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Abstract

Object detection in high-resolution images is challenging when faced with small, multi-
scale, and oriented objects while having to maintain computational efficiency. The
traditional downscaling methods may result in a loss of image details and thus inaccu-
racies, especially for small objects. This thesis develops SegTiling, a Segmentation-based
Adaptive Tiling approach for oriented object detection. The approach has been evaluated
on the DOTA dataset and a proprietary dataset from Mainblades specialized in aircraft
drone inspections. SegTiling consists of a preprocessing phase, followed by an adaptive
tiling phase, and concludes with an object detection phase. Preprocessing sharpens
object boundaries by segmentation techniques, while Connected Component Analysis
(CCA) selects regions that guide the process of tile creation for optimal detection and
reduced computational overhead. Extensive experiments are conducted that empirically
compare SegTiling with the traditional and no-tiling methods, demonstrating significant
performance gains in mean Average Precision (mAP) and computational efficiency,
especially over the DOTA dataset. Moreover, larger sizes of images during inference
show an improvement mAP on Mainblades dataset. On the other hand, the sensitivity
of SegTiling to image quality in the context of multi-scale object detection underlines
a number of limitations, which are mainly due to its dependence on the accuracy of
segmentation. SegTiling, by nature, acts effectively depending on the quality of the
segmentation as poor-quality images may lead to less accurate segmentation and hence
reduced detection performance. Despite these limitations, this thesis shows the efficiency
of SegTiling for improving object detection, especially for small and oriented objects
in high-resolution images. The study also points out some possible future research
directions, including but not limited to applying SegTiling to other datasets different
from aerial and high-resolution images and embedding SegTiling into object detection
architectures to make these latter architectures even more robust and adaptable. Overall,
the results show that adaptive tiling using segmentation techniques greatly enhances
the detection accuracy and computational efficiency for high-resolution image analysis.
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1

Introduction

The highly dynamic research area of computer vision still faces challenges in various
object detection tasks. This is especially true for tasks related to detecting small,
multi-scale, and oriented objects. A main challenge for high-resolution images is the
requirement to downscale the images to reduce the resolution size so computers can
handle them. The obvious solution to that problem carries its own risk like losing
context information about the objects depicted in the images, especially for small objects.
Traditional methods, while effective to some extent, are inadequate when faced with the
complexities inherent in high-resolution images.
Tiling techniques as presented in the paper [28] are employed to work with high-
resolution images. Tiling is a way of partitioning an image into multiple smaller
images(tiles) so that it becomes easier to work. Using tiling can accomplish less compu-
tational load. Processing benefits by simply tiling for any size of image. However, this
technique can become challenging and can lead to a loss of image integrity if the tiles are
too small or when there are too many tiles. The fixed-size tiles may not align optimally
with the objects of interest, leading to fragmented and less accurate detection results.
In this thesis, adaptive tiling [24] is presented as a powerful technique for handling
high-resolution imagery in the context of oriented object detection. Standard tiling,
in general, is usually done with fixed-size tiles that are placed side by side to cover
the area of interest without overlapping and without leaving any space between them.
In many cases, fixed-size tiles [28] work more effectively compared to using images
without tiles. Rather than relying on the constraints of traditional downscaling, adaptive
tiling leverages the inherent diversity and complexity, splitting it into properly sized
tiles. These tiles are processed separately, preserving the original image’s integrity and
quality while keeping the required image context for accurate detection. Once analyzed,
these tiles are seamlessly reconstructed, resulting in a complete image with the object
detection results.
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1. Introduction 11

This thesis presents a novel method with the goal of improving object detection models
that go beyond similar tiling methods like SAHI [1] by integrating segmentation
techniques into the adaptive tiling process. Unlike existing methods that rely on
randomly generated tiles as used in "The Power of Tiling for Small Object Detection"
[28] paper, SegTiling, which stands for Segmentation-Based Adaptive Tiling, leverages
image-specific features obtained by using segmentation strategies to guide the creation
of contextually meaningful tiles that preserve object boundaries and spatial coherence.
This novel approach enhances the accuracy of object detection as demonstrated on
datasets like DOTA and the industrial dataset provided by the company Mainblades
which specializes in aircraft drone inspections. SegTiling improves the precision of
object detection while keeping computational efficiency by reducing the number of
generated tiles. The flexibility observed in practical applications, especially within
industrial inspections, underlines its robustness and potential impact it will have on a
wide range of object detection applications.
The rest of the paper is organized as follows: In Section 2 describes the problem statement,
which comprises motivation and a detailed problem definition. Section 3 reviews relevant
literature and puts the approach into a larger perspective with regard to object detection.
In Section 4, the metrics are introduced that are used to evaluate the performance of
SegTiling. In Section 5, the various baseline tiling approaches used to which SegTiling is
compared as introduced. Section 6 presents the SegTiling method in detail, along with
the benchmark and industrial data. Section 7 presents the experimental setup. Section 8
describes the experiments. Section 9 reports the results. Findings are discussed in Section
10 along with a discussion on its limitations and possible future scope. The contributions
and the implications of the research performed in this thesis are summarised in Section
11.
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Problem Statement

2.1 Motivation

Recent breakthroughs in computer vision and deep learning have really revamped object
detection from autonomous driving to medical diagnostics applications [11] [7]. Despite
all these advances, multi-scale object detection remains challenging for high-resolution
images. Multi-scale detection has a great demand for managing huge variations of scales
and designing anchor boxes that can catch objects of different sizes without adding
computational complexity to the overall process. High-resolution images have very rich
detailed information that is very helpful for accurate detection, while size puts great
demand on computation. This most often requires downscaling the image to reduce
computational demands which subsequently brings loss of information, especially in
the details which are very valuable, leading to a decrease in accuracy of the detections.
Various systems that demand high accuracy, like satellite imagery [2], medical imaging
[16], and surveillance [3], as even minor inaccuracies may result in big consequences.
Companies dealing in aircraft drone inspections, such as Mainblades, apply this multi-
scale object detection technology to perform aircraft inspections using UAVs, commonly
referred to as drones. This application uses high-resolution cameras mounted on drones
to intricately inspect aircrafts for damages with refined computer vision techniques to
make a both precise and reliable assessment. This motivates the search for innovative
approaches that can handle high-resolution data effectively without compromising on
detail and computational efficiency.

2.2 Problem Definition

The focus of this thesis is to solve the challenge of how maintaining the balance between
high accuracy of detection for multi-scale and small objects and high-resolution images
without sacrificing computational efficiency. The case study of detecting lightning strikes

12



2.2. Problem Definition 13

on aircraft surfaces was very prominent with the introduction of drone imagery in high
resolution by the Mainblades company. Detection definitely requires an accurate and
detailed inspection since it normally involves a very small and inconspicuous strike
on the aircraft. The general size of lightning strike marks is only a few millimeters,
while high-resolution cameras used in drones capture images with very fine spatial
resolutions, often in the range of micrometers per pixel. Conventional object detection
models normally optimize the input size and require efficient methods to handle
high-resolution images without excessive computational demands.
These few strike marks have to be found in the presence of issues such as resolution
reduction, detail loss associated with high-resolution image downscaling, the need
for robust multi-scale detection associated with the presence of features at different
scales, requirements for sophisticated techniques associated with finding and locating
oriented marks, and computation-efficient processing methods. In this framework, the
current thesis proposes the SegTiling adaptive tiling approach. This work combines
edge detection, color segmentation, and Connected Component Analysis (CCA) into a
unified framework with advanced models such as the Vision Transformer and Spatial
Transform Decoupling [34] by processing high-resolution images in computationally
feasible tiles, each at its optimal resolution.



3

Related Work

3.1 Oriented Object Detection

Oriented object detection refers to all the methods used in detecting objects of various
orientations in images. This is comparatively more complex than the classic object
detection, assuming that the objects in an image are axis-aligned [19].

Traditional approaches towards object detection started with classification schemes
where models are trained to classify images into categories. These were quickly adapted
to frameworks of object detection like the R-CNN family [27] that joined region proposal
methods with CNNs to carry out object detection in images. However, these models
struggled to detect objects which are not aligned to the image-axes.

Oriented object detection specifically addresses this limitation by developing methods
that can detect objects accurately irrespective of their orientation. For this, traditional
methods are used to rely on handcrafted features [23] in handling objects with different
orientations. While being innovative in this respect, these approaches again suffered
from limitations relating to flexibility. Their ability to generalize and adapt to a wide
variety of object orientations and shapes is restricted. As a result, they often struggled
to maintain accuracy when confronted with diverse or unpredictable conditions in
real-world scenarios.

Recent advances in oriented object detection have led to efficient and accurate frameworks
being set up, targeted at dealing with objects of arbitrary orientations. Among these,
there exists a framework based on Oriented R-CNN [30], which is two-stage in nature.
This utilizes an oriented Region Proposal Network, RPN [27] and an oriented R-CNN
head to achieve state-of-the-art detection accuracy on datasets such as DOTA [29] and
HRSC2016 [8] at the time of their respective releases. It was followed by the Learning RoI
Transformer [10], which addressed the problems in aerial object detection by applying
spatial transformations on RoIs, leading to enhanced performance on datasets like DOTA

14



3.2. Multi-Scale Detection 15

and HRSC2016 by a large margin. Besides, it has inspired revisiting the classification-
based approach to arbitrary-oriented object detection [33], where some new techniques
involved, such as Circular Smooth Labeling and Densely Coded Labels, can effectively
reduce model parameters while solving boundary problems found in existing regression-
based detectors. Very recently, there is increasing interest in using transformers for
oriented object detection. Models like Oriented Object Detection with Transformer
(O2DETR) [21] and Arbitrary-Oriented Object Detection Transformer (AO2-DETR) [9]
extend the capability toward direct processing of oriented objects with competitive
improvements over the traditional detectors while providing much-simplified pipelines
without any hand-designed components. Recently, Vision Transformers have emerged
as a powerful backbone for various computer vision tasks, oriented object detection
included. Unlike the traditional CNNs, ViTs intrinsically capture global context better
by treating images as sequences of patches. This attribute, thus, inherently makes
them more suitable for arbitrary-oriented object detection. Combination with Spatial
Transform Decoupling(STD) [34] further enhances its capability to a state-of-the-art on
the benchmark datasets including DOTA-v1.0 [29] and and HRSC2016 [8], as of the latest
available evaluations. STD is a technique to decouple the spatial transformation from
feature extraction to let the model handle complex spatial variations. This increases the
detection accuracy of oriented objects because it can now generalize and adapt more
effectively with a diverse range of orientations and scales that high-resolution images
may have. Their improvements present a potential capability for transformer-based
models to excel in oriented object detection tasks, thus allowing for better accuracy and
efficiency in detecting objects that come in different orientations within the images. This
thesis focuses on building upon these advancements applying a preprocessing approach
using segmentation techniques.

3.2 Multi-Scale Detection

Multi-scale detection becomes important to precisely locate objects of different sizes in
an image, since objects may appear at different scales due to perspective, distance, or
occlusion. A couple of attempts have been made to approach this challenge by using
techniques such as multi-scale feature fusion and scale-adaptive feature extraction. One
may refer to the following models utilizing multi-scale feature pyramids for effective
object detection across resolutions and scales, for example, Feature Pyramid Networks
(FPN) [17] and Single Shot MultiBox Detector (SSD) [20]. In [26], an improved version of
one-stage object detectors is proposed based on the YOLOv5 method, which is called
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Multi-scale Feature Cross-layer Fusion Network (M-FCFN). By fusing shallow and deep
features in PANet structure using cross-layer feature fusion, outputs can be provided
at different feature scales, improving the accuracy of detecting objects of diverse sizes.
For object detection in unmanned aerial vehicles (UAVs) taken images, [38] proposes
Self-Attention Guidance and Multiscale Feature Fusion (SGMFNet). This approach
leverages global-local feature guidance and parallel sampling feature fusion to solve some
challenges of UAV images effectively, including complex backgrounds and remarkable
scale differences. Solving the problems caused by multi-scale objects and arbitrary
orientations is a very crucial issue in remote sensing imagery. A unified framework
that includes a feature-fusion architecture to improve the feature representation for
objects of different sizes, is presented in the paper [14]. This framework also proposes
a rotation-aware object detector with oriented boxes for accurate object localization in
remote sensing images.
However, transformer-based models, such as DEtection TRansformer (DETR) [5], have
demonstrated limitations related to efficiently processing multi-scale detection tasks.
While they process the input in parallel, transformers are very likely to be insensitive to
fine-grained details and spatial relationships at different scales. Recent variants of DETR
and other transformer-based models have been proposed to overcome the challenges
brought about by multi-scale detection in transformers such as DETR. The Iterative
Multi-scale Feature Aggregation (IMFA), as proposed in [36], provides a paradigm
for efficiently exploiting multiple-scale features in transformer-based detectors. The
IMFA leverages sparse multi-scale features and rearranges the encoder-decoder pipeline,
with very minimal additional computational cost, yielding considerable performance
gains. Recent attempts at improving multiscale DETR detection include DETR++, which
proposes a new architecture with a Bi-directional Feature Pyramid, known as BiFPN,
for the effective integration of multi-scale features. DETR++ [35] also gives notable
improvements in the accuracy of detections against previous baselines. Meanwhile, a
lightweight object detection framework was also proposed for Lite DETR [15] to alleviate
some of the computational inefficiencies in multi-scale feature fusion in DETR variants.
In that work, an interleaved encoder block and key-aware deformable attention were
leveraged; Lite DETR achieved much lower computational costs while retaining most
of the detection performances. Vision Transformers (ViTs) [12] have also promised
improvement in multi-scale detection capabilities, especially when working together
with STD [34]. The main intuition behind the approach used in ViT lies in splitting the
image into patches and providing the sequence of linear embeddings of these patches as
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input to the model, allowing them to consider the whole input image with full contextual
information, capturing effective details at several scales. In this case, the main reason of
splitting the image is to fit to transformer architecture.

3.3 Tiling Strategies for Object Detection

It is common practice to use the tiling approach in order to alleviate computational
and memory burdens while processing large-size images [28]. The tiling approach
divide the input image into smaller tiles so the object detection models can process the
images effectively without reaching hardware limitations. Traditional object detection
models utilize a tiling approach [28] by divide the input image into fixed-size tiles and
processing tiles independently. This setup provides a way to use the model for large
images, but can have problematic settings leading to incomplete object detections or
object fragmentation at tile boundaries, and also inefficiencies in capturing contextual
information across tiles. Other works explore other tiling aspects for object detection,
such as by Plastiras et al. (2020) [25], where the authors investigate several ways of
developing efficient pipelines for resource-constrained devices in the areas of combined
pre-processing mechanisms with quantization and further exploration of different tiling
approaches. Another paper [6] proposes a CNN processor with hierarchical pipelining
and multicore reconfigurable computing for the effective detection of objects on FPGAs
with optimal use of computing units and on-chip memory utilization. A different method
called SAHI [1] presents a critical improvement in the domain of small object detection,
since one of the well-acknowledged problems is detecting far and low-resolution objects
in surveillance imagery. It proposes slicing-aided inference to improve the detection
capability of existing object detectors without any further fine-tuning. This method
serves as the baseline for comparison in this thesis where the proposed SegTiling
technique demonstrates superior mAP scores. Contrary to SAHI, SegTiling employs
segmentation techniques to generate tiles in an optimized and meaningful manner that
lets SegTiling perform object detection more accurately and handle multi-scale and
oriented objects better.
Adaptive tiling is a refinement of the traditional tiling approach, whereby tile sizes and
positions are dynamically adjusted according to the characteristics of the input image
and the objects contained therein. This adaptive strategy allows the model to direct
more resources to the regions of interest, therefore improving both the accuracy and
efficiency in detection. Several different approaches have explored the performance
and capability of various adaptive tiling techniques toward better object detection. A
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Dynamic tiling approach is proposed by S.Nguyen et al. [24], for small object detection
that uses non-overlapping tiles with dynamic overlapping rates to achieve improved
efficiency and accuracy. A paper leveraging model uncertainty and tiling [22] also tackles
domain adaptation for object detection. It seeks a good balance between adversarial
feature alignment and class-level alignment to enhance adaptation performance.
In oriented object detection, standard tiling and adaptive tiling play an important
role in handling objects of arbitrary orientations with complex spatial distributions.
The adaptive tiling techniques that were incorporated into oriented object detection
frameworks enhanced the robustness of the model toward correct object detection
of multiple orientations and scales in large-scale images. Recent papers addressed
challenges related to detecting arbitrarily oriented tiny objects. In fact, one paper
presents a method for tackling the challenges of detecting arbitrarily oriented tiny
objects [31]. Employing dynamic priors and a coarse-to-fine labels assigner, "Dynamic
Coarse-to-Fine Learning" mitigated mismatch issues and provided balanced supervision.
Experimental results have shown state-of-the-art performance on datasets such as DOTA.
Adaptive tiling enables the model to dynamically adjust tile size and position with object
attributes, hence focusing computational resources on regions of interest for improving
detection.
Although the mentioned methodologies present very noticeable advances in adaptive
tiling and object detection, SegTiling enjoys this singular advantage of bringing in
segmentation techniques right within the tiling process. Unlike other methods focused
on the placement of tiles or domain adaptation, SegTiling focuses on the correct
identification of areas of interest through segmentation before the actual execution of the
tiling phase. By embedding segmentation into the adaptive tiling framework, SegTiling
not only increases detection accuracy but also generalizes effectively across different
datasets like DOTA [29] and object detection scenarios.
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Fundamentals

This chapter introduces the metrics that help in assessing the efficiency and accuracy of
the proposed approach in this thesis. These metrics provide a quantitative measure of
the accuracy, efficiency, and overall performance of the object detection models used.
Key concepts related to evaluation, such as Precision, Recall, Intersection over Union
(IoU), Average Precision (AP), and mean Average Precision (mAP), are also covered.

4.1 Evaluation Metrics

Evaluation metrics have prime importance in assessing the entire process and ensuring
the correctness of the predictions made by the model against the ground truth annotation.
The following steps and methodologies will obtain common metrics such as precision,
recall, average precision, and mean average precision. In this thesis, besides the standard
VOC AP method [13], the VOC 2007 metric [13] is also used as an extra evaluation
measure. These metrics are used to compare SegTiling to existing methods.

4.1.1 Precision and Recall

First of all, precision (4.1) and recall (4.2) are the very core metrics here. Precision tells
how well the model was able to predict by finding the ratio of true positive detections to
the overall amount of positive detections by the model. Recall, on the other hand, tells
how well a model detected all instances by finding the ratio of true positives to the total
actual number of positives in the ground truth dataset.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.1)

Where:

• TP is equal to the number of True Positives.
• FP is equal to the number of False Positives.

19



20 4. Fundamentals

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.2)

Where:

• TP is equal to the number of True Positives.
• FN is equal to the number of False Negatives.

4.1.2 Intersection over Union

Therefore, one of the essential elements in assessing object detection models is whether
a predicted bounding box correctly matches a ground truth box. This is typically done
using the Intersection over Union (IoU) metric (4.3), which provides how much overlap
is between the predicted and ground truth bounding boxes. A detection is considered a
true positive if the IoU exceeds a predefined threshold which is set to 0.5.

IoU =
Area of Overlap
Area of Union (4.3)

Where:

• Area of Overlap: The region where the predicted bounding box and the ground
truth bounding box intersect.

• Are of Union: The total area covered by both the predicted bounding box and the
ground truth bounding box.

4.1.3 Average Precision

Average Precision provides a single number that summarizes the precision-recall trade-
off of a detection system and characterizes overall performance. A variety of methods
exists for computing AP, and in this context, two approaches based on commonly used
VOC (Visual Object Classes) challenges [13] are considered. The VOC 2007 [13] 11-point
metric calculates AP by averaging precision values at 11 equally spaced recall levels.
Specifically, precision at recall values from 0.0 to 1.0 in steps of 0.1 is calculated. In this
regard, for every recall level, the precision is interpolated to be the maximum precision
attained for that recall or higher. Then, the AP is obtained by taking the average of the
respective interpolated precision values. It represents the precision in discreet form,
hence simplifying the process of evaluation and comparison across models.
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Integral Method:

The integral method given in (4.4) is the default metric in this thesis and is used in later
VOC challenges so is selected as the most recent metric. This approach computes AP as
the area under the PR curve. First, in this method, the precision values are interpolated
to create a precision envelope where the precision does not decrease as recall increases.
Precision is then integrated over the range of recall values to compute the AP, effectively
giving the area under the PR curve. The continuous approach yields more nuance
towards the model’s performance.
The AP in this case is given by:

AP =

∫ 1

0
Precision(𝑟)𝑑𝑟 (4.4)

Where:

• Precision(𝑟) represents the precision value at a specific recall level 𝑟.
• 𝑟 is the recall value, which ranges from 0 to 1.
• 𝑑𝑟 represents a small change in the recall value, used in the integral to compute

the area under the Precision-Recall (PR) curve.

Each of these methods has its merits and finds its application depending on the exact
needs of the evaluation protocol. The VOC 2007 11-point metric provides a simple fixed
recall level approach, whereas the integral method allows for an overall evaluation
considering the whole PR curve.

4.1.4 Mean Average Precision

Mean Average Precision (mAP) (4.5) is calculated as the average of the APs across
all object classes. This single metric provides a compact representation of model
performance across multiple classes. It simultaneously conveys overall accuracy and
robustness.

𝑚𝐴𝑃 =
1
𝑁

𝑁∑
𝑖=1

𝐴𝑃𝑖 (4.5)

Where:

• 𝑁 is the total number of object classes in the dataset.
• 𝐴𝑃𝑖 is the Average Precision for the 𝑖𝑡ℎ object class.

Summarizing, these metrics are intended to systematically validate the performance of
the object detection model. Due to the use of standardized metrics and methodologies,
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rigorous and reliable assessment of the model predictions against the ground truth data
is guaranteed. All this may be considered very important in light of finding strengths
and weaknesses to improve further, but also to make sure the model has the standards
for desired performance. Further on, it will provide an opportunity to evaluate the
SegTiling approach.



5

Baselines Tiling Methods

In this section, the various baseline tiling approaches for object detection in high-
resolution images are presented. Each method offers a well-known strategy for splitting
the images, with its own strengths and limitations. These approaches serve as reference
points for evaluating the performance of the proposed SegTiling method in experiments
in this thesis.

5.1 Standard Tiling

Standard tiling is among the simplest tiling methods for object detection. In this
process, an image is divided into small tiles of equal size, overlapping tiles, without any
segmentation or preprocessing procedures. The main idea behind standard tiling is to
divide a big image into more manageable segments that might be further processed
through an object detection model.

Figure 5.1: Illustration of the Standard Tiling process.

Figure 5.1 demonstrates the standard tiling process, where the input image is divided
directly into fixed-size tiles without considering the specific features or objects present

23



24 5. Baselines Tiling Methods

within the image subsequently the tiles go through the object detection model for
detection.

The naming convention applied in the standard tiling approach for this thesis encodes
the position of each tile within the initial image, thereby enabling the straightforward
reconstruction of the complete image in the pre-processing phase. Although this
technique is uncomplicated and easy to implement, it frequently encounters difficulties
in identifying small objects situated along the edges of tiles, which leads to fragmented
detections and generates more tiles than necessary due to its simplified approach.
For evaluation purposes these models are used: Rotated Faster R-CNN [32], Vision
Transformer (ViT) with Spatial Transform Decoupling (STD) [34], Hierarchical Vision
Transformer (HiViT) with STD [37].

5.2 Slicing Aided Hyper Inference (SAHI)

The Slicing Aided Hyper Inference (SAHI) [1] towards tiling is much flexible when
compared to other traditional tiling methods. It is designed with the goal of improving
the detection of small objects by refining the process of generating tiles with respect to
dimensional size and positional information of objects that may exist within an image.

Figure 5.2: This figure shows the performance of SAHI when sliced inference or standard inference is applied and
how the small object detection is improved. Adapted from article "SAHI: A vision library for large-scale object
detection & instance segmentation" [1]

Instead of using regular tiles, SAHI slices the image into pieces that are intentionally
centered around the locations where small objects are likely to appear. This process
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makes sure that small objects fall in the center of a slice, hence increasing the chances that
the object detection model will identify them correctly. The sliced inference approach
used by SAHI as shown in Figure 5.2 modifies the dimensions and placement of the
individual tiles according to the distribution of objects within the image. Such adaptive
tiling methods are supposed to balance the scale between the preservations of the spatial
context of a scene and the emphasis on fine details to improve detection precision on
smaller objects. This involves the continuous division and subdivision of the image,
where required, to enable the detection model to focus on the more limited areas of
interest while retaining the overall context of the image. For evaluation of this method
the model Rotated Faster R-CNN [32] is used.

While SAHI relies on the splitting of the image into overlapping patches both during
fine-tuning and during the inference to increase the relative size of the small objects
within the tiles, SegTiling follows a more concrete approach. It uses segmentation
techniques to identify the regions of interest from the image before tiling, ensuring that
only regions likely to have objects are tiled. This reduces unnecessary computations on
empty regions and reduces object fragmentation.

5.3 Multi-scale tiling

This approach is used by the state-of-the-art model on the DOTA dataset [34] to obtain
the final results. In this approach, images are divided into multiple overlapping tiles of
multiple sizes, allowing the model to process multiple scales. Each image is cropped
into patches of different sizes with varying overlaps of 500 pixels in the multi-scale
setting. For the multi-scale approach, images are split into tiles by factors of 0.5×, 1.0×,
and 1.5× of the image’s original size. This multi-scale resizing ensures that objects of
various sizes are captured effectively within the tiles. Finally, each tile fits to the model
for object detection resizing to 1024x1024 fixed size.

5.4 Without Tiling

In the no tiling approach, the object detection model is presented with the entire image
in one inference, which means that the entire image is fed into the object detection
model at once, without breaking it into smaller sections. This method maintains the
overall context of the image, enabling the model to assess the complete scene while
generating predictions. However, a prominent limitation is its failure to detect small
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objects in high-resolution images. The model’s focus on the larger context suggests
that fine-grained details may be sacrificed, and the related computational costs are
significantly higher compared to the other tiled approaches. For the evaluation of this
method the three object detection models are used same with the standard tiling method,
Rotated Faster R-CNN [32], Vision Transformer (ViT) with Spatial Transform Decoupling
(STD) [34], Hierarchical Vision Transformer (HiViT) with STD [37].



6

SegTiling

This chapter describes the proposed method, SegTiling which has the potential of enhanc-
ing oriented object detection. It consists of a pipeline involving a series of preprocessing,
tiling, and object detection stages as depicted in Figure 6.1. SegTiling uses different image
processing techniques for determining candidate regions of objects, adaptive tiling
strategies, and potentially enhancing detection accuracy. This methodology mitigates
some of the problems with the detection of objects with irregular orientations and sizes
in large-scale images by incorporating segmentation techniques before the tiling phase.
The following sections will provide a detailed explanation of each phase of the SegTiling
framework.

Figure 6.1: The framework of SegTiling approach
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6.1 Pre-processing phase

Pre-processing is one of the crucial steps for preparing images for efficient object
detection. It seeks to enhance areas in an image where objects might most likely appear
without necessarily identifying them. An example of an input image is shown in Figure
6.2.

Figure 6.2: Example of an image from DOTA dataset

In the pre-processing phase a stepwise process is followed to develop the input image
features so that the tiling phase is able to identify the area of objects more easily. In this
respect, the pre-prosessing methods used here are edge detection, color segmentation,
and a method combining both edge detection and color segmentation.

6.1.1 Edge Detection

Edge detection is an image processing technique used to determine boundaries in
images. It focuses on finding edges, crucial changes in intensity that normally relate to
object borders.
To apply this technique, the Canny edge detection algorithm [4] through OpenCV
library is used since it recognizes a substantial amount of edges. The image is taken
through several stages by the Canny algorithm. First, it smoothes out the image through
a Gaussian filter to reduce the noise. Then it calculates the gradients of intensity of the
image to identify places with big differences. Non-maximum suppression is applied,
thinning the edges down to retain only the most important edges.
Finally, the edges are classified as strong and weak using a double threshold mechanism.
Strong edges are those that have gradient values above a set high threshold, while
weak edges have gradient values between the high and low threshold values. The edge
tracking by hysteresis then ensures that weak edges are retained only if they are adjacent
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to strong edges, eliminating any responses from isolated noise.
The Canny algorithm returns an edge map, indicating the most important structures
inside the image, as illustrated in Figure 6.3. This edge map is used in further steps,
guiding the adaptive tiling process to focus on regions with structural variabilities and
features ensuring that areas with potential objects are accurately highlighted.

Figure 6.3: Segmented image after edge detection is applied.

6.1.2 Color Segmentation

Color segmentation called the separation of an image based on color regions that help in
improving the contrast between objects and backgrounds. The technique is very effective
in cases where the objects of interest have distinctive colors.

Figure 6.4: Segmented image after color segmentation is applied.

With the help of OpenCV library [4] it starts with converting the image from RGB
color space to HSV(Hue, Saturation, Value) color space, in which color information is
separated from intensity information. Then, a sequence of masks is applied in order
to segment the specified colors of the image, targeting different hues of blue, green,
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red, gray, white, and yellow. These colors are demarcated by their ranges within the
HSV: blue is identified by hue values in the range of 100 to 140, green by values falling
between 35 and 75, and red for a range close to 0-10 due to the cyclical nature of the
HSV spectrum. Gray is defined by very low saturation and medium brightness so that
it depends more on intensity rather than hue, whereas white has been identified by
low saturation along with high levels of brightness. Yellow is outlined by applying hue
values between 20 and 30.

These masks are then combined to form a composite that highlights areas with the
corresponding color information, as shown in Figure6.4. A grayscale form of this image
then serves to enhance the display of structural information and object boundaries
within the scene. This segmented image is important for the tiling process, ensuring
that regions with important color features are preserved and helped to highlight the
objects for the next phase.

6.1.3 Combined Method

This combined approach integrates the edge detection and color segmentation methods
to provide a complete view of the image. It collects the most probable areas with objects
in it by using structural information defined by edge detection and color segmentation.

Figure 6.5: Segmented image after a combination of edge detection and color segmentation is applied.

It first converts the segmented image to grayscale. Both the grayscale segmented image
and the edge-detected image are used to compute their histograms, with 256 bins a
parameter that represents the intensity levels ranging from 0 to 255, to obtain their
intensity distributions. For these histograms, the entropy is calculated, which measures
the level of uncertainty or randomness in the image data. A higher entropy value
indicates a more complex image with greater detail and variation in pixel intensities,
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while a lower entropy suggests a simpler image with more uniform areas. Based on the
value of entropy, weights are assigned for both images. The images are then blended
using a weighted sum, where the color-segmented image and the edge-detected image
contribute proportionally to their respective weights, resulting in a composite image that
highlights regions with both significant structural details and distinct color variations.
This combined image with both edge and color information offers a detailed and accurate
representation of the areas in the image containing potential objects. From this Figure
6.5 we can see that color segmentation is more prominent than the edge detection
information which means for this particular image subsequently used was weighted
higher than the color segmentation information. This comprehensive representation is
for guiding the adaptive tiling process to generate tiles around the most information
regions.

6.2 Tiling phase

The tiling phase involves dividing a pre-processed image into smaller, manageable tiles
for the object detection models. In this phase, Connected Component Analysis (CCA)
will identify the area occupied by the objects. Based on this, an adaptive tiling approach
will be applied to create efficient tiles. One of the main challenges in this phase is the
possible fragmentation of the objects between the boundaries of the tiles. The adaptive
tiling approach plays a crucial role in facing this challenge.

6.2.1 Connected Component Analysis

Connected Component Analysis (CCA) is the method used for finding the regions in
a binary image that are connected by intensity. The CCA function is performed using
OpenCV library [4]. This allows individual objects or areas of interest to be segregated
from an image. First, thresholding is used to convert the grayscale image into a binary
image and assign to each pixel either the maximum or minimum value of intensity
based on a threshold of 100. It enhances the image further, providing sufficient contrast
between the regions occupied by objects and the background. Moreover, morphological
operations are used, specifically dilation and erosion, to refine the boundaries of the
detected objects. Dilation extends the borders of objects by adding pixels to their edges,
which helps in filling small gaps and connecting nearby regions. In this implementation,
dilation is carried out with two iterations in order to ensure the capturing of even minor
connections between components. It is followed by erosion that removes the pixels from
the edges of objects in order to remove noise and small artifacts that might have merged
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during dilation. Erosion here used four sets of iterations to reach a balance that maintains
the basic structures of the objects involved while reducing noise simultaneously. The
values chosen for the mentioned parameters of CCA were found by trial and error
keeping track of the count number of detected bounding boxes, which a higher number,
indicating more accurately identified objects within the image.

Figure 6.6: Image visualization after CCA is applied using the segmented image by the combined method.

Labeling each connected region in this way gives information about the number of
objects, bounding box coordinates and areas. The information is used by the adaptive
tiling method. The tiling can be adapted to where potential objects are located in the
image. The output of CCA visually for Figure 6.6 is given here, using "jet" colormapping
to highlight where regions differ. In this color scheme, regions with higher intensity
values are represented by warmer colors (such as red and yellow), while lower intensity
areas appear cooler (blue and green). The "jet" colormap helps to clearly distinguish
between different connected regions in the image, making it easier to interpret the
distribution and extent of detected objects.

6.2.2 Adaptive tiling approach

The Adaptive Tiling Approach represents a method aimed at generating tiles, adapted
to the location and characteristics of the object-regions detected by the Connected
Component Analysis. The strategy tries to optimize the regions covering the objects.
This approach offers potential enhancement in the accuracy and efficiency of detection
and may reduce object fragmentation.
Firstly, the adaptive tiling process creates a grid overlaying the image so that each cell in
the grid corresponds to a potential tile. The number of rows and columns in this grid
is determined by the dimensions of the image as well as the size of each tile and the
overlap between them. The overlap parameter controls how much adjacent tiles overlap
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with each other, which ensures that object boundaries that might lie on the edge of
one tile are captured fully in the neighboring tiles. For each detected object, the grid is
updated by marking the cells which have to be tiled. In this way, it can be made certain
that all regions containing objects are included in the tiling process. As shown in Figure
6.7, the marked cells represent the generated tiles for this image. All grid cells containing
at least one marked object will be generated as tiles. Cells without any marked objects
will be excluded, this is how this approach optimizes the number of generated tiles.

Figure 6.7: Image visualization to show how the tiling approach works in this thesis.

Once the grid is filled with marked cells, tiling has to be done by iteration through
the grid. One tile is created for each marked cell by adjusting the coordinates and
dimensions of its start so that the tile size is as specified, but completely inside the image.
This aim to ensure that objects in an image, even at the edges, fall completely within
at least one tile. The number of generated tiles depends on both the dimensions of the
input image and also the overlap parameter. This implies it is generated dynamically
during the process instead of being predefined. Specifically, the overlap and tile size are
used to calculate the grid’s density for determining the overall number of tiles generated
in order to provide appropriate coverage of object regions.
In this setup, several parameters are crucial for achieving the best results in terms of
detection performance and computational efficiency. These parameters include:

• Non-Maximum Suppression (NMS): NMS is a technique adopted to minimize
unnecessary bounding boxes resulting from CCA by eliminating those with high
inter-overlaps. Further refinement with an overlap threshold parameter ensures
that only the boxes of relevance remain. It helps in reducing false positives and
generally enhances the precision for object detection.

• Min/Max area ratios: Min/Max area ratios define what detected regions should
be considered depending on their size with respect to the whole image. Ratios
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are especially important for such cases that allow avoiding missing small salient
objects while rejecting large irrelevant areas. An idea using these ratios allows a
model to be more selective and focus on such areas which have high probability of
containing an object of interest. These parameters work along with NMS.

• Overlap size: The overlap size between tiles is tuned as a trade-off, to find a good
balance between complete coverage of the image and unnecessary computational
processing. If the overlap of the tile’s edges is more, then very few objects around the
edges will be missed, but this is at the cost of extra computations. The appropriate
trade-off is determined through experimental evaluations using mAP score, which
assesses the model’s performance. By analyzing how changes in overlap size
affect the mAP, the system can be optimized for a detection rate that minimizes
redundancy while ensuring effective coverage of all object regions.

• Tile size: The tile size is directly proportional to how much of the image is processed
in a single run. Small-sized tiles are great for closely monitoring small objects.
However, these inflate the number of tiles and raise the computational cost. In
contrast, larger tiles decrease the number of tiles but may fail in the detection of
small objects. The system explores different tile sizes through a process of trial
and error, assessing performance via the mAP score for a better trade-off between
accurate detection and efficient computation.

In a nutshell, the adaptive tiling phase finds out the regions of interest through Connected
Component Analysis and dynamically adapting the tiling grid to completely cover the
located object regions. This approach aims to improve both efficiency and accuracy in
the object detection process and is particularly suitable for large-scale image processing
tasks with varied distributions of objects.

6.3 Object detection phase

During the object detection phase, the goal is to detect objects within tiles generated
during the tiling phase, and then those results for each tile are combined in order
to produce the final result for the complete original image. This phase leverages the
advantages of smaller sections of an image being processed and ensure that object
detection is both precise and complete, particularly for small objects, across the entire
image.

The adaptive tiling strategy divides the image into tiles which are independently
processed with an object detection model. After each tile is passed through the detection
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model, a set of predictions would be obtained consisting of bounding boxes, class labels,
and confidence scores for each of the detected objects.

The tiles are saved with specific names that encode their location within the original
image. This information is very important, as this is used by the merge functionality
to get the correct positions of the objects and reassemble the detected objects in the
context of the full image. After all the tiles have been processed by the detection model,
the function merges all the results and builds the final results for the complete original
image. This process is described in detail in Section 6.3.2

6.3.1 Object detection models

Several object detection models are used for the performance evaluation of SegTiling, and
in order to understand the impact of the tiling strategy on the object detection models
when detecting small objects and challenging objects such as in high-resolution images.
The selected object detection models are Rotated Faster R-CNN, ViT with STD, and
HiViT with STD. ViTs are selected for this thesis as the state-of-the-art models on DOTA
for oriented object detection and Rotated Faster R-CNN as a light and computationally
efficient model which is ideal for the experiments in this thesis.

Rotated Faster R-CNN

Rotated Faster R-CNN [32] expands the traditional Faster R-CNN model [27], targeted at
oriented object detection. This model is very useful when dealing with oriented objects
that are not aligned with the horizontal or vertical axes of the input image, especially
in tasks where the orientations of objects may differ a lot, e.g. aerial imagery or scenes
that have oblique perspectives as found in the DOTA dataset. While in general are less
accurate, compared to transformer models such as ViT and HiViT, the rotated Faster
R-CNN is relatively lightweight and computationally efficient, hence, it is faster to
train and more convenient for experiments and applications where the computational
resources are limited. In this thesis, the adaptive tiling approach is evaluated using
rotated Faster R-CNN and is provided as the baseline. This evaluation helps to develop
an understanding of how tiling methods are affecting the performance in oriented object
detection.

ViT with STD

The Vision Transformer (ViT) with Spatial Transform Decoupling (STD) [34] is a
transformer-based model that excels in capturing fine details and long-range depen-
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dencies in images—an advantage when detecting small objects within high-resolution
images. The STD component enhances the model’s ability to handle variations in object
orientation and positioning, making it particularly effective in scenarios requiring
precise localization. In this thesis, ViT with STD is used to process the tiles generated by
the adaptive tiling approach, offering insights into how transformer architectures can
leverage the benefits of tiling for improved object detection.

HiViT with STD

HiViT stands for Hierarchical Vision Transformer [37], an advanced approach primarily
for object detection, particularly oriented objects and their multi-scale variations. It
adopts a spatial transformer decoupling (STD) method [34] which make it a state-of-the-
art model. The concept of HiViT is to handle images hierarchically in order to extract
features from an image at many different levels of granularity. It therefore works very
efficiently when it comes to the complexity of large-scale high-resolution images. Despite
its higher computational demands, HiViT is expected to outperform CNN-based models
in accuracy, particularly in detecting challenging objects. HiViT is employed along with
STD in this study to unlock the full potential of an adaptive tiling approach when highly
accurate detection is critical.

Integration into the object detection phase

These models are applied to the tiles generated by the SegTiling approach and the
other baseline tiling methods. By comparing the performance of each, the present
work evaluates how each model interacts with the tiling strategy, especially in relation
to the detection of small and complex objects. This is vital in realizing the strengths
and limitations of adaptive tiling across different detection architectures and gives
insights into possible further improvements using transformer-based models compared
to traditional CNNs.

6.3.2 Merging tiles

Merging the object detection results of all the tiles is done by the following main steps:

1. Extracting Coordinates:This step involves extracting coordinates for each tile from
its corresponding filename. This extraction has to be done so that for all the detected
objects the coordinates in the original image can be calculated.
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2. Adjusting Bounding Boxes: The predicted bounding boxes of the objects are
projected to the original image so that the correct position of the objects with
respect to the entire image is obtained

3. Merging Detections: The modified bounding boxes together with their class labels
and confidence scores will be combined to make the final set of detections for
the entire image. This will be achieved by aggregating all tile results, which may
include overlapping parts where certain objects could have been detected in more
than one tile. The combined outputs are then subject to duplicate removal and
refinement of the final detections to have each object detected only once with
its highest confidence score. Techniques such as non-maximum suppression are
therefore involved in refining these results by removing redundant detections.
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Experimental Setup

This section presents the experimental setup in terms of hardware and software
configuration. The chapter begins by presenting the used datasets. Next is an elaboration
on the hardware and software tools used in the experiments, and custom pre-processing
scripts. Subsequently, the experimental setup ranged from data preparation and model
training to performance evaluation. The goal of the experimental setup is to obtain
an effective evaluation of the proposed method and its performance in real-world
applications.

7.1 Dataset

For the performance evaluation of SegTiling the public benchmark dataset DOTA is
used, which has been widely used in related research papers, and the real world dataset
of Mainblades. The two dataset are further described in the next subsections.

7.1.1 DOTA Dataset

DOTA is a benchmark designed for evaluating object detection tasks in aerial imagery.
The dataset of DOTA-v1.0 [29] has been chosen for this thesis because of its distinctive
features that make it suitable for evaluating small objects in high-resolution images and
it has been widely used in related research papers.
Key Characteristics of the DOTA Dataset:

1. High-Resolution Images: DOTA-v1.0 comprises large-scale, high-resolution im-
ages. This could be highly resourceful for the detection and analysis of small objects.
High resolution will, therefore, be helpful to observe features that might be of
utmost importance to be detected and classified accurately.

2. Diverse Object Categories: The ground truth involves object categories from the
more general ones, such as cars and planes, to those that could be considered
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specialized, like ships and storage tanks. The effect of this kind of diversity is
to make sure that the model sees enough variations of real-world scenarios that
would contribute to improving the generalizability of the model.

3. Complex Backgrounds: Given the fact that these images have an aerial perspective,
objects generally show up against complex and cluttered backgrounds. This acts
as a challenge to object detection algorithms to effectively distinguish the objects
from their surroundings by placing a rigorous test of the model’s capabilities.

4. Varied Object Sizes and Orientations: The objects in DOTA-v1.0 vary by a large
margin in size and orientation, so it is very useful to test the robustness of the
detection methods, especially for small objects in different orientations.

5. Comprehensive Annotations: It also contains more detailed oriented bounding box
annotations for each object. That kind of annotation is quite ideal for understanding
object positioning and orientation in precise object detection tasks which this study
requires.

Dataset Number of Classes Train-set Validation-set Test-set
DOTA-v1.0 15 1411 images 458 images 937 images

Table 7.1: Summary of DOTA dataset

The DOTA-v1.0 dataset is concisely summarized in Table 7.1 and consists of 15 classes.
The total data has 1,411 images in the train-set, 458 images in the validation-set and 937
images in test-set. There is a balance between the train-set images and val-set images
that ensures the model evaluation will be fair. The experiments using DOTA dataset in
this thesis were conducted on DOTA v1.0, where the model is trained on the train-set
and tested on the validation-set because the test-set is without annotations provided by
DOTA.

7.1.2 Mainblades Dataset

In addition to the DOTA dataset, this thesis utilizes a proprietary dataset provided by
a private company Mainblades specializing in aircraft inspection using drones. This
dataset shares common characteristics with DOTA in terms of image size and object
diversity sizes. This dataset is selected to evaluate SegTiling to real-world images. The
quality of images and the annotations are based on real-world scenarios and this makes
it more challenging compared to more research-oriented public benchmarks like DOTA.
Key Characteristics of the Mainblades Dataset:

1. High-Resolution Images: The dataset includes a wide variety of high-resolution
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images encompassing a wide range of scales and resolutions. This kind of diversity
enables evaluations of object detection algorithms under many conditions, from
close-up detail to broad, wide-angle views.

2. Diverse Sources: The images in the dataset were taken from a variety of sources,
such as drones, cameras, and smartphones. This variation in source can introduce
variation both in image quality and angle, which more accurately reflects how data
is actually captured in the real world under the parameters of differing settings
and situations.

3. Variability in Image Quality: Some of the images have common problems of being
blurry or of poor lighting, which impairs clarity. The variability tests the robustness
of detection models and poor-quality imaging.

4. Wide Range of Classes and Object Sizes: The dataset involves many classes, all
related to aircraft inspection, including the different types of damage, text, and
marks from lightning strikes. Objects vary significantly in size, from very small
and hard-to-detect features to larger, more prominent objects.

5. Complex Annotations and Ground Truth: The annotations provided are detailed
and cover multiple objects within the same image, often overlapping or in close
proximity. This complexity simulates the intricate and densely packed scenarios
that are typical in aircraft inspection imagery and generally in real-world datasets.

Dataset Number of Classes Train-set Validation-set
Mainblades 23 1199 images 514 images

Table 7.2: Summary of Mainblades dataset

Mainblades dataset as described in Table 7.2 It is divided into 23 different classes. The
train-set consists of 1,199 images, while the validation-set contains 514 images. The
structural setup of this dataset offers a large number of labeled examples meant for
training and testing object detection models.

7.2 Implementation and Training settings

7.2.1 Hardware Setup

All the experiments in this thesis were performed on a system running Ubuntu 22.04.2
LTS, where two NVIDIA RTX A6000 GPUs with 50GB memory were available. This
setup was employed during training, while for the inference phase, one of these GPUs
was involved, providing enough computational power to handle the high demands of
training and evaluating such a complex model as ViT with STD and HiViT with STD.
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7.2.2 Tools and Frameworks

In this thesis, the training and evaluation were done using the MMRotate framework [39].
MMRotate is a part of the OpenMMLab projects focused on oriented object detection.
The code provides full functionality for dealing with models like Rotated Faster R-CNN,
Vision Transformers, and HiViT detectors with STD.

For working with the DOTA dataset, the DOTA Devkit was used. This toolkit already
has all the utilities necessary to handle the DOTA data, among which are utilities that
split images and process annotations. Based on DOTA Devkit for the purpose of this
research, some custom script modifications were implemented, allowing it to execute
the different image tiling and preprocessing described in Sections 6.1 and 6.2.

7.2.3 Experimental Procedure and Workflow

The experimental workflow is designed to systematically investigate the proposed
adaptive tiling approach and its effect on object detection performance. More specifically,
the process unfolds as follows:

• Data Preparation and Preprocessing: DOTA-v1.0 and Mainblades datasets are
used for the training and evaluation processes. It includes parsing of annotations of
both the datasets and preprocessing according to the input requirements of object
detection models. Conve This step ensures that the data is correctly formatted for
further processing in the subsequent workflow stages.

• Model Training: For Mainblades the two models, Rotated Faster R-CNN and
HiViT with STD, are trained using pre-trained weights in both tiled and non-tiled
versions. Regarding the DOTA dataset, only the Rotated Faster R-CNN was trained
from scratch using the train-set for training and the validation-set for testing in
all the experiments. HiViT with STD and ViT with STD are utilized using the
pre-trained checkpoints from the released paper [34] which are pre-trained on
trainvalidation-set and tested on validation-set in the experiments. This happens
because the test-set on DOTA dataset is provided without annotations so it is not
feasible to evaluate them.

• Modification and Integration: The DOTA Devkit script is extended to integrate
the DOTA dataset and Mainblades dataset into the MMRotate framework. The
ImgSplit tool available in the DOTA Devkit has been used to efficiently do image
tiling. A custom script was also used to convert Mainblades data into the DOTA
format so that the MMRotate framework could be applied. Models are compared
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based on the DOTA Task1 script which relies on the mean Average Precision as its
main metric as described in Section 4.1.

• Inference and Performance Evaluation: Inference is conducted on DOTA-v1.0 and
Mainblades validation-sets using the different object detection models explained in
Section 6.3. Tiling methods as explained in Section 5 are applied to the images, and
performance evaluation is done through the DOTA Task1 evaluation framework,
where the mean Average Precision (mAP) score is used. This metric is important
because it is used in most of the related papers.
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Experiments

The experiments are divided as follows:

• The first experiment starts with a comparison of the performance of existing
baseline tiling approaches, no-tiling, standard tiling, and SAHI Tiling on the DOTA
dataset.

• SegTiling is further analyzed with respect to its parameter optimization, using
object detection models.

• Then the performance of the proposed method SegTiling is evaluated.
• Evaluation of the object detection models used for this thesis is presented using

mAP scores.
• An experiment to evaluate SegTiling on real-world Mainblades dataset.
• Experimentation on training data and how tiling affects the mAP.
• The impact of modification of inference image size on mAP is analyzed and

presented.
• The Final experiment shows the impact of SegTiling on different sizes of objects on

the DOTA dataset.

These experiments are described in their respective subsections.

8.1 Comparison of baseline tiling approaches

This experiment is intended to evaluate the relative effectiveness of different tiling
approaches in the context of the thesis. In this work, the impact of different tiling
strategies on the detection performance of object detection models for small objects is
investigated in the high-resolution aerial images of the DOTA dataset. This experiment
will discuss the three approaches: Standard Tiling, SAHI Tiling, and a method without
tiling. For this experiment, the Rotated Faster R-CNN model is used for the detection
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because of its computational efficiency although has lower performance than ViTs. The
goal in this experiment is not a higher mAP score so this model is the ideal. The mAP
score after comparing different methods shows how much accuracy and efficiency have
been improved by the various methods in this very application.

8.2 Optimization of SegTiling parameters

This experiment focuses on fine-tuning the parameters involved in the SegTiling method
for further improvement of its object detection performance on the DOTA dataset using
Rotated Faster R-CNN. The key objective is to investigate and adjust some of the key
parameters that influence adaptive tiling and segmentation setting to find out which
setting achieves the optimum result.
The parameters that have been optimized in this experiment include:

• Segmentation techniques ( edge detection, color segmentation and combined
method)

• Non-Maximum Suppression (NMS) with its overlap size.
• Overlap size between tiles.
• Min/max area ratios for bounding box selection.

Each of these parameters has to do with a trade-off between object detection precision
and computational efficiency. The concept of this experiment is to see how changes in
the settings could impact the generation of tiles and eventually alter the performance
of object detection. Model fine-tuning consists of performing several sets of testing
parameters by trial and error using the mAP score to find an optimal setting that
maximizes object detection accuracy.

8.3 Segmentation-Based Adaptive Tiling (SegTiling)

In this experiment, the SegTiling methodology is evaluated on the DOTA dataset to
test its performance. More specifically, the focus is on how segmentation techniques
affect the behavior of the adaptive tiling mechanism. These different segmentations
serve as drivers for the tiling mechanism to dynamically adjust, based on the image
content, in order to enhance the capability of the system to focus with higher efficiency
on portions of interest. Once the tiles are generated, they are fed into the object detection
model, Rotated Faster R-CNN in this case to evaluate the potential benefits that this
approach can bring in terms of performance of the detection. This experiment presents
the analysis based on how different segmentation techniques may affect the efficiency of
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the adaptive tiling approach. For comparison reasons, the mAP score after applying the
standard tiling approach using no segmentation at all is presented in this experiment
too.

8.4 Evaluation of object detection models

This experiment investigates the performance of the three examined object detection
models: ViT with STD, HiViT with STD, and Rotated Faster R-CNN, applied to the
DOTA dataset using SegTiling approach with the combined segmentation method.
For comparison reasons standard tiling and no-tiling approaches are presented too.
In the no-tiling approach, full-sized images ranging between 800x800 and 4000x400
pixels are down-scaled to 1024x1024 pixels in the final processing for detection due to
computational limitations.
The objective is to evaluate the performance of these models coupled with the fine-tuned
SegTiling method from previous experiments. Each of these models will be applied to
the tiled images and assessed in their performance for object detection.
Mean Average Precision (mAP) scores are used for performance, enabling the comparison
of how each model handles both the challenges of the dataset and the enhanced
preprocessing method. This evaluation underlines the strengths and weaknesses of each
model within the proposed tiling approach.

8.5 Application to real-world dataset

The following experiment is designed to confirm the practical applicability and general-
izability of SegTiling by its application on a real-world dataset provided by Mainblades.
This dataset, focused on aircraft drone inspection, has all the peculiar difficulties of
different image resolutions, various object sizes, and poor-quality of the images.

The experiments are done with the application of SegTiling on this dataset in order to
check how this technique including standard tiling and no-tiling methods will transfer
from the DOTA dataset into a real-world scenario. This involves, testing the robustness
of the approach in object detection like damage, text, and other features within images
captured under practical conditions.

It also demonstrates, through such a validation process, the performance of the proposed
method in real application scenarios outside the controlled experimental environment
where aircraft inspection can be performed. That would also further validate the
SegTiling approach to a wide variety of situations concerning how flexible and robust
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the model is. For this experiment, the Rotated Faster R-CNN and HiViT with STD models
are used to check the performance both on CNN and a transformer-based model.

8.6 Experiment with training data

This experiment evaluates the impact of applying a tiling approach during the training
phase of object detection models. Unlike SegTiling used during inference, this approach
focuses on tiling based on annotations ( which are known in this case) to prepare the
training and validation data.
In this setup, a script from the DOTA Devkit is employed to divide the images from
DOTA and Mainblades datasets into tiles according to their annotations. This method
ensures that each tile contains complete annotations, thereby reducing the risk of object
fragmentation across tile boundaries. By doing so, the dataset is processed into smaller,
manageable tiles while preserving the integrity of object annotations.

Two scenarios are compared in this experiment:

1. Training on tiled images: Here, each dataset is divided into tiles using an
annotation-based approach before training. This approach attempts to help the
object detection model learn from images that are divided in a way that is better for
finding smaller objects without running into fragmentation issues or incomplete
annotations.

2. Training on full images: In this scenario, the goal is to train the model directly on
the high-resolution, full images without any tiling. For computational constraints,
a downscaled version of them is trained eventually. The idea of this approach is to
allow the model to learn from the complete context of the images, which might be
beneficial for understanding larger spatial relationships.

This experiment, therefore, compares the performance of Rotated Faster R-CNN model
chosen due to its computational efficiency, under two conditions on both DOTA and
Mainblades datasets and it will investigate whether tiling the training data confers a
significant advantage over training with full-resolution images using mAP score.

8.7 Impact of inference image size on mAP

In this experiment, the goal is to analyze how varying the size of input images during
the object detection phase affects the performance of the mAP. Rotated Faster R-CNN
is used for this experiment. The model is trained on both the DOTA and Mainblades
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datasets on image tiles. However, during the object detection phase, the size of the
input images is adjusted to assess the sensitivity of the model’s performance, measured
through mAP, to changes in image resolution.

This experiment investigates how reduction or increase in the size of the input image
during inference affects the accuracy of object detection, given the different resolutions
and contexts of the DOTA and Mainblades datasets. The mAP for each dataset is
calculated across different image resolutions for further comprehension of how image
size during inference affects model performance. It is aimed at establishing whether the
model generalizes across different resolutions for these datasets. These different sizes of
the inference images, allow for an analysis of whether what size of images provides a
more accurate detection. This experiment hence serves the dual purpose of testing both
the robustness of the SegTiling approach and its impact due to different image sizes
during inference.

8.8 Impact of SegTiling on multi-scale objects

This experiment presents the effect of SegTiling on the detection performance for
objects of varying sizes in high-resolution images from the DOTA dataset. The aim is
to investigate the impact of SegTiling on the relative detection of smaller versus larger
objects. In this experiment, the Rotated Faster R-CNN model was used and trained
on the DOTA dataset in both training scenarios on image tiles and without tiles. This
experiment compares two different image processing strategies. The first strategy utilized
the original full-resolution images, simply downscaled without tiling, while the second
applied SegTiling and thus divided the images into smaller tiles. No-tiling investigates
how well the model is able to detect objects directly from full images. SegTiling tries
to reduce the fragmentation problem for smaller objects with the goal improve the
detection accuracy.
This experiment focused at object classes that are varied a lot in image size. The small
objects, such as "small vehicle" and "plane", occupy comparably smaller portions in the
high-resolution images, while the large objects of "roundabout" and "baseball-diamond"
are generally in extensive areas. By comparing the detection performance for both small
and large objects across the two tiling approaches, the goal is to demonstrate the extent
to which SegTiling affects performance when taking into consideration different object
sizes.
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Results

In this section, the results of the experiments are evaluated through the mean Average
Precision (mAP) metric. Each of the experiments conducted in this thesis is assessed
based on how effectively the object detection models perform when combined with
different baseline tiling approaches, SegTiling, and different pre-processing techniques
or using different datasets. The performance results of these techniques are obtained
after training has fully been completed using the validation set. It’s worth mentioning
that the tile size of 1024x1024 is selected as the optimal size, as the pre-trained models
are trained on tile images of this dimension. In cases where no tiling is applied full
images are used but due to computational constraints, a down-scaled version of them is
used during inference in the end. Downscaling is one of the techniques used to process
high-resolution images to fit the object detection models under limited computational
resources.

9.1 Comparison of baseline tiling approaches: Results and Analysis

The following results provide insight into the use of tiling in handling large-scale images
for object detection. Three tiling approaches were being compared: standard tiling, SAHI
tiling, and without tiling. Table 9.1 gives the performance of these three different tiling
approaches when applied to the DOTA dataset using the Rotated Faster R-CNN model.
The metric used for comparison is the mean Average Precision (mAP), with higher
values showing better object detection performance.

As Table 9.1 shows, standard tiling gives the highest mAP score, 69.10%. Standard tiling
involves dividing an image into smaller tiles of fixed size, 1024 × 1024, with a significant
overlap of 512 pixels to avoid fragmentation of objects at tile borders. Such high overlap
ensures better object detection for small objects, which are abundant in DOTA.
Although SAHI tiling is an adaptive tiling technique, it lags behind Standard Tiling,
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which has an mAP of 60.07%. This may also show that while SAHI tries to make a better
optimization in tiling with the help of some search heuristic, it may be unable to keep
object integrity as well as standard tiling does and detect multi-scale objects on the
particular benchmark. It can be observed that No Tiling has the lowest mAP score with
33.69%. It gives an idea of how difficult it might be for models to identify objects in
large-scale and high-resolution images without partitioning them. Without tiling, the
model is not be able to catch the subtlety of the image, which will lead to poor detection,
specially for the small-size objects that may spread over a large portion of the image. For
this experiment, the full images are used at the time of inference, downscaled to 1024 ×
1024 pixels in the final processing while the model is trained on tiles of this resolution.

Tiling Approach Tiling Exec. Time Images size ( pixels) Overlap size mAP (%)
Standard Tiling 382.0 s 1024x1024 512 69.10

SAHI Tiling 201.8 s 1024x1024 512 60.07
No Tiling N/A 800x800-4000x4000 N/A 33.69

Table 9.1: Comparison of mAP scores and tiling execution times (in seconds) for different tiling approaches on the
DOTA dataset using Rotated Faster R-CNN model. N/A in the table stands for not-applicable. Higher mAP means
better performance.

The results show the importance of tiling in large images when performing object
detection tasks. The overall best performance was from Standard Tiling since it has a
balanced approach in dividing images while maintaining the integrity of objects even
if it is a simple tile approach without any complex procedures. Standard tiling takes
somewhat longer to execute than SAHI, however, the benefit outweighs this. In this case,
the execution time refers to the generation time of the tiles. This performance drop using
no tiling shows heavy processing is involved when an image is being processed as a
whole and not with its pieces. While SAHI tiling does try to optimize this, the Standard
Tiling approach still outperforms due to its consistent tile size and overlap.

9.2 Optimization of SegTiling Parameters: Results and Analysis

This experiment investigates the sensitivity of the SegTiling approach, using the Rotated
Faster R-CNN, towards various parameters using the three different segmentation
techniques combined method, edge detection, and color segmentation, that will lead to
an optimal configuration for maximum detection accuracy. The best configuration is
sought by fine-tuning the parameters that control tile size and its overlap, Non-Maximum
Suppression (NMS) parameters, and area ratio thresholds. Experiments are conducted
and their results presented on how these changes in parameters affect the mAP scores



50 9. Results

to provide some insight into the sensitivity and efficiency of SegTiling.

Results in the table 9.2 are based on fixed tile size of 1024x1024 pixels. Overlap sizes
were manipulated in an attempt to study their impacts on model performance. Small
Overlap size of 100 pixels yielded comparable mAP as compared to an overlap size of
512 pixels. This indicates that although the overlap is critical in dealing with objects
spanning across tile borders, too large overlaps do not contribute to an improvement in
the detection performance.

Segmentation Technique Overlap Size NMS/overlap size Min Area Ratio Max Area Ratio mAP (%)
Combined Method 100 No N/A N/A 69.72
Combined Method 512 Yes/0.1 0.00001 0.01 68.60
Combined Method 512 Yes/0.4 0.00001 0.01 68.59
Combined Method 256 No N/A N/A 69.71
Combined Method 512 Yes/0.1 0.000001 0.01 69.22
Combined Method 512 No N/A N/A 69.79

Edge Detection 512 Yes/0.1 0.00001 0.01 67.69
Edge Detection 512 No N/A N/A 69.76

Color Segmentation 512 Yes/0.1 0.00001 0.01 58.01
Color Segmentation 512 No N/A N/A 69.54

Table 9.2: Impact of different parameters on the mAP using the Rotated Faster R-CNN model on different
segmentation techniques on the DOTA dataset. N/A in the table stands for not-applicable. Higher mAP means better
performance.

NMS should clean and refine bounding boxes by suppressing overlapping boxes. In
theory, this is supposed to give better detection accuracy. For this experiment, though, the
NMS did nothing to improve the performance and actually reduced mAP in some cases.
Because of this, for this kind of tiling approach, keeping more bounding boxes despite
the possibility of overlaps improved results. That would mean NMS could be less useful
in the case of adaptive tiling trying to capture all possible object instances for tile division.

The Min Area Ratio and Max Area Ratio parameters control the selection of bounding
boxes based on their relative area to the total image. Experiments demonstrated that the
variation of these ratios had negligible influence on mAP. This suggests that the size of
the bounding boxes, relative to the total area of the image, did not have a significant
effect on the detection performance in this framework.
The highest mAP of 69.79% was achieved with no NMS and an overlap size of 512 pixels
using combined method as the segmentation technique. More experiments are done for
combined method because it shows promising results. A high mAP score was achieved
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using edge detection too but it is slightly lower than with combined method. This
configuration suggests that for the Rotated Faster R-CNN model with the DOTA dataset,
avoiding NMS and using a moderate overlap size resulted in the best performance.
It emphasizes that the inclusion of as many bounding boxes as possible, rather than
refining them, can be advantageous for adaptive tiling.

9.3 Performance of SegTiling: Results and Analysis

In this experiment, the performance impact of different segmentation techniques, namely,
Edge Detection, Color Segmentation, and Combined Method, will be considered within
the proposed adaptive tiling approach. The goal is to investigate how these segmentation
methods perform in enhancing object detection accuracy by fine-tuning the process of
tile generation with minimal object fragmentation. Table 9.3 presents the mAP scores for
the Rotated Faster R-CNN model when different segmentation techniques are applied
in the context of adaptive tiling.

Segmentation Technique Tiling Approach Tiles Size (pixels) Overlap size mAP (%)
Edge Detection SegTiling 1024x1024 512 69.76

Color Segmentation SegTiling 1024x1024 512 69.54
Combined Method SegTiling 1024x1024 512 69.79
No Segmentation Standard Tiling 1024x1024 512 69.10

Table 9.3: Comparison of segmentation techniques within SegTiling approach using Rotated Faster R-CNN on the
DOTA dataset. Higher mAP means better performance.

It can be observed from the results that the Combined Method for segmentation gives
the highest mAP score of 69.79%, outperforming Edge Detection and Color Segmentation
techniques. This suggests that the combination of these two segmentation methods
develops the model to give more fine results for object detection.

For Edge Detection, the mAP attained is 69.76%, slightly lower than the Combined
Method but still higher than what was achieved by Color Segmentation. Among the
segmentation techniques, the worst-performing one is Color Segmentation, which has
an mAP of 69.54%. It is clear from the Table 9.3 that the worst performance even slightly
lower has the standard tiling with 69.10% approach using no segmentation, which is
expected as a tiling approach using no segmentation teqhniques.

That means the leveraging of both edge information and color information probably
does give a more complete understanding of the objects, hence the better detection
performance. The time taken to execute this tiling method is approximately 564.9
seconds among all the segmentation techniques including the combined method with
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slight and not important differences, which is slightly longer when compared to the
other tiling methods, but here performance gains outweigh the increase.

9.4 Evaluation of Object Detection Models: Results and Analysis

The models that evaluate object detection models under this experiment have been
applied to the DOTA dataset processed by the Segtiling approach in order to compare
performances among ViT and STD, HiViT and STD, and Rotated Faster R-CNN. Standard
tiling and no-tiling techniques have also been included in the table for comparison
purposes. The results illustrate how each model performs with the optimized prepro-
cessing approach. For SegTiling the combined segmentation method has been used. In
the no-tiling approach, full-sized images down-scaled to 1024x1024 pixels are used in
the final processing for detection.

Model Tiling Approach # of images/tiles Images/tiles size Overlap Size mAP (%)
ViT with STD Standard Tiling 14222 1024x1024 512 95.25 ∗
ViT with STD SegTiling 9977 1024x1024 512 95.43 ∗
ViT with STD No tiling 458 800x800-4000x4000 N/A 56.58

HiViT with STD Standard Tiling 14222 1024x1024 512 95.32 ∗
HiViT with STD SegTiling 9977 1024x1024 512 95.77 ∗
HiViT with STD No tiling 458 800x800-4000x4000 N/A 58.08

Rotated Faster R-CNN Standard Tiling 14222 1024x1024 512 69.10
Rotated Faster R-CNN SegTiling 9977 1024x1024 512 69.79
Rotated Faster R-CNN No tiling 458 800x800-4000x4000 N/A 33.69

Table 9.4: Comparison of object detection models using tiling techniques and without tiling during inference on
the DOTA dataset, trained on tiles of 1024x1024 pixels. N/A in the table stands for not-applicable. Higher mAP
means better performance. Images/tile size resolution are in pixels. The results marked with (∗) are obtained using
the checkpoints of the models which are trained on trainvalidation-set and tested on validation-set this is why the
high score.

Model Tiling Approach # of images/tiles Images/tiles size Overlap Size mAP (%)
HiViT with STD SegTiling 19636 1024x1024 512 81.74
HiViT with STD Multi-scale setting 72000 682x682-2048x2048 500 82.24

Table 9.5: Comparison of SegTiling with state-of-the-art (SOTA) mAP score. The model trained on trainvalidation-
set and tested on the test-set. The SOTA used multi-scale setting to split the images into patches/tiles at different
scales and processed the tiles with 1024x1024 size during object detection.

Tables 9.4 and 9.5 demonstrate several key points:

Impact of tiling on model performance: Across all three models (ViT with STD, HiViT
with STD, and Rotated Faster R-CNN), using tiling methods-whether standard or
adaptive-significantly improved the mAP scores compared to the no-tiling approach as
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shown in Table 9.4. This highlights the importance of tiling in handling large images
and detecting smaller objects, particularly for high-resolution datasets like DOTA.
Comparison between Standard and SegTiling: SegTiling slightly outperformed stan-
dard tiling in all three models in Table 9.4, suggesting that the proposed adaptive tiling
approach optimizes object detection performance by better preserving object boundaries
and minimizing object fragmentation across tiles.
Comparison of SegTiling with state-of-the-art(SOTA) on test-set: SegTiling achieves
an mAP score of 81.74% using tiles size of 1024x1024 pixels and an overlap of 512 pixels,
resulting in a total of 19,636 tiles. This approach minimizes the total number of processed
tiles while effectively balancing spatial coherence and computational efficiency. SOTA
using multi-scale tiling performs a slightly higher mAP of 82.24%, employing a range of
tile sizes from 682x682 to 2048x2048 pixels with an overlap of 500 pixels. However, this
comes at the cost of a significantly larger number of tiles, approximately 72,000, due to
multi-scale splitting.
Computational trade-offs: While the tiling mechanism increases performance, the
number of images/tiles that need to be processed by the model also increases. For
example, using standard tiling and SegTiling generated approximately 14,222 and 9,977
tiles, respectively, compared to 458 images with no tiling as shown in Table 9.4. Similar
to Table 9.5 which test-set is used, SegTiling generated 19636 tiles while SOTA using
multi-scale tiling generated a high number of approximately 72000 tiles with different
scales. The more tiles, the more computations will be needed, this might lead to longer
times for inference.
Effectiveness of SegTiling: Compared to the standard tiling approach, SegTiling pro-
duces fewer tiles, 9,977 versus 14,222. Its scores increase with higher mAP, peaking at
95.77% for the HiViT model in Table 9.4. Compared to multi-scale tiling used in SOTA
official paper [34] SegTiling generated much fewer tiles and scored the comparable
performance of 81.84% which is 0.5% less than state-of-the-art as shown in Table 9.5. It
means that SegTiling not only does reduce computational overhead significantly but
also scores a comparable performance in object detection tasks.

9.5 Application to real-world Dataset: Results and Analysis

In this experiment, both the Rotated Faster R-CNN and HiViT with STD models are
evaluated on the Mainblades dataset to assess how well the SegTiling approach performs
during the inference phase. The models were trained on tiles of 1024x1024. The focus of
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this comparison is on mAP scores and the number of tiles generated during inference,
comparing standard tiling, SegTiling, and no tiling.
As shown in table 9.6, SegTiling demonstrates both higher accuracy and efficiency
compared to standard tiling and no tiling. For the Rotated Faster R-CNN, SegTiling
reduces the number of tiles (14,753 vs. 20,840) while achieving a slightly higher mAP
of 23.94%. In the meantime, HiViT with STD shows an increase in mAP: from 29.43%
with standard tiling to 30.95% with SegTiling, underlining the benefits brought by
the segmentation-based approach. The less number of tiles decreases the computation
burden without performance loss. In contrast, the no tiling approach, which used a
down-scaled version of the images too for the inference with a size of 1024x1024 pixels,
consistently resulted in the lowest mAP values for both models.

Model Tiling Approach # of images/tiles Images/tiles Size Overlap Size mAP (%)
Rotated Faster R-CNN Standard Tiling 20840 1024x1024 512 23.57
Rotated Faster R-CNN SegTiling 14753 1024x1024 512 23.94
Rotated Faster R-CNN No Tiling 514 800x800-8192x5460 N/A 16.00

HiViT with STD Standard Tiling 20840 1024x1024 512 29.43
HiViT with STD SegTiling 14753 1024x1024 512 30.95
HiViT with STD No Tiling 514 800x800-8192x5460 N/A 24.42

Table 9.6: Comparison of SegTiling, Standard Tiling, and No Tiling using Rotated Faster R-CNN, HiViT with
STD on the Mainblades dataset during inference. The models are trained on tiles of 1024x1024 pixels. N/A in the
table stands for not-applicable. Higher mAP means better performance. Images/tile size resolution are in pixels.

Rotated Faster R-CNN achieved only 16.00% mAP, while HiViT with STD performed
slightly better at 24.42%, but both results indicate that tiling is essential when working
with high-resolution images in object detection tasks.
The overall low accuracy over all cases is expected, since the Mainblades dataset is
from real-world scenarios, presenting challenges from image quality to illumination
and environmental factors. Despite such inherently challenging conditions, SegTiling
gives a slight advantage over standard tiling and even more so from no tiling on both
models, hence would thus seem to improve the performance of object detection under
such difficult conditions by its capability to generate more contextually aware tiles.

9.6 Experiment with training data: Results and Analysis

The idea behind this experiment is to test the performance of tiling during training, in
comparison with the original direct training of full images using an annotation-based
tiling scheme from DOTA Devkit. This strategy tries to avoid object fragmentation,
and each tile has complete annotations. By using a Rotated Faster R-CNN model, the
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performance was measured in terms of mAP, with the intent to determine how the tiling
affects the results during training. Originally, by dividing the dataset into 1024x1024 pixel
tiles with a 512-pixel overlap, the model is provided with training data that maintains
the spatial integrity of the objects. This contrasts with second training scenario used,
where the model is trained on the full, downscaled images at 3240x2160 pixels. The
latter approach, while retaining the entire image context, faces challenges in effectively
detecting smaller objects and managing large-scale images, which can reduce accuracy
and increase computational load.

Training Scenario Dataset Train. Image Size Tiling Approach Inf. Image Size mAP (%)
Annotation-based tiling Mainblades 1024x1024 No Tiling 1024x1024 16.00

Full images (downscaled) Mainblades 3240x2160 No Tiling 3240x2160 28.79
Annotation-based tiling Mainblades 1024x1024 SegTiling 1024x1024 23.94

Full images (downscaled) Mainblades 3240x2160 SegTiling 1024x1024 22.22
Annotation-based tiling DOTA 1024x1024 No Tiling 1024x1024 33.69

Full images (downscaled) DOTA 3240x2160 No Tiling 3240x2160 35.71
Annotation-based tiling DOTA 1024x1024 SegTiling 1024x1024 69.79
Full images (downscaled) DOTA 3240x2160 SegTiling 1024x1024 43.42

Table 9.7: Comparison of training on tiled images vs. full images using Rotated Faster R-CNN on the Mainblades
and DOTA dataset presenting mAP on the inference. For the inference, no tiling or SegTiling is applied. Higher
mAP means better performance. Train. Image Size stands for the size resolution of images during training. Inf.
Image Size stands for the size resolution of images during inference ( object detection phase).

The experiment’s results are noted in Table 9.7, comparing mAP values between the two
training scenarios for both Datasets. For the cases where SegTiling is applied the inference
image size is the same as the generated tiles size. One of the main observations here could
be that without tiling at inference, the performance differences is not important between
training on tiles and training on full images. In the specific case of the Mainblades
dataset, for instance, mAP is 16.00% when trained on annotation-based tiling and 28.79%
when trained on full images.

On the other hand, when tiling is applied in inference, the advantages of training with
tiles become more evident, especially for the DOTA dataset. Take for instance the DOTA
dataset, which has trained using annotation-based tiling and SegTiling on inference,
giving a mAP of 69.79%, compared to training on full images and using SegTiling at
inference, yielding only a mAP score of 43.42%. That would mean it is fully aware of the
benefits of training with the tiles, only if tiling is applied at the time of inference too,
especially on unstructured datasets such as Mainblades, where the full image context
may be better preserved.

Interestingly, another trend follows in the case of Mainblades, which includes real-world
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images. Although the use of SegTiling during inference improves performance when
the model is trained on tiles (achieving an mAP of 23.94%), the highest performance is
achieved without tiling during inference but training on full images which reaches a
mAP of 28.79%.

9.7 Impact of inference image size on mAP: Results and Analysis

This experiment plots the mAP performance of the Rotated Faster R-CNN model versus
the change in input image size during the inference phase. The model was trained on
1024x1024 image tiles from both datasets, DOTA, and Mainblades, and the inference
is done at various image sizes resizing the size of images with the goal of seeing how
scaling affects object detection performance.

Dataset Tiling Approach Inf. Image Size (pixels) Overlap Size (pixels) # of images mAP (%)
DOTA No Tiling 3240x2160 N/A 458 52.54
DOTA SegTiling 1152x1152 256 4601 70.63

Mainblades No Tiling 3240x2160 N/A 514 28.04
Mainblades SegTiling 2160x2160 512 2323 27.80

Table 9.8: Impact of varying inference image sizes on mAP for DOTA and Mainblades datasets using Rotated
Faster R-CNN. The model is trained on tiles of 1024x1024 pixels. N/A in the table stands for not-applicable. Higher
mAP means better performance. Inf. Image Size stands for the size resolution of images during inference ( object
detection phase).

As shown in Table 9.8, although originally trained on smaller tiles, the results show
significant increases in mAP scores when larger inference image sizes are applied. The
mAP for the Mainblades dataset is almost doubled from 16.00% (as seen in Table 9.7) to
28.04% without tiling when the size of inference images is increased from 1024x1024 to
3240x2160. That means having larger image regions during inference would be helpful
and provide enough context to the model. This in fact, helps object detection on difficult
real-world datasets such as Mainblades.

Speaking of DOTA, an impressive mAP of 52.54% can be achieved using an inference
size of 3240x2160 with no tiling whereas the previous figure was 33.69% as was shown in
Table 9.4. These results highlight that the modification of image resolution at inference
greatly improves model performance by balancing context and resolution in object
detection tasks, although the model was trained on smaller-sized tiles compared to
those at inference.
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9.8 Impact of SegTiling on multi-scale objects: Results and Analysis

The application of SegTiling demonstrates great improvements in Average Precision (AP)
across both small and large objects in the DOTA dataset. As a tiling approach, SegTiling
was supposed to perform better on small object detection, however, it can be noticed
that larger objects like "roundabout" with 26.53% improvement and "baseball-diamond"
with 56.26% improvement have significantly benefited from this approach as shown in
9.9.
In high-resolution aerial images, such as in DOTA, objects like "small vehicle," "large
vehicle," and even "plane" can still occupy relatively small pixel areas according to the
image resolution. SegTiling helps preserve object integrity during inference by breaking
the image down into smaller, more digestible tiles. That avoids loss of detail that normally
affects the detection when processing entire high-resolution images without tiling.

Class No Tiling (AP %) SegTiling (AP %) Improvement (%)
small vehicle 35.90 65.04 +29.14
large vehicle 40.21 74.84 +34.63
roundabout 39.50 66.03 +26.53

plane 75.06 91.78 +16.72
baseball-diamond 18.39 74.60 +56.21

Table 9.9: Comparison of Average Precision(AP) for different sizes of object classes from the DOTA dataset using
SegTiling and No Tiling. The "Improvement" column shows the increase in AP for each class. The Rotated Faster
R-CNN model used and trained on both training scenarios tiles and without tiles and applied on SegTiling and No
Tiling on inference respectively.

However, the results also highlight that object size alone does not determine the impact
of SegTiling, and improvements for larger objects such as "roundabout" and "baseball-
diamond" are also important. That would suggest that SegTiling lies in handling
high-resolution images well, whether for small or large objects.
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Discussion

10.1 Interpretation of results

The experiments performed within this thesis are aimed to evaluate the effectiveness of
the proposed SegTiling approach with different tiling methods including standard tiling,
SAHI tiling and no tiling. Obtained results within two datasets DOTA and Mainblades
using object detection models gives valuable insight into the flexibility of SegTiling in a
wide range of object detection tasks applied to both training and object detection phases.

This section provides a detailed commentary on the findings presented in the results
section focusing on how different tiling strategies, inference image sizes, and training
approaches affect the final mAP scores. This is not only necessary to understand the
strengths but also the limitations of the SegTiling approach for applicability to a wider
range of object detection tasks.

10.1.1 Impact of SegTiling on performance

SegTiling shows a clear advantage over different tiling apporaches including standard tiling, sahi
tiling, and no tiling, mainly for the datasets like DOTA and Mainblades. According to the
results in Table 9.4, in those structured datasets like DOTA, whose images are composed
of clear objects in the aerial views and high quality images, SegTiling is able to show a
significant improvement both in mAP and computational efficiency. Compared with
the SOTA on the test-set SegTiling performs a comparable score even slightly lower,
with high advantages on computational efficiency as shown in Table 9.5. Since SegTiling
is adaptive, it generates fewer tiles that are more contextually meaningful, achieving
less fragmentation of objects, than other tiling methods do. This maintains the spatial
coherence which is so important for accurate object detection.

Regarding the more complex Mainblades dataset, SegTiling again achieved performance
gains over the other tiling methods but less dramatically than those reported in DOTA.
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These results even with lower improvement reflect its adaptability of SegTiling for
handling real-world images, which are more difficult because of the variation in objects
size and environmental factors like light conditions or poor quality of images. It may
not be much of an improvement, but considering the extra complexity using real-world
dataset and resource efficiency gained by reducing the number of tiles during inference,
it is important.

10.1.2 Application to real-world dataset (Mainblades)

SegTiling gives a slight advantage over standard tiling and even more so from no tiling under
challenging real-world dataset. In Mainblades dataset the detection of objects is more
difficult compared to DOTA due to inconsistent lighting, occlusion of objects, and
variations in quality. While SegTiling performed well in Mainblades, it was not as good
as in DOTA due the complexity of the images. Its robust results as shown in Table 9.6
underpinning its potential in real-world applications. The approach’s adaptability and
ability to handle imperfect data make it well-suited for industrial use cases where data
quality is less controlled.

10.1.3 Training and inference observations

Applying tiling strategies during training and inference is critical for maintaining high mAP
score. The results from the experiments investigating training with tiles versus full images
provide further insight into the importance of matching the training and inference
strategies. Regarding DOTA dataset, tiling at training and applying SegTiling at inference
resulted in a significant gain (69.79% mAP as per Table 9.7). This result suggests that
the model is better positioned for handling tiled images during inference when tiling
maintains spatial structure and annotations in the training data. In contrast, training
on full images of size 3240x2160 pixels and using tiling , SegTiling in this case during
inference yielded a lower mAP of 43.42%, shown in Table on DOTA, thus indicating
that a mismatch between training and inference will degrade performance.

On the contrary, the results using the Mainblades dataset tell a slightly different story.
When the model was trained on full images and then tested with larger images during
inference (no tiling), the mAP was significantly higher (28.79% as shown in Table 9.7)
compared to training and inferring on tiles (16.00% as shown in Table 9.7). This suggests
that the nature of the Mainblades dataset, with larger objects like text or markings
on planes, is better suited to full-image analysis rather than tiling when focusing on
larger objects. Tiling during inference, while beneficial for some objects specifically
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small objects, may fragment larger objects that span the entire image, thus negatively
impacting of mAP score.

Increasing the size of inference images often enhances detection accuracy, especially for larger
objects. Another observation of these experiments is the impact of the size of the inference
image on mAP score. The two datasets have a better performance with large inference
images compared to the training tiles. So much so that increasing the size of the
inference image in Mainblades to 3240x2160 pixels almost doubles the mAP to 28.04%,
as shown in Table 9.8, compared to smaller tiles, 16.00%, as shown in Table 9.7. The
same trend followed DOTA, where inferring using higher resolution images without
tiling in inference yielded a higher mAP of 52.54% as shown in Table 9.8 compared
to inferring using less resolution with mAP of 33.69% as shown in Table 9.7. These
results suggest that for some datasets, especially those containing larger objects, the
performance of object detection for a model improves when increasing the resolution of
inference images even beyond their training resolution and without applying tiling.

10.1.4 Impact of SegTiling on multi-scale objects

The analysis of SegTiling allows to extract several observations from the results. One of
the main issues in methods with segmentation, such as SegTiling, is their dependence on
the visual features of an image, like brightness, contrast, and general resolution. This may
affect the detection performance for some object classes. For example, "small-vehicle",
or "plane" cannot be detected properly due to different image conditions as shown in
figures 10.1 and 10.2.

(a) (b) (c)

Figure 10.1: An example of image during preprocessing phase representing two classes "small-vehicle" and
"large-vehicle" on DOTA dataset.

It is clear from the Figures 10.1b and 10.1c that the small vehicles are not fully captured
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with compared to the large vehicles. In the case of the class ’plane’ as shown in Figures
10.2b and 10.2c, it is also evident that the planes are not clearly captured and separated
from other objects. The bounding boxes thus fail to properly fit to planes and often get
confused with other objects. High brightness or poor quality may result in problems
of segmentation algorithms to identify the boundaries of the objects, therefore tiling
lead to poor detection performance. While SegTiling obtained high mAP score, it is still
very sensitive to the clarity of the images, which indicates that image quality, lighting
conditions can play a key role to its success.

(a) (b) (c)

Figure 10.2: An example of image during preprocessing phase representing some classes including "plane" on
DOTA dataset.

Generally, SegTiling shows a really good performance detecting small object in high-
resolution images. The high average precision (AP) improvements for "small vehicle"
and "large vehicle" as shown in Table 9.9 further validate the proposed method on
small objects in high-resolution images. Sometimes "large" objects like "large vehicle"
are still small and take a small area in a high resolution images. Interestingly, SegTiling
also benefits larger objects, such as "roundabout" and "baseball-diamond," which have
notable AP improvements too. This highlights the extensive utility of SegTiling, as it can
preserve object context and spatial integrity for high-resolution images and enabling
its effectiveness across variable object scales. This consistent performance gain through
different object sizes underlines the robustness of the method in dealing with the
challenges on multi-scale object detection.
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10.2 Limitations

Although SegTiling has demonstrate promising results with respect to enhancing the
mAP performances together with computational efficiency, a number of limitations do
exist in this thesis presented in this section.

• Inference-Time Limitations: The advantages of SegTiling become visible mainly in
inference, especially in generating fewer number of tiles and hence less computation.
However, when SegTiling is applied only to the object detection phase instead of
both training and inference the performance is not really improved. That means
SegTiling works better when i combined with training on tiles too. This limitation
it is not very useful for many practical applications when retraining of the model
is not feasible.

• Computational Cost of Training and Inference: Both phases training and object
detection in SegTiling, suffered a considerable rise in computational cost using
tiling approaches. Accordingly, the training time almost doubled compared with
training using full images that were down-scaled because tiling creates a larger
number of samples and requires more processing power. Regarding the use case
of inference, splitting high-resolution images into tiles greatly improves mAP but
increases the processing time in such cases. This increased computational burden
becomes particularly important in real-time or resource-constrained environments,
where need to balance the trade-off between improved performance and higher
computational costs.

10.3 Future Work

This thesis offers several potential directions for improvement and further exploration.
It is already pointed out that SegTiling has some potential for use in well-annotated
datasets like DOTA and real-world dataset for multi-scale object detection. However,
there are ways in which SegTiling can be improved, and there are certain ways in which
SegTiling can be used for certain types of detection tasks that could be part of future
work. The following directions are proposed to refine and extend the scope of this thesis.

10.3.1 Generalizing SegTiling to other Datasets:

In future work, the implementation of SegTiling could be expanded to a wider selection
of datasets that are not limited to aerial and industrial images. For instance, assessing
SegTiling on datasets of medical images, satellite images, or natural scenes would
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provide a more thorough appraisal of its robustness and versatility. Understanding
how well SegTiling performs in these different domains will help establish it as a
general-purpose tiling solution.

10.3.2 Tiling for Large Object Detection:

The issues that run into large object fragmentation, especially in the Mainblades dataset,
show that developing more sophisticated tiling methods for detection is needed that
can handle large objects. For example, methods that allow tiles to merge or split based
on the object’s dimensions could help maintain spatial coherence and prevent detection
failures caused by fragmented objects. This would be especially useful for datasets
featuring large, irregularly shaped objects.

10.3.3 Integration into architectures in Object Detection Models:

Even though the SegTiling method was applied to an existing object detection pipelines
, particullary for the Rotated Faster R-CNN, ViT with STD and HiVit with STD, future
work could examine integrating SegTiling more closely into the architecture of object
detection models. This would entail end-to-end training of the model, where the object
detection network itself learns to make the decisions that SegTiling currently makes
and generate tiles dynamically based on the input data for optimal results. This could
involve modifying architectures like Faster R-CNN or ViT models to internally manage
tile creation, allowing for more seamless and optimized processing during both training
and inference.

10.3.4 Optimization for Real-Time Applications:

Although SegTiling has been shown to improve object detection performance, it can be
computationally demanding, especially for real-time applications. Future researchers
could focus to figure out how to make SegTiling less computationally heavy and faster,
as a result, more viable for real-time applications. Tile skipping or early exit strategies
could be used to avoid processing tiles with are not relevant reducing overhead. The
integration of various of these techniques with parallel processing and GPU acceleration
would enable fast tile processing, while edge computing frameworks could distribute
the computational load to reduce resource demands on real-time applications.
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Conclusions

This thesis outlines a new approach to elevate the capabilities of object detection on
high-resolution images including small, oriented multi-scale objects. Segmentation-
based Adaptive Tiling (SegTiling) aims to lessen the limitations of conventional tiling
techniques like standard tiling and SAHI tiling by minimizing the object fragmentation
and spatial coherence, two important factors that lead to a better performance if are
avoided. The proposed SegTiling approach is evaluated against tiling and no-tiling
methods through extensive experimentation on the public available DOTA dataset and
the real-world confidential Mainblades dataset, a company specializing in aircraft drone
inspections.
The results of SegTiling exhibits statistically significant mAP score improvements,
besides marked gains in computational efficiency. In well-annotated and high-quality
images datasets like DOTA , SegTiling, marks its feasibility and high performance.
Even with the Mainblades dataset, wherein real-world images present varying quality
and environmental conditions, SegTiling retained robustness. Despite the inherent
complexities, SegTiling maintained strong performance, highlighting its potential for
practical applications.
The novel contributions of this thesis include:

• Development of SegTiling, an adaptive tiling method that maintains spatial consis-
tency and minimizes object fragmentation.

• Superior mAP performance achieved over standard tiling, SAHI tiling, and no-tiling
methods on high-resolution images.

• SegTiling’s robust application to Mainblades dataset also illustrates its practicality
for handling poor-image quality in the real world.

• SegTiling performs 0.5% lower than state-of-the-art (SOTA) on mAP score on DOTA
dataset with a significant reduction of generated tiles compared to multi-scale
tiling used by SOTA.
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• Significant computational efficiency gains by reducing the number of tiles processed
during inference .

Although promising, SegTiling is inhibited by notable limitations on inference time and
computational demands, which are common challenges related with tiling strategies.
While during the inference phase the given method improves detection accuracy, the best
performances are obtained when tiling is simultaneously applied during the training
phase too. However, this imposition on computation makes real-time applications harder
to realize. Future work could optimize SegTiling for faster inference in order to expand
its use to real-time tasks.
In future work, it could be valuable to:

• Generalizing SegTiling to a larger set of datasets besides aerial and industrial
images.

• Improving tiling methods for detection in order to facilitate the handling of large
objects. Potential methods allowing for merging or splitting of tiles based on an
object’s dimensions may reduce fragmentation issues in object-detection tasks.

• Integrate SegTiling directly into the architectures of object detection models to
allow for end-to-end training. Use SegTiling to generate tiles dynamically based
on the input data of the network for optimal results.

• Improve the approach to real-time applications by enabling tile skipping or early
exit strategies for non-interesting tiles, rendering it appropriate for tasks including
drone inspection and live video surveillance.

This would position SegTiling as a powerful tool for object detection and open the route
to further performance improvement regarding wide ranges of practical applications.
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