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Abstract

This thesis proposes Orthogonal PCA-assisted Bayesian Optimization (O-PCA-BO), a novel
enhancement to the PCA-BO algorithm that addresses fundamental exploration limitations.
While PCA-BO effectively reduces dimensionality by operating in a subspace spanned by
principal components with high variance, it systematically excludes regions in the orthogonal
complement space, potentially missing global optima. Our approach introduces parallel
orthogonal sampling, where for each candidate selected in the principal component subspace,
multiple points are sampled in the orthogonal complement space spanned by discarded
components. This strategy maintains computational efficiency while enabling exploration
of previously inaccessible regions. We evaluate O-PCA-BO against PCA-BO on functions
F15-F24 from the COCO BBOB benchmark across dimensions 10, 20, and 40 with batch sizes
1, 5, 10, 20, and 42. Results demonstrate that O-PCA-BO achieves statistically significant
convergence improvements in 9 out of 15 test configurations while maintaining superior wall-
clock performance across all settings, with time reductions increasing with batch size. The
method shows particular strength on functions with weak global structure where PCA-BO
often fails to locate optimal regions.
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1 Introduction

Bayesian Optimization (BO) has established itself as the method of choice for optimizing expensive
black-box functions where function evaluations are costly and gradients are unavailable. The
approach constructs a probabilistic surrogate model of the objective function using Gaussian
Process regression, then uses an acquisition function to balance exploration and exploitation when
selecting the next evaluation point [JSW98]. However, BO faces severe scalability challenges in
high-dimensional spaces due to the curse of dimensionality, which manifests in both surrogate
model construction and acquisition function optimization.
PCA-assisted Bayesian Optimization (PCA-BO) [RWB+20] addresses these scalability issues through
dimensionality reduction. The method applies weighted Principal Component Analysis to identify
a lower-dimensional subspace capturing most variance in the objective function landscape, then
performs optimization within this reduced space. This approach significantly reduces computational
requirements while maintaining optimization performance on problems with adequate global
structure.

1.1 Fundamental Limitations of PCA-BO

Despite its computational advantages, PCA-BO exhibits a critical limitation: exploration is restricted
exclusively to the subspace spanned by selected principal components. By construction, PCA-BO
discards components explaining minimal variance in previously evaluated points. However, these
discarded components may contain the global optimum, particularly in functions with weak global
structure or deceptive landscapes where optimal regions lie outside the high-variance subspace.
This limitation becomes self-reinforcing. As PCA-BO samples more points within the reduced
subspace, variance along those dimensions increases, making them even more likely to be retained
as principal components in subsequent iterations. This feedback mechanism can permanently
exclude valuable regions in the orthogonal complement space, leading to premature convergence to
suboptimal solutions.
Consider a simple example: if the global optimum lies in a direction orthogonal to the primary
variation in the data, PCA-BO will systematically avoid this direction regardless of the optimization
budget. The algorithm becomes trapped in a subspace that may be entirely disjoint from the
optimal region.

1.2 Our Contribution: Orthogonal Sampling

We propose Orthogonal PCA-assisted Bayesian Optimization (O-PCA-BO), which systematically
explores the orthogonal complement space while maintaining PCA-BO’s computational advantages.
The key innovation is parallel orthogonal sampling: for each candidate point selected in the reduced
subspace, we generate multiple samples in the (d− r)-dimensional orthogonal complement space,
where d is the original dimensionality and r is the reduced dimensionality.
Our method works as follows. After PCA-BO selects q candidate points in the r-dimensional
reduced space, we map these points back to the original d-dimensional space. For each mapped
candidate, we sample m additional points in the orthogonal complement space using Markov Chain
Monte Carlo methods, specifically Hit-and-Run sampling [BRS93]. We then evaluate all q × m
points in parallel, incorporating the results into the dataset for subsequent iterations.
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This approach addresses PCA-BO’s exploration limitation without sacrificing computational ef-
ficiency. The orthogonal samples provide information about regions PCA-BO cannot access, po-
tentially rotating the PCA basis in subsequent iterations to better capture the objective function
landscape. Parallel evaluation maintains wall-clock efficiency when function evaluations can be
performed simultaneously.
Beyond the core orthogonal sampling innovation, we introduce three additional improvements:
(1) squared rank-based weighting that reduces the influence of poor-performing points on the
PCA transformation, (2) Log Expected Improvement acquisition function wrapped in a penalized
formulation for handling bound constraints, and (3) selective GPR training using points ranked by
both objective value and mapping distance to reduce model confusion from overlapping projections.

1.3 Experimental Validation

We conduct extensive experiments comparing O-PCA-BO against PCA-BO on functions F15-F24
from the COCO BBOB benchmark suite. These functions divide into two categories: multi-modal
functions with adequate global structure (F15-F19) and multi-modal functions with weak global
structure (F20-F24). We test across dimensions 10, 20, and 40 with batch sizes 1, 5, 10, 20, and 42.
Results demonstrate that O-PCA-BO significantly outperforms PCA-BO, particularly on functions
with weak global structure where PCA-BO often plateaus quickly. Wilcoxon signed-rank tests
confirm statistical significance in 9 out of 15 test configurations, with O-PCA-BO achieving
superior convergence. Wall-clock time analysis reveals consistent efficiency improvements across all
configurations, with the advantage growing with batch size. On functions F20-F24, O-PCA-BO
maintains consistent improvement throughout the optimization budget while PCA-BO stagnates.

1.4 Thesis Structure

This thesis is organized as follows. Section 2 reviews the mathematical foundations of Bayesian
Optimization. Section 3 details the PCA-BO algorithm and analyzes its limitations. Section
4 presents our O-PCA-BO method with complete mathematical formulation and algorithmic
description. Section 5 describes our experimental methodology and presents comprehensive results.
Section 6 concludes with analysis of contributions and future research directions.

2 Bayesian Optimization

Bayesian Optimization provides a principled framework for global optimization of expensive black-
box functions. This section establishes the mathematical foundations underlying both PCA-BO
and our proposed O-PCA-BO method.

2.1 Problem Formulation

We consider the optimization problem:

x∗ = argmin
x∈X

f(x) (1)
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where f : X → R is an expensive black-box function defined on a bounded domain X = [l,u] ⊂ Rd.
The function f is treated as a black-box because we lack access to its analytical form, derivatives,
or internal structure - only function values at queried points are available.
The optimization challenge arises from the expense of function evaluations. In applications such
as hyperparameter tuning, engineering design, or experimental optimization, each evaluation may
require hours or days of computation, making efficient point selection critical.

2.2 Gaussian Process Surrogate Modeling

BO addresses this challenge by constructing a probabilistic surrogate model of the objective function.
A Gaussian Process (GP) serves as the surrogate due to its ability to provide both predictions and
uncertainty quantification [Kle09].
A GP is completely specified by a mean function µ : X → R and a covariance function k : X×X → R.
We write f ∼ GP(µ, k) to indicate that f follows a GP with mean µ and covariance k.
Given n observations Dn = {(xi, yi)}ni=1 where yi = f(xi) + ϵi and ϵi ∼ N (0, σ2), the posterior
distribution at a test point x is Gaussian with:

µn(x) = µ(x) + kn(x)
T [Kn + σ2I]−1(yn − µn) (2)

σ2
n(x) = k(x,x)− kn(x)

T [Kn + σ2I]−1kn(x) (3)

where Kn is the n× n covariance matrix with [Kn]ij = k(xi,xj), kn(x) = [k(x1,x), . . . , k(xn,x)]
T ,

yn = [y1, . . . , yn]
T , and µn = [µ(x1), . . . , µ(xn)]

T .
The GP hyperparameters (kernel parameters and noise variance) are typically learned by maximizing
the marginal log-likelihood [WS14]:

log p(yn|Xn,θ) = −1

2
yT
n [Kn + σ2I]−1yn −

1

2
log |Kn + σ2I| − n

2
log(2π) (4)

2.3 Acquisition Functions

The acquisition function α : X → R guides the selection of the next evaluation point by balancing
exploitation (sampling where the surrogate predicts good values) with exploration (sampling where
uncertainty is high).

2.3.1 Expected Improvement

Expected Improvement (EI) quantifies the expected improvement over the current best observation
fbest = mini=1,...,n yi:

EI(x) = E[max(fbest − f(x), 0)] (5)

For a GP posterior, this expectation has a closed-form solution:

EI(x) = (fbest − µn(x))Φ(Z) + σn(x)ϕ(Z) (6)

where Z = fbest−µn(x)
σn(x)

, and Φ and ϕ are the standard normal CDF and PDF respectively.
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2.3.2 Log Expected Improvement

Log Expected Improvement (LogEI) [ADE+25] addresses numerical issues with standard EI when
improvements become very small:

LogEI(x) = log(EI(x) + ϵ) (7)

where ϵ > 0 is a small constant preventing logarithm of zero. LogEI provides more stable optimization
when acquisition values become very small, which commonly occurs in later optimization stages.

2.4 Parallel Bayesian Optimization

For parallel evaluation of q points, we require batch acquisition functions that select multiple points
simultaneously while accounting for their mutual information.

2.4.1 q-Expected Improvement

The q-Expected Improvement (q-EI) generalizes EI to batch selection:

q-EI(Xq) = E[max(fbest − min
i=1,...,q

f(xi), 0)] (8)

where Xq = {x1, . . . ,xq} is the batch of q points.
Computing q-EI exactly becomes intractable for large q, but Monte Carlo approximations provide
practical solutions. The acquisition function naturally accounts for diminishing returns as additional
points are added to the batch.

2.5 Bayesian Optimization Algorithm

The standard BO procedure follows an iterative framework:

Algorithm 1 Bayesian Optimization

1: Initialize with n0 points Dn0 = {(xi, yi)}n0
i=1 using Latin Hypercube Sampling [FLS05]

2: for t = n0 + 1, n0 + 2, . . . , N do
3: Fit GP model to Dt−1 using marginal likelihood maximization
4: Select next point(s) xt = argmaxx∈X α(x;Dt−1)
5: Evaluate yt = f(xt)
6: Augment dataset Dt = Dt−1 ∪ {(xt, yt)}
7: end for
8: Return best found solution x∗ = argmin(x,y)∈DN

y

The optimization of the acquisition function in Step 3 typically employs gradient-based methods
such as L-BFGS-B [ZBLN97] with multiple random restarts to avoid local optima.
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Figure 1: Vanilla Bayesian Optimization on a 2D test function. The landscape shows the true
objective function with darker regions indicating better values. Red points indicate candidates
selected in the current iteration (batch size 3), while other points are colored by their objective
value. The algorithm operates directly in the 2D problem space without dimensionality reduction.

This framework provides the foundation for dimensionality reduction approaches like PCA-BO
and our proposed O-PCA-BO method, which modify the spaces in which surrogate modeling and
acquisition optimization occur.

3 PCA-Assisted Bayesian Optimization

PCA-assisted Bayesian Optimization addresses the scalability challenges of standard BO through
dimensionality reduction. This section analyzes the algorithm in detail and identifies the fundamental
limitations that motivate our orthogonal sampling approach.

3.1 Motivation and Challenges

As dimensionality increases, BO faces two critical computational bottlenecks:

1. Surrogate model complexity: GP inference scales as O(n3) in the number of training
points, while the effective number of training points needed for reliable modeling grows
exponentially with dimension.
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2. Acquisition function optimization: Finding global optima of the acquisition function
becomes increasingly difficult in high-dimensional spaces, requiring exponentially more opti-
mization effort.

Standard BO typically becomes impractical beyond 10-15 dimensions. PCA-BO addresses these
challenges by identifying a lower-dimensional subspace that captures most variance in the objective
function, performing optimization within this reduced space.

3.2 Weighted Principal Component Analysis

PCA-BO employs a weighted variant of PCA that incorporates objective function values to guide
dimensionality reduction toward regions of interest.

3.2.1 Rank-Based Weighting Scheme

Given n evaluated points X = [x1, . . . ,xn]
T ∈ Rn×d with corresponding function values y =

[y1, . . . , yn]
T , PCA-BO computes rank-based weights:

w̃i = lnn− ln ri (9)

where ri is the rank of point xi according to its function value (rank 1 corresponds to the best
observed value). These pre-weights are then normalized:

wi =
w̃i∑n
j=1 w̃j

(10)

This weighting scheme assigns exponentially decreasing weights to worse-performing points, focusing
the PCA transformation on regions with better objective values.

3.2.2 Weighted PCA Procedure

The weighted PCA procedure proceeds as follows:

1. Center the data:
X = X− 1nµ

T (11)

where µ = 1
n

∑n
i=1 xi and 1n is an n-dimensional vector of ones.

2. Apply weights:
X′ = diag(w1, . . . , wn)X (12)

3. Compute weighted mean:

µ′ =
1

n

n∑
i=1

X′
i (13)

4. Center weighted data:
X′′ = X′ − 1nµ

′T (14)
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5. Compute covariance matrix:

C =
1

n− 1
X′′TX′′ (15)

6. Eigendecomposition:
C = PDPT (16)

where columns of P contain eigenvectors (principal components) and D = diag(λ1, . . . , λd)
contains eigenvalues in descending order.

3.2.3 Component Selection

PCA-BO selects the first r principal components that explain at least α percent of the total
variance:

r = inf

{
k ∈ {1, . . . , d} :

∑k
i=1 λi∑d
i=1 λi

≥ α

}
(17)

In practice, α = 0.95 (95%) provides a reasonable balance between dimensionality reduction and
information preservation.

3.3 Space Transformations

PCA-BO defines bidirectional transformations between the original d-dimensional space and the
reduced r-dimensional space.

3.3.1 Forward Transformation

The transformation from original space to reduced space maps centered data to the principal
component subspace:

z = PT
r (x− µ− µ′) (18)

where Pr ∈ Rd×r contains the first r principal components.

3.3.2 Inverse Transformation

The transformation from reduced space back to original space is given by:

x = Prz+ µ′ + µ (19)

This transformation projects points from the r-dimensional reduced space back to the original
d-dimensional space.

3.4 PCA-BO Algorithm

The complete PCA-BO algorithm integrates weighted PCA with the BO framework:

7



Algorithm 2 PCA-assisted Bayesian Optimization

1: Initialize with n0 points Dn0 = {(xi, yi)}n0
i=1 using Latin Hypercube Sampling

2: Set n = n0

3: while n < N (budget not exhausted) do
4: Compute rank-based weights {wi} using Equations 9-10
5: Perform weighted PCA using Equations 11-16
6: Select r components using Equation 17
7: Transform data to reduced space: Zr = PT

r (X− 1nµ
′T )

8: Fit GP model GP(µr, kr) on (Zr,y)
9: Optimize acquisition function: z∗ = argmaxz∈Z α(z)
10: Transform back to original space: x∗ = Prz

∗ + µ′ + µ
11: Evaluate y∗ = f(x∗) and augment Dn+1 = Dn ∪ {(x∗, y∗)}
12: n = n+ 1
13: end while
14: Return best found solution

3.5 Computational Advantages

PCA-BO achieves significant computational savings through dimensionality reduction:

1. GP training: Model fitting occurs in Rr rather than Rd, reducing kernel matrix size and
computation time.

2. Acquisition optimization: The acquisition function optimization operates in the reduced
space, significantly decreasing optimization difficulty.

3. Scalability: The method remains practical for dimensions where standard BO becomes
intractable.
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Figure 2: PCA-BO on a 2D test function. Top: The landscape shows the true objective function
with the principal components (PCs) overlaid. The bright line represents the selected PC colored
by acquisition function values, while the dark line shows the discarded PC. Red points indicate
candidates selected via batch acquisition function optimization (batch size 3). Note how all sampled
points cluster near the current PC subspace, demonstrating limited exploration. Bottom: Analysis
along the main PC showing true function values (blue), penalized acquisition function (red), and
GP mean with confidence bounds (green). Points are colored based on their inclusion in GPR
training.

3.6 Fundamental Limitations

Despite its computational advantages, PCA-BO exhibits a critical limitation that motivates our
orthogonal sampling approach.
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3.6.1 Subspace Restriction

PCA-BO restricts exploration to the r-dimensional subspace spanned by the selected principal
components. The orthogonal complement space, spanned by the remaining (d − r) discarded
components, remains entirely unexplored.
Mathematically, let Pr contain the first r principal components and Pd−r contain the remaining
(d− r) components. Any point x in the original space can be decomposed as:

x = Przr +Pd−rzd−r + µ′ + µ (20)

PCA-BO only explores points where zd−r = 0, completely ignoring the orthogonal complement
space.

3.6.2 Self-Reinforcement Problem

PCA-BO exhibits a self-reinforcing bias. As more points are sampled within the reduced subspace,
variance along those dimensions increases, making them even more likely to be retained as principal
components in subsequent iterations. This creates a feedback loop that can permanently exclude
valuable regions.
Let Vr(t) denote the cumulative variance explained by the first r components at iteration t. If
PCA-BO samples exclusively within the current reduced subspace, then:

Vr(t+ 1) ≥ Vr(t) (21)

This monotonic increase in explained variance reinforces the current component selection, making
it increasingly difficult for the algorithm to explore orthogonal directions even if they contain the
global optimum.

3.6.3 Failure Modes

PCA-BO fails when:

1. Misleading initial sampling: If initial points exhibit high variance in directions orthogonal
to the global optimum, PCA-BO will focus on these misleading directions.

2. Weak global structure: On functions where the global optimum lies in a low-variance
direction, PCA-BO systematically avoids the optimal region.

3. Deceptive landscapes: Functions with local optima in high-variance directions can trap
PCA-BO away from the global optimum.

These limitations motivate the development of O-PCA-BO, which systematically explores the
orthogonal complement space while maintaining PCA-BO’s computational advantages.

4 Orthogonal PCA-assisted Bayesian Optimization

This section presents our proposed Orthogonal PCA-assisted Bayesian Optimization (O-PCA-BO)
method, which addresses PCA-BO’s exploration limitations through systematic parallel orthogonal
sampling while preserving computational efficiency.
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4.1 Core Innovation: Orthogonal Sampling

The fundamental insight behind O-PCA-BO is that the orthogonal complement space - the (d− r)-
dimensional subspace spanned by discarded principal components - may contain valuable regions
that PCA-BO cannot access. Rather than ignoring this space entirely, we systematically sample
within it to gather information about potentially promising directions.

4.1.1 Mathematical Framework

Given the principal component decomposition P = [Pr,Pd−r] where Pr ∈ Rd×r contains the first
r components and Pd−r ∈ Rd×(d−r) contains the remaining components, any point in the original
space can be expressed as:

x = Przr +Pd−rzd−r + µ′ + µ (22)

where zr ∈ Rr represents coordinates in the principal component subspace and zd−r ∈ Rd−r

represents coordinates in the orthogonal complement space.
PCA-BO explores only the manifold where zd−r = 0. O-PCA-BO extends exploration by sampling
non-zero values of zd−r around each candidate point selected in the reduced space.

4.1.2 Orthogonal Sampling Strategy

For each candidate point x′ selected by optimizing the acquisition function in the reduced space,
O-PCA-BO generates m orthogonal samples:

x′
ortho,j = x′ +Pd−rδj, j = 1, . . . ,m (23)

where δj ∈ Rd−r are displacement vectors in the orthogonal complement space.
This formulation ensures that orthogonal samples lie on hyperplanes perpendicular to the principal
component subspace, passing through the original candidate points. The samples explore regions
entirely inaccessible to PCA-BO while remaining anchored to promising locations identified by the
acquisition function.

4.2 Sampling Methods in the Orthogonal Space

We investigate two approaches for generating displacement vectors δj in the orthogonal complement
space.

4.2.1 Hit-and-Run Sampling with Distance Control

We employ Hit-and-Run MCMC sampling [BRS93] for all orthogonal sample generation, with an
adaptive distance control mechanism that balances exploration breadth with proximity to promising
candidates.
For each candidate point x′, we generate orthogonal samples using a two-stage process:

1. Over-sampling: Generate m · s samples using Hit-and-Run MCMC, where the sample size
multiplier is:

s = max
(
1, ⌊onorm factor ·max(1,

√
d− r)⌋

)
(24)
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2. Distance-based selection: Select the m samples with smallest Euclidean distance from the
origin in the orthogonal space.

The onorm factor hyperparameter controls the sampling density and resulting proximity:

� When onorm factor = 0: s = 1, yielding uniform sampling with exactly m points

� When onorm factor > 0: s > 1, yielding denser sampling followed by selection of the closest
points

This mechanism allows adaptive control of exploration intensity in the orthogonal directions. Higher
onorm factor values produce samples closer to the candidate points (more conservative exploration),
while lower values produce more uniform coverage of the orthogonal space.
The Hit-and-Run sampling operates within the polytope defined by:

l− x′ ≤ Pd−rδ ≤ u− x′ (25)

where the inequality constraints ensure all orthogonal samples remain within the original problem
bounds when mapped back to the full-dimensional space.

4.3 Parallel Evaluation Framework

O-PCA-BO evaluates multiple points simultaneously, balancing computational efficiency with
exploration breadth. The parallel evaluation strategy operates as follows:

1. Select q candidate points in the reduced space using batch acquisition functions (e.g., q-LogEI)

2. For each candidate, generate m orthogonal samples

3. Evaluate all q ×m points in parallel

4. Incorporate results into the dataset for subsequent iterations

This approach provides O(qm) parallelism while maintaining the computational advantages of
reduced-space optimization. When function evaluations can be performed simultaneously (common
in simulation-based optimization), the wall-clock time is superior to evaluating points sequentially.

4.4 Algorithm Enhancements

Beyond orthogonal sampling, we introduce three additional algorithmic improvements to address
specific challenges in high-dimensional BO.

4.4.1 Squared Rank-Based Weighting

Standard PCA-BO uses linear rank-based weights (Equation 9). We modify this to squared weights:

w̃i = (lnn− ln ri)
2 (26)

Squaring the weights dramatically reduces the influence of poorly-performing points on the PCA
transformation. This prevents bad points from corrupting the principal component directions and
allows the algorithm to focus more sharply on promising regions.
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4.4.2 Log Expected Improvement with Penalization

We replace standard Expected Improvement with Log Expected Improvement (LogEI) to improve
numerical stability in later optimization stages. To handle bound constraints when mapping from
the reduced space, we wrap LogEI in a penalized acquisition function:

PLogEI(z) = LogEI(z)− β · dz (27)

where dz is the distance between the point Prz + µ′ + µ (reverse PCA transformation) and its
projection (via clipping) onto the feasible problem bounds and β > 0 is a penalty factor. Note that
dz is 0 if the point is mapped back to the valid range of inputs.

4.4.3 Selective GPR Training

When multiple points in the original space map to similar locations in the reduced space, the
GP model becomes confused, attempting to fit different function values to nearly identical input
coordinates. This commonly occurs in high-dimensional problems where the dimensionality reduction
is severe.
To address this issue, we select only a subset of points for GP training based on a combined ranking
of objective value and mapping distance:

si = γ · rval,i + (1− γ) · rdist,i (28)

where rval,i is the value-based rank, rdist,i is the distance-based rank (measuring how well point i
maps to the reduced space), and γ ∈ [0, 1] balances these criteria.
We select the top p% points according to this composite score for GP training, where p is a
hyperparameter typically set to 40-75%.
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Figure 3: O-PCA-BO on a 2D test function illustrating orthogonal sampling. Top: The landscape
shows the true objective function with principal components. The bright line is the selected PC
colored by acquisition values, while the dark line shows the discarded PC. The lighter green line
represents the orthogonal sampling direction at the selected candidate. Red points are sampled
orthogonally to the PC subspace (batch size 3). Bottom: Analysis along the main PC showing true
function values (blue), penalized LogEI (red), and GP mean with confidence bounds (green). Points
are colored by their GPR inclusion status: red (current iteration), green (included in GPR), blue
(excluded from GPR).

4.5 Complete O-PCA-BO Algorithm

Algorithm 3 presents the complete O-PCA-BO method integrating all components:
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Algorithm 3 Orthogonal PCA-assisted Bayesian Optimization

1: Initialize with n0 = doe factor× d points Dn0 = {(xi, yi)}n0
i=1 using Latin Hypercube Sampling

2: Set hyperparameters: q (acquisition batch size), m (orthogonal samples), p (GPR percentage),
γ (value weight), onorm factor (sampling intensity)

3: Set n = n0

4: Compute budget N = (budget factor × d+ 50)× (1 + 0.3× log(m))
5: while n < N do
6: Compute squared rank-based weights using Equation 26
7: Perform weighted PCA to obtain Pr,Pd−r,µ,µ

′

8: Transform data to reduced space: Zr

9: Compute composite scores using Equation 28
10: Select top p% points for GP training: DGP ⊂ Dn

11: Fit GP model on reduced-space data (ZGP,yGP)
12: Optimize penalized acquisition function: Z∗

q = argmaxZq q-PLogEI(Zq)
13: Transform candidates to original space: X∗

q = PrZ
∗
q + µ′ + µ

14: for each candidate x∗
i ∈ X∗

q do

15: Compute sample multiplier: s = max(1, ⌊onorm factor ·max(1,
√
d− r)⌋)

16: Generate m · s orthogonal samples using Hit-and-Run MCMC
17: Select m closest samples: {xi,j}mj=1

18: end for
19: Evaluate all q ×m points: {yi,j = f(xi,j)}
20: Augment dataset: Dn+qm = Dn ∪ {(xi,j, yi,j)}
21: n = n+ qm
22: end while
23: Return best found solution
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4.6 Theoretical Analysis

4.6.1 Exploration Coverage

Unlike PCA-BO, which explores only an r-dimensional submanifold, O-PCA-BO systematically
explores the full d-dimensional space. The orthogonal samples provide coverage of directions that
would otherwise remain permanently unexplored.
Let MPCA = {x : x = Prz + µ′ + µ, z ∈ Rr} denote the submanifold explored by PCA-BO.
O-PCA-BO explores the union:

MO-PCA =
⋃
i,j

{x∗
i,j +Pd−rδ : δ ∈ Rd−r} (29)

As the number of iterations increases, MO-PCA approaches the entire feasible space, providing
asymptotic coverage guarantees.

4.6.2 Adaptive Basis Rotation

The orthogonal samples influence subsequent PCA transformations, potentially rotating the principal
component basis toward regions containing the global optimum. If orthogonal samples discover
better objective values, they receive higher weights in the next PCA computation, shifting the
component directions.
This adaptive mechanism allows O-PCA-BO to escape from suboptimal subspaces that might
trap PCA-BO indefinitely. The algorithm exhibits a form of meta-learning, where exploration in
orthogonal directions informs the selection of future exploration directions.

4.6.3 Computational Complexity

O-PCA-BO maintains the same asymptotic complexity as PCA-BO for the core operations (PCA
computation, GP training, acquisition optimization), while adding O(qm) overhead for orthogonal
sampling and parallel evaluation. When m is constant and q is small, this represents only a constant
factor increase in computational cost.
The Hit-and-Run sampling requires O(qm · burn-in · (d− r)) operations, where the burn-in period
is typically O(d− r) for good mixing. This remains tractable for moderate-dimensional problems.

5 Experiments

We conduct comprehensive experiments to evaluate O-PCA-BO’s performance against PCA-BO
across multiple test functions, dimensions, and evaluation scenarios. Our experimental design
focuses on demonstrating the advantages of orthogonal sampling, particularly on functions with
weak global structure where PCA-BO often fails.
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5.1 Experimental Setup

5.1.1 Test Functions

We select functions F15-F24 from the COCO BBOB benchmark suite [HAR+20], which provides a
standardized framework for continuous optimization algorithm evaluation. These functions divide
into two categories:

� Multi-modal functions with adequate global structure (F15-F19): These functions
exhibit clear global patterns that PCA can capture effectively. They serve as baseline cases
where both PCA-BO and O-PCA-BO should perform well.

� Multi-modal functions with weak global structure (F20-F24): These functions have
deceptive landscapes, multiple local optima with different orientations, or global optima in
low-variance directions. They represent the challenging cases where O-PCA-BO’s orthogonal
sampling should provide substantial advantages.

This selection allows systematic evaluation of how algorithm performance depends on problem
structure, with particular focus on cases where PCA-BO’s limitations become apparent.

5.1.2 Dimensionality and Budget

We test across three dimensions that span the practical range for expensive optimization:

� d = 10: Moderate dimensionality where standard BO remains competitive

� d = 20: Intermediate dimensionality where PCA-BO begins showing advantages

� d = 40: High dimensionality where dimensionality reduction becomes crucial

For each dimension, we allocate a budget of N = (budget factor × d + 50) × (1 + 0.3 × log(m))
function evaluations, where m is the batch size, with n0 = doe factor × d points for initial Design
of Experiments using Latin Hypercube Sampling. This budget allocation accounts for the increased
evaluation requirements of larger batch sizes while maintaining fairness across configurations.

5.1.3 Algorithm Configurations

We compare the following algorithm configurations across five batch sizes:

1. PCA-BO with q ∈ {1, 5, 10, 20, 42} (using q-LogEI for q > 1)

2. O-PCA-BO with q = 1,m ∈ {1, 5, 10, 20, 42} (orthogonal sampling)

This configuration matrix allows direct comparison between PCA-BO’s batch acquisition approach
and O-PCA-BO’s orthogonal sampling strategy at equivalent parallelism levels.
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5.1.4 Hyperparameter Optimization

We conducted extensive hyperparameter optimization using Bayesian optimization itself to tune
O-PCA-BO’s three key hyperparameters for each batch size. Table 1 shows the optimized settings:

Table 1: Optimized O-PCA-BO hyperparameters per batch size

Batch Size gpr p gpr val factor onorm factor

1 0.420 0.000 5.812
5 0.520 0.027 7.952
10 0.456 0.000 6.876
20 0.472 0.000 7.803
42 0.740 0.071 7.556

The optimization process evaluated between 68 and 100 configurations per batch size, achieving an
average 25.54% improvement from worst to best configuration. Notably, all optimal configurations
prefer high onorm factor values (6-8 range), indicating that conservative orthogonal exploration
near candidate points is more effective than uniform sampling throughout the orthogonal space.

Figure 4: Hyperparameter optimization landscapes for O-PCA-BO across batch sizes. Each 3D
scatter plot shows sampled configurations in the hyperparameter space (gpr p, gpr val factor,
onorm factor) colored by their loss values, with darker points indicating better performance. The
consistent preference for high onorm factor values across all batch sizes demonstrates the importance
of controlled orthogonal exploration.

For all methods, we set the PCA variance threshold α = 0.95, retaining components explaining 95%
of the weighted variance. We use the Matern 5/2 kernel for GP regression with hyperparameters
optimized via marginal likelihood maximization.

5.2 Implementation Details

Our implementation leverages modern computational tools for efficiency and reproducibility:

� Framework: PyTorch and BOTorch [BKJ+20] for GPU acceleration and automatic differen-
tiation

� Optimization: L-BFGS-B [ZBLN97] for both GP hyperparameter fitting and acquisition
function optimization
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� Acquisition: LogEI [ADE+25] with penalization for bound handling

� Orthogonal Sampling: Hit-and-Run MCMC [BRS93] with adaptive burn-in and distance-
based selection

� Hardware: AMD EPYC 9534 (AMD.Zen4) processors via ALICE compute resources

This work was performed using the ALICE compute resources provided by Leiden University.
All experiments use fixed random seeds to ensure complete reproducibility. The implementation
and experimental code are available at https://github.com/IvanBanny/para-ortho-pca-bo,
enabling exact reproduction of all results.
Each algorithm-function-dimension-batch combination was repeated for 30 independent runs
with different predetermined random seeds to ensure statistical significance while maintaining
reproducibility across the entire experimental suite.

5.3 Evaluation Metrics

We assess algorithm performance using two primary metrics:

1. Convergence Performance: Best function value achieved at each iteration, normalized by
the known global optimum. This metric evaluates optimization effectiveness and convergence
speed. We report Area Under Curve (AUC) and final improvement ratios.

2. Wall-Clock Efficiency: Total computation time required to complete the evaluation budget.
This metric assesses the practical utility of algorithmic improvements.

For statistical analyses, we compute 95% confidence intervals across the 30 runs and apply Wilcoxon
signed-rank tests to assess significance of performance differences.

5.4 Results and Analysis

Our experimental results demonstrate that O-PCA-BO significantly outperforms PCA-BO, particu-
larly on functions with weak global structure where the orthogonal sampling mechanism provides
substantial exploration advantages.

5.4.1 Convergence Performance

Figures 5 through 9 show convergence curves for all batch sizes. Several key patterns emerge:
Functions with Adequate Global Structure (F15-F19): On these functions, O-PCA-BO
performs comparably to or slightly better than PCA-BO. Both algorithms achieve similar final
objective values, but O-PCA-BO often exhibits faster initial convergence due to its broader
exploration. The orthogonal sampling does not interfere with exploitation of the clear global
structure captured by PCA.
Functions with Weak Global Structure (F20-F24): O-PCA-BO demonstrates dramatic supe-
riority on these challenging functions. While PCA-BO frequently plateaus after initial improvement,
O-PCA-BO maintains consistent progress throughout the evaluation budget. This performance
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Figure 5: Convergence performance comparison for batch size 1 between PCA-BO and O-PCA-BO
across functions F15-F24 in dimensions 10, 20, and 40.
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Figure 6: Convergence performance comparison for batch size 5 between PCA-BO and O-PCA-BO
across functions F15-F24 in dimensions 10, 20, and 40.
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Figure 7: Convergence performance comparison for batch size 10 between PCA-BO and O-PCA-BO
across functions F15-F24 in dimensions 10, 20, and 40.
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Figure 8: Convergence performance comparison for batch size 20 between PCA-BO and O-PCA-BO
across functions F15-F24 in dimensions 10, 20, and 40.
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Figure 9: Convergence performance comparison for batch size 42 between PCA-BO and O-PCA-BO
across functions F15-F24 in dimensions 10, 20, and 40.
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difference becomes more pronounced in higher dimensions where PCA-BO’s subspace restrictions
become more limiting.
Particularly striking results occur on functions F20, F21, and F22, where PCA-BO often converges
to solutions orders of magnitude worse than those found by O-PCA-BO. For instance, on function
F20 with batch size 1 and dimension 10, O-PCA-BO achieves a final improvement of over 13,595,
while PCA-BO only reaches 4,312. These functions feature multiple local optima with different
orientations, causing PCA to select misleading principal components that exclude the global
optimum region.
Dimensional Scaling: The performance advantage of O-PCA-BO increases with dimension. In
10-dimensional problems, the improvement is modest but consistent. In 40-dimensional problems,
O-PCA-BO often finds solutions unreachable by PCA-BO within the given budget. The performance
gap widens because PCA-BO’s subspace restriction becomes more severe in higher dimensions.

5.4.2 Wall-Clock Performance

Figure 10: Wall-clock time comparison for batch size 1 between PCA-BO and O-PCA-BO across
functions F15-F24 in dimensions 10, 20, and 40.

Figures 10 through 14 present wall-clock timing results across all batch sizes. O-PCA-BO achieves
superior computational efficiency through two mechanisms:

1. Parallel Evaluation: Evaluating m orthogonal samples simultaneously reduces wall-clock
time when function evaluations can be parallelized.

2. Improved Convergence: Better optimization performance means reaching target accuracy
in fewer iterations, reducing total computation time.

For all batch sizes, O-PCA-BO consistently outperforms PCA-BO across all functions and dimen-
sions. For example, with batch size 1 and dimension 40, O-PCA-BO’s mean execution time is
approximately 663 seconds, while PCA-BO requires 1669 seconds. This efficiency gain stems from
the inherent parallelism of evaluating orthogonal samples and faster convergence leading to better
solutions in fewer iterations.
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Figure 11: Wall-clock time comparison for batch size 5 between PCA-BO and O-PCA-BO across
functions F15-F24 in dimensions 10, 20, and 40.

Figure 12: Wall-clock time comparison for batch size 10 between PCA-BO and O-PCA-BO across
functions F15-F24 in dimensions 10, 20, and 40.

Figure 13: Wall-clock time comparison for batch size 20 between PCA-BO and O-PCA-BO across
functions F15-F24 in dimensions 10, 20, and 40.
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Figure 14: Wall-clock time comparison for batch size 42 between PCA-BO and O-PCA-BO across
functions F15-F24 in dimensions 10, 20, and 40.

5.4.3 Statistical Significance

Wilcoxon signed-rank tests confirm statistical significance of O-PCA-BO’s performance improve-
ments. Table 2 summarizes the results:

Table 2: Summary of Wilcoxon signed-rank test results

Metric O-PCA-BO wins PCA-BO wins Non-significant Total

Convergence 9 2 4 15
Wall-clock time 15 0 0 15

For convergence performance, O-PCA-BO achieves statistically significant improvements in 9 out
of 15 configurations (60%). PCA-BO only wins in 2 cases, both at batch size 42, suggesting that
very large batch sizes may reduce the benefit of orthogonal sampling. The remaining 4 cases show
no significant difference.
For wall-clock time, O-PCA-BO is significantly faster in all 15 configurations, demonstrating
consistent computational efficiency advantages.

27



5.4.4 Batch Size Analysis

Figure 15: O-PCA-BO convergence performance across different batch sizes (1, 5, 10, 20, 42) for
functions F15-F24 in dimensions 10, 20, and 40.
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Figure 15 compares O-PCA-BO’s performance across different batch sizes. The results reveal a
classic trade-off between sample efficiency and wall-clock time:

� Small batch sizes (1-5): More sample-efficient as the algorithm can immediately incorporate
information from each evaluation to inform subsequent choices. This maximizes learning from
limited evaluation budgets.

� Large batch sizes (20-42): Significantly faster in wall-clock time due to parallel processing of
multiple expensive function evaluations. However, sample efficiency decreases as the algorithm
must commit to multiple evaluations before updating its model.

The ideal batch size depends on the specific application: for strict evaluation budgets, smaller
batches are optimal; for minimizing total optimization time with parallel hardware, larger batches
are superior.

5.4.5 Hyperparameter Sensitivity

Our hyperparameter optimization results reveal interesting patterns about O-PCA-BO’s behavior.
The optimal γ values near 0 indicate that distance-based ranking dominates value-based ranking
in GP point selection, suggesting that mapping quality is more important than objective value
for model accuracy. The consistently high onorm factor values (6-8 range) across all batch sizes
indicate that conservative exploration near the PCA manifold is more effective than aggressive
exploration throughout the orthogonal space.

5.5 Algorithmic Analysis

5.5.1 PCA Basis Evolution

Examination of PCA basis vectors throughout optimization reveals how orthogonal sampling enables
adaptive exploration. In successful O-PCA-BO runs, the principal components rotate toward regions
discovered by orthogonal sampling, while PCA-BO’s components remain relatively static after
initial iterations.
This basis adaptation explains O-PCA-BO’s superior performance: the algorithm can escape from
suboptimal subspaces by discovering better regions through orthogonal exploration, then adapting
its primary search directions accordingly.

5.5.2 Exploration Coverage

Visualization of sampled points demonstrates O-PCA-BO’s broader exploration coverage. While
PCA-BO’s samples concentrate along linear subspaces, O-PCA-BO’s samples spread throughout
the feasible region, increasing the probability of discovering isolated optimal regions.

5.5.3 Computational Overhead

The orthogonal sampling mechanism introduces minimal computational overhead compared to the
benefits gained. Hit-and-Run sampling typically requires 100-200 iterations for adequate mixing in
the orthogonal space, consuming less than 5% of total computation time. The GPR training on
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filtered points often reduces model fitting time compared to using all points, partially offsetting the
sampling overhead.
Our results demonstrate that O-PCA-BO provides a robust solution to PCA-BO’s exploration
limitations while maintaining computational efficiency. The method is particularly valuable for
expensive optimization problems in moderate to high dimensions where exhaustive exploration is
impractical but systematic coverage of orthogonal directions can reveal promising regions missed
by dimensionality reduction approaches.

6 Conclusions and Future Research

This thesis has presented Orthogonal PCA-assisted Bayesian Optimization (O-PCA-BO), a novel
method that systematically addresses the exploration limitations of PCA-BO through parallel
orthogonal sampling. Our approach maintains the computational advantages of dimensionality
reduction while enabling exploration of regions that remain permanently inaccessible to the original
algorithm.

6.1 Key Contributions

Our work makes several distinct contributions to high-dimensional Bayesian optimization:

6.1.1 Orthogonal Sampling Framework

The core innovation of parallel orthogonal sampling provides a principled mechanism for exploring
the (d− r)-dimensional orthogonal complement space. Unlike PCA-BO, which restricts exploration
to an r-dimensional submanifold, O-PCA-BO systematically samples the full d-dimensional space.
This approach directly addresses the fundamental limitation that can cause PCA-BO to miss global
optima located outside the principal component subspace.

6.1.2 Algorithmic Enhancements

Beyond orthogonal sampling, we introduced three algorithmic improvements: squared rank-based
weighting that reduces influence of poorly-performing points, Log Expected Improvement with
penalization for stable bound handling, and selective GPR training that prevents model confusion
from overlapping projections. These enhancements address practical challenges that arise in high-
dimensional optimization with severe dimensionality reduction.

6.1.3 Comprehensive Empirical Validation

Our experimental evaluation across 10 benchmark functions, 3 dimensions, 5 batch sizes, and
multiple evaluation scenarios provides strong evidence for O-PCA-BO’s effectiveness. The results
demonstrate substantial improvements particularly on functions with weak global structure, where
PCA-BO often fails to locate optimal regions. Statistical analysis via Wilcoxon signed-rank tests
confirms significance in 9 out of 15 convergence comparisons and all 15 wall-clock time comparisons.
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6.1.4 Practical Implementation

Our implementation using PyTorch and BOTorch demonstrates that O-PCA-BO can be efficiently
realized using modern optimization libraries. The method integrates seamlessly with existing
BO infrastructure while providing significant performance improvements. Code availability at
https://github.com/IvanBanny/para-ortho-pca-bo facilitates reproduction and extension of
our results.

6.2 Theoretical Insights

Our analysis reveals fundamental properties of dimensionality reduction in optimization contexts.
PCA-BO’s limitation stems from its assumption that high-variance directions correlate with
optimization importance. This assumption holds for functions with adequate global structure but
fails catastrophically when optimal regions lie in low-variance directions.
O-PCA-BO’s adaptive basis rotation mechanism provides a form of meta-learning, where exploration
in orthogonal directions informs selection of future search directions. This creates a positive
feedback loop that can guide the algorithm toward optimal regions even when they initially appear
unimportant according to variance-based criteria.
The success of our selective GPR training approach highlights an important but underappreciated
issue in high-dimensional BO: when many points in the original space map to similar locations in
the reduced space, standard GP training becomes problematic. Our composite ranking based on
both objective value and mapping distance provides a principled solution to this challenge.

6.3 Limitations and Considerations

While O-PCA-BO demonstrates substantial improvements over PCA-BO, several limitations merit
consideration:

6.3.1 Hyperparameter Sensitivity

The method introduces additional hyperparameters (GPR percentage, value weighting, orthogonal
sampling intensity) that require tuning for optimal performance. While our meta-optimization
procedure identified good default values, performance may vary across different problem classes.

6.3.2 Computational Scaling

Hit-and-Run sampling in the orthogonal space scales with (d− r) and requires adequate burn-in
for good mixing. For problems where d − r is very large, this overhead may become significant.
Alternative sampling strategies might be needed for ultra-high-dimensional problems.

6.3.3 Problem Structure Dependencies

Like PCA-BO, our method assumes that some form of dimensionality reduction is beneficial. For
problems where the objective function depends equally on all dimensions with no exploitable
structure, the approach may provide limited advantages over standard BO.
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6.4 Future Research Directions

Several promising avenues emerge from this work:

6.4.1 Adaptive Sampling Strategies

Current orthogonal sampling uses fixed intensity controlled by the onorm factor hyperparameter.
Adaptive strategies that adjust sampling intensity based on the success of previous orthogonal
explorations could improve efficiency. Machine learning approaches might predict which orthogonal
directions are most promising based on current optimization state.

6.4.2 Non-Linear Dimensionality Reduction

Our approach uses linear PCA for dimensionality reduction. Extension to non-linear methods such
as Kernel PCA, autoencoders, or variational approaches could capture more complex relationships
in the objective function landscape. However, defining meaningful orthogonal spaces becomes more
challenging in non-linear settings.

6.4.3 Multi-Fidelity Extensions

Many expensive optimization problems offer multiple evaluation fidelities (e.g., coarse and fine
simulations). Extending O-PCA-BO to multi-fidelity settings could leverage cheap evaluations
for extensive orthogonal exploration while reserving expensive evaluations for refined search in
promising regions.

6.4.4 Constrained Optimization

Real-world problems often involve complex constraints beyond simple bounds. Developing efficient
methods for orthogonal sampling under general constraint sets would significantly expand the
method’s applicability. This might involve constraint-aware sampling strategies or penalty-based
approaches for handling constraint violations.

6.4.5 Theoretical Analysis

Our empirical results suggest strong performance guarantees for O-PCA-BO, but formal theoret-
ical analysis remains incomplete. Developing convergence guarantees, regret bounds, or sample
complexity analysis would provide deeper understanding of when and why the method succeeds.

6.4.6 Alternative Orthogonal Strategies

While our Hit-and-Run sampling provides uniform exploration of the orthogonal space, other
strategies might be more effective. Gaussian process-guided sampling in the orthogonal space,
importance sampling based on model uncertainty, or hybrid approaches combining multiple sampling
strategies could further improve performance.
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6.5 Broader Impact

O-PCA-BO addresses a fundamental limitation in high-dimensional optimization that affects many
practical applications. Engineering design, hyperparameter optimization, experimental design, and
scientific discovery all involve expensive evaluations in high-dimensional spaces where existing
methods may miss optimal solutions due to exploration limitations.
Our orthogonal sampling framework provides a general principle that could be applied beyond
PCA-BO to other dimensionality reduction approaches in optimization. The key insight - that
systematic exploration of discarded dimensions can recover missing optimal regions - has broader
relevance for any method that projects high-dimensional problems onto lower-dimensional subspaces.
The increasing importance of optimization in machine learning, where hyperparameter spaces
continue growing and computational costs continue rising, makes efficient high-dimensional opti-
mization methods increasingly valuable. O-PCA-BO provides a practical solution that scales to
moderate-high dimensions while maintaining theoretical foundations and empirical reliability.

6.6 Final Remarks

The development of effective optimization methods for high-dimensional expensive functions remains
a central challenge in computational science and engineering. Our proposed O-PCA-BO method
demonstrates that principled extensions of existing approaches can address fundamental limitations
while preserving computational advantages.
The success of orthogonal sampling in overcoming PCA-BO’s exploration limitations suggests that
similar strategies might benefit other optimization approaches. As problem dimensions continue
to increase and evaluation costs remain high, methods that balance computational efficiency with
exploration breadth will become increasingly important.
Through systematic empirical validation and practical implementation, this work establishes O-PCA-
BO as a robust enhancement to PCA-BO with significant practical benefits. The method provides
optimization practitioners with a tool that maintains the scalability advantages of dimensionality
reduction while avoiding the exploration pitfalls that can cause premature convergence to suboptimal
solutions.

References

[ADE+25] Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan
Bakshy. Unexpected improvements to expected improvement for bayesian optimization,
2025.

[BKJ+20] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. Botorch: A framework for efficient monte-
carlo bayesian optimization, 2020.

[BRS93] Claude J. P. Bélisle, H. Edwin Romeijn, and Robert L. Smith. Hit-and-run algorithms
for generating multivariate distributions. Math. Oper. Res., 18(2):255–266, May 1993.

[FLS05] Kai-Tai Fang, Runze Li, and Agus Sudjianto. Design and Modeling for Computer
Experiments. Chapman and Hall/CRC, 1st edition, 2005.

33



[HAR+20] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo
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