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Abstract

Have you ever wondered can languages understand us from the speech. Humans can understand
in each other while they speak, understand pauses, continuation, and imagine concepts in
different languages in the same objects. Traditional speech processing systems typically rely
on a text-based intermediate step, converting speech to text for analysis before any further
action. This pipeline, however, is a departure from the way humans naturally process language,
as it discards rich paralinguistic information and introduces latency. This thesis investigates
the feasibility of achieving a direct, conceptual understanding between languages from spoken
audio alone, bypassing the need for text.

The study leverages dubbed audio content in English, Turkish, and Latin American
Spanish. Using Wav2Vec for audio representations, sentence-level text embeddings for semantic
comparison, and specialized phonetic word embeddings, this work explores the alignment of
spoken language on both semantic and phonetic levels. The analysis employs cosine similarity
to quantify relationships and t-SNE for visualizing the structure of the embedding space.

While the approach shows potential for developing more natural language processing
systems, it also underscores the complexity of spoken language and the need for further
refinement in models to disentangle content from speaker-specific features and achieve the
robustness of human perception.
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1 Introduction

Vectorization of data is a critical step in enabling interpretation and processing by Large Language
Models (LLMs). Modern vectorization techniques extend beyond textual data to include various
modalities such as audio and images, making multi-modal vector representations increasingly
important. Recent state-of-the-art models often rely on such multimodal vectorization approaches
to enhance their internal architectures and capabilities.

While vectorization plays a foundational role, it is equally important that representations of the
same semantic content, even when expressed in different data types, yield similar vectors. This
ensures consistency and interpretability across modalities. A well-known example of this concept
is the analogy operation in word embeddings, such as “King - Man + Woman” approximates
“Queen” [20], which illustrates how semantic relationships can be encoded in vector space.

In recent years, LLMs have seen rapid growth and have already started to expand to Vision
Language Models (VLMs), large multi-modal models [7, 17]. These models aim to process data
types other than text [16]. One of the data types data seen lots of interest is audio [17]. There
are few drawbacks of text compared to audio such as a lack of emotion expression, intuitiveness,
prosody etc [31, 30].Although these features enrich communication, they introduce significant
challenges. The same sentence can be spoken in multiple ways by different speakers—or even by
the same speaker at different times—resulting in variability that must be accounted for during
processing. This presents significant challenges for models intended to process audio recordings of
speech. Ideally, audio embeddings of semantically identical content should cluster closely, while
emotionally or contextually distinct expressions of the same text should diverge appropriately. In
this context, vectorization quality and similarity analysis across speech samples become crucial. In
this domain, vectorization results becomes an important topic.

Language also plays a key role in representation. In text vectorization, also known as text
embeddings, the same words in different languages should result in similar vectorization after
multilingual text embedding process [26]. This particularly similar approach can be used for audio.
To express it fully, similarity analysis of same content in different languages based on speech data.

The remainder of this thesis is structured as follows: Section 2 includes background information
and related work; Section 3 discusses the methods and nature of the data used; Section 4 describes
the experiments and discusses their outcome; and Section 6 presents some conclusions and possible
future work.

1.1 Research Questions

The main research question addressed in this thesis is:
RQ1 Can conceptual understanding between languages be created in multilingual landscape
using phonetic embeddings?

This research question can be divided into two sub-questions:

RQ1.1 Can phonetic embeddings create similarity between languages?



RQ1.2 Can phonetic word embeddings create similarity between audio embeddings?

2 Background / Related Work

Embeddings is the process of converting input data into vector representations, also referred to
as ‘tokens’ in the literature. Several different approaches have been developed to train/optimize
this embedding process [19, 23, 6]. There are different focuses on embeddings such as text, sen-
tence, speaker, etc. Embeddings models have some specific capabilities that change per model
basis. Such as their multilingual support. Sentence or text embeddings typically embed seman-
tic meanings. But there is also phonetic word embeddings which leverages phonemes of the
words and encoding them [21]. For the experiments sentence-transformers/LaBSE [0] and
sentence-transformers/distiluse-base-multilingual-cased-v2 [21] going to be used for vec-
tor conversions. The reason why these are selected depends on two factors, availability in the
multilingual base and wide usage in other academic papers in the literature.

2.1 Audio Embeddings and Wav2Vec

Audio embeddings are used to vectorize audio data [1]. There are a few more embedding categories
in Audio Embeddings, such as speaker Embeddings, speech Embeddings, and joint Embeddings
[25, 5]. Wav2Vec was considered state-of-the-art for audio embeddings [23]. Wav2Vec uses a feature
encoder with a frame rate of 50 Hz. This makes every vector that Wav2Vec produces equal to 20 ms
of audio. This is important because even 2 character words take more than 20 ms of audio speech
data. To process these, there are some ways to continue, e.g., by computing mean embeddings
across tensors [28, 11].

2.2 Comparison of Vectors

Several commonly used vector comparison methods are possible, such as cosine similarity and
Euclidean distance. It is important to choose the correct similarity method because they differ
by what they mean. Cosine similarity focuses on direction of the vector while Euclidian distance
focuses on distance between vectors. This choice is critical because an inappropriate metric can
yield results that are mathematically sound but conceptually meaningless for the given application.
Cosine similarity is a metric for measuring angular similarity between vectors. Focuses on the
orientation of the vector.

cosine similarity(x,y) = Xy _ D i1 TiYi )

XY Y e VY 6

Here, x is the first vector and y is the second vector. - represents dot product of the vectors. ||x||
and ||y|| represent Euclidean norms (magnitudes).

Euclidean distance is a geometric measurement of a vector distance. It corresponds as a straight
line between 2 vectors. Euclidean distance is a higher dimension version of the Pythagorean theorem.
The results represent hypotenuse of n-dimensional vectors. Euclidean distance focuses on the




distance, unlike cosine similarity.

Here, x is the first vector and y is the second vector. x; and y; represent the value of the i-th
dimension in the vectors x and y, respectively.

2.2.1 t-SNE

t-distibuted Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction technique used
for visualization of high-dimensional data [? |. It focuses on pairwise similarities between vectors
in high-dimensional space. It aims to create similar similarities in the lower-dimensional space, a
two-dimensional “map”. It is able to capture non-linear relationships. In the context of our study
of homonyms, applying t-SNE is a good visualization. It allows us to render a visual representation
of the embedding space, enabling a direct, qualitative assessment of whether the model has learned
to place different contextual uses of a homonym into separate, meaningful clusters. Although it is
good, since it simplifies multidimensional information, it is not the only technique used in theses.

2.3 Traditional Flow and Speech Understanding

Traditional speech engines use a pipeline to create speech-to-speech engines. This pipeline uses
voice activity detection, speech-to-text, large language model, and text-to-speech. Although this
flow is complete, it does not reflect how humans communicate. It also has latency issues along with
loss of accuracy in the pipeline due to the use of multiple models [22].

Humans understand speech conceptually. We do not convert it to text in our brain and think
about our response. We just understand how it is spoken. This can be imagined as when the words
“chair” have been said, we understand chair as an object, not as a word. This process can also be
performed in multilingual landscape. Our understanding of the word does not change when the
same word is heard in different languages. In all languages, we understand chair as object no matter
which language it is. In this point, semantic meaning is also important where meaning of the word
is understood from context. Similar semantic needs will also be mentioned in Section 2.4.

These issues have been recognized by the literature and some solutions have been proposed.
One of them is Step-Audio [3]. Step-Audio, focuses on this issue by training a unified speech-text
model. The power of this model comes from its architecture with both semantic and linguistic
tokenizer in LLM. The linguistic tokenizer leverages phonemic and linguistic features.

Another example of new speech systems is Baichuan-Audio by Tianpeng et al. [13]. Baichuan-
Audio proposes a unified framework for audio understanding for both Chinese and English. The
model can accept both audio and text input as human. For audio understanding, it does not convert
text to speech like a traditional flow. Interprets speech directly from the audio itself with its audio
embedding structure. Baichuan-Audio have been trained with the two-stage strategy as in Chen et
al. [3]. First, while the LLM parameters remain the same, the audio embedding layers are updated.
Then, all parameters except the LM embedding and the head-trained. This shows us that when it
comes to audio interpretation as humans, multistage training with audio and LLM is needed. This



is also one of the reasons why we try to answer research questions in multiple steps for phonetic
and semantic embedding similarities [13].

Another issue with traditional flow is the use of words with similar pronunciation, such as
“affect” and “effect”. This challenge has been discussed by Li et al. in Chinese [11], also Ma et al.
proposed a method using a LLM along with Automatic Speech Recognition (ASR) [18]. The N-best
(with values of 1,3,5, and 10) predictions of the ASR and LLM rerank and correct simultaneously.
To elaborate more, ASR sends the best N output to the transformer then the transformer converts
the best N prediction to one output as shown in Figure 1. This is called Generative Error Correction
(GEC). When human speech is investigated, we also understand if the word is “affect” or “effect”
from the meaning of the full sentence by thinking of full meaning. The method proposed by Li et al.
approximates how humans understand spoken language, study is not a cognitive model but result
of the mechanism is close like humans do. The results of the proposed method show a 3 to 5 percent
improvement in character error rate and entity recall for end performance. In terms of cosine
similarity, the method offers a significant improvement for text and pinyin vectors compared to
LLaMa-3-8B-Chinese. This study suggests that understanding conceptual meaning with semantics
with mixing audio and semantic embeddings has the potential to improve models of non-English
languages [11].
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Figure 1: N-best T5 error correction model structure [18]
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2.4 Dynamic Endpointing

Another issue with traditional flow is that it does not react directly to what has been spoken. It
was created to give some answers and aims to do this. But for some of the sentences we use in
daily life, we stop talking and pause with sound [15]. In the meantime, some process goes on. To
elaborate on this more, one of the examples is checking weather. Here is the following scenario.

Speaker 1 : How is the weather?
Speaker 2 : Let me check emmmm (checks window)
Speaker 2 : It is sunny

Here, traditional flow tries to answer between Speaker 2’s speech. But by the meaning, its clear
that Speaker 1 should wait. So in more general terms, dynamic endpointing understands when to
stop and when to continue while recognizing a meaningful action in speech.

2.5 Phonetic and Semantic Understanding

Phonetic and semantic embeddings do not align with each other due to their focus. This creates
a challenge of focusing on spoken content. Chen et al. focus on solving this with spoken content
retrieval with both phonetic and semantic embeddings [3]. The idea here is not only to retrieve
phonetically similar structures, but also to retrieve semantically similar. To elaborate on this more,
when “Netherlands cities” is said; it also needs to be able to retrieve the word “Amsterdam”. Chen
et al. create their architecture with 2 stages, first runs phonetic embeddings with dis-entangling
speaker characteristics [3]. This approach emphasizes that what is spoken is more important than
who is speaking. In the second stage of the model, semantic embeddings are applied to the phonetic
embeddings obtained from the first stage. These resulting embeddings are subsequently aligned or
parallelized for evaluation purposes. In this context, parallelization refers to processing audio and
text embeddings in a manner that presumes an underlying relationship between the two modalities,
even though they may not occupy the same representational space. The evaluation is conducted
using the LibriSpeech dataset, and although the results are not flawless, both the retrieval and
ranking performances are reported to be reasonable and indicative of meaningful cross-modal
alignment.

2.6 Open data and lack of Multi-lingual Data

In the literature most of the models are trained using a few public datasets. These datasets typically
come from high-resource languages such as English and Chinese. For low resource languages,
limitations increase due to low data [2, 22] and high differences between different language families.
To prevent this there are few techniques proposed such as cross-lingual transfer learning [10].
Cross-lingual transfer learning leverages high-resource languages to learn low-resource languages.
Another proposition by Banerjee et al. suggests significant improvement with the “each language
for itself” and “each language for others” approaches [1]. These are focusing on using high-resource
languages to learn understanding speech for low-resource languages.

Libri speech !, VCTK [32], LJ speech ?, and Common Voice ® are among the most popular

http://www.openslr.org/12
2https://keithito.com/LJ-Speech-Dataset/
3https://commonvoice.mozilla.org/en/datasets


http://www.openslr.org/12
https://keithito.com/LJ-Speech-Dataset/
https://commonvoice.mozilla.org/en/datasets

open-source datasets. The size of the English portion of datasets varies, but often the datasets are
biased and skewed for high-resource languages such as Spanish, French, German, as per Sarim et
al. [22, 9, 29]. Another limitation is linguistic bias. Typically, there are more data on some languages,
which creates an imbalance. Some of the datasets are synthetic dialog rather than natural, which
directly affects the performance of natural conversation [22].

Another point in this direction is phonetic recognition in multilingual basis. In a paper by
Joachim, it has been tested to identify acoustic and phonetic similarities across languages [12]. The
proposed method aims to exploit phonetic similarities between languages. This can be thought
of as understanding which languages have been spoken by others without knowing the language.
Although the study was promising, there are still many questions left to be answered in paper.

3 Methods

In this study, data are provided by a production company to be studied. One commercial hour
corresponds to 45-48 minutes of data. There are 9 commercial hours of data provided. All of these
are in different languages. For 3 of the languages, there was also transcribed text. But for the other
4 languages, no transcribed text is found. The Speech-to-Text method had been run on all of them.
Elevenlabs Scribe is used for this purpose. All of the audio files have been run over Elevenlabs to
get high precision data for both timestamp in milliseconds and word detection.

Additionally, FFMPEG %, a widely used open-source tool for audio and video processing, was
utilized at various stages of the workflow to handle audio format conversion, segmentation, and
preprocessing tasks required for subsequent analysis.

3.1 Misalignments

Due to the varying temporal characteristics of speech across different languages, the duration
required to express the same content can differ significantly, resulting in second or minute-level
misalignments between corresponding segments. Moreover, the dubbing process prioritizes natural
and contextually appropriate translations over literal or word-for-word equivalence. As a result,
the semantic content of the texts across languages may not align precisely, leading to further
discrepancies in cross-lingual textual alignment.

3.2 Targeting Same Content with Dub

This study focuses on speech data in Latin American Spanish, Turkish, and English speech. Given
the nature of text embeddings, the goal was to identify segments that convey exactly the same
meaning between languages, along with the precise start and end times of each script segment. So,
exact same meaning retrieved along with the start and end of the script. To detect exact same
content OpenAl and Gemini have been used to automate process. There are approximately 400
lines of script per recording. However, only 5 of them hit exact match, common expressions in
languages are excluded. All of this process is run over Python and the final results have been saved
as pandas dataframe. When dataframes have all text and timing data, FFMPEG is used to cut
and retrieve the required audio data.

‘https://www.ffmpeg.org
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After these process was completed due to computational extensiveness of embeddings, Google
Colab was used as a compute resource for this.

3.3 Embeddings

Embeddings have been run on 2 different versions of Wav2Vec. These are facebook/Wav2Vec-
base ® and facebook/Wav2Vec2-base-960h 6. Due to similar results, only facebook/Wav2Vec-base is
presented. On the semantic text embedding side, setu4993/LaBSE 7 have been used.

3.3.1 Comparison of Vectors

The audio files was in sampling rate 48 KHz but Wav2Vec requires 16 KHz sampling rate due to
its original settings. After resampling, the specific interval needed for embeddings to be cut. Due to
the fact that 20 ms corresponds to a vector, this embedding process gave a tensor with multiple
vectors inside it. To run a similarity analysis on these embeddings, the mean of these embeddings
had been run.

This process compares the similarity between audio embeddings, more specifically Wav2Vec, and
semantic text embeddings. Due to their nature, audio embeddings tend to create more similarity
across homonym words, while synonyms create more similarity across semantic embeddings.

3.4 Phonetic Word Embeddings

For phonetic word embeddings, rahulsrma26/phonetic-word-embedding pretrained models from
GitHub ® have been used. It is provided in English and Hindi. The aim of this repository and
the pre-trained model is to get a phonetic embedding word basis [21]. So in other words, having
more similarity across homonyms. Figure 3 shows the similarity of the homonyms with the t-SNE
parameters: flow perplexity = 15, component number = 2, iteration = 3500, and random state =
32 with PCA init. With these parameters, embeddings are visualized in 2 dimensions.

3.4.1 Similar Words

In the experimental setup, phonetically similar words are selected for analysis. However, given that
the same word can be articulated differently across speakers or contexts, multiple recordings of
the same word are included to capture this variation. Consequently, the analysis includes multiple
instances per word, which enables better overview of phonetic consistency and variability in the
embeddings.

3.4.2 Alignment Issues

Some alignment discrepancies were observed in the timestamps provided by ElevenLabs, primarily
due to limitations in temporal precision. Typically, words examined have a duration of 50-300 ms.

Shttps://huggingface.co/facebook/wav2vec2-base
Shttps://huggingface.co/facebook/wav2vec2-base-960h
"https://huggingface.co/setud993/LaBSE
8https://github.com/rahulsrma26/phonetic-word-embedding.


https://huggingface.co/facebook/wav2vec2-base
https://huggingface.co/facebook/wav2vec2-base-960h
https://huggingface.co/setu4993/LaBSE
https://github.com/rahulsrma26/phonetic-word-embedding

THEIR
HERE i\

THERE
0.0 4 SHARE

—0.54 LAIR
0.5 Y

~1.0-
To T00  qwo

LAYER

[ J

-159 FLAWER
2.0 I
-2.0 UE ©
0 DEWP
~2.51 WpHT
.
-3.0
BY
BYE

-3.5+1

0.0 0.5 1.0 15 2.0 2.5 3.0 35

Figure 3: Phonetic word alignments of Homonyms

Since this is a small interval, there are misaligned timestamps from Elevenlabs. These alignments
are manually checked and corrected to find the ground truth of the timestamp.

3.4.3 Small Words

Some of the small words are ignored. Especially words with 2 and 3 characters show poor results.
Because the words are not clear from the recording. Even listening to the audio, it is hard to
understand which words have been spoken.

3.5 Multilingual Base

The main motivation behind these experiments is to have a spoken semantic understanding of the
languages without relying on intermediate speech-to-text layers. To support this motivation more,
Turkish language also examined with the recordings. But because limitations around phonetic
word embeddings for Turkish could not be found, the reference phonetic word embedding figure is
missing.



4 Experiments and Results

4.1 Phonetic and Semantic Embedding Comparisons

Figure 4 shows a comparison of embedding similarity with cosine similarity. LAS represents Latin
American Spanish, TR represents Turkish, and EN represents English. As explained in Section 3,
phonetic Wav2Vec embeddings and semantic text embeddings do not have a direct relation. This
structural difference contributes to the observed fluctuations in similarity scores across both
modalities and languages.

Notably, at Index 23 in Figure 4, TR-LAS and TR-EN similarity scores are 0.00. This is because
of a technical issue while running embeddings on the TR audio. While these values do not reflect
meaningful similarity, they are reported here to maintain transparency in the presentation of results.

In Table 1 the audio scripts have been provided below. The reason for providing those is to
be able to understand differences in translation and corresponding similarity rates. In most of the
scripts the words used have been changed while transcribing languages to protect the meaning of
the sentence and make sentences in the same feelings.

Language Text

English As if there is a chance of your son getting that money, Father. You're always so
eager. He’ll put himself in the ground to make that money while we’re celebrating.
Latin American Spanish | Lo dices como si ese dinero le llegara al bolsillo de tu hijo, papa. Pero solo son
numeros. Esa idea de trabajar bajo tierra, no sé cuando generara dinero.
Turkish Sanki o kadar paray1 oglunun cebine koyacaklar. Baba ya adamdaki hevese bak.
Iki kurug kazanmak igin yerin dibine girecek. Biz burada uguyoruz.

Table 1: Scripts to corresponding languages in index 1 of figure 4

4.2 Multilingual base similarities

To capture similarities between multilingual audio recordings, cosine similarity was applied over
the audio file. Figure 5 represents cosine similarities in 35 minutes for 3 language pairs with each
500 ms audio segment. Figure 6 represents cosine similarities in 35 minutes for 3 language pairs with
each audio segment of 200 ms. As the duration of the segment decreases, an increase in similarity
scores is observed. Additionally, the sharp drops in similarity seen in the 500 ms analysis become
smoother in the 200 ms analysis, indicating improved temporal resolution.

Notably, substantial drops in similarity (e.g., values below 0.8) in the original recordings
are primarily associated with non-speech content, such as background music or silent intervals.
Furthermore, the use of shorter segments enhances the detection of high-similarity regions, further
supporting the importance of temporal granularity in cross-lingual audio similarity analysis.

4.3 English phonetic audio and word similarity on shorter segments

To preserve more focused study on phonetic audio and phonetic word similarity, an experiment with
similar or the same words was conducted. To visualize results, t-SNE applied over the embedding
results in Wav2Vec. Figure 7 shows the phonetic similarity over the words. It can be seen that
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homonyms are closer in each other. Figure 8 shows the phonetic similarity with the audio of the
words. Each dot is labeled in the format word (speaker_id) timestamp. Due to misalignment
of the speech to text, words’ timestamps are realigned manually. Regarding t-SNE settings, the
perplexity of 12, PCA as function, 3500 iterations, and 2 components used.
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Figure 7: Phonetic word embeddings base phonetic similarity visualization with t-SNE

After reviewing the words left in Figure 8, it was found that some words are closer to each other
without being homonyms. One of the reasons for this was that they are from the same speaker. So
to examine this more, another episode of the series had been compared with the speaker id’s. In
this episode, all speakers are labeled with Elevenlabs ids. In addition, all the dots in the figure 8
had been aligned manually. In most of the instances, it is easily seen that either there is a same
speaker close to the point, or there is a homonym.

To actually prove that the same speaker is an important parameter, the points in Figure 8
are filtered for speaker 21 only and shown in Figure 9. Although not all, some of the words
clearly represent close embedding results, e.g. “know” and “No” on the middle left. Although this
visualization looks nice, a similarity calculation is also run for these points. Because we measure
cosine similarity across embeddings, normalization of the embeddings was run to get better results.

Also cosine similarity of the same data in Figure has been run and shown in Table . This data is
focused on interword and intraword cosine similarity values across samples. For the values with just
one sample label itself, have do not have a similarity value since its not possible to calculate across
one sample. The values in the table have been interpreted in 2 ways. First, we compare similarity
of 2 homonyms from a nonhomonym word and look for similar cosine similarity levels. Second, we
compare each word similar to its phonetically closest word.

In the first comparison, the strongest alignment is observed between the words “know” and
no”, which consistently exhibit high similarity scores across nearly all samples. This observation is
further supported by the visualization of the t-SNE in Figure 9, where these words appear close
together, reinforcing the phonetic similarity captured by the embeddings. Conversely, certain word
pairs such as “buy” and “by”, despite being homophones, do not consistently yield high similarity
scores as might be expected. Similar inconsistencies are observed for other homophonous sets
such as “too” and “two”, as well as “hear”, “here”, and “there”. While some similarity values

14
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align with homonym expectations, others deviate notably. These anomalies are likely attributable
to the inherent variability and complexity of spoken language data, which introduces noise and
subtle phonetic differences that the embeddings may not fully capture. As such, these discrepancies
highlight a key limitation of the current approach and suggest that further refinement is necessary
to achieve more consistent performance in capturing homophonic relationships.

In the second comparison, similarity values generally indicate clear phonetic alignment across
several pairs of words. However, notable anomalies are also present. For example, the word “here”
exhibits its highest similarity with “buy” (0.55), followed closely by “there” (0.53). The high
similarity score between “here” and “buy” is unexpected and does not align with intuitive phonetic
or semantic expectations. Such inconsistencies highlight limitations in the current methodology and
suggest that the embeddings may not fully capture phonetic structure in all cases. These anomalies
underscore the need for further refinement of the embedding models and more rigorous evaluation
to ensure consistent phonetic interpretability.

Table 2: Pairwise Average Cosine Similarities Between Normalized Target Word Embeddings of
speaker 21

Word buy by  hear here know no right see there too @ two

buy N/A  0.3679 0.7226 0.5505 0.4653 0.3857 0.2472 0.2549 0.6669 0.3513 0.4186
by 0.3679 N/A 0.4512 0.1876 0.5036 0.5148 0.7363 0.5157 0.1645 0.7895 0.3960
hear 0.7226 0.4512 N/A 0.4946 0.4674 0.4391 0.3174 0.3367 0.6378 0.4542 0.5381
here 0.5505 0.1876 0.4946 0.3838 0.3391 0.2983 0.1340 0.2230 0.5391 0.1881 0.4377
know 0.4653 0.5036 0.4674 0.3391 0.3827 0.4545 0.4251 0.3953 0.3225 0.4863 0.4307
no 0.3857 0.5148 0.4391 0.2983 0.4545 0.3421 0.4274 0.4350 0.2621 0.4763 0.4075
right 0.2472 0.7363 0.3174 0.1340 0.4251 0.4274 0.5337 0.4340 0.1127 0.7100 0.3029
see 0.2549 0.5157 0.3367 0.2230 0.3953 0.4350 0.4340 0.3764 0.1482 0.4757 0.3989
there 0.6669 0.1645 0.6378 0.5391 0.3225 0.2621 0.1127 0.1482 N/A  0.1877 0.3480
too 0.3513 0.7895 0.4542 0.1881 0.4863 0.4763 0.7100 0.4757 0.1877 N/A 0.3126
two 0.4186 0.3960 0.5381 0.4377 0.4307 0.4075 0.3029 0.3989 0.3480 0.3126 N/A

Note: Diagonal elements represent average intra-word cosine similarity. “N/A” indicates insufficient samples (1) for
intra-word similarity calculation.

The same values from Table 2 were used below for the selected target words, sorted from most
to least similar. The corresponding homonym for each target word is highlighted in red. This format
helps to quickly assess which words are semantically or contextually closest in the embedding space
for this speaker.

The nine tables in Figure 10 show the average cosine similarity scores between a target word
and a list of other words. The target word for each table is labeled underneath it. The words in the
“Word” column are ranked from highest to lowest similarity, so the word at the top of the list is the
most similar to the target word. The words highlighted in red are homonyms (or close phonetic
matches) of the target word. Each similarity score is the average of all pairwise cosine distances
between instances of that word pair.

From these sorted lists, several interesting patterns emerge for speaker 21:

e Homonyms are not always closest: In most cases, the homonym (e.g., “here* for “hear”,
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Word Similarity

buy 0.7226
there 0.6378
two 0.5381
here 0.4946
know 0.4674
too 0.4542
by 0.4512
no 0.4391
see 0.3367
right 0.3174

Word Similarity

Figure 10: Pairwise average cosine similarities for selected words, sorted from most to least similar
for each target word. The corresponding homonym is highlighted in red.

Similarity to “hear”

buy 0.5505
there 0.5391
hear 0.4946
two 0.4377
know 0.3391
no 0.2983
see 0.2230
too 0.1881
by 0.1876
right 0.1340

Word Similarity

Word Similarity

Similarity to “here”

hear 0.7226
there 0.6669
here 0.5505
know 0.4653
two 0.4186
no 0.3857
by 0.3679
too 0.3513
see 0.2549
right 0.2472

too 0.7895
right 0.7363
see 0.5157
no 0.5148
know 0.5036
hear 0.4512
two 0.3960
buy 0.3679
here 0.1876
there 0.1645

Word Similarity

Similarity to “buy”

Similarity to “by”

by 0.7895
right 0.7100
know 0.4863
no 0.4763
see 0.4757
hear 0.4542
buy 0.3513
two 0.3126
here 0.1881
there 0.1877

Word Similarity

Word Similarity

Similarity to “too”

hear 0.5381
here 0.4377
know 0.4307
buy 0.4186
no 0.4075
see 0.3989
by 0.3960
there 0.3480
too 0.3126
right 0.3029

by 0.5036
too 0.4863
hear 0.4674
buy 0.4653
no 0.4545
two 0.4307
right 0.4251
see 0.3953
here 0.3391
there 0.3225

Word Similarity

Similarity to “two”

Similarity to “know”

by 0.5148
too 0.4763
know 0.4545
hear 0.4391
see 0.4350
right 0.4274
two 0.4075
buy 0.3857
here 0.2983
there 0.2621

Word Similarity

Similarity to “no”
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by 0.7363
too 0.7100
see 0.4340
no 0.4274
know 0.4251
hear 0.3174
two 0.3029
buy 0.2472
here 0.1340
there 0.1127

Similarity to “right”



“by* for “buy”) is not the most similar word in the embedding space. This suggests the model
is successfully capturing contextual or acoustic differences rather than just phonetic similarity.

e “buy” vs “by”: The similarity between “buy” and its homonym “by” is quite low (0.3679).
For this speaker, the embedding for “buy” is much closer to verbs like “hear” (0.7226) and
location words like ‘there® (0.6669).

e “t00” vs “two”: The similarity between “too” and ‘two” is also surprisingly low (0.3126). The
word “too” is extremely similar to the functional words “by‘ (0.7895) and “right” (0.7100).

e “hear” vs “here” vs “there”: The homonyms is ranked close in these instances, falling
behind “buy”, and “two”. This indicates a dominant similarity except “buy”.

e Strong Cluster of “by”, “too”, ‘right”: These three words show very high pairwise
similarity. This likely reflects their use as short, functional adverbs or prepositions in similar
sentence structures.
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5 Discussions

In Section 4.1, the phonetic and semantic embeddings will be compared in 3 languages with the
same sentences. The results open the door to an experiment with phonetic word embeddings which
is done in Section 4.3. In addition, results have led to the paper that assesses similarity in a long
recording instead of small recordings in Section 4.2. The aim is to understand whether we can detect
a language with just phonetics of it. This can be thought of as understanding which language has
been spoken by others without knowing the language as human. The results in Section 4.2 showed
that as the length of the recording decreased, the similarity score increased due to non-speech
events [33]. Another reason of this is that language-agnostic human speech is more similar in
different languages than some other sound such as nature sounds, door closing sound, etc. [27].
Although Section 4.2 provided an understanding of multilingual basis, it does not provide any
significant proof. The findings in both Section 4.1 and Section 4.2 have led to a final experiment
of Section 4.3. Section 4.3 shows a similarity in phonetic audio embeddings and phonetic word
embeddings. If these phonetic word embeddings can be aligned with semantic word embeddings, it
can result in a conceptual understanding of a language.

In general, the results in t-SNE and similarity values show potential. There are values that
show a clear proof of the research question, but there are also some data that show otherwise. The
main reason for this is the limitation of the research. As the nature of audio is rich, there are many
more features that audio embeddings capture, but not all of this can be quantized and shown in
similarity analysis and/or t-SNE. To provide a clearer response to RQ1.1, Sections 4.1 and 4.2
offer evidence suggesting a degree of similarity. However, these findings are not robust enough to
conclusively demonstrate that the embeddings capture similarity in a consistent or meaningful way.
In contrast, regarding RQ1.2, there is stronger evidence indicating that the embeddings capture
aspects of similarity. While some cases exhibit weaker results, these can largely be attributed to
methodological limitations or constraints in the dataset.

In general, in addressing RQ1, it can be concluded that a conceptual understanding of similarity
between languages is achievable through the use of phonetic embeddings within a multilingual
context. However, achieving this understanding requires extensive data preprocessing. Even with
thorough preprocessing, mismatches may still occur due to inherent limitations in the approach,
and further investigation into accuracy and reliability is necessary.

Importantly, while humans are capable of performing such cross-linguistic similarity recognition
in real time, the computational processes required to replicate this behavior remain resource-
intensive and challenging to implement in real-time systems. This gap underscores the need for
continued technical advancements in embedding models and processing pipelines to approximate
the efficiency and accuracy of human perception.
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6 Conclusions and Further Research

The papers have shown a potential for using the joint method for audio embeddings and phonetic
word embeddings to align both semantic and phonetic structures of the languages. Multilingual
usage of this structure remains an important rule for speech-to-speech engines.

Research can be extended to both multilingual and embedding perspectives. Joint architecture
for embeddings can be a significant add-on for the study. In addition, using this architecture on
multilingual landscape could be a good improvement in the work.
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8 Appendix

Language Text

English Oh, give me time to dry. It’s my boy. He got 90%. He passed another class. At
this rate, he’s going to graduate.

Latin American Spanish | Ah. Permitame. Ese es mi hijo. Obtuvo noventa puntos. Ya paso el otro examen.
Muy pronto terminara la escuela.

Turkish Bir dakika sen kullan. Aslan oglum doksan puan almisg. Bir sinav daha vermis. Bu
gidigle bitirecek okulu.

Table 3: Scripts to corresponding languages in index 2 of figure 4

Language ‘ Text

English Listen, please call your mother. Tell her to cook something extra special tonight.
Latin American Spanish | Por cierto, {puedes llamar a tu madre y pedirle que prepare algo rico de cenar?
Turkish Bana bak, annene telefon et. Aksama soyle giizel bir sofra hazirlasin.

Table 4: Scripts to corresponding languages in index 7 of figure 4

Language ‘ Text

English I will help you.

Latin American Spanish | Déjame ayudarte.
Turkish Ben yardimci olayim.

Table 5: Scripts to corresponding languages in index 13 of figure 4

Language ‘ Text

English No way.

Latin American Spanish | No, ;cémo?
Turkish Yok oglum, sorma.

Table 6: Scripts to corresponding languages in index 23 of figure 4
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Figure 13: Consine similarity of speech across language pairs with 200 ms segment size for 15
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Figure 15: Consine similarity of speech across language pairs with 500 ms segment size for 20
minutes
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Figure 16: Consine similarity of speech across language pairs with 200 ms segment size for 20
minutes
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