
Opleiding Informatica

Solving Fillomino:

An Algorithmic and SMT-Based Approach

Ryan Behari

Supervisors:
Jeannette de Graaf & Rudy van Vliet

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 31/07/2025

www.liacs.leidenuniv.nl

Abstract

Fillomino is a Japanese logic-based puzzle. The goal of the puzzle is to divide a given grid into
polyominoes, such that each polyomino contains exactly the number of cells as indicated within
those cells. This thesis presents an algorithmic approach to solving Fillomino puzzles, using
a combination of local deduction rules and backtracking. Furthermore, we use Satisfiability
Modulo Theories (SMT) solvers to find valid solutions for a given puzzle by translating
Fillomino rules into a format that SMT solvers understand. Additionaly, we apply both the
SMT-based method and the algorithmic approach on two widely known variants of the puzzle,
demonstrating how they can be used to find valid solutions.

2

Contents

1 Introduction 1

2 Related work 2

3 Puzzle Rules 3

4 Variants 4
4.1 Basic variant . 4
4.2 Challenging variant . 5

5 Deterministic Solving Strategies for Fillomino 6
5.1 Loading Fillomino Puzzles . 6
5.2 Single-Exit Group Strategy . 7
5.3 Structurally Forced Cells . 9
5.4 Reachability-Based Number Deduction . 10

6 Backtracking 11
6.1 Approach . 11
6.2 Measuring the Puzzle Difficulty: Backtracking Depth 11

7 SMT 12

8 Solving Fillomino using SMT 13
8.1 Variable Declarations . 13
8.2 Edge constraints . 14
8.3 No bidirectional edges . 14
8.4 At most one incoming edge . 15
8.5 Initial clues . 15
8.6 Root cells size . 15
8.7 Group size propagation . 15
8.8 Edge implies same numbers . 16
8.9 Root cells . 16
8.10 Same number implies same root . 16

9 Experiments 17
9.1 Experiments on the Basic Variant . 17
9.2 Experiments on the Challenging Variant . 20

10 Conclusions and Further Research 21

References 22

A Finding Groups 23

B SMT Encoder Implementation 24

1 Introduction

Fillomino is a logic-based puzzle created by Japanese puzzle magazine publisher Nikoli. Nikoli is
best known for popularizing puzzles such as Sudoku and Numberlink. The objective in Fillomino is
to partition a grid into connected regions, known as polyominoes. Each region contains exactly
the number of cells as indicated by the number within that region. Multiple regions are allowed
to contain the same number, as seen in Figure 1. Additionally, two or more regions of the same
size are not allowed to touch each other along their edges, though diagonal contact is allowed. A
complete overview of the rules can be found in Section 3.

Figure 1: An example of a Fillomino puzzle and its corresponding solution.

Our research question is the following:How can Fillomino puzzles be solved using algorithmic
strategies and SMT?

1

2 Related work

Fillomino is a logic-based puzzle that until recently, lacked a direct proof of its computational
complexity. According to the comprehensive work of Robert Hearn and Erik Demaine on puzzle
complexity [HD09], Fillomino is known to be ASP-complete, which implies NP-completeness,
although it does not provide a polynomial-time reduction from a known NP-complete problem.
However, in a recent study by Thijs van de Griendt [vdG25], Fillomino was proven to be NP-
complete by a polynomial-time reduction from the Hamiltonian Path problem (HP3G), which is
a well-known NP-complete problem. This puts Fillomino among other NP-complete logic-based
puzzles like Sudoku, Slitherlink and Cross-Sum [YS03].

The class NP1 is the class of problems that can be verified, where solutions of the problem
can be verified in polynomial time. If every problem in NP can be reduced to a certain decision
problem in polynomial time, that problem is called NP-hard, meaning that it is at least as difficult
as all other problems in NP . A decision problem is classified as NP-complete if it is both in NP
and NP-hard, meaning informally that NP-complete problems are among the most challenging
problems in NP. This classification indicates that Fillomino is part of the most computation-
ally complex problems, as an efficient solution to it would allow other difficult problems to be
solved efficiently, as well. More detailed information about complexity classes can be found in [Sip13].

To solve puzzles like Fillomino, methods like local deduction rules and backtracking [RN10]
are used. To make solving more efficient, constraint propagation can be used to eliminate invalid
choices early on by applying local constraints to reduce the search space.

More recently, translating puzzles into satisfiability problems has gained interest. Satisfiability
Modulo Theories (SMT) solvers, like Yices [Dut] and Z3 [dMB] can be used to handle complex
constraints, such as connectivity and region sizes, that are important for puzzles like Fillomino.
Several puzzles with connectivity constraints have previously been studied by Gerhard van der
Knijff [dK21], who implemented connectivity constraints as SMT problems for six puzzles, including
Slitherlink, Hitori, Nurikabe and Hashi.

Previous works from students of Leiden University such as Niels Heslenfeld’s [Hes25] thesis “Solving
and generating Fobidoshi puzzles”, explored algorithmic and SMT-based techniques for a puzzle
with comparable connectivity constraints. This research provided inspiration for our project and
helped shape the structure of this thesis.

Finally, the basic ideas from computational complexity theory [AB06] offer insight into the difficulty
of puzzles and the effectiveness of various solving techniques, for example by classifying them into
complexity classes and describing how time and space requirements grow with input size.

1More formally, NP is the class of decision problems that can be solved in polynomial time by a non-deterministic
Turingmachine

2

3 Puzzle Rules

Fillomino is played on a rectangular board that contains some pre-filled numbers and empty cells.
The goal is to fill in all empty cells with numbers such that the board is divided into connected
regions of cells with the same number, called groups or blocks, each forming the shape of a polyomino
that contains exactly the number of cells as the number written inside the cells.

To better understand the mechanics of Fillomino, consider the following:

• The initial board includes some pre-filled numbers that indicate the exact size of the connected
block each number belongs to.

• The player’s task is to determine the correct positioning of blocks on the board while following
the puzzle’s rules, including that blocks of the same size are not allowed to touch each other
horizontally or vertically. An example of a puzzle and its solution can be seen in Figure 1 in
Section 1.

• In principle, the player is allowed to create new blocks to complete the puzzle, though some
variants restrict this. The two primary variants are discussed in Section 4.

To illustrate these rules, Figure 2 presents several examples of Fillomino boards, with invalid and
valid configurations based on the puzzle’s requirements.

(a) (b) (c)

Figure 2: Examples of Fillomino boards.

• (a) is invalid, since there exists a group of 4s that contains 5 cells.

• (b) is invalid, since the board is completely filled, but there is a group of 5s that only contains
4 cells instead of 5.

• (c) is valid even though some blocks of size 2 touch diagonally, which is allowed in Fillomino.

• Figure 1 is valid, despite having a group (of size 4) formed without using any pre-filled
number.

3

4 Variants

Fillomino puzzles come in different variants that affect the difficulty and solving process. There are
two main variants of the puzzle that are commonly recognized.

4.1 Basic variant

In the basic version of the game, the puzzle provides at least one pre-filled cell for each group in
the final solution. These clues guarrantee that every group is pre-determined: each cell’s number
represents the size of the group it is part of. No additional blocks other than those directly implied
by the clues are needed, and every block contains an initially given number, so no new groups have
to be created. The solution consists of expanding the initially given numbers into valid groups.

This variant simplifies the process of solving the puzzle, since all groups are represented from the
start, eliminating the need to deduce the placement of missing groups. Figure 3 is an example
where no new groups need to be created.

Figure 3: Basic variant, initial configuration and corresponding solution.

4

4.2 Challenging variant

In the more challenging version of Fillomino, there may exist groups in the final solution of the
puzzle that do not contain a clue given at the start of the game. This means that the solver of the
puzzle, does not only have to expand the existing numbers into valid groups, but also deduce the
size and placements of possible hidden groups. For example, in Figure 4, two groups of size 3 have
to be created to solve the puzzle. These hidden groups add a layer of complexity in order to solve
the puzzle. This variant is widely seen as more difficult than the basic variant, as it requires the
player to identify and create new blocks without any initial clues.

There is no predefined upper bound on the size of newly created groups, other than the size
of the largest contiguous region of empty cells on the board that exists after the initial clues have
been accounted for. As a result, the solving space is larger and the solver has to consider a broader
range of possible group sizes.

Figure 4: Challenging variant, initial configuration and corresponding solution.

These variants highlight the different aspects of the puzzle’s complexity and affect what strategies we
can use to solve the puzzle. Each variant requires different thinking skills and strategies, presenting
new challenges that require different approaches in order to solve the puzzle. While the basic
version focuses on expanding groups, the challenging version involves an additional feature, i.e. the
possibility to create new groups, that changes how the puzzle is approached and solved.

5

5 Deterministic Solving Strategies for Fillomino

In order to solve Fillomino puzzles effectively without the immediate use of backtracking, a set
of deterministic techniques can be used that are based on logical reasoning and local constraints
derived from the puzzle’s rules. These methods are especially useful for making safe moves early on
in the solving process and for significantly reducing the search space before applying backtracking.

5.1 Loading Fillomino Puzzles

The Fillomino puzzle must be loaded into the program before any solving strategies can be applied.
A JavaScript tool was developed to avoid manual input and copy puzzle configurations from online
sources such as Angela and Otto Janko [JJ] and Puzzle Baron [Puz] and to transform them into a
plain text file format that can be loaded by the program.

A C++ program was developed to read board configurations from a given file and save them into
memory, to apply solving strategies in a consistent and automated way. The program serves as a
main component of the solving process, enabling the user to experiment with different strategies
and allowing for detailed tracking of the solving process.

A file begins with two numbers representing the height and width of the puzzle, followed by
height × width numbers representing the board. Each number in the grid indicates the initial value
of that cell in the puzzle. A 0 indicates an empty cell, while other numbers indicate a pre-filled
value, specifying that the cell must belong to a group of that size.

When a file is loaded, the program stores the values in a dynamically sized 2D vector. All non-zero
entries are treated as fixed cells to ensure they remain unchanged throughout the entire solving
process. Once the board is loaded, the existing groups are identified by using Breadth-First Search
to find cells with the same non-zero number adjacent to one another (i.e., sharing an edge). These
cells are then stored into a vector of group structures, each containing the group number and the
coordinates of its cells. These initial groups may later be expanded or merged during the solving
process. See Appendix A for the complete algorithm.

6

5.2 Single-Exit Group Strategy

One of the most effective deterministic rules involves identifying groups with only one possible cell
to grow. If a region has not reached its required size (i.e, the number of connected cells does not
match the number within those cells) and the group of cells only has one adjacent empty cell where
it can expand, then that cell must logically be part of that same group. See Algorithm 1 for the
pseudocode implementation of this strategy: The algorithm returns the single exit cell, if there is
any, as well as the corresponding group number.

This technique does not require speculative reasoning, making it especially reliable and ideal
to apply before attempting any other methods. We continuously scan the board for single-exit
groups and expand them deterministically, which can often trigger further usage of this same rule
repeatedly (see Figure 5).

This strategy does not take potential group changes into account that happen after expand-
ing a cell, meaning it only considers the current adjacent empty cells for expansion. The strategy
does not identify cases where a group appears to have multiple expansion paths, but logically only
one is valid after considering how the board would change. For example, the incomplete group
with number 2 in Figure 5 must expand to the left, since expanding downwards would result in an
invalid board, but the single-exit group strategy fails to detect that because it ignores such future
changes. Such cases are detected in the basic variant of Fillomino by the reachability-based number
deduction strategy mentioned in Section 5.4 and after a single backtracking step in the challenging
variant as described in Section 6, where future consequences are accounted for.

(a) (b) (c)

Figure 5: Repeated application of the single exit strategy.

7

Algorithm 1: Check for a Single-Exit Group

input : exitCell (reference parameter to store the single exit cell)
output : group number with a single exit, or -1 if none found

1 foreach group in allGroups do
2 tempExitCell ← invalid position
3 exitCount ← 0
4 foreach cell in group do
5 foreach direction in {up, down, left, right} do
6 neighbor ← cell moved in direction
7 if neighbor is within bounds and is empty and tempExitCell is invalid then
8 exitCount ← exitCount + 1
9 tempExitCell ← neighbor

10 if exitCount > 1 then
11 break
12 end

13 end

14 end
15 if exitCount > 1 then
16 break
17 end

18 end
19 if group is not full and exitCount = 1 then
20 exitCell ← tempExitCell
21 return group’s number

22 end

23 end
24 return −1

8

5.3 Structurally Forced Cells

Another deterministic technique that can be used is identifying cells that must belong to a certain
group in every possible way the group could be completed. An incomplete group may have multiple
ways to expand and meet its target size, but a particular empty cell may be included in every
one of those configurations. When such cell exists, we can safely fill it with that group’s number.
The procedure for finding structurally forced cells for a given group can be seen in Algorithm 2.
Single exits are a special case of structurally forced cells. Since they do not require any additional
constraint checking, we treat them as a separate strategy as seen in Section 5.2.

To find these cells, we explore all possible expansions of groups using breadth-first search (BFS),
marking which empty cells appear in all valid completion paths. These cells can then filled, as
they are included in every possible scenario. Figure 6 provides an example of this strategy, with
the letters in Figure 6b indicating the possible ways to complete the top-right group. The cells in
columns 3 and 4 in the first row are filled with a 5, since they appear in every possible completion
of the group.

(a) (b) (c)

Figure 6: Application of finding forced cells

Algorithm 2: Find structurally forced cells

Input: Incomplete group G, target size k
Output: Set of structurally forced cells F

1 F ← ∅
2 S ← All cells currently in group G
3 StartCells← {s ∈ S | s has at least one empty adjacent cell}
4 CompletionPaths← ∅
5 foreach cell s ∈ StartCells do
6 Paths← BFS(s, k) ; // Finds all possible ways to complete the group to

size k, starting from s and stores the required cells for each path

7 CompletionPaths← CompletionPaths ∪ Paths

8 end
9 F ← Intersection of all sets in CompletionPaths

10 return F

9

5.4 Reachability-Based Number Deduction

This strategy only works in the basic version of Fillomino, where no new blocks can be created and
each cell must belong to an already existing numbered group. In this case, a powerful technique
can be used that involves analyzing which groups can logically reach an empty cell. Specifically,
for each empty cell, we determine which numbers could possibly be contained in this cell without
violating any of the puzzle’s constraints.

We define reachability as the ability of a group to expand from its currently filled cells to
a specific empty cell on the board, without exceeding its available remaining size. Each group on
the board has a fixed size. Since the group already occupies some cells, it can only expand into a
limited number of additional empty cells until its target size has been met.

To check if a group can reach an unfilled cell, we can use breadth-first search (BFS) starting
from any cell that currently belongs to the group. During this process, we move through empty
cells as well as cells containing the same group number that may not yet be directly connected,
since these separate groups could potentially become part of the same group in the solution. If the
number of cell expansions needed to reach the target cell from the group’s existing cells is less than
or equal to the number of remaining cells that group can fill (i.e., the group’s target size minus its
current group size), then that cell is considered reachable by that group.

Alternatively, one could start in an empty cell, perform a BFS to find which groups (and hence
what numbers) it can reach. In this case the maximum BFS-depth for each empty cell equals the
largest number originally on the board. It seems that which method is more efficient depends on
how many empty cells there are. In our implementation we chose to start from the group.

For each empty cell, all possible groups that can reach the cell are stored. If an empty cell
is reachable by only one group number (i.e., by one or more groups sharing the same number), and
assigning that number neither causes any group to exceed its allowed size nor prevents another
group from being completed, then that number must be assigned to the cell. We explicitly exclude
all other numbers that could reach the cell but would lead to an invalid board, such as causing a
group to exceed its target size or making a group on the board impossible to complete.

(a) A snippet of a Fillomino puz-
zle

(b) Cells that are reachable by
groups

Figure 7: Visualization of cells reachable by groups

10

6 Backtracking

While deterministic solving strategies such as forced cells, single-exit expansion and reachability-
based number deduction are often useful to solve big sections of a Fillomino puzzle, some puzzles
use configurations that cannot be solved by only using those strategies. In those situations, we can
backtracking in order to try different number placements and backtrack from incorrect moves.

6.1 Approach

The algorithm starts by repeatedly trying the previously mentioned deterministic strategies in a
loop until no further definitive moves can be made. When the Fillomino puzzle reaches such a state,
the algorithm tries to find an empty cell on the board by going through the cells row by row and
selecting the first empty cell it comes across. It iteratively tries every possible number for that cell
that could fill it without violating the puzzle’s constraints. Before each guess, the current board
configuration is stored. The algorithm then places the guessed number and continues solving the
board recursively, starting with the local strategies.

If we reach a state where we can not make any progress without violating the rules, the al-
gorithm backtracks and restores the last saved configuration before we made a guess and then tries
the next possible option, effectively exploring a search tree of possible states.

6.2 Measuring the Puzzle Difficulty: Backtracking Depth

A useful metric for determining the difficulty of a Fillomino puzzle involves measuring the depth of
the backtracking process. Each time that the algorithm makes a guess and continues solving, a
counter is increased to track how many successive guesses in a row the program has made before
starting to backtrack.

A rough indicator of how difficult a puzzle is, is the maximum depth the algorithm has reached
during the solving process. Puzzles that have a relatively low maximum depth can be solved by
primarily using deterministic strategies for the majority of the solving process, requiring little to
no backtracking at all. Deeper depths on the other hand indicate that more guessing is required in
order to reach the puzzle’s solution.

This metric also reflects on how a human might approach the puzzle. Puzzles with a low depth can
be solved using local deductions for the most part, while puzzles with a higher depth often require
trial and error when logic alone is insufficient.

11

7 SMT

SMT (Satisfiability Modulo Theory) is a well-known method used to solve logic and constraint
problems. It builds upon SAT (Boolean Satisfiability Problem), where the objective is to assign
True or False values to boolean variables in order to make a given propositional formula in Con-
junctive Normal Form (CNF) true. The purpose of SAT is to check if there is a variable assignment
that satisfies the formula. When such an assignment exists, the formula is called satisfiable,
otherwise it is unsatisfiable.

Unlike SAT solvers, SMT solvers work with variables from various domains, including functions,
integers and arrays. This allows them to solve more complex problems without translating all
constraints into Boolean logic first. By combining Boolean reasoning with support for more com-
plicated types and rules, SMT solvers can determine variable assignments that satisfy the entire
formula, as long as such a solution exists.

Two well-known SMT solvers are Z3 [dMB] and Yices [Dut]. Z3 is developed by Microsoft Research,
and Yices by SRI International. Both SMT solvers support a variety of logical theories, which are
formal systems that define rules for reasoning about mathematical objects. These solvers are widely
used to solve complicated problems involving logic and mathematics. Their reliability and efficiency
make them widely used in many technology fields. Both solvers use a standard input format called
SMT-LIB.

We construct logical formulas that capture all the puzzle’s constraints, such as the group sizes and
adjacency relationships between cells. These constraints are expressed in the SMT-LIB format. A
C++-program was written to produce the formulas corresponding to the current Fillomino puzzle.
Our approach is inspired by the Python implementation of Tom van Bussel [vB], who presents
two solvers for the problem: one that constructs a spanning tree for each polyomino, and another
one that uses a SAT-implementation of Warshall’s algorithm. We use the approach that relies on
constructing spanning trees for our encoder.

A Spanning Tree is a subgraph of an undirected graph G = (V,E) that includes all of the
graph’s vertices. A spanning tree connects all the vertices while avoiding cycles by selecting a subset
of the edges in E. Spanning trees are commonly used for algorithmic problem solving to represent
connected components and simplify the connectivity constraints.

Once the formulas are generated, they will be written into a new file which can then be pro-
cessed by an SMT solver such as Z3 or Yices. The solver’s output can be stored and be used by the
program to interpret the solution and reconstruct the completed puzzle.

12

8 Solving Fillomino using SMT

In order to encode a Fillomino puzzle for an SMT solver, we represent the board as a collection of
cells, each having a unique identifier/index. We can define variables for these cells and capture the
puzzle’s constraints. We number the cells on the board starting from the top-left corner (0,0). For
a board with a width of W , the cell at row r and column c has the index:

x = r ×W + c

Throughout this section, x and y are used to refer to these cell identifiers. To model the relationship
within each group in the puzzle, we create a spanning tree starting at a single cell called the root.
We use directed edges in the SMT encoding to represent these connections, keeping track which
cells belong to the same block. Each group in the solution is represented as a tree and all these
trees together form a forest over the whole board. Figure 8 illustrates a Fillomino block of size 7
alongside a possible spanning tree. The following subsections describe the variables and constraints
used in the SMT encoding. The full C++ implementation of the SMT-encoder can be found in
Appendix B.

(a) (b)

Figure 8: A Fillomino block and a possible spanning tree over its cells

8.1 Variable Declarations

We start by defining variables that represent the current configuration of the puzzle in order to
encode the constraints of a Fillomino puzzle. Additionally, we introduce variables that describe the
relationship between cells.

• Number variables Nx are used to store the number assigned to each cell x

(declare-fun nx()Int)

• Size variables Sx indicate the total number of cells in the subtree that cell x is the root of.

(declare-fun sx()Int)

13

• Edge variables Ex,y are boolean variables that indicate whether there exists a directed edge
from cell x to its adjacent cell y. Tree structures are being formed by these edges to capture
how cells within the same group are connected to each other.

(declare-fun ex,y () Int)

• Root variables Rx for each cell x, indicating which cell is the root of the tree for the group
that cell x belongs to.

(declare-fun rx () Int)

In Figure 8 we give an example of a polyomino and its corresponding spanning tree. Assuming
that this polyomino of size 7 is a completed part of a correct solution, let a = X3, b = X4, c = X6

and d = X7 we would have that Na = 7 (otherwise Na would be > 7). Furthermore, Sb = 3, since
the subtree rooted at cell X4 consists of 3 nodes (i.e., cell X4, X1 and X5). Additionally, the root
variable Rx = a for all cells x, because they are all part of the same tree. Finally, the edge variable
Ec,d = 1 indicating a directed edge from cell X6 to cell X7.

8.2 Edge constraints

Each edge variable Ex,y represents whether there is a directed edge from cell x to a vertically or
horizontally neighboring cell y. Since an edge can either exist or not, every Ex,y must be a boolean
value, either a 1 (edge present) or a 0 (no edge). Thus edge variables are only declared between
neighboring cells.
This boolean constraint is essential as it ensures that edge values accurately represent a graph
structure. Formally, the boolean constraint is expressed as:

∀x,∀y ∈ adj(x), Ex,y ∈ {0, 1}

This condition can be asserted in the following SMT encoding:

(assert (or (= ex,y 0) (= ex,y 1)))

8.3 No bidirectional edges

In Fillomino, groups are formed by connected regions of cells. To model this connectivity using
SMT, directed edges are declared between neighboring cells. However, bidirectional edges between
adjacent cells must be disallowed to ensure the structure remains a tree. Meaning that if there
exists an edge from x to y, then an edge in the opposite direction from y to x is not allowed to
exist at the same time. This is formally expressed as:

∀x,∀y ∈ adj(x), Ex,y + Ey,x ≤ 1

In SMT-Lib format this is expressed as:

(assert (<= (+ ex,y ey,x) 1))

14

8.4 At most one incoming edge

Every node in a tree structure should have at most one incoming edge. In order to enforce this
characteristic, we have to make sure that each cell x has at most one incoming edge from its
adjacent cells. Formally expressed as:

∀x,
∑

y∈adj(x)

Ey,x ≤ 1

This rule ensures that every cell is part of only one group, which is a necessary requirement for
forming a tree, and that the connections between cells from the same group form a proper tree. In
SMT-Lib format, this is written as:

(assert (<= (+ ey1,x ey2,x ...) 1))

where the sum is over all the cells yi neighboring x. Each cell has at most four neighboring cells,
meaning the summation involves at most four terms.

8.5 Initial clues

Fillomino puzzles contain pre-filled numbers (clues), which specify a number k assigned to a cell x.
These clues fix the values of specified cells throughout the final solution:

∀(x, k) ∈ input clues, Nx = k

and we can create this in SMT-Lib format as:

(assert (= nx k))

8.6 Root cells size

For root cells (i.e., cells without any incoming edges), the size variable Sx must be equal to the
number Nx assigned to that cell: ∑

y∈adj(x)

Ey,x = 0 =⇒ Sx = Nx

and can be denoted in SMT as:

(assert (=> (= (+ ey1,x ey2,x . . .) 0) (= sx nx)))

8.7 Group size propagation

The size variable Sx denotes the number of cells that can be reached in the subtree from cell x by
following the outgoing edges, including cell x itself. The root of a tree is the starting cell of the
entire block, meaning that only its size Sx represents the size of that block. The size of these cells
is computed recursively through the edges:

Sx = 1 +
∑

y∈adj(x)

Ex,y · Sy

15

Intuitively, the size of a block starting at root x is equal to one (counting x itself) plus the sum
of the sizes of its adjacent cells y, where x points to. These neighbors can be thought of as the
“children” of x in the block’s structure. This rule allows the solver to compute group sizes by
combining size values in a bottom-up manner throughout the tree.
This can be expressed in SMT as:

(assert (= sx (+ 1

(ite (= ex,y1 1) sy1 0)+

(ite (= ex,y2 1) sy2 0)+

(ite (= ex,y3 1) syn 0)+

(ite (= ex,y4 1) syn 0)

))).

Here, ite is an if-then-else construct, which includes Sy, if and only if there exists an edge from x
to y.

8.8 Edge implies same numbers

When two cells are connected by an edge, regardless of the direction of that edge, they must contain
the same number as they belong to the same group. Formally if there exists an edge from cell x to
cell y, then their numbers must be the same:

y ∈ adj(x) and Ex,y = 1 =⇒ Nx = Ny

We can assert this in SMT-Lib format with:

(assert (=> (= ex,y 1) (= nx ny)))

8.9 Root cells

Cells that do not have an incoming edge are considered roots of their respective polyomino block.
The root variable Rx for such a cell x must be equal to its own index:∑

y∈adj(x)

Ey,x = 0 =⇒ Rx = x

We can write this relation in SMT as:

(assert (=> (= (+ ey1,x ey2,x . . .) 0) (= rx x)))

8.10 Same number implies same root

Finally, neighboring cells that contain the same number must belong to the same group and must
therefore share the same root for that group:

y ∈ adj(x) and Nx = Ny =⇒ Rx = Ry

This is encoded in SMT format as:

(assert (=> (= nx ny) (= rx ry)))

16

9 Experiments

In order to measure the performance of the previously mentioned solving methods, we conducted a
series of experiments. For the basic variant of Fillomino we compared two solving methods. The
first approach is a custom solver that uses the deterministic strategies mentioned in Section 5
combined with backtracking when no certain move can be found. The second method uses an SMT
solver, where the puzzles are encoded and solved using the Z3-solver. For the experiments on the
challenging variant of Fillomino, we only tested the performance of an SMT solver, since our custom
solver could not find solutions in a reasonable amount of time. The puzzles used in the following
experiments, are taken from PuzzleBaron [Puz] (for the basic variant) and from a collection of
Fillomino puzzles published by Angela and Otto Janko [JJ] (for the challenging variant). All puzzles
have a unique solution.

9.1 Experiments on the Basic Variant

The experiments were performed on Fillomino boards with various sizes, ranging from 5× 10 up
to a size of 20 × 20. Ten instances of the puzzles were tested for each board size, yielding sixty
instances altogether. Approximately 60% of the cells on average in each board were empty. Board
instances for each size were identified with a unique number. We measured the solving time for
both methods. The maximum recursion depth was also recorded for the custom solver. The custom
solver and board instances used in the experiments can be found at [Rya].

The solving times for different board sizes and instances are presented in Figures 9, 10, and
11. The horizontal axis in each graph represents the board number, and the vertical axis repre-
sents the time in seconds it took to solve that board instance. Two data points are plotted for
every instance: one for solving the puzzle using SMT and the other for solving the board using
deterministic strategies (and backtracking if necessary).

Figure 9: Solving time comparison for smaller boards (5× 10 and 10× 10).

17

Figure 10: Solving time comparison for medium-sized boards (10× 15 and 15× 15).

Figure 11: Solving time comparison for larger boards (15× 20 and 20× 20).

18

Figure 12: SMT solving times based on the number of empty cells - Basic Variant

The results show that the solver using deterministic strategies outperforms the SMT-based solver
on average for small and medium sized puzzles (up to around 10× 15) in terms of execution time,
with only a single outlier. In 93% of all the cases, the Fillomino puzzles could be entirely solved
using the deterministic strategies only, without the use of backtracking.

The maximum recursion depth remained shallow overall in puzzles where backtracking was required,
and the solver still outperformed the SMT-based solver in most cases, with only a few exceptions
such as board 6 with size 20× 20, which reached a maximum depth of 17 using backtracking. As the
sizes of the board increases, the performance gap between the two approaches begins to narrow. On
boards with sizes 15×15 and 15×20, the puzzles contain a significantly higher number of empty cells.
This increase in empty cells results in a more extensive search space, since we need to explore many
more possibilities to fill empty cells. This leads to longer solving times, as seen in Figure 12. Note that
the number of empty cells scales roughly with the size of these puzzles. For puzzles of size 20× 20,
the difference in performance is less clear, with neither method consistently outperforming the other.

Overall, the experiments show the strengths of both solving methods for the basic variant. The
deterministic strategy-based solver is very effective on small puzzles with few empty cells, when
solutions can be found without extensive guessing. The SMT solver is generally slower on small
puzzles, but is more reliable on larger puzzles and offers improved performance in worst-case
scenarios.

19

9.2 Experiments on the Challenging Variant

Additionally, the performance of the SMT solver was evaluated on 100 (10×10) Fillomino puzzles
from Janko [JJ], representing the challenging version of the game. Figure 13 shows the solving
times relative to the number of empty cells in these puzzles. Not surprisingly, the results indicate
that there is a correlation between the number of empty cells and the solving time, with puzzles
that contain more empty cells generally taking longer to solve. Although the solving times for the
challenging variant of Fillomino tend to be higher than the basic variant at equal sizes, the trend
in Figure 13 suggests that the number of empty cells strongly influence the solving time regardless
of the variant. Fillomino puzzles with more than 60 empty cells tend to require significantly more
time to solve than those with fewer empty cells.

Figure 13: SMT solving times based on the percentage of empty cells for 10×10 puzzles - Challenging
Variant

In conclusion, experiments on the challenging variant of the game indicate that the performance
of the SMT solver is largely influenced by the percentage of empty cells. These results suggest
that a solver combining the two methods, using deterministic strategies early on until no further
progress can be made and then using an SMT solver on a puzzle that is already partially filled,
could provide a more efficient approach for a wide range of Fillomino puzzles.

20

10 Conclusions and Further Research

In this thesis, we explored algorithmic strategies for solving Fillomino, focusing on deterministic
methods as well as the use of Satisfiability Modulo Theories (SMT).

We implemented several deterministic strategies in order to help solve the puzzle, which are
checking groups for single-exit cells, detecting structurally forced cells and deducing the values in
empty cells by analyzing which groups could possibly expand to these cells. These strategies are
sufficient to solve most instances of the basic variant of Fillomino. However, some of these puzzles
still require the use of backtracking to be fully solved. Experiments on the challenging variant show
that the performance of the SMT solver is strongly influenced by the percentage of empty cells on
the board.

Additionally, an SMT encoder was created to encode Fillomino boards and the puzzle’s con-
straints. The encoding captures adjacency rules and size constraints of polyominoes as logical
formula’s, enabling SMT solvers such as Z3 [dMB] and Yices [Dut] to find solutions.

We performed experiments to compare the performance of a custom solver that uses deterministic
strategies and backtracking with that of an SMT solver across different puzzle instances. The
results indicate that the custom solver is generally faster on smaller puzzles, while the performance
difference decreases as the puzzle size increases. Furthermore, the experiments indicate that the
number of empty cells on a board strongly influences the solving time of the SMT solver.

Many opportunities for future research still remain. Improving the SMT encoding could help
decrease the time and resources needed to solve Fillomino puzzles. A combination of deterministic
strategies and SMT solving could be used to develop a more efficient solver that takes advantage
of the strengths of both approaches. Using heuristics to choose which empty cells to fill first
instead of randomly choosing an option during backtracking could help speedup the solving process.
Additionally, developing methods to generate Fillomino puzzles of varying difficulty and varying
number of empty cells could help with the evaluation of solvers. Furthermore, the effect of the
deterministic methods could be measured by trying all possible combinations of using each of the
three solving strategies, in combination with backtracking.

21

References

[AB06] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2006.

[dK21] Gerhard Van der Knijff. Solving and generating puzzles with a connectivity constraint.
Bachelor’s thesis, Radboud University, Nijmegen, The Netherlands, January 2021.

[dMB] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. https://github.
com/Z3Prover/z3. Accessed : 14-05-2025.

[Dut] Brandon Dutertre. Yices. https://yices.csl.sri.com. Accessed : 14-05-2025.

[HD09] Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A K Peter-
s/CRC Press, 1st edition, 2009.

[Hes25] Niels Heslenfeld. Solving and Generating Fobidoshi Puzzles. Bachelor’s thesis, Leiden
University, Leiden, The Netherlands, 2025.

[JJ] Angela Janko and Otto Janko. Fillomino. https://www.janko.at/Raetsel/Fillomino/
index.htm. Accessed : 24-02-2025.

[Puz] PuzzleBaron. Fillomino. https://fillomino.puzzlebaron.com. Accessed : 13-03-2025.

[RN10] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 3 edition, 2010.

[Rya] Ryan Behari. Fillomino Solver: A repository of Fillomino puzzles and solvers. https:

//github.com/DarkSness420/FillominoSolver.

[Sip13] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition,
2013.

[vB] Tom van Bussel. SMT Fillomino Solvers. https://github.com/tomvbussel/fillomino.
Accessed : 22-05-2025.

[vdG25] Thijs van de Griendt. The Complexity of Two Polyomino Region Puzzles. Bachelor’s
thesis, Radboud University, Nijmegen, The Netherlands, 2025.

[YS03] Takayuki YATO and Takahiro SETA. Complexity and Completeness of Finding An-
other Solution and Its Application to Puzzles. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E86-A, 05 2003.

22

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://yices.csl.sri.com
https://www.janko.at/Raetsel/Fillomino/index.htm
https://www.janko.at/Raetsel/Fillomino/index.htm
https://fillomino.puzzlebaron.com
https://github.com/DarkSness420/FillominoSolver
https://github.com/DarkSness420/FillominoSolver
https://github.com/tomvbussel/fillomino

A Finding Groups

1 //find groups in the board and store them

2 void findAndStoreGroups () {

3 globalGroups.clear();

4 std::vector <std::vector <bool >>

5 visited(Height , std::vector <bool >(Width , false));

6

7

8 for (int i = 0; i < Height; i++) {

9 for (int j = 0; j < Width; j++) {

10 if (board[i][j] != 0 && !visited[i][j]) {

11 //BFS to find group

12 queue <pair <int , int >> q;

13 vector <pair <int , int >> groupCells;

14 int number = board[i][j];

15

16 q.push({i, j});

17 visited[i][j] = true;

18

19 while (!q.empty ()) {

20 auto [row , col] = q.front();

21 q.pop();

22 groupCells.push_back ({row , col});

23

24 for (const auto& dir : DIRECTIONS) {

25 int newRow = row + dir [0];

26 int newCol = col + dir [1];

27

28 if (isValid(newRow , newCol) &&

29 !visited[newRow][newCol] &&

30 board[newRow][newCol] == number) {

31 visited[newRow][newCol] = true;

32 q.push({newRow , newCol });

33 }

34 }

35 }

36

37 // store into global var

38 Group newGroup = {number , groupCells };

39 globalGroups.push_back(newGroup);

40 }

41 }

42 }

43 }

23

B SMT Encoder Implementation

1 class FillominoSMTSolver {

2 public:

3 int rows , cols;

4

5 FillominoSMTSolver () {}

6

7 vector <pair <int , int >> adj(int row , int col) {

8 vector <pair <int , int >> neighbors;

9 if (row - 1 >= 0) neighbors.emplace_back(row - 1, col);

10 if (row + 1 < rows) neighbors.emplace_back(row + 1, col);

11 if (col - 1 >= 0) neighbors.emplace_back(row , col - 1);

12 if (col + 1 < cols) neighbors.emplace_back(row , col + 1);

13 return neighbors;

14 }

15

16 string solve(int r, int c, const vector <tuple <int , int ,

int >>& nums) {

17 ostringstream oss;

18

19 oss << "(set -option :print -success false)" << "\n";

20 oss << "(set -logic QF_UFLIA)" << "\n";

21

22 rows = r;

23 cols = c;

24

25 //we define edges e_{x}_{y} between cells. 1 if there exists

one between two cells , else 0

26 for (int row1 = 0; row1 < rows; row1 ++) {

27 for (int col1 = 0; col1 < cols; col1 ++) {

28 int x = row1 * cols + col1;

29 for (auto [row2 , col2] : adj(row1 , col1)) {

30 int y = row2 * cols + col2;

31 oss << "(declare -fun e_" << x << "_" << y <<

" () Int)" << "\n";

32 oss << "(assert (or (= e_" << x << "_" << y

<< " 0) (= e_" << x << "_" << y << " 1)))" << "\n";

33 }

34 }

35 }

36

37 //We cant have an edge between cells in both directions ,

only one direction.

38 for (int row1 = 0; row1 < rows; row1 ++) {

39 for (int col1 = 0; col1 < cols; col1 ++) {

40 int x = row1 * cols + col1;

24

41 for (auto [row2 , col2] : adj(row1 , col1)) {

42 int y = row2 * cols + col2;

43 oss << "(assert (<= (+ e_" << x << "_" << y

<< " e_" << y << "_" << x << ") 1))" << "\n";

44 }

45 }

46 }

47

48 //each cell is allowed to have at most one incoming edge

(tree structure)

49 for (int row1 = 0; row1 < rows; row1 ++) {

50 for (int col1 = 0; col1 < cols; col1 ++) {

51 int x = row1 * cols + col1;

52 oss << "(assert (<= (+" << "\n";

53 for (auto [row2 , col2] : adj(row1 , col1)) {

54 int y = row2 * cols + col2;

55 oss << "e_" << y << "_" << x << "\n";

56 }

57 oss << ") 1))" << "\n";

58 }

59 }

60

61 // number variable for each cell

62 for (int row = 0; row < rows; row++) {

63 for (int col = 0; col < cols; col++) {

64 int x = row * cols + col;

65 oss << "(declare -fun n_" << x << " () Int)" <<

"\n";

66 }

67 }

68

69 //If we already know if certain cells contain a certain

number , we assign them.

70 for (auto [i, j, k] : nums) {

71 int x = i * cols + j;

72 oss << "(assert (= n_" << x << " " << k << "))" <<

"\n";

73 }

74

75 //size constraint for regions

76 for (int row = 0; row < rows; row++) {

77 for (int col = 0; col < cols; col++) {

78 int x = row * cols + col;

79 oss << "(declare -fun s_" << x << " () Int)" <<

"\n";

80 }

81 }

82

25

83 //s_x = (sum of the sizes of the neighbours connected from

this cell) + 1.

84 for (int row1 = 0; row1 < rows; row1 ++) {

85 for (int col1 = 0; col1 < cols; col1 ++) {

86 int x = row1 * cols + col1;

87 oss << "(assert (= s_" << x << " (+ 1" << "\n";

88 for (auto [row2 , col2] : adj(row1 , col1)) {

89 int y = row2 * cols + col2;

90 oss << "(ite (= e_" << x << "_" << y << " 1)

s_" << y << " 0)" << "\n";

91 }

92 oss << ")))" << "\n";

93 }

94 }

95

96 //if there are no incoming edges , s_x has to equal n_x

97 for (int row1 = 0; row1 < rows; row1 ++) {

98 for (int col1 = 0; col1 < cols; col1 ++) {

99 int x = row1 * cols + col1;

100 oss << "(assert (=> (= (+" << "\n";

101 for (auto [row2 , col2] : adj(row1 , col1)) {

102 int y = row2 * cols + col2;

103 oss << "e_" << y << "_" << x << "\n";

104 }

105 oss << ") 0) (= s_" << x << " n_" << x << ")))"

<< "\n";

106 }

107 }

108

109 //all cells in the same region must have the same number

110 for (int row1 = 0; row1 < rows; row1 ++) {

111 for (int col1 = 0; col1 < cols; col1 ++) {

112 int x = row1 * cols + col1;

113 for (auto [row2 , col2] : adj(row1 , col1)) {

114 int y = row2 * cols + col2;

115 oss << "(assert (=> (= e_" << x << "_" << y

<< " 1) (= n_" << x << " n_" << y << ")))" << "\n";

116 }

117 }

118 }

119

120 // declare root variable for each cell

121 for (int row = 0; row < rows; row++) {

122 for (int col = 0; col < cols; col++) {

123 int x = row * cols + col;

124 oss << "(declare -fun r_" << x << " () Int)" <<

"\n";

125 }

26

126 }

127

128 // cells with no incoming edges are roots.

129 for (int row1 = 0; row1 < rows; row1 ++) {

130 for (int col1 = 0; col1 < cols; col1 ++) {

131 int x = row1 * cols + col1;

132 oss << "(assert (=> (= (+" << "\n";

133 for (auto [row2 , col2] : adj(row1 , col1)) {

134 int y = row2 * cols + col2;

135 oss << "e_" << y << "_" << x << "\n";

136 }

137 oss << ") 0) (= r_" << x << " " << x << ")))" <<

"\n";

138 }

139 }

140

141 // connected cells in the same region , must have the same

root.

142 for (int row1 = 0; row1 < rows; row1 ++) {

143 for (int col1 = 0; col1 < cols; col1 ++) {

144 int x = row1 * cols + col1;

145 for (auto [row2 , col2] : adj(row1 , col1)) {

146 int y = row2 * cols + col2;

147 oss << "(assert (=> (= n_" << x << " n_" <<

y << ") (= r_" << x << " r_" << y << ")))" << "\n";

148 }

149 }

150 }

151

152 oss << "(check -sat)" << "\n";

153

154 for (int row = 0; row < rows; row++) {

155 for (int col = 0; col < cols; col++) {

156 int x = row * cols + col;

157 oss << "(get -value (n_" << x << "))" << "\n";

158 }

159 }

160

161 return oss.str();

162 }

163 };

27

	Introduction
	Related work
	Puzzle Rules
	Variants
	Basic variant
	Challenging variant

	Deterministic Solving Strategies for Fillomino
	Loading Fillomino Puzzles
	Single-Exit Group Strategy
	Structurally Forced Cells
	Reachability-Based Number Deduction

	Backtracking
	Approach
	Measuring the Puzzle Difficulty: Backtracking Depth

	SMT
	Solving Fillomino using SMT
	Variable Declarations
	Edge constraints
	No bidirectional edges
	At most one incoming edge
	Initial clues
	Root cells size
	Group size propagation
	Edge implies same numbers
	Root cells
	Same number implies same root

	Experiments
	Experiments on the Basic Variant
	Experiments on the Challenging Variant

	Conclusions and Further Research
	References
	Finding Groups
	SMT Encoder Implementation

