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Abstract

This thesis investigates the use of Generative Adversarial Networks (GANs)
to synthesize liver CT images for medical imaging research. A custom prepro-
cessing pipeline was developed using the LiTS dataset to extract and label
axial slices containing liver tumors. A GAN model, referred to as TumorGAN,
was trained to generate synthetic liver images that mimic the visual charac-
teristics of tumor-containing CT scans. The generated images were evaluated
both visually and through quantitative metrics. Results showed that, although
the synthetic slices bore a superficial resemblance to real CT images, they
were heavily affected by noise, exhibited poor structural coherence, and failed
to capture clinically meaningful tumor features.
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1 Introduction

1.1 Background and Motivation

Medical imaging is essential in diagnosing and monitoring disease. Computed tomography (CT)
scanning is frequently used to detect liver tumors[1], which are often difficult to identify in early
stages. These scans produce detailed cross-sectional views of internal anatomy, allowing clinicians to
visually examine the liver and surrounding regions. Such clarity is critical when evaluating abnormal
tissue. However, training machine learning models for tasks like tumor detection remains challenging,
largely due to the limited availability of annotated medical data[2]. Collecting and labeling CT scans
requires domain expertise, strict privacy measures, and considerable time, resulting in datasets that
are often small and heterogeneous, restricting model development and performance.
To address this problem, researchers have explored synthetic image generation through machine
learning. Among these, Generative Adversarial Networks (GANs) have emerged as a commonly
used approach[3]. These models are trained to generate artificial images that resemble real examples
from a given dataset. In practice, one model (the generator) creates new images, while another
(the discriminator) attempts to distinguish between real and generated samples. Through this
competitive training process, the quality of the generated images gradually improves[4]. Although
GANs have shown promising results in domains such as natural image synthesis and art generation,
applying them to medical imaging introduces specific complications. Because medical images need
fine structural details, accurate contrast, and precise anatomy, generating them is much harder
than creating ordinary visual content.
Despite these challenges, synthetic CT scans hold potential for expanding training datasets and
reducing issues such as class imbalance in tasks like tumor segmentation or classification[5]. By
supplementing real data with synthetic samples, researchers can increase the number of examples
available to machine learning models without the need for further clinical data collection. This
thesis investigates whether a basic GAN, trained on a filtered subset of 2D CT slices that show liver
tumors, is capable of producing synthetic images that exhibit both visual and structural similarity
to real examples. The focus lies in evaluating the realism and consistency of the generated images,
as well as identifying the limitations of using this generative method in a medical imaging context.

1.2 Research Problem

This thesis explores the potential of GANs to generate medically plausible synthetic CT images of
the liver with visible tumors. The central research question is whether a vanilla GAN, trained on a
filtered set of tumor-containing CT slices, can produce synthetic images that reflect the structural
and visual characteristics of real tumorous liver scans. More broadly, the work examines whether
such synthetic images hold any potential for supporting medical research or augmenting diagnostic
training datasets.
In support of this main objective, a key sub-question of How can we effectively use existing datasets
to create a dataset of healthy and tumor-containing 2D liver slices that can be used to train generative
models? is also addressed. This question guides the pre-processing and data labeling efforts required
to prepare meaningful inputs for GAN training.

1



1.3 Objectives

The primary objective is to evaluate the capability of a basic GAN model in generating 2D axial
CT slices that resemble real images of the liver affected by tumors. To achieve this, the study
involves constructing a carefully preprocessed dataset from volumetric CT scans, training the GAN
under constrained computing conditions, and systematically assessing the quality of the generated
outputs.

1.4 Contributions

This thesis contributes a custom data pre-processing pipeline that converts 3D CT volumes from
the LiTS dataset[6] into 2D slices, separated into healthy and tumor-containing categories. A vanilla
GAN architecture is implemented and trained on the tumor subset to assess its ability to learn
and reproduce the visual features of liver tumors. Finally, the quality of the generated images
is evaluated using the Fréchet Inception Distance (FID), a widely used metric for assessing the
similarity between real and generated image distributions, providing a baseline for comparison in
future work[7].

1.5 Thesis Overview

The structure of this thesis is as follows. The next chapter provides medical context regarding liver
anatomy, tumor characteristics, and the importance of CT imaging in diagnosis. This is followed by
a review of related work on GANs in medical applications, with a particular focus on synthetic image
generation. The methodology chapter outlines the dataset preparation, model architecture, and
training strategy used in this project. The results chapter presents both qualitative and quantitative
evaluations of the generated images, followed by a discussion of the model’s limitations and possible
directions for improvement. The thesis concludes by reflecting on the findings and proposing future
extensions that could enhance the realism and use of synthetic medical images.

2 Medical Background

2.1 Anatomy of the Liver

The liver receives blood from the hepatic artery, which supplies oxygen-rich blood, and the portal
vein, which carries nutrient-rich blood from the gut [8]. Blood flows through small vessels called
sinusoids, which have thin, porous walls that allow close contact between blood and liver cells.
Most of the liver is made up of hepatocytes, responsible for metabolism and detoxification, while
other cells such as Kupffer cells and sinusoidal endothelial cells support immune functions.
This structure allows the liver to filter substances efficiently and monitor what enters the body,
making it a key organ for both metabolism and immune defense[9].

2.2 Nature of Liver Tumors

Liver tumors are classified based on their site of origin. When a tumor begins in the liver, it is
referred to as a primary cancer. Tumors that originate elsewhere and spread to the liver are known
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as secondary cancers or metastases.

2.2.1 Primary Liver Tumors

Primary liver tumors develop from different cell types in the liver, such as hepatocytes, bile duct
cells, or blood vessel lining cells. Hepatocellular carcinoma (HCC) is the most common, accounting
for about 75–85% of cases, and is often associated with chronic conditions such as hepatitis B or C,
alcohol-related liver disease, or non-alcoholic fatty liver disease [10].
HCC is highly diverse in its histology and clinical behavior. The 5th edition of the World Health
Organization (WHO) Classification of Digestive System Tumors recognizes several subtypes,
including steatohepatitic, clear cell, macrotrabecular-massive, and fibrolamellar [11]. These variants
differ in morphology, molecular mutations, and prognosis, making subtype identification important
for diagnosis and treatment [10].

2.2.2 Secondary Liver Tumors

Secondary liver tumors originate from cancers such as bowel, breast, or lung cancer and retain
the characteristics of their primary tissue [12]. Cancer cells spread to the liver mainly via the
bloodstream or lymphatic system. Because the liver filters blood from much of the body, it is a
common site for metastases. Treatment is based on the primary cancer type rather than the liver
location [12].

3 CT Imaging and Its Importance in Medical Imaging

Computed Tomography (CT) is an imaging technique that produces cross-sectional images of an
object or the human body using X-rays and computer-based reconstruction. Unlike conventional
X-ray imaging, which results in overlapping shadow projections, CT uses multiple X-ray projections
from different angles around the body. In the resulting CT images, air appears dark due to low
X-ray absorption, soft tissues are displayed in varying shades of gray, and dense structures such as
bone or metal appear bright because of their high absorption [13].
Although CT data are initially two-dimensional (2D), these slices can be digitally stacked and
processed to form three-dimensional (3D) reconstructions. This capability enables researchers and
clinicians to view internal structures from different angles and in multiple planes. CT is widely used
in medicine for diagnosing tumors, strokes, fractures, and cardiovascular or pulmonary diseases, as
well as for planning surgery or radiation therapy [13].
CT imaging plays a central role in tumor detection due to its ability to show differences in tissue
density [14]. This makes it particularly effective in identifying tumors that have clear structural or
density differences compared to surrounding tissues. CT scans are also crucial in studying liver
tumors because the liver has a dense and complex network of blood vessels. Correctly identifying
tumors is challenging since physicians must distinguish tumors from blood vessels and healthy liver
tissue. This differentiation is particularly important for surgical planning, as the tumor’s location
relative to the hepatic vessels determines whether it can be safely resected [15].
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3.1 Dataset Overview

The dataset used in this study is a preprocessed version of the Liver Tumor Segmentation (LiTS)
dataset, originally developed for the LiTS17 Challenge held in conjunction with ISBI 2017 and
MICCAI 2017 [6]. It is widely recognized within the medical imaging community as a benchmark
resource for the development and evaluation of liver and tumor segmentation algorithms in abdominal
CT scans. Although the dataset contains real CT scans featuring liver tumors, it does not distinguish
between different tumor subtypes. All lesions, whether primary or secondary, are grouped under a
single segmentation label. As a result, models trained on this dataset are limited to detecting and
segmenting tumors but cannot differentiate between specific pathological types.
The dataset is composed of CT volumes and their corresponding segmentation masks, both stored
in the NIfTI file format with the .nii extension. The NIfTI format is a standard used in medical
imaging for storing volumetric data, allowing for efficient access and manipulation of 3D arrays[16].
In this dataset, each NIfTI file encodes either a grayscale CT volume or a voxel-level segmentation
map.
Each patient case is represented by a pair of files:

• volume-XXX.nii : The contrast-enhanced CT scan for a given patient,

• segmentation-XXX.nii : The manually annotated label map corresponding to the same
patient.

The segmentation masks classify each voxel into one of three categories being background (label 0),
liver tissue (label 1), and tumor lesion (label 2). In total, the dataset comprises CT scans from 131
patients. These were released in two separate parts(“LiTS Dataset Part 1” and “LiTS Dataset Part
2”)[6].
The dataset provides substantial clinical variability in terms of tumor size, shape, location, and
density. This heterogeneity, along with the high-quality manual annotations and diverse institutional
origins of the scans, makes the LiTS dataset a reliable and realistic benchmark for liver and tumor
segmentation research.

4 Generative Adversarial Networks (GANs)

4.1 Basic GAN Architecture

GANs are a type of deep learning model used to generate new data that looks similar to a given
dataset. They have become especially popular for tasks like creating realistic images, generating
audio, and even producing videos. The idea behind GANs is to train two neural networks at the
same time being a generator and a discriminator. These two networks are designed to compete
against each other in a learning process.[4].
This interaction can be understood as a two-player minimax game, where the generator tries to
minimize the ability of the discriminator to correctly classify its outputs, and the discriminator
tries to maximize its classification accuracy. The objective function of this game is given by:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))]
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In this expression, pdata(x) represents the real data distribution, pz(z) represents a prior distribution
from which random noise vectors z are sampled,D(x) is the probability assigned by the Discriminator
that x is real, and G(z) is the data generated by the Generator from the noise z. The Generator
seeks to minimize this value by producing realistic data, while the Discriminator seeks to maximize
it by correctly distinguishing real from fake data. Over time, if training is successful, the generator
produces outputs that are so realistic that the discriminator cannot tell them apart from the real
ones.

4.1.1 The Generator

The Generator G is responsible for producing fake samples that resemble the real data. Its input
is a random noise vector z, sampled from a simple distribution such as a Gaussian or uniform
distribution, denoted as pz(z). This noise contains no meaningful information about the real data,
it merely acts as a starting point or a seed for the generation process. The output of the Generator,
G(z), is a synthetic sample intended to mimic a real data point drawn from pdata(x). For instance,
if the goal is to generate images, G(z) would output an image with the same dimensions and
characteristics as real images in the dataset. The Generator’s objective is to fool the Discriminator,
making D(G(z)) as close to 1 as possible, meaning the Discriminator believes the generated sample
is real[17].

4.1.2 The Discriminator

The Discriminator D acts as a binary classifier that distinguishes between real and fake data. Its
input is either a real data sample x from the true data distribution pdata(x) or a fake sample G(z)
generated by the Generator. The output D(x) is a single scalar between 0 and 1, representing
the probability that the input is real. If D(x) is close to 1, the Discriminator believes the sample
is real, if it is close to 0, it believes the sample is fake. In the minimax game, the Discriminator
aims to maximize V (D,G) by assigning high probabilities to real samples (logD(x) term) and low
probabilities to fake samples (log(1−D(G(z))) term)[17].

Figure 1: Schematic of a Generative Adversarial Network [17]. The generator G takes in a random noise vector z and outputs a fake
sample G(z). Both G(z) and real data X are given to the discriminator D, which predicts whether each input is real or fake. The system
trains both networks in a loop to improve performance over time.
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Figure 1 illustrates the basic architecture of a GAN. On the left side, a noise vector z is fed into
the generator G, which tries to produce data that resembles the training data. The output G(z),
along with real data X, is passed to the discriminator D. The discriminator outputs a prediction
indicating whether each sample is real or fake. This feedback is used to update both networks. The
discriminator is trained to improve its classification accuracy, while the generator is trained to
produce more convincing fake data that can fool the discriminator.

4.1.3 Training Procedure

The training process of GANs is what makes them unique and powerful. Unlike traditional neural
networks, GANs involve two models learning simultaneously through a competitive setup.
Training is alternated between the two networks, meaning they take turns updating their parameters.
At the beginning of training, the generator’s outputs are mostly random and not convincing, so the
discriminator can easily detect that they are fake. However, the generator gradually improves by
receiving feedback from the discriminator. When the generator is trained, it uses the discriminator’s
feedback to adjust itself and make its fake outputs more realistic. This causes the discriminator to
be less confident in its predictions. As a result, the discriminator also has to improve. When the
discriminator is trained, it learns to better identify fake observations, which in turn pushes the
generator to come up with new and better fakes[4].
This back-and-forth training dynamic continues over many iterations. As the generator gets better
at fooling the discriminator, and the discriminator becomes more skilled at spotting fakes, both
networks evolve and improve. Ideally, this process continues until the generator creates samples
that are so realistic that the discriminator cannot distinguish them from real data.

Figure 2: Schematic of the GAN training process[18]. In each training step, the generator G produces fake data from random noise z,
and the discriminator D attempts to distinguish this from real data X. Feedback from the discriminator is used to improve the generator.
The networks are trained in alternation to push each other to improve.
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Figure 2 [18]shows how training is alternated between the generator and discriminator. In the top
part of the diagram, the generator creates fake data G(z) from random input z, which is judged by
the discriminator D. In the bottom part, both the real data X and the generator’s output G(z) are
evaluated by the discriminator. Based on the discriminator’s performance, each network updates
its parameters. This loop continues until the generator produces highly realistic outputs that are
difficult to classify as fake.

4.1.4 Advantages and Challenges

GANs come with a mix of strengths that set them apart from older generative models. Unlike
traditional generative models, GANs do not rely on Markov chains. A Markov chain is a stochastic
process that generates samples by iteratively transitioning between states, where each state depends
only on the previous one, often used in models like Boltzmann machines to approximate data
distributions. However, Markov chains can be computationally expensive and slow to converge,
requiring many iterations to produce high-quality samples and introducing complexity in tuning
transition parameters. By avoiding Markov chains, GANs simplify the training process, as they
rely entirely on backpropagation through the generator and discriminator networks, which is more
straightforward and computationally efficient [4].
However, GANs also present some significant challenges. Training can be unstable due to the
adversarial nature of the process, where the generator and discriminator must be carefully balanced.
If this balance is not maintained, the generator may suffer from mode collapse, a situation in which
it produces a limited variety of outputs regardless of input. Additionally, GANs do not offer an
explicit likelihood function, which, in statistical modeling, is a mapping from parameter values to
the probability of observing the data given those parameters. The likelihood quantifies how well a
model with specific parameters explains the observed data and is central to maximum likelihood
estimation methods[19]. The lack of such a function makes it difficult to evaluate the performance
of the model quantitatively[4].
Despite these challenges, GANs form the basis for a wide range of successful applications in
computer vision and beyond.

4.2 Other Variants of GANs

Beyond the standard GAN framework, several specialized variants have been developed to suit
different generative tasks. Conditional GANs (cGANs) incorporate additional input such as class
labels, images, or text to control the output, making them suitable for tasks where guidance or
specificity is needed [20]. For fine-grained control and high-quality image synthesis, StyleGAN
introduces a mapping network and style-based modulation, enabling precise manipulation of image
attributes and highly realistic outputs [21]. On the other hand, if the goal is to translate between
image domains without paired data such as converting paintings to photos or healthy to diseased
organs, CycleGAN offers an effective solution using cycle consistency loss to preserve content
structure [22].
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5 Related Work

5.1 GANs in Medical Imaging

Medical image synthesis is a vital research area in biomedical engineering, addressing the challenge
of limited annotated datasets for deep learning applications like medical image analysis [23]. This
thesis uses GANs to generate synthetic healthy and tumor-containing liver CT scans, enabling
comparative evaluation of their quality.
Recent studies have applied GANs to medical imaging, particularly for CT scan synthesis. A patch-
based GAN was used for brain CT-to-MRI translation, demonstrating high-fidelity cross-modal
synthesis but not focusing on direct CT generation [24]. Similarly, Costa employed GANs for retinal
image synthesis, enhancing segmentation tasks, which highlights GANs’ versatility but differs from
liver-specific applications [25]. These works provide a foundation for synthetic image generation,
though they address different modalities or tasks compared to our focus on liver CT scans.
A highly relevant study by Frid used DCGANs to generate synthetic liver lesion CT images (cysts,
metastases, hemangiomas) from a dataset of 182 scans [26]. They trained separate DCGANs per
lesion class, augmenting a CNN classifier to improve sensitivity from 78.6% to 85.7% and specificity
from 88.4% to 92.4%[26]. This approach aligns with the use of separate GANs for healthy and
tumor-containing liver datasets in this thesis. However, their focus on classification contrasts with
this papers goal of generating and comparing synthetic images for quality assessment.
Current research often prioritizes classification or cross-modal tasks, with limited emphasis on
comparing synthetic healthy and tumor-containing images using quantitative metrics like PSNR or
SSIM. Additionally, most studies use 2D data, overlooking 3D CT context, and face challenges in
capturing subtle tumor features. This thesis addresses these gaps by training basic GANs on separate
healthy and tumor-containing liver CT datasets to generate 2D slices, comparing their realism
against a baseline of real scans using visual and quantitative evaluations, potentially informing
future 3D extensions.

5.2 Evaluation Metrics for Synthetic Images

Evaluating the quality of GAN-generated medical images is not straightforward because standard
quantitative measures do not always match how humans judge realism. Higaki et al. [27] explored
this issue in myocardial perfusion imaging (MPI) by using both objective metrics and a Visual
Turing Test (VTT).
For the objective evaluation, they reported a Fréchet Inception Distance (FID) of 100.6 between
real and generated images, showing that the two distributions were still quite different. Interestingly,
the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) score was lower (better)
for generated images (32.3±7.5) than for real ones (49.9±8.0), suggesting that synthetic images
sometimes looked smoother and visually cleaner.
The VTT was used to check how realistic the images looked to experts. Nine cardiologists were
asked to classify real and fake MPI images. Their first Correct Answer Rate (CAR) was only 61.1%,
close to random guessing. After being told some clues about typical GAN artifacts, the CAR
improved to 80.0%.
This work highlights that quantitative scores alone can be misleading in medical image synthesis.
Human evaluation, especially by trained clinicians, is important when judging whether GAN-
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generated images are realistic enough for medical use.

6 Methodology

6.1 Data Pre-processing

6.1.1 Volumetric Slice Extraction and Initial Labeling

The LiTS dataset contains 3D CT scans of the abdomen along with segmentation masks that label
different parts of the body. These masks help identify which slices show the liver and which ones
contain tumors, making it possible to find the exact locations of tumors within the scan.

(a) CT scan slices (b) Corresponding segmentation masks

Figure 3: Decomposition of a 3D abdominal CT scan from Patient 61 into 2D axial slices with the corresponding segmentation mask for
each slice.

To enable the use of 2D GANs, each 3D CT scan was decomposed into a stack of 2D axial slices, as
illustrated in Figure 3. For each axial CT slice, the corresponding segmentation slice was extracted,
forming image-mask pairs. This was done using a custom Python pre-processing pipeline that
iterated through each patient volume slice by slice.
Since most GAN architectures are designed for 2D inputs, converting 3D volumes into 2D slices allows
the model to focus on spatial features within each plane while significantly reducing computational
load. It also increases the number of training samples, which is beneficial for model learning.
Each slice pair was temporarily cached and analyzed to assess tumor presence before being assigned
to the appropriate training category.

6.1.2 Binary Tumor Classification and Dataset Separation

Each axial slice was then classified into one of two categories based on its segmentation mask:

• Healthy Slice: If the segmentation mask associated with a slice contained no pixels labeled
as 2, the slice was considered free of visible tumor and classified as healthy.

• Tumor Slice: If the segmentation mask included any non-zero count of voxels labeled
as 2, the corresponding slice was labeled as tumor-containing.

This binary classification scheme was applied across the full dataset, effectively splitting it into two
clearly delineated subsets: healthy and tumored. Each subset was saved to a separate directory
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Figure 4: Slice 153 from Patient 61 showing a liver tumor. The left image is the original CT scan, and the right image shows the
corresponding segmentation mask highlighting the tumor region in red.

Figure 5: Slice 146 from Patient 61 showing both liver and tumor regions. The left image is the original CT scan, and the right image
displays the segmentation mask, with the liver and tumor regions separately annotated.

structure, further organized into training and validation splits using a consistent directory format
required by PyTorch’s ImageFolder class.

6.1.3 Preprocessing Pipeline

All extracted slices were preprocessed using a consistent transformation pipeline to prepare them
for training the GAN models. Since CT scans are originally grayscale, each image was explicitly
converted to a single grayscale channel to avoid introducing any unintended color information
from RGB representations. Afterward, the images were resized to a standardized resolution of
64× 64 pixels using bilinear interpolation. This resolution was selected to strike a balance between
retaining enough anatomical detail and ensuring efficient model training, as higher resolutions can
be computationally expensive. Following resizing, the pixel intensity values were normalized to
fall within the range [−1, 1]. This normalization step is important because the GAN’s generator
network uses a tanh activation function at its final layer, which naturally outputs values in this
same range. Matching the input data to this output range helps the model train more effectively
by ensuring the real and generated images are on the same scale. These transformations were
implemented using the torchvision.transforms library in Python and were applied dynamically
during training using a PyTorch DataLoader. This approach allowed for scalable and consistent
preprocessing across both the healthy and tumor datasets.

6.1.4 Resulting Dataset Summary

The original dataset that got organized into two distinct subsets for further GAN training data was
seprated into two distinct subsets being the HealthyGAN dataset, which consisted of CT slices
containing liver tissue without any tumor presence, and the TumorGAN dataset, which included
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slices with visible tumor regions alongside liver tissue. The HealthyGAN dataset was used to train a
model capable of generating anatomically plausible liver images free of pathological features, while
the TumorGAN dataset was used to train a model focused on synthesizing realistic tumor-bearing
liver CT slices.
The complete dataset comprised 19,156 axial slices derived from 131 patient scans. A detailed
breakdown of the dataset composition is provided in Table 1.

Table 1: Dataset composition

Split Healthy Tumored Total
Train 10,716 6,410 17,126
Val 1,257 773 2,030
Total 11,973 7,183 19,156

6.1.5 Resolution Tradeoffs and Downscaling Rationale

As part of the preprocessing , all CT images were downscaled from their original resolution of
512× 512 pixels to 64× 64. This reduction was motivated by the need to train the model efficiently
within the constraints of limited computational resources, including restricted GPU access and
modest local hardware. Lower-resolution images reduce memory consumption and training time,
enabling the entire pipeline to run on accessible hardware while supporting iterative development
and experimentation.
While this approach significantly lowered the computational burden, it came at the cost of visual
fidelity. Medical CT scans rely on fine anatomical details, such as soft-tissue gradients, tumor
boundaries, and localized contrast which are lost at lower resolutions. At 64× 64, small tumors or
subtle lesions may become indistinct or entirely imperceptible, limiting the model’s ability to learn
clinically meaningful patterns. This tradeoff likely contributed to the observed limitations in image
realism and evaluation metrics, such as SSIM and PSNR, discussed in later chapters.
Despite these drawbacks, downscaling was a necessary compromise that allowed to focus on the
broader feasibility of GAN-based medical image generation.

6.2 Model Architecture

The GAN architecture developed in this study consists of two fully connected neural networks: a
Generator (G) and a Discriminator (D). Both networks are designed to operate on grayscale axial
CT slices of size 64× 64, consistent with the image format described in the preprocessing pipeline.
The Generator transforms a 100-dimensional latent vector z ∼ N (0, I) into a synthetic image.
This process is implemented using a sequence of four linear layers with progressively increasing
dimensionality, followed by non-linear activations. ReLU activations are applied after each layer
except the final one, which uses a tanh activation to align the output range with that of the
normalized input data. The final vector is reshaped into a single-channel image of resolution 64×64.
Conversely, the Discriminator receives an image input and determines whether it is real or generated.
The image is first flattened into a one-dimensional vector and then passed through a series of linear
layers with decreasing size. LeakyReLU activations are used between layers to preserve gradient
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flow. A final sigmoid activation produces a scalar output representing the probability that the input
image is real.
An overview of the architecture for both networks is provided in Table 2.

Table 2: GAN model architecture

Component Layer Output Shape Activation

Generator

Linear 256 ReLU
Linear 512 ReLU
Linear 1024 ReLU
Linear 4096 Tanh
Reshape 1× 64× 64 –

Discriminator

Flatten 4096 –
Linear 512 LeakyReLU (0.2)
Linear 256 LeakyReLU (0.2)
Linear 1 Sigmoid

6.3 Design Choices

The architecture was designed with simplicity and efficiency in mind, making it suitable for grayscale
CT images. Fully connected layers were used instead of convolutional layers to keep the model
lightweight and easy to train. Since the images are small, this design choice allowed for quick
experimentation without heavy computational cost, while still capturing important spatial features
in medical images.
The activation functions were chosen to support stable training. ReLU was used in the Generator
to promote efficient learning and avoid vanishing gradients. In the Discriminator, LeakyReLU was
applied to help maintain gradient flow, especially during early stages of training when the generator
may produce poor-quality images. The final layer of the Generator uses a tanh activation to match
the normalized pixel range of the input data.
A 100-dimensional latent vector was used as input to the Generator. This size is a common choice
in GANs, providing enough variation for the model to generate diverse outputs, without making
training more complex than necessary[28].
Adam was selected as the optimizer for both networks because of its adaptive learning rate and
momentum features, which help stabilize GAN training[29]. A learning rate of 2× 10−4 was used,
following common practice in similar image generation tasks.
Overall, this minimal design offers a good balance between simplicity and performance. While
more advanced architectures like convolutional or residual networks could be explored in the future,
the current setup provides a strong baseline for generating medical images in a controlled and
interpretable way.

6.4 Training Setup

6.4.1 Training Parameters

The GAN model was trained for a total of 1000 epochs. During this training process, the model
learned to generate synthetic liver tumor CT images based on adversarial feedback. At regular
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intervals, generated image samples and model weights were saved to monitor progress and preserve
outputs.
The key hyperparameters and configuration details used during training are shown below:

Parameter Value
Total Epochs 1000
Image Size 64 × 64 pixels (grayscale)
Batch Size 64
Latent Vector Dimension 100
Learning Rate 0.0002
Noise Distribution Standard Normal N (0, 1)
Checkpoint Frequency Every 20 epochs
Image Sample Frequency Every 30 epochs

Table 3: GAN training parameters

6.4.2 Loss Functions and Optimization

The generator maps random noise vectors to synthetic CT images, while the discriminator learns
to differentiate between real and the fake generated images.
The training objective uses binary cross-entropy (BCE) loss:

LBCE(x, y) = − [y log(x) + (1− y) log(1− x)]

During each iteration:

• The discriminator is trained using BCE loss on both real images (label 1) and fake images
(label 0). The total loss is the sum of both.

• The generator is trained to maximize the discriminator’s classification error, by producing
images that are labeled as real (label 1).

6.4.3 Training Progress and Convergence

Throughout training, the generator and discriminator losses were recorded for each epoch. Initially,
the discriminator had a much lower loss, indicating it could easily distinguish real from fake images.
However, as training progressed, the generator improved and the gap between the generator and
discriminator losses gradually narrowed.
This convergence suggests that both networks were learning effectively. By the end of training, the
losses had approached each other, indicating a balanced adversarial process.
This balance is desirable in GAN training, as it typically corresponds to the generator producing
images that are difficult for the discriminator to distinguish from real samples.
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Figure 6: Generator and discriminator losses over training epochs

6.5 Evaluation Using Fréchet Inception Distance (FID)

The Fréchet Inception Distance (FID),is a metrics to quantitatively evaluate the quality of images
generated by GANs[7]. It compares real and generated images by checking how similar their
important features such as edges, textures, and patterns are. These features are extracted using
a pre-trained Inception V3 model, which is a deep learning model originally trained on a huge
image dataset (ImageNet). Because it has already learned to recognize thousands of objects, it can
pick out meaningful and high-level details from images, making it very effective for analyzing and
comparing them.[30].
During the 1000 epochs of GAN training, a total of 29 tumor-containing synthetic CT images were
saved as sample checkpoints. To properly evaluate the GAN, it was necessary to compare these
generated images with the same number of real CT images. Therefore, 29 random real CT images
were selected from the tumor-containing CT dataset to create a separate evaluation dataset.

The pytorch fid function is the core method used to compare these two sets of images. This
function operates on the statistical representations of the two datasets rather than directly compar-
ing pixel values. Moreover, in the process of computing the FID, all images in both datasets were
internally rescaled to 299x299 [31] and they got converted to 3-channel RGB since the Inception-v3
network expects 3-channel input. For each dataset, the Inception-v3 network processes the images
and produces 2048-dimensional feature vectors from one of its final pooling layers. The empirical
mean and covariance matrix of these feature vectors are then computed for both the real and
generated images, and these statistical quantities are used to calculate the FID.
Mathematically, the FID is defined as[31]:

FID = ∥µ1 − µ2∥2 + Tr
(
Σ1 + Σ2 − 2 (Σ1Σ2)

1/2
)

where µ1 denotes the mean feature vector of the real images, and µ2 denotes the mean feature
vector of the generated (synthetic) images. The terms Σ1 and Σ2 represent the covariance matrices
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of the feature vectors of the real and generated images, respectively. The term ∥µ1 − µ2∥2 is the
squared Euclidean distance between the two mean vectors, indicating how far apart the average
features of the two datasets are. The Tr refers to the trace of a matrix, which is the sum of its
diagonal elements and corresponds to the total variance in this context. The expression (Σ1Σ2)

1/2

represents the matrix square root of the product of the two covariance matrices and measures the
similarity of the feature distributions of the two datasets[32].

6.5.1 Interpretation of FID Values

The general interpretation of the FID value is summarized in table 4 [31]:

Table 4: FID value Ranges

FID Score Interpretation
<10 Excellent, almost indistinguishable from real images

10 – 30 Good, realistic images with minor artifacts
30 – 50 Moderate, visible differences compared to real images
> 50 Poor, generated images are far from real distribution

The FID score calculated for the generated tumor containing CT images was found to be 239.55.
This value is much higher than the commonly accepted threshold of 50 for reasonable image quality,
whoch shows that GAN has done a poor job in generating realistic images.

7 Results and Discussion

7.1 Results of TumorGAN

The TumorGAN model, based on a vanilla GAN architecture, was trained for 1000 epochs on the
tumor-containing subset of the LiTS dataset. Despite this extended training duration, the resulting
synthetic images were far from satisfactory in terms of medical realism and diagnostic quality.
Visual inspection of the generated samples revealed that most outputs were extremely noisy, lacked
anatomical coherence, and failed to capture the complex structural and textural features of real
tumorous liver CT slices.
This outcome reflects a broader challenge inherent in applying vanilla GANs to high-stakes
domains such as medical imaging. Vanilla GANs rely solely on fully connected layers and basic
loss functions like binary cross-entropy. While they are theoretically capable of modeling complex
data distributions, in practice they often suffer from unstable training, mode collapse, and poor
convergence, especially when the data distribution is high-dimensional and subtle, as is the case in
liver tumor CT scans.
Tumorous liver slices contain intricate anatomical details, low contrast boundaries, and complex
noise patterns typical of CT imaging. A vanilla GAN, which lacks architectural innovations such
as convolutional layers, attention mechanisms, or progressive growing, is inherently limited in its
ability to model such fine-grained visual structure. As a result, the generated outputs often resemble
coarse, grainy blobs rather than coherent anatomical patterns. Even at epoch 1000, the samples
retained significant noise artifacts and failed to convincingly replicate the appearance of actual
tumor tissue or liver parenchyma.
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Another critical factor limiting the model’s performance was the training time. Vanilla GANs are
notoriously data-hungry [33] and sensitive to hyperparameters, and in many documented cases,
successful convergence requires tens of thousands of epochs, especially on complex datasets. The
1000-epoch training, although computationally intensive, was insufficient to fully learn the highly
nuanced distribution of real tumorous CT slices. Additionally, the lack of architectural specialization
like convolutional feature extraction, meant that the model had no spatial inductive bias, making
the learning process even slower and less stable.
It is also important to highlight that vanilla GANs provide no mechanism for controlling the
characteristics of the tumors being generated such as their size, shape, anatomical location, or
contrast levels. This lack of conditional control significantly limits their applicability in medical
image synthesis, where precise and clinically meaningful variation is often required. Additionally,
the discriminator network, being relatively shallow and composed solely of fully connected layers,
was insufficiently expressive to enforce high-resolution realism. As a result, the feedback it provided
to the generator was weak and imprecise, further contributing to the noisy and anatomically
implausible outputs observed during training.

7.1.1 Visual Evolution of Generated CT Slices

To better understand the model’s learning progression, 10 samples are selected from different epochs
(from epoch 100 to 1000) and are visualized below. As shown in Figure 7, the early outputs (epochs
100 to 400) are dominated by high-frequency noise, blurred shapes, and random textures. Over time,
particularly by epochs 500 and 800, the structure becomes slightly more defined. However, even
at epoch 800, the tumor regions are not clearly distinguishable, and the anatomical consistency
remains weak.

Figure 7: Progression of TumorGAN generated CT slices across training epochs. Samples are shown from 5 different epochs including
the first synthetic image and last one. While image structure gradually improves, even later-stage outputs remain noisy and lack sufficient
clinical realism.

The noticeable change in the shape and structural composition of the images at epochs 900 and 1000
may indicate a shift in the generator’s strategy to minimize adversarial loss. In earlier epochs, the
generator predominantly produced smooth, averaged shapes, which served as a stable and relatively
effective method to reduce discriminator rejection, as such generic forms are statistically “safe”
approximations of the training distribution. However, in the later stages of training, the generator
appears to have changed its approach by introducing new and more varied structural patterns,
which, while visually distinct, do not necessarily correspond to realistic anatomical features. This
behavior is consistent with GAN dynamics, where the generator can exploit weaknesses in the
discriminator by focusing on producing outputs that are harder to classify as fake, even if they
deviate from the true data distribution. Such a shift may indicate partial mode collapse or a
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biased exploration of specific regions in the latent space, resulting in images with different but not
necessarily better structural representations.

7.2 Comparison and Analysis

Figure 8 shows a side-by-side comparison between synthetic CT image generated by TumorGAN
at epoch 800 and a real tumor-containing CT slice which initially had a scale of 512x512 but is
been down scaled to 64x64 to match the size of the generated CT images . Although the overall
structure appears similar, with a central liver region and a darker tumor-like mass, the generated
image is noticeably noisier. Fine details, such as tumor edges and soft tissue gradients, are blurred
or lost entirely.
This visual similarity in layout does not translate into diagnostic realism. The noise artifacts and
lack of sharp anatomical boundaries significantly reduce the clinical value of the generated image.

Figure 8: Real liver CT image containing tumor Versus Fake CT image of liver containing tumor generated by Vanilla GAN

7.3 Discussion of Limitations

Despite the potential of generative models in medical image synthesis, this project encountered
several practical limitations that constrained both model choice and experimental depth. The most
critical constraint was the combination of limited computational resources and dataset-specific
requirements, which ultimately led to the use of a vanilla GAN architecture.

Given the resource constraints, specifically the use of Google Colab and a mid-range personal laptop
with limited GPU availability, it was not feasible to implement and train more sophisticated GAN
variants such as DCGAN, StyleGAN, or GANs with convolutional layers and attention mechanisms.
These architectures often require significantly more memory, prolonged training time, and optimized
infrastructure, which were not accessible within the scope of this bachelor’s project.
Additionally, the dataset posed unique challenges. While the LiTS dataset is clinically rich, its
volumetric 3D nature necessitated extensive preprocessing, including slice extraction, labeling, and
normalization. This added overhead made the pipeline more sensitive to training runtime and
storage availability, especially when dealing with high-resolution inputs or multiple architectures.
Moreover, even within the relatively lightweight vanilla GAN framework, training for 1000 epochs
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already demanded several hours per run, making iterative tuning and experimentation difficult.
Attempts to increase image resolution or add complexity to the model resulted in crashes, slowdowns,
or failed checkpoints due to memory exhaustion.

A significant limitation in this study was the use of 64 × 64 resolution images, which restricted
the model’s ability to capture fine-grained anatomical details essential for medical imaging. One
potential direction for future work is to generate high-resolution outputs using more advanced
generative models. Deep learning architectures such as Progressive Growing GANs (ProGAN) or
StyleGAN[34] have been developed specifically to address this challenge, enabling the synthesis of
detailed, high-resolution images in stages or by separating style and structure. Another option is to
train a separate super-resolution neural network, such as ESRGAN (Enhanced Super-Resolution
GAN) [35], which can upsample low-resolution outputs from the generator into higher-resolution
versions while preserving structural details. These techniques could be integrated into the current
pipeline either by replacing the vanilla GAN architecture entirely or by appending an upsampling
network to the generator. Exploring these methods may help overcome the resolution bottleneck
while keeping training tractable on limited hardware.

The combined factors of dataset dimensionality, hardware limits, and long training durations,
prevents a full investigation of more advanced generative techniques or architectural improvements.
While vanilla GANs provided a baseline for exploring synthetic tumor generation, their inability to
capture fine-grained anatomical detail further exposed the limitations imposed by the constrained
environment.
In summary, the exclusive use of a simple GAN model was not a design preference but a necessity
imposed by limited hardware, time, and data handling capabilities. Future work with better access
to compute power and memory could explore more expressive GAN variants that are better suited
for the complexity of medical image synthesis.

7.4 Ethical and Clinical Considerations

The generation of synthetic medical images, particularly those representing pathological conditions
like liver tumors, brings forward significant ethical and clinical concerns. While the use of generative
models such as GANs presents exciting possibilities for data augmentation, model pretraining,
and research acceleration, their application must be approached with caution, especially when the
generated outputs may influence real-world clinical workflows or decisions.
As demonstrated in the results, the GAN model struggled to produce anatomically accurate
or diagnostically useful outputs even after 1000 epochs of training. The generated images were
consistently noisy and lacked the detailed structure required for any form of clinical application.
Given this, the synthetic outputs are not only unreliable but could potentially mislead or misinform
if introduced into sensitive medical contexts without appropriate safeguards.
Moreover, the use of simplistic architectures like vanilla GANs for medical imaging raises questions
about the ethical responsibility of researchers. Unlike applications in art or entertainment, mistakes
in healthcare data modeling can have direct consequences on human health. Generating images
that mimic disease without a high standard of quality, validation, and oversight could contribute to
bias, misdiagnosis, or flawed decision-support systems if used improperly.
In conclusion, while synthetic data generation holds potential for supporting medical research,
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deploying models like vanilla GANs without rigorous validation and clinical oversight is both
ethically irresponsible and clinically unsafe. These tools should never be used in real-world diagnosis
or treatment settings without comprehensive testing, expert evaluation, and adherence to regulatory
standards.

8 Conclusions and Future Work

8.1 Answering the Research Questions

Can GANs generate realistic and medically accurate liver CT images?
Based on the experiments conducted in this thesis, the answer is partially no, at least not with a
basic GAN architecture. While the synthetic CT images generated by TumorGAN showed rough
structural resemblance to real images such as similar grayscale patterns and general liver positioning,
they lacked anatomical clarity, exhibited high noise, and failed to reproduce the subtle contrast
and texture seen in true medical CT scans.

How can we effectively use existing datasets to create a dataset of healthy and
tumor-containing 2D liver slices that can be used to train generative models?
existing datasets such as the LiTS dataset can be effectively used to create a specialized dataset
of healthy and tumor-containing 2D liver slices suitable for training generative models. By using
the provided segmentation masks, it is possible to accurately separate slices into healthy and
tumor-containing categories, as demonstrated in this study. The pre-processing pipeline which
involved volumetric slice extraction, binary tumor classification based on segmentation labels, and
normalization to a consistent resolution, proved to be a reliable method for producing clean, labeled
2D datasets.
This approach is particularly effective in scenarios where no task-specific dataset is available,
as it allows researchers to repurpose general clinical imaging datasets for generative modeling
tasks. Moreover, because the LiTS dataset contains high-quality annotations and diverse tumor
presentations, the resulting 2D dataset works perfectly for training baseline generative models, such
as GANs, by providing sufficient structural variability and clear labeling.

Are tumors well-generated?
No. The generated images were too noisy to clearly identify or locate tumor regions. The synthetic
outputs lacked any distinct tumor boundaries or consistent structure.

Should GANs be considered reliable tools for medical research?
Not in their basic form. This thesis used a vanilla GAN with fully connected layers due to resource
limitations. However, this does not discredit GANs as a concept. Advanced variants like DCGAN
or StyleGAN with convolutional layers, attention mechanisms, and conditional training have shown
more promising results in other medical imaging tasks.

In conclusion, while vanilla GANs are not reliable for generating diagnostically useful synthetic
medical images, this study highlights their potential as a baseline method and underscores the
promise of more advanced generative architectures.
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8.2 Recommendations for Future Work

For future work, two directions can be pursued to improve the results and clinical relevance.
First, future studies should consider using more advanced GAN architectures such as StyleGAN or
DCGAN, which are better equipped to capture detailed anatomical features. These models use
convolutional layers and style-based modulation, which offers stronger performance in generating
high-resolution and structurally coherent images.
Second, further experiments with vanilla GANs may still be useful, but they would require a much
longer training schedule, potentially exceeding 5,000 epochs, along with access to more powerful
hardware to handle the extended training time. With sufficient computational resources, prolonged
training might allow the model to better capture the subtle grayscale textures and anatomical
patterns present in liver CT data. Additionally, maintaining the original image resolution rather
than down scaling would be essential for preserving fine structural details, such as tumor boundaries
and soft-tissue gradients, which are critical for medical imaging applications.
Third, future work could explore diffusion models, which are a newer type of generative model that
often produce more realistic and detailed images than GANs[36]. These models, such as Denoising
Diffusion Probabilistic Models (DDPMs) [37], work by gradually removing noise from an image until
a clear and realistic result appears. They are more stable to train than GANs and are less likely
to generate repetitive or unrealistic images [36]. Because they can capture fine details, diffusion
models could be very useful for medical imaging tasks, such as showing clear tumor boundaries or
small tissue structures. However, they need more computing power and longer training times, but
their success in other fields suggests they have strong potential for future medical research [38].
Pursuing either of these directions would help overcome the limitations in this thesis and bring
synthetic medical imaging closer to practical use in research and model development.
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