reinforcement

learning for improving competitive cycling performance. Expert Systems
with Applications, 203, 117311. https://doi.org/10.1016/j.eswa.2022.
117311

Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2016). Deep direct rein-
forcement learning for financial signal representation and trading. IEEE
transactions on neural networks and learning systems, 28 (3), 653–664.

Forndran, A., et al. (2012). Training schedules in elite swimmers: No time to
rest. In Sleep of different populations (pp. 6–10).

Freund, Y., Schapire, R. E., et al. (1996). Experiments with a new boosting
algorithm. icml, 96, 148–156.

Ge, Y., Zhu, F., Ling, X., & Liu, Q. (2019). Safe q-learning method based on
constrained markov decision processes. IEEE Access, 7, 165007–165017.
https://doi.org/10.1109/ACCESS.2019.2952651

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. International conference on machine learning, 1861–1870.

Kormushev, P., Calinon, S., & Caldwell, D. G. (2013). Reinforcement learning
in robotics: Applications and real-world challenges. Robotics, 2 (3), 122–
148.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural informa-
tion processing systems, 25.

Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020a). Conservative q-learning
for offline reinforcement learning. In H. Larochelle, M. Ranzato, R.
Hadsell, M. Balcan, & H. Lin (Eds.), Advances in neural informa-
tion processing systems (pp. 1179–1191, Vol. 33). Curran Associates,

65

http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
https://doi.org/10.1519/JSC.0000000000003724
https://doi.org/10.1123/ijspp.2016-0423
https://doi.org/10.1123/ijspp.2016-0423
https://doi.org/10.1016/j.eswa.2022.117311
https://doi.org/10.1016/j.eswa.2022.117311
https://doi.org/10.1109/ACCESS.2019.2952651


Inc. https : / / proceedings . neurips . cc / paper files / paper / 2020 / file /
0d2b2061826a5df3221116a5085a6052-Paper.pdf

Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020b). Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 33, 1179–1191.

Lange, S., Gabel, T., & Riedmiller, M. (2012). Batch reinforcement learning.
In M. Wiering & M. van Otterlo (Eds.), Reinforcement learning: State-
of-the-art (pp. 45–73). Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-642-27645-3 2

Maei, H. R., Szepesvári, C., Bhatnagar, S., & Sutton, R. S. (2010). Toward off-
policy learning control with function approximation. ICML, 10, 719–
726.

Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016). Resource manage-
ment with deep reinforcement learning. Proceedings of the 15th ACM
Workshop on Hot Topics in Networks, 50–56. https://doi.org/10.1145/
3005745.3005750

Minsky, M., & Papert, S. (1969). An introduction to computational geometry.
Cambridge tiass., HIT, 479 (480), 104.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
& Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602.

Mulani, J., Heda, S., Tumdi, K., Patel, J., Chhinkaniwala, H., & Patel, J.
(2020). Deep reinforcement learning based personalized health recom-
mendations. In S. Dash, B. R. Acharya, M. Mittal, A. Abraham, &
A. Kelemen (Eds.), Deep learning techniques for biomedical and health
informatics (pp. 231–255). Springer International Publishing. https :
//doi.org/10.1007/978-3-030-33966-1 12

Nash, C., & Collins, D. (2006). Tacit knowledge in expert coaching: Science or
art? Quest, 58 (4), 465–477. https://doi.org/10.1080/00336297.2006.
10491894

Plaat, A. (2022). Deep reinforcement learning. CoRR, abs/2201.02135. https:
//arxiv.org/abs/2201.02135

Qin, H., Qian, S., Cai, X., & Guo, D. (2024). Athletic skill assessment and per-
sonalized training programming for athletes based on machine learning.
Journal of Electrical Systems, 20 (9), 1379–1387.

Quinlan, J. R. (1987). Generating production rules from decision trees. ijcai,
87, 304–307.

Raab, M. (2012). Simple heuristics in sports. International Review of Sport and
Exercise Psychology, 5 (2), 104–120. https://doi.org/10.1080/1750984X.
2012.654810

Raiola, G., & Tafuri, D. (2015). Teaching method of physical education and
sports by prescriptive or heuristic learning. Journal of Human Sport
and Exercise, 10 (1), S377–S384.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological review, 65 (6), 386.

66

https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1007/978-3-030-33966-1_12
https://doi.org/10.1007/978-3-030-33966-1_12
https://doi.org/10.1080/00336297.2006.10491894
https://doi.org/10.1080/00336297.2006.10491894
https://arxiv.org/abs/2201.02135
https://arxiv.org/abs/2201.02135
https://doi.org/10.1080/1750984X.2012.654810
https://doi.org/10.1080/1750984X.2012.654810


Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning represen-
tations by back-propagating errors. nature, 323 (6088), 533–536.

Rummery, G. A., & Niranjan, M. (1994). On-line q-learning using connectionist
systems (tech. rep.). University of Cambridge, Department of Engineer-
ing.

Singh, S., Jaakkola, T., Littman, M. L., & Szepesvári, C. (2000). Convergence
results for single-step on-policy reinforcement-learning algorithms. Ma-
chine Learning, 38 (3), 287–308. https://doi.org/10.1023/A:1007678930559

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.
A Bradford Book.

Thomas, G., Gade, R., Moeslund, T. B., Carr, P., & Hilton, A. (2021). Com-
puter vision for sports: Current applications and research topics. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59 (236),
433–460. Retrieved October 13, 2024, from http : //www. jstor . org/
stable/2251299

Van Eetvelde, H., Mendonça, L., & Ley, C. (2021). Machine learning methods
in sport injury prediction and prevention: A systematic review. J EXP
ORTOP, 8 (27). https://doi.org/10.1186/s40634-021-00346-x

Vaswani, A. (2017). Attention is all you need. Advances in Neural Information
Processing Systems.

Wackerhage, H., & Schoenfeld, B. (2021). Personalized, evidence-informed train-
ing plans and exercise prescriptions for performance, fitness and health.
Sports Med, 51 (9), 1805–1813. https://doi.org/10.1007/s40279-021-
01495-w

Watkins, C. J. C. H. (1989). Learning from delayed rewards [Doctoral disserta-
tion, King’s College, Cambridge].

Yu, C., Liu, J., Nemati, S., & Yin, G. (2021). Reinforcement learning in health-
care: A survey. ACM Computing Surveys (CSUR), 55 (1), 1–36.

67

https://doi.org/10.1023/A:1007678930559
http://www.jstor.org/stable/2251299
http://www.jstor.org/stable/2251299
https://doi.org/10.1186/s40634-021-00346-x
https://doi.org/10.1007/s40279-021-01495-w
https://doi.org/10.1007/s40279-021-01495-w

