
Bachelor Data Science
&

Artificial Intelligence

Benchmarking

Automata Learning

Ivan Bichev

First supervisor:
Marcello Bonsangue
Second supervisor:
Tobias Kappé

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl July 1, 2025

www.liacs.leidenuniv.nl

Abstract

Test data that thoroughly exercises different learners is needed to evaluate automata learning
algorithms. This thesis implements and assesses several string generation techniques (random walks
with adaptive termination probability, uniform sampling, and a simple-path heuristic) to create
such test suites. We conduct multiple experiments based on minimized DFAs, which we use to
benchmark passive automata learning algorithms (RPNI, EDSM) and an active one (a restricted
version of the L∗ active learner). Results demonstrate that the most varied datasets are those
generated by the simple-path coverage. In most cases, we can see that EDSM performs better than
RPNI, while our version of L∗ with a data-oriented equivalence oracle still attains 96% accuracy.
Runtime comparisons reveal that L∗ scales best with DFA size, followed by a modified version of
RPNI. The results confirm the integrity of the benchmark suite and provide recommendations for
subsequent testing of neural and symbolic automaton learners.

Contents

1 Introduction 1
1.1 Applications of Automata Learning . 2
1.2 Thesis Overview . 3

2 Background Theory 4
2.1 Key Terms . 4

2.1.1 Automata Theory . 4
2.1.2 Automata Learning Algorithms . 6

2.2 Notation . 8
2.3 Additional Concepts . 9

3 Previous Research 10
3.1 Related Work . 10
3.2 Identified Gaps . 12

4 Methodology 14
4.1 Dependencies Setup . 14
4.2 Data Generation . 15

4.2.1 Random graph walks . 15
4.2.2 Logistic growing termination probability . 17
4.2.3 Random string selection . 18
4.2.4 Heuristic graph traversal approaches . 19
4.2.5 RegEx . 19

4.3 Experiment setup . 21
4.3.1 Experiment 1: Evaluating the performance of different random walk methods

with passive learning . 21
4.3.2 Experiment 2: Exploring the simple path approach 22
4.3.3 Experiment 3: Evaluating the effect of different proportions of accepted to

rejected strings on passive learning . 22
4.3.4 Experiment 4: Testing an active learning method with approximation instead

of equivalence . 22
4.3.5 Experiment 5: Comparing training speeds of active and passive automata . . 23
4.3.6 Experiment 6: Comparison to OpenFST . 24

4.4 Evaluation Metrics . 24

1

5 Results 27
5.1 Overview of Findings . 27

5.1.1 Experiment 1 . 27
5.1.2 Experiment 2 . 29
5.1.3 Experiment 3 . 31
5.1.4 Experiment 4 . 31
5.1.5 Experiment 5 . 33
5.1.6 Experiment 5.5 . 35
5.1.7 Experiment 6 . 36

5.2 Addressing the RQs . 36

6 Conclusion 39
6.1 Limitations . 39
6.2 Future Work . 40
References . 43

Chapter 1

Introduction

Benchmarking is the systematic evaluation of a system’s performance, whether physical or not,
under specific controlled and comparable conditions. In principle, it requires defining a common
baseline and then measuring both efficiency (for example, execution time or resource usage) and
accuracy (i.e, error rates or correctness) across multiple systems or processes. In algorithmic learning,
the baseline typically takes the form of an input dataset, which consists of a pre-generated collection
of examples (often called a “benchmark” dataset). That way, we can ensure that observed outcome
differences arise solely from the learners’ internal mechanisms.

This thesis focuses on finite-state-machine inference, where various algorithms can reconstruct
a target system’s behaviors modeled as finite, directed, and labeled graphs (finite automata). These
methods range from classical symbolic approaches, such as state-merging, to the more recent
neural-network-based techniques. A robust benchmark dataset is essential in this context, since it
must thoroughly exercise each learner, revealing how effectively it recovers the automaton’s states,
transitions, and the language accepted under different scenarios.

While other benchmark suites for automata learning exist [1, 2], they often rely on simple
random sampling to generate input strings and don’t offer much in terms of differing ratios of
accepted/rejected data. While randomness can uncover common behaviors, it frequently misses
corner-case structures and rarely stresses the full complexity of the system under learning. In
Chapter 3, we examine these limitations and argue that more deliberate, heuristic-driven generation
strategies might perform better. In Chapter 4, we discuss the implementation of the so-called simple
path approach, which significantly improves the capabilities of learning algorithms, compared to
current practices.

Beyond dataset construction, this study also benchmarks a range of inference algorithms on
the newly generated inputs, measuring their performance.

This thesis explores the following research questions: The central question is:

RQ0: How to generate a benchmark for testing the quality of different active
and passive automaton learning algorithms?

To answer RQ0, it has to be decomposed into three more specific sub-questions:

RQ1: What algorithms for string generation provide the most diverse datasets?
A high-quality benchmark requires input sequences that exercise learners over
various behaviors. Here, we survey existing string-generation techniques (e.g.,

1

fixed-termination probability random walks) and novel ones (for example, simple
path traversal) to measure their ability to produce data with maximal state and
transition coverage.

RQ2: How do different automata learning algorithms compare in terms of
accuracy and training efficiency?
With the diverse dataset in hand, both active (e.g., Angluin’s L∗[3]) and passive
(e.g., RPNI[4], EDSM[1]) learners reconstruct different target machines. We assess
their performance along two axes:

• Accuracy : how closely the learned model matches the ground truth (e.g., via
state-equivalence or error-rate metrics).

• Efficiency : computational cost in terms of queries, membership/test counts,
but mostly in runtime.

RQ3: To what degree do the benchmarking results from previous research
align with our own?
Finally, after performing the experiments, we compare the outcomes to those
from current literature and other benchmark platforms. This comparison has the
goals of: (a) validating the newly created suite against established studies and (b)
highlighting any discrepancies or novel insights that emerge when using the new
input sets.

1.1 Applications of Automata Learning

Various domains have employed automata learning because finite-state models can concisely
capture sequential or reactive behavior. Thus, one can portray almost any well-studied system (to
a certain extent) and reduce it to an automaton, making it predictable and easily interpretable.
Below are some of the key application areas of automata learning, ranging from a wide variety of
domains.

The first and maybe most common application is software verification and model-based testing.
Active learning techniques such as Angluin’s L∗ algorithm enable the inference of a black-box
software component’s behavior by posing membership and equivalence queries. The resulting
automaton serves as a reference model for conformance testing. Thanks to such testing, many bugs
have been reported and fixed in different binary protocols, for example, Bluetooth[5]. Another use
is learning a git version control system [6]. Accordingly, the use of such techniques has found its
way in the domain of cybersecurity and analysis of internet protocols[7].

Another application of finite-state-machine inference is in the sphere of Biological Sequence
Analysis. Searls demonstrates that regular grammars can describe gene regulatory elements, laying
the groundwork for automated motif discovery [8]. Sequences of nucleotides and amino acids exhibit
recurring patterns that finite-state models can capture. Sakakibara reviews stochastic grammar
inference methods for DNA/RNA, using probabilistic transitions to predict functional motifs and
secondary structures [9].

An interesting use of automata learning is when it complements machine learning. Recurrent
Neural Network models (RNNs) can perform well on sequential tasks; however, their internal decision
logic is often opaque. Automata learning enables clarity by extracting finite-state abstractions from

2

trained networks. Discrete-time RNNs have been proven to yield human-readable rule sets [10].
A different application exists in the field of robotics, or specifically in the field of reinforcement

learning. A finite automaton can represent a robot’s environment, helping in guiding exploration and
map construction. Furthermore, using finite-state machines, one can better visualize and interpret
different learned policies[11, 12].

Finally, since automata often represent regular languages, they can be helpful in the context of
Natural Language Processing. While a whole natural language requires context-sensitive formalisms,
many sub-tasks such as tokenization, morphology, and simple parsing, can be addressed with regular
or stochastic context-free grammars[13].

1.2 Thesis Overview

To answer our research questions, this thesis consists of five additional chapters.
Chapter 2 introduces the essential terminology and notation of automata theory and describes

the different learning algorithms. It also presents additional concepts, such as probability decay
functions and basic graph traversal algorithms, that form the theoretical foundation for the string
database generation.

In Chapter 3, there is an overview of existing work on automata-based data generation
and learning. There, we summarize the major streams in scientific literature by offering a critical
evaluation of each approach and pinpointing specific gaps in current data generation methods. The
chapter concludes by explaining how this thesis’s contributions aim to fill in those gaps.

Chapter 4 describes the implementation framework developed for this study. It covers the
construction and modification of the automata, details the novel data-generation techniques explored
here, and lays out the experimental setup. Finally, it defines how the evaluation metrics will assess
all the results.

Chapter 5 presents and analyzes the experimental findings. We compare our outcomes to
those reported in prior studies, noting any deviations or anomalies. Then, a short section reflects
on how the results relate to the research questions above.

Chapter 6 summarizes the contributions of this thesis, reflects on its limitations, and proposes
directions for future work.

3

Chapter 2

Background Theory

To build a solid foundation for the experiments and methods that follow, this chapter
introduces the theoretical prerequisites for automata inference. It defines key concepts in automata
theory, outlines major learning paradigms (passive and active), and introduces a few supporting
tools.

2.1 Key Terms

2.1.1 Automata Theory

In this subsection, we establish the formal definitions from automata theory that will underpin
the rest of this work. Organized for clarity and precision, these establish a common notation
and terminology, ranging from alphabets and strings to deterministic finite automata and their
minimization, that we will rely on in later chapters. A basis for those is the book ”Automata,
Computability and Complexity: Theory and Applications” by E. Rich[14].

Alphabet (Σ) A finite, non-empty set of symbols. All strings and languages in this work are built
over Σ.

The most common alphabet sizes we use in our experiments are |Σ| = (2, 3).

String A finite sequence of symbols from Σ. We write a typical string as w = a1a2 . . . an, where
each ai ∈ Σ. The special empty string of length zero is denoted by λ.

Language (L) A set of strings over Σ, i.e. L ⊆ Σ∗. A regular language is any L satisfying Kleene’s
theorem (below).

Kleene’s Theorem The following are equivalent for a language L ⊆ Σ∗:

1. L can be described by a regular expression.

2. L can be recognized by a deterministic (or nondeterministic) finite automaton.

This theorem is the cornerstone behind the Regex-based method from Section 4.2.5.

4

Deterministic Finite Automaton (DFA) A DFA is a 5-tuple

A = (Q,Σ, δ, q0, A)

where

• Q is a finite set of states,

• Σ is the input alphabet,

• δ : Q× Σ→ Q is the (total) transition function,

• q0 ∈ Q is the start state,

• A ⊆ Q is the set of accepting (final) states.

On input w = a1a2 . . . an, the machine starts in q0 and successively applies δ; it accepts w
exactly if the final state δ∗(q0, w) ∈ A.

Complete DFA (CDFA) A DFA in which δ(q, a) is defined for every q ∈ Q and a ∈ Σ. This
guarantees no “missing” transitions.

This thesis is mostly concerned with the last automaton variant since it makes generation more
straightforward. For a visual representation of such structure refer to Figure 4.1a. Furthermore,
any DFA can be converted to a CDFA by sending undefined arcs to rejecting states for which all of
their outgoing transitions loop back to themselves (sink states).

Empty-string Acceptance The empty string λ is accepted precisely when q0 ∈ A.

Degree of a CDFA The number of outgoing transitions from each state. For a complete deter-
ministic finite automaton (CDFA) A = (Q,Σ, δ, q0, A), the degree is |Σ|, since δ(q, a) must
be defined for every state q ∈ Q and every symbol a ∈ Σ. In other words, a CDFA of degree
d has exactly d outgoing transitions from every state.

Graph Isomorphism (for DFAs) A bijection f : Q1 → Q2 between two DFAs A1 = (Q1, . . .)
and A2 = (Q2, . . .) that preserves:

• Start state: f(q0,1) = q0,2,

• Acceptance: q ∈ A1 ⇐⇒ f(q) ∈ A2,

• Transitions: f
(
δ1(q, a)

)
= δ2

(
f(q), a

)
for all a ∈ Σ.

Minimal Automaton Among all DFAs recognizing the same language L, the minimal automaton
has the smallest number of states. It is unique up to isomorphism.

We always minimize the target DFA, since this drastically simplifies the task of tracing all possible
paths. Figure 4.1b shows an example minimized automaton. To achieve this, one has to do the
following procedure.

Minimization Any algorithmic procedure (e.g. Hopcroft’s algorithm) that transforms a DFA into
its minimal equivalent.

5

Quotient Automaton The result of merging a partition of equivalent states in a non-minimal
DFA, yielding a smaller DFA that recognizes a superset of the given L.

The construction of quotient DFAs forms the foundation of the learning process in the majority of
passive inference techniques.

Regular Expression (RegEx) A formula built inductively over Σ using:

• Union: R + S (strings in R or S),

• Concatenation: R · S (first R, then S),

• Kleene star: R∗ (zero or more repetitions of R).

Here is an example regular expression R = (a · b)∗ · a+ b · (a · b)∗.
Important note: Following Kleene’s theorem, every RegEx denotes a regular language and
can be converted to/from a minimal DFA.

This is all of the preliminary knowledge needed to understand the concept of finite-state-machine
inference studied in this thesis.

2.1.2 Automata Learning Algorithms

We evaluate two main types of automata learning algorithms. They both learn a given system
(or, more abstractly - a language), a System Under Learning (SUL).

Passive Learning

Passive learning algorithms build a model of an unknown automaton based on a fixed set
of example traces without any further interaction with the SUL. Given a collection of accepted
by the SUL (positive) strings, augmented with ones not belonging to the language (negative), the
learner seeks a minimal DFA consistent with all examples - accepting positive traces and rejecting
the counterexamples given by the negative ones.

Most of the passive learning techniques begin by breaking every accepted trace into a set of
prefixes (including the empty string λ) to form the states of a so-called Prefix Tree Acceptor (PTA)
that recognizes exactly every positive sample. Where they differ is in the order in which they select
pairs of states as candidates for merging in the process of creating a quotient DFA. In many cases,
the negative samples control the generalization, thus preventing merges of incompatible states[15].
That way, the PTA generalizes into an automaton with loops, potentially accepting the language L.

The classic passive method is the RPNI (Regular Positive and Negative Inference) algorithm,
which merges states in a lexicological order [4]. The pseudocode in Algorithm 1 accurately depicts
the algorithm[16].

Another algorithm we test in this thesis is Evidence Driven State Merging (EDSM), which
enhances RPNI by using statistical heuristics to prioritize which merges are most likely to generalize
correctly[1]. The pseudo-code is as shown on Algorithm 2[16].

The final one of these more conventional methods is Blue Fringe (BF). It, too, builds on
the idea of RPNI but with a slightly different heuristic than EDSM. While EDSM chooses merge
candidates more arbitrarily, BF uses a coloring heuristic that ensures that one of the merged states

6

Algorithm 1: RPNI (Regular Positive and Negative Inference)

Input: Positive sample S+, negative sample S−
Output: Deterministic Finite Automaton (DFA)

1 Procedure RPNI(S+, S−)
2 A← BuildPrefixTreeAcceptor(S+) ; // Construct initial automaton from

positive samples

3 K ← {q0} ; // Initialize core states with start state

4 Fr ← {δ(q0, a) | a ∈ Σ} ; // Initialize merge candidate states

5 while Fr ̸= ∅ do
6 Choose q ∈ Fr ;
7 foreach p ∈ K (in lexicographical order) do
8 Atemp ← DeterministicMerge(A, p, q); // Temporarily merge q into p

9 if L(Atemp) ∩ S− = ∅ then
10 // Check consistency with sample

11 A← Atemp ; // Make merge permanent

12 break; // Exit loop after first valid merge

13 if No merges possible then
14 K ← K ∪ {q} ; // Add unmerged state to core

15 Fr ← {δ(k, a) | k ∈ K, a ∈ Σ} \K ; // Update candidates

16 return A ; // Final consistent DFA

Algorithm 2: EDSM (Evidence-Driven State Merging)

Input: Positive samples S+, negative samples S−
Output: DFA

1 Procedure EDSM(S+, S−)
2 A← BuildAugmentedPrefixTreeAcceptor(S+, S−)// Also contains

negative traces

3 foreach pair (p, q) ∈ Q×Q where p ̸= q do
4 score(p, q)← ComputeCompatibilityScore(A, p, q);

// Precomputes compatibility scores for all state pairs

5 repeat
6 (p∗, q∗)← argmax

(p,q)

{score(p, q) | score(p, q) > 0};

7 if valid (p∗, q∗) found then
8 A←MergeStates(A, p∗, q∗);

9 until no positive-score merge possible;
10 return A;

7

is always the root of a tree, which results in a ”particularly fast and simple program”[1]. To do
that, it uses a color mapping at each stage of the learning process, in which the current roots (or
nodes that can only be merged to) are red, while their direct children are blue, and every other
node - white. We do not evaluate this approach in the rest of the thesis.

More recently, neural network-based approaches have entered the sphere of language inference.
Recurrent architectures (LSTMs or GRU) can predict the next symbol in a sequence, effectively
learning an implicit state representation. Once trained, rule extraction methods are used to derive
a DFA that approximates the network’s behavior[17].

Overall, passive techniques are ideal when one can collect large execution logs offline and
cannot probe the system dynamically. Their main limitation lies in the sensitivity towards the
quality of the provided sample. Insufficient or under-representative examples can lead to overfitting
or over-generalization and the inability to correct mistaken generalizations once the initial dataset
is fixed.

Active Learning

Active learning methods treat the target system as a black box that they query on demand.
An illustrative example is Angluin’s L* algorithm, in which the learner alternates membership
queries (“Is string w accepted?”) with equivalence queries—asking the SUL whether the current
hypothesis is identical to the target DFA. Internally, the algorithm organizes its knowledge using an
observation table, a structured matrix that records the responses to membership queries for various
prefixes and suffixes. This table allows the learner to detect inconsistencies, distinguish between
states, and construct a hypothesis automaton. If the hypothesis is incorrect, the first string wrongly
labeled by the learned model is returned as a counterexample. Whenever the learner receives a
counterexample, it updates its observation table and constructs a revised hypothesis. This process
is guaranteed to converge to the minimal DFA after several queries that grow only polynomially
with the size of that DFA. Each loop of prompting, construction of a hypothesis, and feedback is
called a learning round [3].

In practice, because the SUL behaves as a black box, researchers often replace true equivalence
queries with conformance testing by generating a suite of test cases and executing them against the
system. The learned model is sufficient as long as it passes all the tests [5].

Active approaches are particularly powerful when the system under test can respond quickly
to queries and when high model accuracy is required. However, if queries are expensive (e.g., each
test involves a time-consuming simulation) or if the system does not support equivalence testing,
active learning may become impractical or simply impossible.

Some recent approaches start by building a model from existing string databases and then
use a few targeted queries (prompts to the SUL) to clarify the uncertain parts. Therefore, pairing
cheap passive learning with precise active one, these hybrid methods make automata inference
practical even in complex settings [5].

2.2 Notation

This section presents a summary of all the notation we use throughout this thesis in the form of
Table 2.1.

8

Symbol Meaning
L A given language
Σ The set of symbols belonging to a language
a An input symbol
Q A set containing all the states of a DFA
q A single state of a DFA
δ(q1, a) Transition function for a DFA
A A set of all accepting states of a DFA
λ The empty string
∗ Kleene star operator
B A subset of Q in a quotient DFA
π A partition of a set
u A prefix of a trace
w A trace
n The number of states in a DFA

Table 2.1: Notation used throughout the report.

2.3 Additional Concepts

Here are some brief definitions of terminology that appear in Chapter 4.

• Simple Path: A sequence of distinct vertices (or states in a DFA) v0, v1, . . . , vk in a graph
such that each consecutive pair (vi, vi+1) is connected by an edge, and no vertex appears more
than once.
On this definition, later on, we build our most promising heuristic.

• Breadth-First Search (BFS): A graph traversal technique that, starting from a source
state, explores all its immediately connected by transitions states (neighbors) first, then their
neighbors, and so on. It uses a queue to ensure that vertices are visited in order of increasing
distance from the source.

• Depth-First Search (DFS): A graph traversal that starts from a source state and explores
as far along each branch as possible before backtracking. Typically implemented with a stack,
it visits a node’s unvisited descendants before moving to its siblings. We update a set of
visited states to avoid getting stuck in loops.

• Probability Decay Functions: Functions d : N → [0, 1] that assign a weight to each step
or distance n, where d(0) = 1 and d(n) decreases (often exponentially or polynomially) as n
increases. They model diminishing influence or relevance of events the farther they lie from
an origin.
These are the basis for the newly implemented adaptive termination walk approaches intro-
duced in the methodology part of the thesis.

• Depth of a DFA: The maximum over all nodes q of the shortest path length from the root
to q [1].

9

Chapter 3

Previous Research

This chapter provides an overview of existing work related to automata learning and bench-
marking. It surveys prominent literature, identifies gaps in current data generation and learner
evaluation approaches, and explains how this thesis aims to address those shortcomings through
novel methods.

3.1 Related Work

Active vs. Passive

This thesis draws part inspiration from the work of Aichernig et al.[5], which compares active
and passive automata learning for network protocols such as Bluetooth Low Energy (BLE) and
Message Queuing Telemetry Transport(MQTT). For this purpose, the authors work with Mealy
machines, which, unlike DFAs, are finite-state machines where transitions have both input and
output as labels.
The paper explores three research questions, which are central to its evaluation:

(RQ1) ”Can passive learning based on a random sample outperform active learning?”
(RQ2) ”Does the considered active automata learning algorithm generate an optimal sample?”
(RQ3) ”Can random sampling support active automata learning?”[5]
Regarding RQ1, the findings indicate that active automata inference methods are superior to

passive ones like RPNI, especially for the MQTT case study. While passive learning shows high
accuracy (around 99%) for MQTT, the size of the learned machines is considerably larger than the
ground truth models, suggesting that sparse data prevents optimal merging. For passive learning to
achieve a score of 100% with random samples, it requires significantly larger data sets with longer
traces than active learning. Even when the input set size is nine times larger and the trace length
approximately nine times longer for MQTT, passive learning still struggles to learn correctly. We
must emphasize that while active inference demonstrates outstanding performance, it may not
always be practical in scenarios where querying the SUL is costly or limited. In such cases, passive
learning remains a feasible option.

The other central part of the paper is the attempt to minimize the size of the data set
used for passive learning. The authors achieve this by optimizing the dataset generated by the L∗

algorithm. This involves identifying and removing unneeded queries and non-essential parts of the
characterization set. Thus, the active learning sample size experiences a reduction by an average of

10

76% for BLE and 78% for MQTT. Additionally, the average trace length decreases by 67% for BLE
and 43% for MQTT. With this optimized data, passive learning can correctly learn the minimal
model of the SUL for all examples[5].

Lastly, the paper explores supporting active automata learning with a cache initialized by
random samples. The point is to reduce the explicit calls upon the SUL by instead retrieving
observations from a cache. However, this approach shows limited success: the randomly selected
data captures only a minority of the data required by active learning. On average, only 27% of the
data needed for correct learning in the BLE case study is present in the cache, and only 10.6% for
MQTT. These results indicate that while random data can support active learning by reducing some
redundant queries, it cannot replace the comprehensive exploration provided by active learning[5].

MLRegTest

This study introduces a benchmark designed to evaluate how well machine learning models,
particularly neural networks, can learn regular languages - a more novel passive learning technique
explained in the previous section. It tests generalization capabilities by exposing the models to
a wide variety of formal languages with known logical properties (a special subset of regular
languages). Using a controlled experimental setup, the study compares the performance of four
neural architectures (Simple RNN, GRU, LSTM, and Transformers) across 1,800 distinct regular
languages organized into 16 sub-regular classes. The goal is to assess which linguistic features and
logical complexities pose the greatest challenges to current ML systems.

For each of the 1,800 languages in MLRegTest, six datasets are generated. These include
training, development, and four types of test sets. Each of these has an equally balanced number of
positive and negative examples, with string lengths ranging from 20 to 50 characters. The data is
generated using a DFA derived from each language, while positive and negative strings are created
via uniform sampling or by manipulating edit distances for adversarial examples (exclusively for
the test cases to find minimal contrastive examples[5]).

The authors describe several interesting results. The uniformly random test sets achieved
an overall high accuracy score (around 91%), while the more complex adversarial edit-distance-
based technique resulted in accuracy scores of around 75%. This shows the model’s inability to
generalize near decision boundaries despite high accuracy on the random datasets used in most
research. Another fact revealed by the results is that gated recurrent unit (GRU) models consistently
outperform all other models across all conditions. Finally, as expected, with the increase of the
training set, the test accuracy increases too[5].

There is a follow-up on this study by A. Soubki and J. Heinz[18], where they reuse the
MLRegTest dataset to test different state merging algorithms (including the previously discussed
RPNI and EDSM). Overall, classic passive learning techniques under-perform no matter the
language category or data size. Since the original dataset lacks short strings, the authors enhance
it by adding a proportional amount of short strings from 1 to 19. This modification shows a
significant performance boost by increasing accuracy on the test by around 15% (for RPNI and
EDSM only)[18].

11

Abbadingo One

The Abbadingo One is a DFA Learning Competition that took place in 1998, challenging
participants to learn deterministic finite automata (DFAs) ranging from 64 to 512 states from
dense and highly sparse training sets. The organizers posed sixteen problems (a 4×4 grid, size vs.
sparsity). The idea was to stimulate researchers to develop new passive automata learning methods.
As a result, contestants develop the EDSM and BF algorithms, which outperform the classic passive
algorithm (RPNI-like)[1].

As for the dataset generation method, Lang et al. use the following procedure. To generate a
DFA with an expected size of n states, a random complete DFA with |Σ| = 2 and 5

4
n total states is

first created. From this, they retain only the subgraph reachable from a randomly selected root
state. This trimming step helps ensure that the resulting DFA has a size close to n, while also
maintaining randomness in structure. Only those automata with depth exactly 2 log2 n − 2 are
accepted to reduce variability in graph depth and simplify training set construction. This specific
depth threshold corresponds to the typical maximum path length expected in such random graphs
and avoids overly deep or shallow DFAs.[1]

For trace generation, a pool of binary strings is prepared with lengths ranging from 0 up to
2 log2 n+3, which ensures both short and moderately long examples. As one can see, the maximum
value is close to the depth of the target. The authors set the total number of strings in the pool to
16n2 − 1, a value empirically chosen to provide sufficient diversity and coverage of the automaton’s
behavior. A training set is drawn uniformly at random without replacement from this pool, while
the remaining strings go in the testing set.[1]

3.2 Identified Gaps

From the current state of the art, we note the following gaps: First of all, the common ratio
of accepted to rejected strings in the used datasets never changes and is usually fixed to 1:1 [2].
Thus, we suggest the exploration of systematically changing proportions of positive to negative
strings. Secondly, we consider unjust the existing comparisons between active and passive methods
in Aichernig et al.[5] because the active algorithm used (i.e., L∗) always converges to the equivalent
SUL. A better comparison would use only randomly generated strings from the SUL when checking
the equivalence, so that convergence is achieved only by a potentially infinite data set, as in the
case of most passive learning methods. Finally, all the works we review in this thesis either perform
random walks or take a random sample from a set of all possible strings for fixed length ranges.
The only more advanced heuristic is using the L*’s queries to generate the benchmark[5, 1].

The key difference of our work is in developing better generation techniques for datasets
through heuristic approaches that provide adequate coverage of a target language. Furthermore,
we use random walks with novel generation techniques and differing ratios of positive to negative
samples to ensure greater diversity, leading to more representative models. We also propose a novel
approach involving simple path traversal, focusing on maximum coverage of transitions.

Another goal of the thesis is to assess the performance of each learning technique. The
methodology section elaborates on how we achieve this by testing the different approaches.

However, this work does show some limitations. It only supports complete DFAs, and some
design choices - like the length parameters for uniform sampling - may produce biased results.

12

In summary, by developing richer, coverage-focused benchmark datasets and systematically assessing
multiple learning paradigms against them, this thesis aims to advance the state of automata-learning
evaluation. The goal is to find better design guidelines for future benchmarks, for both active and
passive automata learning.

13

Chapter 4

Methodology

In this chapter, we lay out the complete experimental framework. It explains the construction
of DFAs, the generation of datasets using various string-generation techniques, and how experiments
are set up to evaluate passive and active learning algorithms. Each method directly tests specific
hypotheses derived from the research questions.

4.1 Dependencies Setup

This chapter begins with a detailed explanation of how the supporting structures of the
current code base work.

In this thesis, we define a custom-made CDFA (Complete Deterministic Finite Automaton)
object and use it as a common interface across various functionalities. This object is a Python
dictionary with the following keys. First is the transition matrix, which is a 2-dimensional NumPy
array. Its rows correspond to state indices, and its columns - the unique symbols of Σ. We model
each directed transition in the following way: the start state is the corresponding row index, the
label is the corresponding alphanumerical index of the symbol, and the cell value at that coordinate
is the destination (end) state. The following elements in the dictionary are the index of the start
state (set by default to 0), a list of binary values indicating whether each state is accepting or not,
a corresponding list of state labels, and a list representing the elements of the input alphabet Σ.

During the creation process, the user can specify two parameters: the number of desired states
and |Σ|. States are labeled sequentially from “s0” to “sn,” where the number of states determines
n. The alphabet is initialized with Unicode characters, beginning with the symbol “a”.

The actual creation of the automaton is fairly simple. First, we initialize the symbols of Σ, the
states, and their labels. Then, to construct a CDFA, for each state, there should be |Σ| outgoing
transitions, each to a random destination. To determine the terminating states, an arbitrary amount
of the initialized states are selected.

In addition to the internal NumPy representation, the Python package Graphviz generates a
more visual form of the automaton using the DOT language [19]. Figure 4.1a shows an example.

As mentioned, the CDFA object bridges multiple packages, and we implement several helper
functions to support this integration. The current generation produces any random CDFA machine,
which is rarely minimal. Working with minimal automata is preferred because:

1) It improves the efficiency of generation techniques.

14

2) Active learning algorithms (specifically L∗) as discussed in Chapter 2, always output minimized
DFAs.
The dfa[20] package is responsible for the minimization procedure of the output. This package

includes the dfa.minimize() method, which minimizes a given automaton, and dfa.dfa2dict(),
which converts the result back into a dictionary, which is a NumPyDFA-compatible format. Figure
4.1b displays the result of applying the minimization process to the previously shown CDFA.
Another useful feature of the package is dfa.trace(), which, given a list of input symbols, follows
the trace and returns the accepting or rejecting status of the final state.

The other Python library that we use and which interacts with our implementation of a
CDFA is ”AAlpy”[21]. Other works[5] employ it since it provides tools for both active and passive
learning methods. We describe those in the experiments section.

4.2 Data Generation

In this section, we explore different approaches to generating a diverse dataset of strings.

4.2.1 Random graph walks

Random walks are sufficient for the task of creating a representative enough dataset[5].
However, current implementations often terminate sequences at a random length, determined within
a user-defined minimum and maximum range. While this approach is simple, it lacks control over
the distribution of trace lengths. To address this issue, we implement several random walk variations
that use different termination probability decay functions to ensure greater variety in trace lengths.
In particular, four different termination methods described below arise, each returning two disjoint
sets - one containing the accepted traces and the other containing the rejected.

Fixed termination probability

The following function serves as the baseline to evaluate the other ones’ accuracy. It takes the
number of runs and an optional maximum string length as arguments. This and all of the other
functions share, the account empty argument which if set to True automatically labels the λ
trace. An alternative to this function is also created, which balances the accepted/rejected strings
in the output to a ratio the user chooses.

Linearly decaying termination probability

This function uses linear decay to gradually decrease the termination probability after each
walk. The probability for termination at each generated string is prt = 1− 0.01t. The parameter
0.01 is a default value, which can be modified in the function call. This generator also has an
alternative that supports differing proportions of accepted to rejected strings.

Root (sublinear) growing termination probability

The method emphasizes shorter to medium traces by accelerating the termination probability
in the early stages of a walk. A root-growing function decreases the likelihood of longer sequences

15

(a) The original CDFA (b) A minimized version of the CDFA on the left

Figure 4.1: CDFA originally generated with 20 states and alphabet length of 2. These are visual
representations of automata we use in this thesis.

16

early on. Each traversal has a unique termination probability calculated based on the trial (walk)
index. The formula we use is the following:

pr =

√
t

tmax +
mode
2

(4.1)

, where t stands for current trial number, t max stands for the max trials argument, while mode
stands for one of the three possible modes provided to the function. The values for mode are
[0, t max

2
, t max]. To see the effects of different settings, refer to Figure 4.2. Again, the method

supports user-specified ratio functionality.

Figure 4.2: Graphs of termination probabilities for root walk in 2 modes. It is clear they favor
smaller string sizes (termination probability scales fast in the beginning and then levels off).

4.2.2 Logistic growing termination probability

This method favors the traversal of longer traces over shorter ones. It achieves this using a
sigmoid-like probability curve, defined by the following function:

pterm(t) =


0.02, if praw(t) ≤ 0.02,

praw(t), if 0.02 < praw(t) < 0.9,

0.9, if praw(t) ≥ 0.9.

Where the raw probability praw(t) is calculated as:

praw(t) =
1

1 + e−k
(
t− trials

1.5

) .
Here, t ranges from 0 to the total number of trials, denoted by trials. Dividing trials by 1.5 sets
the sigmoid’s midpoint roughly two-thirds of the way through the process. The slope parameter
k (default 0.003) determines how sharply the raw probability increases, from near zero at small
t, through 0.5 around t ≈ trials/1.5, and approaching one near the end. We constrain the final
probability to be between 2% and 90% to prevent extreme outputs.

Figure 4.3 plots the termination probabilities under the default parameters. As highlighted,
the function’s behavior depends on the size of the trial set, meaning the input parameters often
need fine-tuning.

17

Figure 4.3: Graphs of termination probabilities for a logistic walk with default settings. This method
results in a variety of longer and very short strings for larger training sets.

4.2.3 Random string selection

Next, we describe our implementation of an uniform distribution sampling.

Generating the language L

To sample random strings uniformly from any DFA, one would need to know the total size of
the language, meaning the number of all possible accepted and rejected strings. However, since
such a set is often infinite, generating it entirely is impossible. The practical workaround is to limit
the language to a finite subset. Although we can calculate a DFA’s maximum depth, doing so is
computationally demanding and is not a viable option. Furthermore, tracing all possible strings
through the automata takes too much time, especially with larger alphabets. To manage this,
restrictions on the size of the alphabet take place when using such methods.

As for ensuring coverage of any DFA, we develop specialized implementations of both BFS
and DFS, but use only the former since it produces a more natural ordering of strings. There is one
important modification - the algorithm keeps track of the states and the tuple (state, sequence),
ensuring uniqueness while keeping the entire history. Essentially, the idea is that with these searches,
we cover all possible sequences up to the given length of the trace and alphabet. The code thus
guarantees that it can generate, label, and enumerate (if needed) all target language strings up to
a specified length. According to the pumping lemma, if this length equals the number of states
in the minimized target automaton, it guarantees full language coverage since all non-generated
strings are pumped versions of existing ones.

Due to the algorithm’s big-time complexity, we use this approach sparingly, exclusively with
smaller, second-degree DFAs.

Sampling the language L

For the actual sampling procedure, there are two distinct solutions. The first utilizes the
above-mentioned generation technique by selecting random strings from the prepared dataset based
on a uniform distribution. Given an input, this method combines the BFS search results into a

18

single list, which it then samples by assigning equal probability to each trace. An alternative version
also allows sampling with a different fixed proportion of positive to negative samples.

The second solution draws motivation from a property of CDFAs. Since each state is always
guaranteed to have |Σ| transitions, at each step (or character of the string), each transition has the
same probability of appearing, which is exactly 1

|Σ| . Therefore, given a certain fixed length, one
can generate strings following an underlying uniform distribution. There is one additional step:
choosing a random string length. As the length increases, so does the probability of a representative
being selected in an exponential fashion. Therefore, the ”weight of a length” in this distribution
has to be accounted for and can be calculated as:

|Σ|l∑lmax

n=0 weight(n)
(4.2)

The only drawback of this method is that if a complete coverage set is required (as in the
BFS search), each trace must be traversed through the target automaton to obtain a label, which
makes the approach less efficient. Nevertheless, it is superior when the goal is to label only a few
random samples.

The final approach would be to forget accurate uniform distribution and instead choose a
string size, whose representatives to uniformly sample. While this might yield better results, we
leave its evaluation for future work.

4.2.4 Heuristic graph traversal approaches

A good minimal dataset must fully represent the SUL. While multiple approaches exist, the
most intuitive solution is to capture all transitions of the target. For this purpose, we develop an
algorithm that performs a simple path search, where the goal is to find all the different simple
paths up to a certain length. The pseudo-code in Algorithm 3 presents the version of the recursive
approach we implement, where q stands for the state, w for a current walk (trace), and k stands
for the allowed transitions left (maximum size N).

The algorithm works on the principle of DFS, going down a single branch and passing the
original reference of the list to the following recursion, which fills it up. Only the list of visited
states stays consistent to prevent early termination.

In principle, the maximum path length should correspond to the longest possible simple
path. Therefore, the maximum value equals the number of states in the automaton. In most cases,
however, the longest simple path is shorter (due to multiple dead-end states). Nevertheless, larger
upper bounds do not affect the algorithm’s correctness, as it does not revisit states.

4.2.5 RegEx

Another interesting approach is to use regular expressions to denote the SUL instead of an
automaton. There exist algorithms for transforming DFAs into RegEx[22], and even the above
mentioned dfa package has such a method[20].

One can work directly at the level of the Abstract Syntax Tree (AST) of the expression.
Searching the AST by scanning all the branches can provide a diverse enough dataset.

However, due to time complexity and the need to simplify the resulting expressions, we have
decided not to implement this method in this thesis, and we leave it for future work.

19

Algorithm 3: Find All Simple Paths up to Length N

Input: DFA A = (Q,Σ, δ, q0, F), maximum depth N
Output: Sets accepted , rejected

1 Procedure PathsAllUpTo(A,N)

2 accepted , rejected ← ∅, ∅;
3 visited ← {q0};
4 Function DFS(q, w, k)
5 if q ∈ F then
6 add(w ̸= ϵ) ?w : λ to accepted ;
7 else
8 add(w ̸= ϵ) ?w : λ to rejected ;

9 if k > 0 then
10 for a ∈ Σ do
11 q′ ← δ(q, a);
12 if q′ /∈ visited then
13 add q′ to visited ;
14 DFS(q′, w · a, k − 1);
15 remove q′ from visited ;

16 DFS(q0, λ,N);
17 return accepted , rejected ;

20

4.3 Experiment setup

This section concerns itself with an exact setup that tackles the research questions outlined
in Chapter 1, as well as stating certain hypotheses related to the specific experiments.

4.3.1 Experiment 1: Evaluating the performance of different random
walk methods with passive learning

The goal of the following procedure is to assess the accuracy of all the newly proposed CDFA
random walk methods. This and the next two subsections directly tie in with RQ1.

For this task, the four random walk strategies discussed earlier are compared against one
another. These are tested across 12 (4 × 3) categories, each learning on the same target CDFA. We
set the parameters of the automata to the following: the number of states in the minimized machine
is 30 and 50, with an alphabet of size 2. Additionally, we run the variation with states 50 and
|Σ| = 3. The four subcategories correspond to different sample sizes (before removing duplicates).
Specifically, these sizes are 100, 500, 1000, and 2500.

We choose state sizes of 30 and 50 because these values balance expressive power and com-
putational feasibility. Automata with fewer states (e.g., under 20) tend to produce overly simple
behaviors, which often fail to stress the capabilities of the learning algorithms. Conversely, sig-
nificantly larger DFAs (e.g., above 100 states) can lead to serious memory and computational
requirements, which make algorithms like the classic RPNI unusable. However, in some instances,
CDFAs with |Q| = 100 are used to show the disparity of computation times between the different
learners or in situations where large targets do not hinder learning speeds (e.g., active learning).

As for the alphabet size, we keep |Σ| at 2 for most experiments to simplify the analysis
and reduce the combinatorial explosion during path traversal. However, variants with |Σ| = 3 are
included in some cases to quantify the effects of increased symbolic diversity. With more symbols,
the same number of states leads to a wider branching factor in the state graph, which can affect
the behavior of both passive and active learners by increasing transitions seen during training.
After generating the trails, we initialize the two passive learners. These are the AALpy[21] imple-
mentations of the RPNI and EDSM algorithms. RPNI has two distinct models:

1) A classic version, which follows the original implementation.
2) A gsm version (general-state-merging), which produces nearly identical results but executes

faster.
Therefore, since the experiment’s focus is purely on the accuracy of the algorithms, the latter

variant is the optimal pick. As for EDSM, we run it with default arguments, following a similar
algorithm structure as the one described in Chapter 2.

To benchmark the algorithms, at each iteration, the fixed-termination walk (with a ratio of
positive to negative strings set to 1) runs for a total of 100 000 trials with the ratio of positive to
negative strings set to 1 (before the removal of duplicates).

In order to obtain statistically sound results, the generating-learning cycle goes through 100
repetitions for each sample size.

21

4.3.2 Experiment 2: Exploring the simple path approach

This experiment setup has two parts: testing the performance of the simple path generator
and making a direct comparison to random generators.

Since searching through large automata is computationally expensive, we limit the experiment
to simpler CDFAs. The first part evaluates the ability of passive learning algorithms to recover key
information using only simple paths. The same minimized automaton parameters from Experiment
1(4.3.1) reappear to ensure consistency with other datasets.

As for the second experiment, the focus shifts to directly comparing passive EDSM performance
between the fixed-random and the new simple path datasets. The target is a minimized CDFA of
size 20 with |Σ| = 2 (to reduce learning speeds). After generating the test dataset, an initial training
set of five strings from each generation method acts as input to the learner. The evaluation function
returns the accuracy, after which we randomly select five additional strings from the corresponding
technique and add them to the training data.

4.3.3 Experiment 3: Evaluating the effect of different proportions of
accepted to rejected strings on passive learning

Again, the experiment has two goals. The first objective is to evaluate the accuracy of the
uniform sampling technique with different ratios compared to random walks under the same
conditions. The second goal is to measure how similar modifications affect the accuracy of other
traversal techniques.

Specifically, this experiment aims to determine whether it is better to use mainly positive
strings, which could allow generalization, or mostly negative strings, which may help enforce stricter
structural constraints. Hypothetically, including more (but not only) negative strings would preserve
key elements of the Prefix Tree Acceptor (PTA), and despite the potential for slight overfitting, it
could yield better overall accuracy.

The experimental setup for this part includes five versions of each sampling method: uniform
selection, root termination walk, and fixed termination walk. We test each of those with positive-
to-negative balances of 0, 0.25, 0.5, 0.75, and 1. For simplicity, only a single target automaton size
of 50 states and |Σ| = 2 is used. For the true uniform sampling method, we consider all possible
strings up to a length of 50. The test executes 100 times, with a training dataset size of 1000.

4.3.4 Experiment 4: Testing an active learning method with approxi-
mation instead of equivalence

As previously discussed, L∗ performs better than passive techniques. This superiority is due
to two key factors: its ability to prompt the system with specific traces and to test its hypotheses.
Logically, there are two main ways to handicap the active approach.

The first would be to limit the ability to prompt the system under learning. This would
effectively remove the core function of the algorithm (assuming an equivalence oracle is already
available). However, if the SUL’s responses are pre-generated (and thus likely do not offer full
coverage), undefined labels for prompted traces become a concern. There are two possible ways the
system could behave in such a case:

22

1) If the L∗’s prompt is undefined, automatically set it to rejected or accepted. In the first
case, this could eventually lead to over-specification, or in the second, to over-generalization.
Therefore, in both cases, that would lead to serious accuracy losses.

2) If the L∗’s prompt is undefined, return an unknown label, essentially forcing the algorithm
to keep asking until it gets a definite response. The issue here is that currently, that would
break L∗ since it always expects proper feedback. Therefore, we need a new algorithm or to
perform a significant modification, which is beyond the scope of this thesis.

Because of these complications, this method of limiting the algorithm is dismissed.
Alternatively, one can artificially restrict the hypothesis-checking process. This maintains

the black-box nature of the SUL and aligns more closely with how conformance testing typically
functions. We compare the learned language only against a finite set of traces. This approach has
been explored before (e.g., in B.K. Aichernig et al. [5]), where the equivalence class resembles
previously learned models. This experiment proposes a new setup: using randomly generated
data (the same data as for passive techniques) as the equivalence set. Of course, L∗ still has an
advantage over EDSM and RPNI, but its performance is expected to degrade significantly under
this constraint.

The objective of this experiment is to evaluate the impact of different equivalence oracle data
sizes on the performance of the modified L∗.

As for the actual implementation in AAlpy, we first define the ”SUL” class, which serves as
an interface between the learner and the machine. The pre() method resets the ”pointer(tracer)”
to the starting state index of the Numpy CDFA. Step() keeps track of the current state after each
transition. Since the default equivalence oracles in AALpy are designed for standard active learning
and do not meet the needs of this study, we implement a custom oracle - DataSetEqOracle()
by modifying the two default methods. In addition to its constructor - init - there is the key
method find cex(), which generates counterexamples by inspecting the list of accepted and rejected
strings. As it tracks all queries, find cex() returns the first mislabeled string it encounters. If no
such string exists, it returns None.

Based on previous experiments, we employ the fixed-random generation technique to create
the equivalence dataset. This experiment includes several categories. There are four types of L∗

based on different oracle sizes: 10, 100, 1000, and 2500, for each of the three target automata from
Experiment 1(4.3.1), along with an additional case (100 states, |Σ| = 3). Again, each category runs
100 times on different random seeds to ensure statistically significant results.

4.3.5 Experiment 5: Comparing training speeds of active and passive
automata

Efficiency of algorithms can be a defining factor that compromises even the most accurate
models. Due to the curse of dimensionality, such problems can quickly escalate from minor in-
conveniences to practically unsolvable scenarios. Thus, understanding which algorithms offer the
fastest execution times is crucial. This experiment evaluates active (L∗) and passive (EDSM and
RPNI) learning methods. This time, both versions of RPNI are present: the classic variant and the
generalized state-merging version.

The actual setup is as follows. To compare active and passive approaches fairly, we pre-generate
50 randomly sampled datasets for three CDFA sizes (25, 50, and 100 states), each with |Σ| = 3,
and run the learning loops. The Python time package measures execution time for both active and

23

passive approaches.
The main goal here is to address the training efficiency aspect of RQ2.

4.3.6 Experiment 6: Comparison to OpenFST

We directly address RQ3, by conducting the following experiment, where the focus is on
comparing the accuracies achieved with two different automata benchmark generation techniques:
(1) our custom Python-based random benchmark generator and (2) the established OpenFST[23]
C++ library accessed via the Pynini[24] Python API.

We evaluate both approaches on two independent sets of 100 complete DFAs, each a minimal
one with |Q| = 50 states over an alphabet of size |Σ| = 2. The training set consists of 100 sample
traces per target. Both frameworks produce benchmarks with a balanced percentage of positive to
negative traces to make the comparison as fair as possible.

Generating a training sample through OpenFST happens through the RandGen() function,
which returns accepted sequences of an input DFA in the form of a PTA. It does so by randomly
selecting (following a uniform distribution) a possible transition. If the current state is final,
termination of the walk is added to the pool of transitions. To illustrate, if the function is at an
accepting state with 2 outgoing transitions, the probability of terminating is around 33%. Since
OpenFST does not allow sampling of negative traces, we make a complement of the target CDFA
by flipping all the final states’ labels and making all non-final ones accepting. Thus, we end up
with 2 PTAs, which represent accepted and rejected sample sets, each having a size of 50 [23].

A procedure similar to those in the other experiments generates all the test sets (see 4.3.1).
Finally, since the chosen training sample size is relatively small, any marginal performance

differences between the generation methods are difficult to detect. However, increasing the sample
size significantly would make the benchmarking process too computationally intensive and memory-
demanding for our system. Because of these reasons and considering the time limitation at the end
stages of the thesis, there are constraints on the training size. As such, in hopes of expanding the
obtained results, we leave more extensive comparisons on larger target automata and bigger data
volumes for future work.

For now, as Section 5.1.7 demonstrates, the accuracy differences are minimal, but still
statistically significant in some cases.

4.4 Evaluation Metrics

This section explains how this work will quantify and interpret the results. Depending on
the experiment, we measure accuracy using random test datasets of various sizes. The test data
accepted/rejected string proportion is always 1:1, as done in previous benchmark datasets[2]. If all
of the strings in the test set pass, the learner achieves a score of 100%. Each misclassified trace (no
matter its original label) deducts 1

|D| from the current score, where D stands for the test dataset.
The measurements have a precision of up to 3 significant digits.

A more nuanced comparison of automata would involve calculating the graph edit distance.
While this would not reflect the percentage of accepted strings, it would provide insight into the
structural similarity between learned and reference automata. However, such analysis is highly
resource-intensive and is unfeasible for this thesis.

24

Since the execution of the benchmarking procedure is both hardware and software dependent,
here is a table of all the important specifications 4.1 of the system performing Experiment 5, where
the times to produce results are measured in seconds.

Table 4.1: Specifications of the system used to run the experiments

Component Specification
Processor Intel Core i9-14900KF

3.2 GHz, 24 Cores, 32 Threads
Operating System Windows 11 Home

Version 10.0.26100 (Build 26100)
Memory (RAM) 32.0 GB DDR5

This chapter’s focus is on discussing the different aspects of our complete benchmark generating
framework as well as the theory and intuition behind the chosen methods. At the end it also states
the experiment setups and justify the evaluation metrics. Thus, to round of this part of the thesis,
we present a concise overview (Table 4.2) of all the used techniques.

25

Table 4.2: Comparison of Dataset Generation Methods

Method Purpose Pros / Cons Performance
Uniform
Sample

Classical ran-
dom string
sampling.

+ Simple base-
line. Fast gener-
ation for CDFA.
– Favors long
traces.

Underwhelming
performance in
Exp. 3.

Fixed
Walk

Baseline ran-
dom walk
method.

+ Simple
and stable.
–Limited diver-
sity(hard to adjust
for extremely large
DFAs).

Best overall of the
random walk meth-
ods; stable across
all tested sizes.

Linear
Walk

Linear length-
biased termi-
nation.

+ Gradual change
in string length.
– Accuracy drops at
scale.

5–7% worse than
fixed walk.

Root
Walk

Early in-
crease in ter-
mination

+ Compact traces.
– Not enough cov-
erage, sensitive to
tuning.

Worst in Exp. 1,
good in Exp. 3.

Logistic
Decay

Balanced
trace lengths
(focus on
long and
short)

+ Focus on short
and long strings.
– Sensitive to tun-
ing.

Unstable; Compara-
ble to linear walk.

Simple
Paths

Maximize
state/edge
coverage.

+ Fast learning.
– Needs complemen-
tary random sam-
ples to converge.

Best early-stage
performance (Exp.
2).

Regex-
Based

Obtain whole
language and
target edge
cases

+ Human-readable.
– Not implemented.

Not tested in this
thesis.

26

Chapter 5

Results

This chapter presents and analyzes the results of the conducted experiments. It compares the
performance of different dataset generation strategies and learning algorithms in terms of accuracy
and computational efficiency. With these findings, we directly address the research questions from
Chapter 1.

5.1 Overview of Findings

5.1.1 Experiment 1

The overall results from the first experiments are shown in Figure 5.1. The immediate key
observation is that none of the newly implemented random walk methods achieves accuracies as
high as the fixed random termination approach. The root walk has the poorest overall accuracy,
8% to 10% worse than the fixed 0.1 termination chance random walk. The other two methods,
logistic and linear termination, also underperform, each showing 5% to 7% lower accuracy than
the achieved maximum. However, it is worth noting that the accuracy gap between all the walk
strategies tends to be smallest at the lowest train sizes (approximately 2% to 3% for size 100 in
Figure 5.2) and increases significantly at bigger inputs (exceeding 13% for size 2500 in Figure 5.3).
Therefore, the quality of the proposed adaptive termination probability functions may degrade as
the total number of strings increases. Fine-tuning the parameters could help address this issue. To
do so, we must first analyze the underlying distribution of sequence lengths outputted by each
probability decay function.

As for the direct comparison of EDSM to RPNI, average performance indicates that EDSM
generally outperforms RPNI (Figure 5.1), which is to be expected, given the more heuristic approach
to state merging. The exception to that is the scores that learners achieve on the ”root” method.
Furthermore, RPNI proved to perform on par with EDSM for small datasets (Figure 5.2).

Finally, it is important to note that the achieved accuracy closely resembles the results
reported in Soubki et al.[18]. However, differences in automata and benchmark techniques likely
account for any deviations, as the experimental setups are not identical.

27

Figure 5.1: Graph of the average accuracy achieved over all experiment settings. Score is given in %
and shows the advantage of EDSM over RPNI and the quality of the different sampling strategies.
Fixed-termination random walk seems to generate the best string datasets.

Figure 5.2: Graph of average accuracy for |Q| = 50, |Σ| = 2 for 100 samples in %. We can see that
the performance of RPNI and EDSM is equalized for small datasets. RPNI has an insignificant
advantage (minimum pair p-value of 0.73) - just a fraction of a %.

28

Figure 5.3: Graph of average accuracy for |Q| = 50, |Σ| = 2 for 2500 samples in %. We can see the
real advantage of EDSM’s score heuristic when ample and diverse data is provided.

5.1.2 Experiment 2

This experiment presents the results of attempting to generate an optimal dataset using the
simple path approach. From Figure 5.4, two observations are clear:

1) The new method produces high-quality results, with median accuracy reaching approximately
77% for EDSM and 75% for RPNI on smaller automata (subplot (a)), and 85% for EDSM
and 82% for RPNI on larger automata (subplot (b)).

2) As expected, learners achieve higher scores on more complex CDFAs. The increase in state
and transition counts makes more simple paths available for exploration. Because the dataset
size scales more rapidly with larger automata, accuracy improves despite the objectively more
challenging target.

A direct comparison of the efficiency of EDSM and RPNI is available on the scatter plots (Figure
5.5). The x-axis shows the sample sizes that the simple path approach produces, which is the same
for both graphs. As the inserted trend lines show, overall, EDSM achieves higher accuracy.

However, the advantage of the new technique is still not truly evident. Therefore, following
the description in the methodology section, we obtain the following results. The line graph in Figure
5.6 shows that after an even start, at iteration 50 (sample size of 250), the simple paths approach
takes a noticeable leap in accuracy, keeping its lead until the training dataset is exhausted and
the score levels at around 81%. As for the random-training-dataset learner, it takes almost twice
as many strings to catch up. Since the arbitrary string approach has a potentially infinite set of
strings to sample, it eventually converges to the target language. To balance that out in future
experiments, one can modify the simple paths dataset by adding random strings (after thoroughly
exhausting it first).

29

(a) |Q| = 30, |Σ| = 2 (b) |Q| = 50, |Σ| = 2

Figure 5.4: Box plots showing the distribution of 100 accuracy scores achieved with the all simple
paths generation technique for two different target sizes. EDSM performs generally better, with
higher accuracy for more complex automata.

Figure 5.5: Scatter plots showing accuracy/train set size using the simple path generation heuristic,
for the same targets of |Q| = 30, |Σ| = 2. The trend lines clearly show the better scaling learning
capability of EDSM when combined with the new heuristic.

30

Figure 5.6: Line graphs showing the learning rates in terms of accuracy for the EDSM algorithms
(with Savitzky–Golay smoothing). After acquiring a sufficient sample size, the accuracy achieved on
the paths method quickly outgrows that of a fixed random walk generation. However, it eventually
gets surpassed after exhausting the finite train data.

5.1.3 Experiment 3

This experiment explores how different ratios of positive to negative strings affect accuracy.
From each of Figures 5.7, 5.8, and 5.9, it is evident that having a (1:1) proportion offers the best
results for any of the traversal techniques we employ. It seems to provide the best generalization
ability while successfully preserving constraints. Both ratios of 0 and 1 have an accuracy of 50%
since the test case itself is balanced. In the first case, the PTA does not form, and there is only 1
rejecting state (extreme overfitting). In contrast, in the latter, the state merger quickly minimizes
the PTA into a single accepting state (extreme underfitting).

The uniform sampling performs worse than all the other tested methods. This is likely because
the traces are too large (since the maximum length is 50) and cannot provide enough information
to reconstruct the target DFA [1, 18]. Thus, we suggest further investigation of this method on
differing target automata sizes and maximum length parameters.

The experiment provides one more useful insight - the root walk, despite being last in
Experiment 1 (5.1.1), performs better than the fixed termination walk. The accuracy is around
2− 4% higher. These results can be due to two reasons: either the root probability decay works
exceptionally well with the 1 000 traces dataset, or the walk method lacks a good accepted-to-rejected
ratio in Experiment 1.

5.1.4 Experiment 4

As expected, even though the suggested handicap prevents L∗ from converging in some cases,
it still performs better than EDSM by large margins despite the worst-case scenarios. The average
results over all of the iterations and database sizes for the different DFA are as presented in Table
5.1. The scores for all automata are very high, with minute differences. The one case in which
the algorithm struggles to achieve full target recovery is for the smallest oracle size of 10. Figure

31

Figure 5.7: Mean accuracy for the EDSM using different ratios with fixed termination probability.
This graph shows that EDSM achieves the highest performance with a balanced train set, but even
positive proportions of 0.75% still produce comparable results.

Figure 5.8: Mean accuracy for the EDSM using different ratios with uniform sampling. The
performance is higher for the central columns, but the achieved accuracies are still extremely poor
considering the training set size.

32

Figure 5.9: Mean accuracy for the EDSM using different ratios with root decay termination
probability. In this experiment, the root walk outperformed the fixed termination walk significantly(p-
value 1 ∗ 10−3 << 0.05). It achieved the highest mean accuracy around 73% for a positive ratio of
0.5

5.10 represents this as a box plot, summarizing the results over 100 different seeds. Despite the
common intuition that bigger DFA should be harder to learn, the more complex structures have a
marginally higher median accuracy. The explanation might be that the generated test cases are
insufficient for covering the larger structures. Since the results from this experiment seem to imply
little to no correlation between automata size and accuracy, we perform a statistical correlation
test and thus derive a Pearson correlation value of 0.007 and a p-value of 0.78(>> 0.05). Under
these experiment parameters, there is no significant dependency between recovered accuracy and
CDFA size when using a database equivalence oracle to train an L∗ algorithm.

Table 5.1: Average Accuracy of L* by DFA Size over all the different equivalence oracle sizes. We
can see that the target’s dimensions hardly influence the mean.

DFA Size Average Accuracy (%)
(2,30) 96.995
(2,50) 96.619
(3,50) 97.444
(3,100) 97.128

5.1.5 Experiment 5

Before presenting the results, we describe some modifications to the experimental setup.
Although we originally planned to include the classic RPNI implementation across all automaton
sizes, excessive runtimes limit its evaluation to |Q| = 25. As shown in Table 5.2, EDSM requires, on
average, 69 times longer to converge than its GSM variant. Extrapolating this trend linearly suggests
an average runtime of approximately 52 785 seconds for |Q| = 100. Furthermore, GSM RPNI is

33

Figure 5.10: Accuracies achieved with the database-bound L* equivalence oracle (of size 10) for
different automata sizes. The box plots show the distributions in a clear manner, showing that all
of them have a similar shape and that the median is always above 90%.

34

more than 2000 times faster (on average) than the classical algorithm, justifying its adoption in all
other experiments.

The L∗ learner consistently achieves the shortest runtimes.
We consider the resulting leaning durations for both EDSM and RPNI-GSM to be generally

reasonable for practical applications, especially if multiple tasks execute in parallel. Of course, given
a convenient interface with the target and if the application allows, L∗ is the go-to algorithm.

The performance for all learners exhibits superlinear runtime increases when moving from
25 to 50 states, which then transitions to a sublinear runtime in the range of 50 to 100 (see
Table 5.2). The reason for this behavior is most likely that we use the fixed termination random
walk, which does not explicitly adapt to the different automata sizes. Thus, the 100-state CDFA
gets underexplored and, since runtime largely depends on the length of the inputs (and their
amount), the growth in runtime is slower. However, larger structures are still harder to learn due
to greater uniqueness in the training sample, leading to more repeated merge attempts. To explore
this further, we conduct an additional follow-up experiment in Section 5.1.6.

Table 5.2: Mean runtimes in seconds by DFA Size and Algorithm using fixed random termination
sampling. Some entries for RPNI Classic are missing due to extreme run times. It is important to
notice the sublinear growth of runtime, after ∥Q∥ = 50 is reached.

Learners ∥Q∥ = 25 ∥Q∥ = 50 ∥Q∥ = 100
EDSM 75.869 765.407 1588.980
RPNI Classic 5233.970 — —
RPNI GSM 2.340 8.749 9.811
L* 0.017 0.074 0.080

5.1.6 Experiment 5.5

We incorporate three changes to the previous setup to increase the reliability and speed up
the learning process. The first one is a reduction of the train set size by half (to 2500), followed by
a simplification of the target languages by changing |Σ| to 2. To avoid the issue encountered before,
we use uniform sampling to obtain appropriate string lengths for each CDFA size. For that, the
formula discussed in Section 3.1 (2 log2 n+ 3) is employed. Thus, the corrected code returns the
following results (Table 5.3).

Again, one can see that EDSM is tens of times slower than RPNI-GSM and that L∗ takes

Table 5.3: Mean Runtimes by DFA Size and Algorithm using uniform sampling. We notice that
halving the train set and the alphabet has noticeably reduced the overall runtimes.

Learner |Q| = 25 |Q| = 50 |Q| = 100
EDSM 1.214 23.158 499.092
RPNI GSM 0.036 0.464 5.436
L∗ 0.008 0.014 0.044

less than a tenth of a second to reproduce the target. Most importantly, note that the exponential

35

growth in runtime indeed continues for more complex structures on the logarithmic graph in Figure
5.11.

Figure 5.11: Mean runtime as a function of DFA size for RPNI, EDSM, and L* on uniformly
sampled traces (y-axis log scale). The roughly straight trajectories on the log-scale plot indicate
that runtime grows super-linearly with the number of states.

5.1.7 Experiment 6

Table 5.4 shows the average accuracy of RPNI and EDSM algorithms across 100 runs for
three different sampling strategies. The observed differences between methods are minimal - all
results fall within a narrow range of around 52-54%. In general, that suggests that the choice of
sampling method, whether using the OpenFST data loaded from a file or the previously used
fixed-random termination and uniform sampling, has no statistically meaningful impact on the final
accuracy of the learned automaton (in this setting). The only exception is that the mean RPNI
score for the file method is significantly higher than the uniform one (p-value of 0.026 < 0.5). All
other p-values (for each possible pair, for the same learner) are bigger than 0.10. Moreover, the
performance of EDSM and RPNI is nearly identical across all categories (p = 0.59 > 0.05), which
is most likely due to the limited training set size, as concluded in Experiment 1 (5.1.1).

5.2 Addressing the RQs

In this section, we summarize the results by answering the research questions defined in Chapter 1:

36

Table 5.4: Mean Accuracy by Method and Algorithm. The random generation methods seem to
perform similarly for small training sizes.

Method RPNI Accuracy (%) EDSM Accuracy (%)
File(OpenFST) 53.498 53.151
Uniform 52.419 52.879
Fixed Random 53.389 53.815

RQ1: What algorithms for string generation provide the most diverse datasets?
We test many new ideas for string dataset generation algorithms, but most do not
show remarkable results. An exception to that is the most memory-efficient method
- the simple path explorer, which successfully accelerates the inference process
of conventional passive learning techniques. The main limitation is that such a
heuristic cannot entirely reconstruct the target DFA when relying on paths alone.
As mentioned, a potential solution complements the simple path approach with
randomly generated strings. In the majority of cases, none of the newly proposed
probability decay functions outperform the fixed-termination one.

RQ2: How do different automata learning algorithms compare in terms of
accuracy and training efficiency?
In this thesis, we test 3 different learners, namely the passive RPNI and EDSM,
and different variations of the active L∗. As expected, the more advanced EDSM
outperforms RPNI in almost every scenario by a few %. In the cases where RPNI
functions better (small datasets), the advantage it obtains is not statistically
significant. L∗, as expected, proves to be outperforming both passive techniques.
The attempts to essentially ”handicap” the algorithm only prevent convergence
to the ground truth, but it still retains an exceptional accuracy of nearly 100%.
We notice the same trend in training efficiency: The active method finishes the
learning process in less than a tenth of a second compared to the tens of minutes
that classical passive implementations take. An exception to that is the GSM
variation of RPNI, which is just 100 times slower than L∗ on average (for larger
DFA).

RQ3: To what degree do the benchmarking results from previous research
align with the results obtained in this project?
While we do not directly replicate specific experiments from previous studies, and
most implemented components (such as learning packages, benchmark dataset
generation, and, most importantly, target language initialization) differ, the results
still broadly align with prior research.

Accuracy scores for RPNI and EDSM typically fall within the 50%–70% range,
which aligns with findings reported in the literature [18]. Much of the related work
focuses on alternative passive learning methods [2, 15] or applies the techniques in
entirely different domains [5], which made direct comparisons challenging.

Nonetheless, as discussed in RQ2, the outcomes we observe in this study align
with the theoretical expectations outlined in previous research. Finally, it is worth
noting that in Experiment 6 (5.1.7), we show that our benchmark methods stay

37

consistent with widely used tools such as OpenFST at smaller scales.

38

Chapter 6

Conclusion

This chapter is dedicated to a reflection on our work and a few directions for future research
possibilities.

This thesis sets out to expand the research on passive automata learning by suggesting new
approaches to sampling languages with adequate coverage of an SUL. It investigates new generation
techniques as well as different proportions of accepted to rejected strings, aiming to enhance dataset
quality.

Our most notable contribution is the implementation of the simple-path-based heuristic.
Unlike pure random sampling, this method explores the target DFA’s structure, by ensuring that
every state and transition is covered at least once. The results show that this approach significantly
improves accuracy scores in early learning stages. In practice, such simple-path generation is
preferable when high coverage is needed with limited data. For example, this would be most
useful when exploring systems in which trace collection is expensive or constrained. In contrast,
uniform sampling and fixed-termination random walks remain a solid baseline when there is no
issue generating massive amounts of strings. We compare the different generation techniques on
various automata sizes, establishing a clearer picture of where each method succeeds or struggles.

Experiments also show the limitations of passive learning, particularly in scenarios involving
sparse datasets. Furthermore, all learners are evaluated based on their training speeds.

Lastly, we draw comparisons between the proposed generation methods and current automata
benchmark tools.

6.1 Limitations

Early commitment to unfruitful ideas led to the somewhat limited scope of the research. As
an example, most of the functions are compatible only with complete DFAs. Another issue is that
most of the new methods do not perform well compared to established techniques. Experiments
using uniform sampling could have been conducted using a more appropriate maximum length
parameter.

Finally, the thesis does not cover the use of neural network approaches. Thus, newer methods
are not evaluated.

39

6.2 Future Work

As noted in Section 5.1.1, a re-examination of how each decay-function parameter influences
coverage and convergence is necessary. Fine-tuning termination probabilities and walk depth could
lead to more efficient configurations. In addition, adjusting the positive-to-negative string ratio for
each learning algorithm may reveal optimal sampling strategies.

The simple-path generator shows strong potential. Still, we can help it converge to its target
by integrating it with random string selection. This hybrid strategy could provide both broader
structural coverage and greater sample diversity. Results (5.1.2) indicate that such an approach
may outperform individual generation methods.

The comparison to OpenFST in Experiment 6 (5.1.7) needs expansion to bigger train data
and more complex automata to acquire more insightful results.

Expanding the benchmark to include neural network–based learners is another potential
direction. Evaluating models such as LSTMs, GRUs, and Transformers on these datasets will offer
insight into how well modern sequence learners compare to the classic passive approaches.

Lastly, updating the generation framework to support different types of structures, including
stochastic DFAs, probabilistic automata, Mealy machines, and nondeterministic finite automata,
will increase the scope and usability of our benchmark. Adapting current coverage-based oriented
generation (such as the simple path heuristic) to these models introduces new challenges but
provides valuable opportunities for broader applications.

40

Bibliography

[1] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the abbadingo one dfa learning
competition and a new evidence-driven state-merging algorithm,” in Grammatical Inference:
4th International Colloquium (ICGI 1998), Proceedings, ser. Lecture Notes in Computer Science,
V. Honavar and G. Slutzki, Eds. Springer, 1998, vol. 1433, pp. 1–12.

[2] S. van der Poel, D. Lambert, K. Kostyszyn, T. Gao, R. Verma, D. Andersen, J. Chau,
E. Peterson, C. St. Clair, P. Fodor, C. Shibata, and J. Heinz, “Mlregtest: A benchmark for
the machine learning of regular languages,” arXiv preprint arXiv:2304.07687, 2023. [Online].
Available: https://arxiv.org/abs/2304.07687

[3] D. Angluin, “Learning regular sets from queries and counterexamples,” Information and
Computation, vol. 75, no. 2, pp. 87–106, 1987.

[4] J. Oncina and P. Garcıa, “Inferring regular languages in polynomial update time,” in Proceedings
of the 4th IAPR Workshop on Applications of Formal Grammars in Pattern Recognition and
in Biological Sequence Analysis, 1992, pp. 49–60.

[5] B. K. Aichernig, E. Muškardin, and A. Pferscher, “Active vs. passive: A comparison of automata
learning paradigms for network protocols,” arXiv preprint arXiv:2209.14031, 2022.

[6] E. Muškardin, T. Burgstaller, M. Tappler, and B. K. Aichernig, “Active model learning of
git version control system,” in 2024 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2024, pp. 78–82.

[7] K. Kanellopoulou, “Active automata learning for network protocols,” Master’s thesis, Graz
University of Technology, Graz, Austria, Apr. 2016.

[8] D. B. Searls, “The computational linguistics of DNA,” in Proceedings of the 31st Annual
Meeting of the Association for Computational Linguistics, 1993, pp. 65–72.

[9] Y. Sakakibara, “Grammatical inference in bioinformatics,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 7, pp. 1051–1062, 2005.

[10] C. W. Omlin and C. L. Giles, “Extraction of rules from discrete-time recurrent neural networks,”
in Neural Networks, vol. 8, no. 2, 1996, pp. 273–284.

[11] K. Basye, “An automata-based approach to robotic map learning,” in AAAI Fall Symposium
on Planning with Uncertainty and Learning and Motor Control, ser. FS-92-02, 1992, pp. 1–6.

41

https://arxiv.org/abs/2304.07687

[12] B. Araki, K. Vodrahalli, T. Leech, C. Vasile, M. Donahue, and D. Rus, “Learning and planning
with logical automata,” Autonomous Robots, vol. 45, no. 7, pp. 1013–1028, 2021.

[13] A. Clark, “Unsupervised induction of stochastic context-free grammars using distributional
clustering,” in Proceedings of the 2001 Workshop on Computational Natural Language Learning,
2001.

[14] E. Rich, Automata, Computability and Complexity: Theory and Applications, University of
Texas at Austin, January 2007, draft. Available at https://www.cs.utexas.edu/∼ear/cs341/
automatabook/AutomataTheoryBook.pdf.

[15] B. Lambeau, C. Damas, and P. Dupont, “State-merging dfa induction algorithms with manda-
tory merge constraints,” in Grammatical Inference: Algorithms and Applications. 9th Inter-
national Colloquium, ICGI 2008, Saint-Malo, France, September 22–24, 2008. Proceedings,
ser. Lecture Notes in Computer Science, A. Clark, F. Coste, and L. Miclet, Eds. Berlin,
Heidelberg: Springer, 2008, vol. 5278, pp. 139–153.

[16] C. Tirnauca, “A survey of state merging strategies for dfa identification in the limit,”
Triangle: llenguatge, literatura, computacio, no. 8, pp. 121–136, juny 2021. [Online]. Available:
https://raco.cat/index.php/triangle/article/view/388851

[17] R. Weiss, V. Srikumar, and M. Lapata, “Extracting automata from recurrent neural networks,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2019.

[18] A. Soubki and J. Heinz, “Benchmarking state-merging algorithms for learning regular languages,”
in Proceedings of the 16th International Colloquium on Grammatical Inference, ser. Proceedings
of Machine Learning Research, F. Coste, F. Ouardi, and G. Rabusseau, Eds., vol. 217.
PMLR, Jul 2023, pp. 181–198, available at https://proceedings.mlr.press/v217/soubki23a.html.
[Online]. Available: https://proceedings.mlr.press/v217/soubki23a/soubki23a.pdf

[19] Graphviz Development Team, DOT Language, Graphviz, 2025, accessed: May 28, 2025.
[Online]. Available: https://graphviz.org/doc/info/lang.html

[20] M. Vazquez-Chanlatte, “dfa: Python library for modeling dfas, moore machines, and transition
systems,” https://pypi.org/project/dfa/, May 2024, version 4.7.1, released May 10, 2024; MIT
License.

[21] DES-Lab, “AALpy: An automata learning library written in python,” https://github.com/
DES-Lab/AALpy, 2025, version 1.5.0, released February 28, 2025; MIT License.

[22] CS/ECE 374 Course Notes, “Note 1: How to convert dfa/nfa to a regular
expression,” University of Illinois at Urbana-Champaign, Department of Computer
Science, Course Notes Version 1.0, Feb. 2019, spring 2019. Available at https:
//courses.grainger.illinois.edu/cs374/sp2019/notes/01 nfa to reg.pdf. [Online]. Available:
https://courses.grainger.illinois.edu/cs374/sp2019/notes/01 nfa to reg.pdf

[23] OpenFst Development Team, “Openfst library,” Google Research, 2024, https://www.openfst.
org/twiki/bin/view/FST/WebHome.

42

https://www.cs.utexas.edu/~ear/cs341/automatabook/AutomataTheoryBook.pdf
https://www.cs.utexas.edu/~ear/cs341/automatabook/AutomataTheoryBook.pdf
https://raco.cat/index.php/triangle/article/view/388851
https://proceedings.mlr.press/v217/soubki23a.html
https://proceedings.mlr.press/v217/soubki23a/soubki23a.pdf
https://graphviz.org/doc/info/lang.html
https://pypi.org/project/dfa/
https://github.com/DES-Lab/AALpy
https://github.com/DES-Lab/AALpy
https://courses.grainger.illinois.edu/cs374/sp2019/notes/01_nfa_to_reg.pdf
https://courses.grainger.illinois.edu/cs374/sp2019/notes/01_nfa_to_reg.pdf
https://courses.grainger.illinois.edu/cs374/sp2019/notes/01_nfa_to_reg.pdf
https://www.openfst.org/twiki/bin/view/FST/WebHome
https://www.openfst.org/twiki/bin/view/FST/WebHome

[24] K. Gorman, “Pynini: A finite-state text processing library for python,” https://pypi.org/
project/pynini/, 2024, accessed 2025-06-30.

43

https://pypi.org/project/pynini/
https://pypi.org/project/pynini/

	Introduction
	Applications of Automata Learning
	Thesis Overview

	Background Theory
	Key Terms
	Automata Theory
	Automata Learning Algorithms

	Notation
	Additional Concepts

	Previous Research
	Related Work
	Identified Gaps

	Methodology
	Dependencies Setup
	Data Generation
	Random graph walks
	Logistic growing termination probability
	Random string selection
	Heuristic graph traversal approaches
	RegEx

	Experiment setup
	Experiment 1: Evaluating the performance of different random walk methods with passive learning
	Experiment 2: Exploring the simple path approach
	Experiment 3: Evaluating the effect of different proportions of accepted to rejected strings on passive learning
	Experiment 4: Testing an active learning method with approximation instead of equivalence
	Experiment 5: Comparing training speeds of active and passive automata
	Experiment 6: Comparison to OpenFST

	Evaluation Metrics

	Results
	Overview of Findings
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 5.5
	Experiment 6

	Addressing the RQs

	Conclusion
	Limitations
	Future Work
	References

